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Abstract
In our interconnected world, Systems Thinking (ST) is increasingly being recognized as a key learning goal for 
science education to help students make sense of complex phenomena. To support students in mastering ST, 
educators are advocating for using computational modeling programs. However, studies suggest that students 
often have challenges with using ST in the context of computational modeling. While previous studies have 
suggested that students have challenges modeling change over time through collector and flow structures and 
representing iterative processes through feedback loops, most of these studies investigated student ST through pre 
and post tests or through interviews. As such there is a gap in the literature regarding how student ST approaches 
develop and change throughout a computational modeling unit. In this case study, we aimed to determine 
which aspects of ST students found challenging during a computational modeling unit, how their approaches 
to ST changed over time, and how the learning environment was supporting students with ST. Building on prior 
frameworks, we developed a seven-category analysis tool that enabled us to use a mixture of student discourse, 
writing, and screen actions to categorize seven ST behaviors in real time. Through using this semi-quantitative tool 
and subsequent narrative analysis, we found evidence for all seven behavior categories, but not all categories were 
equally represented. Meanwhile our results suggest that opportunities for students to engage in discourse with 
both their peers and their teacher supported them with ST. Overall, this study demonstrates how student discourse 
and student writing can be important evidence of ST and serve as a potential factor to evaluate ST application 
as part of students’ learning progression. The case study also provides evidence for the positive impact that the 
implementation of a social constructivist approach has in the context of constructing computational system 
models.
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Introduction
The natural world is full of complex and interconnected 
systems, many of which resist explanation through sim-
ple linear “cause and effect” relationships. From the inter-
play of energy and matter in evaporative cooling to the 
perilous specter of runaway climate change, countless 
science phenomena involve multiple interacting elements 
that together can be defined as distinct systems (Gilissen 
et al., 2020; Meadows, 2008; Zangori et al., 2017). These 
complex systems-based phenomena often have behav-
iors that are difficult to predict from binary interactions 
between individual pairs of elements within the system, 
thus limiting the effectiveness of using linear “cause 
and effect” reasoning (Arnold & Wade, 2015; Assaraf & 
Orion, 2010; Sweeney & Sterman, 2000). However, K-12 
Science Education overly emphasizes linear causal rea-
soning, which limits the opportunities students have to 
try and make sense of a wide range of phenomena that 
have an impact on their everyday lives (Fisher & Systems 
Thinking Association, 2023; Lee et al., 2019). Hence, ST 
scholars advocate for science education to move from 
linear causal explanations towards considering behav-
ior that emerges from cumulative interactions within a 
system (Easterbrook, 2014; Forrester, 1994; Gilissen et 
al., 2020; Hmelo-Silver et al., 2017). Moreover, there is 
a growing consensus to equip students with the skills of 
a systems thinking mindset, preparing them as citizens 
who can apply those thinking skills to understand and 
solve systems level problems (Michalopoulou et al., 2019; 
Reynolds et al., 2018).

Systems thinking (ST) is a framework for approaching 
and understanding phenomena as a series of intercon-
nected elements, in which the summative interactions 
between those results in a behavior that could not be oth-
erwise explained by the mechanism of just one interac-
tion within the system (Arnold & Wade, 2015; Sweeney 
& Sterman, 2007; Meadows, 2008). Systems thinking is 
increasingly recognized as a key learning goal for science 
education across many countries including Germany, 
the United States, and Australia (ACARA, 2017; KMK, 
2020; NRC, 2012). In the United States, ST is embedded 
in the Next Generations Science Standards (NGSS) as 
the crosscutting concept of systems and systems model-
ing (NGSS Lead States, 2013). By integrating ST within 
a modeling framework, the NGSS, along with other 
scholars, advocate for the use of computational model-
ing software as a promising avenue for supporting stu-
dents’ ST (Haas et al., 2020; Metcalf et al., 2000; Shin et 
al., 2022; Wilensky & Reisman, 2006). Through building 
and revising computational models, students have oppor-
tunities to consider the impact of individual elements and 
relationships on system behavior, examine how system 
behavior changes as the relative amount of certain vari-
ables fluctuate over time, and explore how feedback loops 

affect system behavior (Bielik et al., 2020; Bowers et al., 
2023; Eidin et al., 2023a; Fretz et al., 2002).

Although systems and system modeling have been dis-
cussed in the educational literature for decades, students 
still have challenges understanding phenomena from a 
ST perspective (Cronin et al., 2009; Hmelo-Silver et al., 
2017; Plate, 2010). Despite being a part of official policy 
documents, ST remains sidelined in many K-12 science 
classrooms. Even in classrooms that have shifted towards 
integrating systems thinking, students tend to apply a 
reductionist approach, simplifying circular and feedback 
mechanisms into simple linear relationships (Assaraf & 
Orion, 2010; Bowers et al., 2023). Several scholars have 
demonstrated that students often struggle with making 
sense of dynamic systems, where the behavior of the sys-
tem changes over time, and representations of dynamic 
relationships within these systems (Cronin et al., 2009; 
Hopper & Stave, 2008; Pallant & Lee, 2017; Zuckerman & 
Resnick, 2005).

It is evident from the literature that there is a need to 
gain a deeper understanding and characterization of 
students’ systems thinking approaches while engaging 
in computational systems modeling. If we fully grasp 
the challenges students face with ST, we can design bet-
ter learning environments. Additionally, there is also a 
dearth of literature on how different aspects of the learn-
ing environment can assist students with applying ST 
principles during computational modeling. Although 
earlier studies have explored student ST through pre-
post tests, post unit interviews, and student final models, 
relatively few studies have looked at how students engage 
with ST throughout a computational modeling unit 
(Hmelo-Silver et al., 2007; Khajeloo & Siegel, 2022; Riess 
& Mischo, 2010; Taylor et al., 2020). Because student 
learning occurs within a specific context, being heavily 
influenced by peer-peer interactions and student prior 
knowledge (Driver, 2012), it is often beneficial to take a 
holistic approach towards evaluating student learning. 
Seeing how student ST evolves organically throughout 
a learning unit can help reveal how students build com-
petency in ST and underscore the inherent challenges 
with certain aspects of ST in similar contexts. While pre 
and post tests can reveal if a particular unit is effective 
at supporting student ST, relying solely on pre and post 
tests can obfuscate which specific aspects of the unit 
(be it specific teacher supports, student discourse ques-
tions, or technological scaffolds) are beneficial for stu-
dent learning. As such, having a more in-depth approach 
that looks at how students are engaging in ST during a 
unit is important for finding better strategies for support-
ing ST in science classrooms. Only examining student 
models at predetermined checkpoints also obscures the 
rationale behind key modeling decisions and hides the 
key learning moments. Therefore, we acknowledge that 



Page 3 of 29Bowers and Eidin Disciplinary and Interdisciplinary Science Education Research            (2024) 6:24 

an in-depth investigation that looks at how students build 
computational models in-situ (including their discourse 
practices) can help educational researchers better under-
stand how students build competency with ST and the 
specific aspects of the learning environment that assist 
with this process. Because a gap in the literature exists 
with regards to how to use student discourse during the 
process of modeling to analyze student ST, this study 
also aims to explore techniques for analyzing student 
discourse in this learning context. As such we set out to 
address the following questions.

Research questions

1.	 How do students apply ST as they build and revise 
computational systems models in this unit?

2.	 How do student ST behaviors change over the course 
of this unit?

3.	 What supports from the learning environment assist 
students with applying ST in this unit?

Literature review
Defining systems thinking
Systems thinking (ST) describes a set of cognitive pro-
cesses whereby one examines a phenomenon as a col-
lection of individual elements that form a system with 
complex and often unexpected behavioral outcomes 
(Arnold & Wade, 2015; Assaraf & Orion, 2005; Shin et 
al., 2022; Stave & Hopper, 2007; Whitehead et al., 2014). 
Emerging as an alternative to the reductionist approaches 
to science, science education, and other fields of knowl-
edge, ST scholars have long advocated for approach-
ing phenomena and problems in a holistic manner that 
examines how behavior emerges not only from simple 
causal patterns, but from the complex interactions 
between different elements within a system (Dominici, 
2012; Fang & Casadevall, 2011; Forrester, 1994; MacInnis, 
1995; Orgill et al., 2019). We next describe some ST prin-
ciples and skills that are based on the research consensus, 
while also being useful for the context of computational 
systems modeling: evaluating system variables, analyz-
ing single causal relationships and linear causal chains, 
choosing collector variables and discussing collector and 
flow structures, discussing feedback loops and circular 
chains, and interpreting graphical model output.

One major aspect of systems thinking is evaluating 
system variables to determine what elements need to be 
included to adequately represent how a system functions 
(Arnold & Wade, 2015; Stave & Hopper, 2007; Sweeney & 
Sterman, 2007). We define element as a core aspect of a 
system that can be described independently and interacts 
with other elements in the system (Arnold & Wade, 2015; 
Meadows, 2008; Riess & Mischo, 2010; Shin et al., 2022). 

For example, an element in a model of a forest ecosystem 
would be the number of wolves in the forest as it can be 
independently described and impacts other elements in 
the ecosystem, such as the number of rabbits or number 
of deer. In the context of computational systems model-
ing, elements need to be described in a manner that can 
be recognized by the software program and thus trans-
form into quantitative or semi-quantitative variables. 
Evaluating system variables often requires considering 
system boundaries and figuring out which variables are 
superfluous to the model (Arnold & Wade, 2017; Assaraf 
& Orion, 2005; Stave & Hopper, 2007). While the num-
ber of fish in a stream does have an impact on a forest 
ecosystem, if the focus is on predator/prey relationships 
between wolves, rabbits, and deer, it might not be a nec-
essary element to include in a model and can be consid-
ered to be outside of the boundaries of the system.

Analyzing causal relationships refers to describing and 
unpacking the interactions between elements, or the vari-
ous types of relationships that can exist between elements 
in a system (Arnold & Wade, 2015; Cabrera et al., 2008; 
Plate, 2010). ST literature includes a common nomencla-
ture to describe the different types of interactions that 
can occur between elements (Arnold & Wade, 2015; Cro-
nin et al., 2009; Hopper & Stave, 2008; Monat & Gannon, 
2015). At a base level are direct or single causal relation-
ships, where one element has a direct impact on another 
element (i.e., A affects B). Such direct causal relationships 
can have varying magnitudes or rates defining these rela-
tionships; some elements can cause another element to 
increase exponentially while others cause another ele-
ment to decrease at a steady rate. When several single 
causal relationships are arranged in a linear pattern, they 
are often considered to form a linear causal chain where 
A affects B, B affects C, and so on (Plate, 2010; Stephens 
et al., 2023). As students develop more familiarity with 
systems thinking principles, they often shift from analyz-
ing single causal relationships towards examining linear 
causal chains (Mambrey et al., 2022; Mehren et al., 2018) 
and ultimately consider how external mediating factors 
(elements outside of the causal chain) impact the linear 
causal chain (Stephens et al., 2023).

Another type of relationship found in ST literature are 
collectors and flows, also referred to as stock and flow sys-
tems (Cronin et al., 2009; Eidin et al., 2023a; Sweeney & 
Sterman, 2000). A collector (or stock) represents a vari-
able that can accumulate and deplete in one form (col-
lector) and be transferred via a “flow” to another form 
thereby showing change over time. For example, in a 
forest ecosystem, the number of living deer can be rep-
resented by a collector as the population of living deer 
can accumulate or deplete. In such a model it would also 
be possible to show how the number of living deer are 
transferred to the number of dead deer (represented by a 
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second collector) as predators, disease, and other factors 
cause living deer to die, directly adding to the number of 
dead deer (Fig. 1). Collector and flow structures are often 
useful for representing how systems can change over 
time or remain in a state of dynamic equilibrium (Eidin et 
al., 2023a). Thinking in terms of change over time refers 
to the consideration of the dynamic nature of systems, 
delays, and reaction to change (Arnold & Wade, 2017; 
Gotwals & Songer, 2010; Sweeney & Sterman, 2007). An 
array of phenomena and problems require the applica-
tion or framing in terms of change over time. Evolution, 
the creation of a Canyon, and climate change are just a 
few examples of phenomena that require the addressing 
of dynamic processes, changes, and time delays to explain 
them and make predictions (Petrosino et al., 2015; Roy-
choudhury et al., 2017).

Discussing feedback loops and circular chains involves 
the recognition of recursive or circular relationships 
patterns and their impacts on broader system behavior. 
Feedback loops describe recursive relationship patterns 
whereby the output of a process is in turn used as an 
input in a subsequent cycle, thereby creating recursion in 
a system (Cox et al., 2019; Hopper & Stave, 2008; Rich-
mond, 1993). Positive/reinforcing feedback loops, such 
as the relationship between atmospheric carbon diox-
ide and global temperatures, amplify the effects of an 
initial input variable, leading to an exponential increase 
overtime (Betley et al., 2021; Danish et al., 2017; York & 
Orgill, 2020). Conversely, negative/stabilizing feedback 
loops counteract or dampen the impact of an initial vari-
able, helping a system maintain equilibrium (Flood, 2010; 
Sweeney & Sterman, 2000). While students can include 
recursive or circular patterns in their models by accident, 
understanding feedback mechanisms and their broader 
impact on the system is evidence of more sophisticated 
systems thinking.

A final aspect of systems thinking that is largely unique 
to the context of computational modeling is interpreting 
graphical model output. Computational modeling allows 
students to visualize relationships that exist between the 
variables of the system and generate graphical model 
output that can be used to see if the system is behaving 
according to their expectations and understanding of 
the underlying phenomenon (Haas et al., 2020; Nguyen 

& Santagata, 2021; Pierson & Brady, 2020). By interpret-
ing graphical model output students can examine how 
various relationship patterns, such as collector and flow/
stock and flow structures and feedback loops, influence 
model behavior and represent a dynamic system. As such 
this aspect of ST can overlap and support students with 
the previously mentioned ST aspects. In many instances, 
students can also use computational modeling programs 
to compare their model output to real world data to see 
how their conceptualization of system structure reflects 
the actual behavior of the system (Abar et al., 2017; Bow-
ers et al., 2023; Campbell & Oh, 2015; Grapin et al., 2022). 
As the type of graphical model output varies across com-
putational modeling programs, the exact mechanics of 
interpreting graphical model output are defined by the 
software one uses.

Using computational modeling to support students with 
ST
There are two main approaches to computational mod-
eling that are commonly used to support students with 
systems thinking: agent-based modeling and icon-based 
modeling. Agent based modeling focuses on having stu-
dents program the behavior of specific agents that can 
interact with other agents in a system (Goldstone & 
Janssen, 2005; Goldstone & Wilensky, 2008; Wilensky & 
Rand, 2015; Yoon et al., 2016). For example, in a simpli-
fied model of an ecosystem, a student might program 
an herbivore “agent” to consume plants continuously, to 
duplicate if it has procured enough food, and for indi-
vidual herbivore agents to die if they have not procured 
food. Through the programming of various agents in the 
ecosystem, such as carnivores, decomposers, and pro-
ducers, students can create a complex system that can 
produce dynamic behavior, but key relationships between 
various agents can be obscured as they are not directly 
represented in a visual format. In icon-based modeling, 
students input key elements as variables on a modeling 
canvas (Damelin et al., 2017; Metcalf et al., 2000; Nguyen 
& Santagata, 2021; Zhang et al., 2006). The students then 
define specific relationships between these variables in 
a quantitative or semi-quantitative manner. These rela-
tionships between individual variables are then visually 
represented on the modeling canvas. Students can then 

Fig. 1  Example of a collector and flow system
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manipulate the relative amount of each input variable to 
see how their model behaves under different initial con-
ditions (Bielik et al., 2020; Bowers et al., 2023; Fretz et al., 
2002). In some icon-based modeling programs, students 
can create collector and flow relationships and make 
feedback loops to generate models with dynamic behav-
ior. (Bielik et al., 2020; Eidin et al., 2023a, b).

One icon-based modeling program that has the poten-
tial to allow students to build dynamic systems and create 
opportunities for students to develop sophisticated ST is 
SageModeler. SageModeler is a free open-source compu-
tational modeling software that allows students to place 
individual variables onto a canvas and set relationships 
between these variables in a semi-quantitative manner 
via a drop-down menu (Fig. 2A) (Bielik et al., 2020; Bow-
ers et al., 2023; Damelin et al., 2017; Nguyen & Santagata, 
2021). Students can also make collector and flow relation-
ships and feedback loops (Fig.  2B). Once students have 
created their models, they can use the simulate feature 
to explore how the model behaves under different initial 
starting conditions and/or how the behavior of the model 
changes over time (Fig.  2C). Students also can input 
external data into SageModeler and compare these data 
to model output to validate their computational models 

(Fig.  2D). These features enable students to construct 
computational models of dynamic systems and have the 
potential to support them in building competency with 
ST (Eidin et al., 2023a; Shin et al., 2022). Although Sage-
Modeler has been shown to be a useful tool to support 
students with systems thinking, these earlier studies pri-
marily focused on having students work with construct-
ing static-equilibrium models (Damelin et al., 2017; Eidin 
et al., 2023b; Nguyen & Santagata, 2021). In these static 
equilibrium models, dynamic representational features 
such as collector and flow structures are lacking in scope, 
making it more difficult for students to represent changes 
in the behavior of a system over time. Given SageModel-
er’s potential to support students in ST, we are interested 
in investigating how students use ST as they construct 
models of dynamic systems with this program.

Despite the affordances of computational modeling 
tools in supporting users’ ST, there are evident challenges 
of users’ ability to utilize the full potential of these tools. 
For example, students and adult learners tend to primar-
ily think in terms of linear causality, without considering 
more complex relationship dynamics (Cronin et al., 2009; 
Driver et al., 1985; Hmelo-Silver et al., 2017; Plate, 2010). 
Indeed, the focus on linear cause and effect relationships, 

Fig. 2  SageModeler. A Setting a relationship in SageModeler. B collector and flow relationships in SageModeler. C Simulation features in SageModeler. D 
Comparing experimental data to model output data
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that is often reinforced by standard approaches to science 
education (Gilissen et al., 2020; Raia, 2005), itself appears 
to be a hindrance for conceptualizing how systems can 
change over time (Eidin et al., 2023b). As such, many 
students have challenges with understanding dynamic 
systems, and its model representation such as collector/
stock and flow structures and generated graphs simu-
lating how the behavior of a system changes over time 
(Cronin et al., 2009; Hopper & Stave, 2008; Pallant & 
Lee, 2017; Zuckerman & Resnick, 2005). This is reflected 
in studies where students have difficulty utilizing col-
lector and flow/stock and flow relationships to demon-
strate how a key element of the system (such as the mass 
of water) can be transferred from one form to another 
(in this case from liquid to gas) over time (Cronin et 
al., 2009; Pallant & Lee, 2017; Zuckerman & Resnick, 
2005). Another aspect of dynamic systems that students 
often find challenging is understanding the behavioral 
impact of feedback loops and circular behavioral patterns 
(Assaraf & Orion, 2010; Cox et al., 2019; Hmelo-Silver et 
al., 2017; Hopper & Stave, 2008). Given that many impor-
tant phenomena, such as climate change, forest ecosys-
tems, and the human endocrine system, involve dynamic 
systems that are explained through feedback loop mecha-
nisms, it is important that science educators find ways of 
supporting students with moving beyond linear causal 
reasoning.

Methods
Study context
Classroom environment
This study took place at Faraday High School (FHS), a 
pseudonym for a public magnet school in the Midwest-
ern United States, during November and December of 
2022. As a public magnet school, FHS recruits students 
from across the tri-county “Faraday City” area primarily 
based on academic merit as determined by student test 
scores and teacher recommendations. Around 21% of 
FHS students identify as Non-White and around 54% of 
students receive free or reduced lunches. FHS runs on a 
block schedule, meaning that students attend each class 
twice a week for 80 min. In this work, I collaborated with 
Mr. H (a middle-aged White Male high school chemistry 
teacher with approximately 20  years of teaching experi-
ence) to implement a unit on evaporative cooling. Mr. H 
participated in a weekly professional learning community 
(PLC) prior to implementing the evaporative cooling unit 
where we went over the evaporative cooling unit in depth 
and discussed specific strategies for supporting students 
with ST.

Curriculum
Mr. H implemented a five-week high school chemistry 
unit on evaporative cooling with his 10th grade students. 

Evaporative cooling is the process by which high kinetic 
energy (KE) particles are the first to evaporate from a liq-
uid, causing the liquid to cool. As these particles break 
their intermolecular bonds with other particles and evap-
orate as a gas, their kinetic energy is transferred to the 
potential energy (PE) of the evaporated gas. Because the 
high kinetic energy particles evaporate first, the average 
kinetic energy of the liquid (i.e. the temperature of the 
liquid) decreases, causing the liquid to become colder. 
Given that the temperature of the liquid helps deter-
mine the evaporation rate, the loss of kinetic energy to 
potential energy during evaporation creates a negative 
feedback loop, causing the evaporation rate to slow as 
the liquid cools. The rate of evaporation is also in part 
determined by the strength of the intermolecular forces 
(IMFs) of each liquid; liquids with weaker IMFs will evap-
orate more quickly and therefore feel colder as they evap-
orate off our skin (Fig. 3).

As a design-based research unit, we deliberately devel-
oped specific supports and pacing instructions to ben-
efit students with engaging in ST. Many of these design 
choices were inspired by the existing literature and gen-
erally accepted practices for unit design. As this was the 
fourth iteration of this unit, several design choices were 
influenced by our past experiences with implementing 
earlier iterations of this unit. One early decision based 
on existing curriculum design literature was to design the 
evaporative cooling unit based on Project Based Learning 
(PBL) principles (Krajcik & Shin, 2022). These principles 
include: having students experience a hands-on scientific 
phenomenon, guiding student inquiry and allowing stu-
dents to ask their own questions related to the phenom-
enon through the use of driving questions and a driving 
question board, facilitating students in using scientific 
practices to investigate the phenomenon to address the 
driving question, and having students generate a knowl-
edge product (i.e. a computational systems model) that 
demonstrates their learning (Krajcik & Shin, 2022). This 
unit was also designed to align with official science edu-
cation standards adapted from the NGSS. In this unit, 
students were tasked with creating a computational 
model of evaporative cooling that addressed the follow-
ing driving question: “Why do I feel colder when I am 
wet than when I am dry?” The students worked in groups 
of 2–3 to build, test, and revise their computational mod-
els using SageModeler software.

Prior to starting this unit, students were briefly intro-
duced to SageModeler through a short tutorial where 
they discussed how to create variables, set relationships 
between these variables, and create collector and flow 
relationships using this software program. Students 
began the unit by experiencing the evaporative cool-
ing phenomenon by noticing how three different liq-
uids (water, acetone, and rubbing alcohol) feel as they 
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evaporated from their hands. Students were then tasked 
with making an initial diagrammatic model of this phe-
nomenon and engaging in an embodied modeling task 
where they acted out the role of liquid molecules evapo-
rating into gas particles. Mr. H then worked with his stu-
dents to co-construct the initial “backbone” of this model 
in SageModeler, i.e. the transfer relationship between the 
number of liquid particles and the number of gas parti-
cles (Fig. 4).

After constructing this initial backbone, students were 
encouraged to add additional variables to their SageMod-
eler models. As the unit progressed, students, with the 
help of online learning modules, first-hand experiments, 
and classroom lectures/discussions, were introduced to 
additional science concepts (i.e. IMF, Kinetic Energy, and 
Potential Energy). After each learning module, students 
were tasked with revising their computational models 
based on their evolving understandings of evaporative 

cooling. Students were also given multiple opportunities 
to critique peer models, both through whole class cri-
tiques and small group discussions, and receive feed-
back on their models. Note that we divided the unit up 
into two main sections for analysis purposes: Pre Poten-
tial Energy phase (the first six lessons) and Post Potential 
Energy phase (the final five lessons). In the Pre Poten-
tial Energy phase, students are accumulating knowledge 
about different elements of evaporative cooling to add 
on to the unitary backbone relationship showing evapo-
ration as the transformation from liquid to gas. Because 
students learn about potential energy, the final new con-
ceptual idea/system variable, on lesson seven, we con-
sider this a key turning point in the unit as they have all 
of the variables necessary to complete a holistic model 
and can begin model revision and validation. As such stu-
dents enter the Post Potential Energy phase, where they 
should include two parallel collector and flow structures 

Fig. 4  Backbone of evaporative cooling model

 

Fig. 3  Evaporative cooling model
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(Fig. 4) to demonstrate that evaporation involves both a 
change in state (matter being transformed from liquid to 
gas) and in energy (kinetic energy to potential energy). 
Towards the end of the unit, students collected experi-
mental temperature vs. time data, which helped validate 
their final models. Table  1 in the Appendix provides a 
summary of the science content goals, ST learning goals, 
and learning activities of each lesson of the unit. More 
details about design changes made across multiple itera-
tions of this unit can be found in the Appendix.

Data collection
We collected data for this study in November and 
December of 2022 in partnership with Mr. H who imple-
mented the evaporative cooling unit at FHS. For the pur-
pose of this case study, we collected student data from 
just one class (29 students) taught by Mr. H. Our primary 
data source was student screencasts: video and audio 
recordings that allow researchers to capture student 
screen actions (how they are building and construct-
ing their models) along with video and audio of student 
conversations conducted during this process. We were 
able to track how students built and revised their models 
along with the discourse students had around ST during 
the modeling process. These screencasts were collected 
from five student groups (11 students total) in Mr. H’s 
class, whose demographics and pseudonyms are found 
in the table below (Table  1). These five student groups 
were chosen based on convenience sampling as they were 
the only students who volunteered to participate in the 
screencast data collection process. While the other 18 
students participated in all other classroom activities, 
they did not have their laptop screens recorded for this 
study. Given that each class period was 80 min and that 
this unit lasted for 11 lessons, we collected 880  min of 
screencasts for each student group or 4400  min for all 
five groups. Because screencast data was only collected 
from these five student groups, only their data and class 
time is included in our data analysis process. We also 
collected audio from Mr. H to capture his pedagogical 
moves and dialogue that were not picked up by the stu-
dent screencasts.

Instrument development and validation
To analyze student ST from the screencasts in this case 
study, we developed the Dynamic Systems Thinking 
through Modeling Analysis Tool (Dynamic ST Tool). 
Other efforts to measure student ST in a computational 
modeling context have either analyzed the structural 
complexity of student models structures through pre-
post tests (Taylor et al., 2020), assessed student knowl-
edge of ST principles through written assessments (Riess 
& Mischo, 2010), or conducted scaffolded interviews 
where students unpacked their reasoning behind dif-
ferent modeling decisions (Khajeloo & Siegel, 2022) or 
tested their generalized ST knowledge (Mambrey et al., 
2022). In contrast to these earlier studies, which either 
assessed student ST in isolation from the modeling pro-
cess, analyzed student models as final products, or inter-
viewed students after their models were completed, this 
tool aimed to focus on student discourse and student 
actions during the whole modeling process and perhaps 
provides a more authentic view of student ST in situ.

When designing this instrument, we began by review-
ing existing ST literature, looking for common themes 
found across different studies. In our literature review, we 
focused on studies that involved computational modeling 
environments or were influential to the conceptualiza-
tion of ST as described by other computational modeling 
studies. Some of the major studies that drove our lit-
erature review of ST include: Arnold and Wade (2015, 
2017); Assaraf and Orion (2005); Bielik et al. (2023); 
Cronin et al. (2009); Meadows (2008); Mehren (2018); 
Plate (2010); Richmond (1993); Shin et al. (2022); Stave 
and Hopper (2007); and Sweeney and Sterman (2000, 
2007). In particular, our previous work on developing “A 
Framework for Computational Systems Modeling” (Shin 
et al., 2022) heavily influenced our conceptualization of 
ST in the context of computational systems modeling. 
From these studies, we listed out different aspects of ST 
that were important across the ST literature and that 
were relevant to the context of computational model-
ing. Aspects of ST that were unique to only one or two 
papers were excluded at this stage. We then discussed 
how these aspects of ST could be manifested as students 
built and revised computational models using SageMod-
eler software. Such discussions aimed to find behavioral 
indicators that could clearly be identified from student 
screencast data and easily distinguished from each other. 
Through these discussions, we identified seven main 
indicators of student ST. With the initial indicators, we 
analyzed two hours of student screencasts to test the fea-
sibility of our research instrument. After this initial test 
run, we made additional revisions, adding helpful details 
to better describe student ST behaviors. We then created 
and tested a four-part classification system (from Level 
1 to Level 4 in ascending order) for each of the seven 

Table 1  Screencast student pseudonyms and demographics
Student group Student 

pseudonyms
Demographics

Group 1 Conrad and Zion South Asian Male, White Male
Group 2 Amy and Leia White Female, White Female
Group 3 Walter, Larry, and Ivan White Male, White Male, 

White Male
Group 4 Brianna and Kate South Asian Female, White 

Female
Group 5 Phillip and Robyn White Male, White Female
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indicators to explore the sophistication of observed stu-
dent discourse and behavior. Please note that while we 
do not include these level categories in our quantitative 
analyses in this paper, we did use these level categories 
to inform our qualitative analysis and to help differentiate 
between different levels of sophistication in student ST 
behavior across the course of this unit. The current ver-
sion of this instrument can be found below (Table 2).

Given the novelty of the Dynamic ST Tool, this instru-
ment was validated by a panel of three expert reviewers. 
These three reviewers (who have asked to remain anon-
ymous) are all science education professors at R1 uni-
versities, have multiple publications and presentations 
covering ST and Computational Modeling, and are not 
affiliated with our home institution. The expert review 
panel provided critical feedback on how the instrument 
interacts with existing ST literature (content validity) and 
whether these indicators are valid means of assessing the 
desired aspects of ST (construct validity). Once this feed-
back was received, the instrument was revised to bolster 
its content and construct validity. Finally, both of the 
authors along with one additional colleague (Linsey Bren-
nan) independently categorized three 30-min segments 
(one from the beginning of the unit, one from the middle, 
and one from the end of the unit) of student screencasts 
using this instrument. For this interrater reliability test, 
we independently recorded which testing and debugging 
indicators were present within each five-minute interval. 
When we compared our analyses, we achieved an initial 
interrater reliability of 82%, meaning that we agreed on 
which indicators were present and the level of sophistica-
tion for these indicators for 82% of all these five-minute 
intervals. Upon further discussion we managed to reach a 
resolution on all of our coding disagreements.

Data analysis
Once we finished validating the Dynamic ST Tool, 
we began analyzing the data in four distinct phases. 
In phase 1, we used the Atlas.ti program with the 
Dynamic ST Tool to conduct an initial analysis of stu-
dent screencasts. During this process, we put time 
stamps on moments where students were using ST and 
categorized them based on the Dynamic ST Tool. For 
example, when we saw clear moments where students 
were Evaluating System Variables, we placed a time 
stamp to record the number of minutes students spent 
Evaluating System Variables. We then took detailed 
notes using the descriptive memos tool of Atlas.ti to 
summarize student talking points during these con-
versations to help drive later qualitative analysis. In 
phase 2, we compiled the Dynamic ST Tool categories 
for each lesson into a summary table for each student 
group. For each lesson of the unit, we added up the 
minutes attributed to each student behavior to create 

a sum total of minutes spent performing activities 
associated with various ST behaviors for that lesson. 
For example, if a student had a conversation involv-
ing Evaluating System Variables that lasted 2 min and 
another conversation involving Evaluating System 
Variables and Analyzing Single Causal Relationships 
that lasted 5  min, they would be recorded as having 
spent 7  min Evaluating System Variables and 5  min 
Analyzing Single Causal Relationships for that lesson. 
These sum totals enabled us to identify broader trends 
in how common different ST behaviors were across 
the unit as a whole as well how student approaches to 
ST changed as the unit progressed. For the purposes 
of this study, we created a frequency table, showing 
how many minutes each student group spent with a 
specific ST behavior in the whole unit to help address 
Research Question 1: How do students apply ST as 
they build and revise computational systems models 
in this unit? We then used a separate summary table 
as a timeline to show how the ST behaviors of all five 
groups changed as the unit progressed (sum of each 
behavior for all five groups for each lesson of the unit) 
to address Research Question 2: How do student ST 
behaviors change over the course of this unit?

After we established the key patterns of student 
dynamic ST through these quantitative analyses, we 
conducted a narrative analysis for each ST behavior 
(phase 3). We began by returning to the descriptive 
memos of each group and looked for specific episodes 
that clearly demonstrated students exhibiting specific 
indicators. We simultaneously looked for patterns 
and outliers between student groups, so that we could 
articulate the main approaches students were using for 
each ST behavior described in the Dynamic ST Tool 
and create a cohesive narrative for each indicator. For 
example, when conducting the narrative analysis for 
interpreting graphical model output, we rewatched all 
of the episodes we labeled as examples of this behav-
ior. As we rewatched these episodes we reviewed our 
detailed descriptive memos of how those students were 
approaching this behavior, using the “level of sophisti-
cation” classification system to scaffold this analysis. 
After reviewing all of these episodes we summarized 
the different examples we saw of students interpret-
ing graphical model output and noted which sort of 
examples were more common and which examples 
were exemplary. From this summary, we began writing 
our narrative analysis, including prominent student 
examples that showed both common and exemplary 
student behaviors. Once we had written these narra-
tives, we compared them to our quantitative analyses 
to check for internal consistency. Additionally, another 
colleague, who independently analyzed the same 
screencasts and other student data from this same 
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Indicator Level descriptions Additional information
Evaluating 
System Vari-
ables (EV)

Level 1: Students add, remove, or rename variables but do not provide 
any verbal explanation for doing so.

There are two ways students can provide evidence for 
ST through this indicator: model based explanations and 
phenomenon based explanations. Model based explanations 
focus on impact of element and model behavior; phenom-
enon based explanations look at how element is necessary 
to explain the phenomenon.

Level 2: Students provide superficial verbalized explanations that 
neither address how the variable impacts model behavior nor are 
necessary for understanding or explaining the phenomenon.
Level 3A: Students provide a verbalized explanation that addresses 
how the variable impacts its immediate neighbors.
Level 3B: Students provide a verbalized explanation that addresses the 
variable’s importance to explaining one aspect of the phenomenon. 
(e.g. why the rate of evaporation slows down).
Level 4A: Students provide a verbalized explanation that addresses 
how the variable impacts model behavior on a broader scale.
Level 4B: Student verbal explanations address the variable’s impor-
tance to explaining two or more aspects of the phenomenon.

Analyzing 
Single Causal 
Relationships 
(SC)

Level 1: Students create, propose, or modify a causal or correlational re-
lationship between two adjacent elements but provide no verbalized 
or written explanation for this relationship. (Explanations must address 
“why”).

There are three main ways a relationship can be defined: 
Causality, Directionality, and Magnitude. Causality refers to 
the order in which two elements interact in a causal chain 
(does A impact B). Directionality addresses if the two ele-
ments have a positive or negative correlation (does A cause 
B to increase or decrease). Magnitude examines the nuances 
of the relationship between two elements (is the relationship 
linear, exponential, logarithmic, etc.)

Level 2: Students provide a verbalized or written explanation for rela-
tionship causality but not for directionality or magnitude.
Level 3: Students provide a verbalized or written explanation that ad-
dresses the directionality of the relationship.
Level 4: Students provide a verbalized or written explanation that ad-
dresses the magnitude of the relationship.

Analyzing 
Linear Causal 
Chains (LC)

Level 1: Students verbally walkthrough a linear causal chain of three 
or more elements but provide no verbalized reasoning explaining the 
rationale for any of the relationships in this causal chain.

A linear causal chain is a series of causal relationships involv-
ing three or more elements found within a systems model. 
(A effects B effects C… effects X). A linear causal chain can 
be said to be composed of individual relationships (A effects 
B), and an overall net relationship (A effects X). Within linear 
causal chains are one or more intermediate variables that 
impact the system.
Mediating variables are external elements that have a mean-
ingful impact on the causal chain.

Level 2: As students walk through a linear causal chain, they provide 
verbal reasoning or critique for one or more individual relationships in 
this causal chain but do not address the net relationship of the causal 
chain.
Level 3: Student provide a verbalized explanation that addresses the 
net relationship of the causal chain
Level 4: Student verbal explanation addresses the net relationship 
and explains how one or more mediating variables impacts the net 
relationship of the causal chain

Interpreting 
Graphical 
Model Out-
put (MO)

Level 1: Students generate graphical model output but do not verbally 
(or through writing) interpret the output of their models.

Graphical model outputs for SageModeler are primarily gen-
erated through the simulation feature/minigraphs (but can 
include student generated graphs). For students to discuss 
change over time, they need to discuss how the graphical 
output of their model is showing change over time. To get 
cumulative effects, they need to discuss how two or more 
input variables are impacting model output.

Level 2: Students interpret graphical model output in terms of effect 
(cause and effect or correlation, e.g. when X increases, Y decreases) 
but do not address how the system might change (or remain con-
stant) overtime or the cumulative effects of multiple input variables on 
model output.
Level 3: When students interpret graphical model output they either 
discuss how the model output changes overtime (or remains con-
stant) or the cumulative effects of multiple input variables on model 
behavior.
Level 4: When students interpret graphical model output they discuss 
both how the model output changes (or remains constant) overtime 
and the cumulative effects of multiple input variables on model 
behavior.

Table 2  Dynamic systems thinking through modeling analysis tool
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Indicator Level descriptions Additional information
Choosing 
Collector 
Variables (CC)

Level 1: Students decide to add a single collector to their models or 
two “incompatible” collectors to their models without discussing the 
purpose of adding collectors to their models or why these variables 
specifically should be collector variables.

Collector “compatibility” refers to a pair of collectors that 
describe substances that can logically transform or transfer 
between each other within the confines of the phenomenon 
being modeled. For example, Potential Energy and Kinetic 
Energy are compatible collectors whereas Kinetic Energy and 
Temperature are not compatible collectors.
The term “Collector” also refers to “sources” and “sinks” which 
also need to be compatible with an existing collector or set 
of collectors.

Level 2: Students either add a single collector variable or two 
incompatible collector variables to their models and discuss either 
the purpose of adding collectors to their models or why these 
variables specifically should be collector variables OR students add 
two compatible collector variables to their models (or modify their 
models so there is now a new set of compatible collectors) with no 
discussion on the purpose of adding collectors to their models or why 
these variables specifically should be collector variables OR students 
remove/modify an inappropriate collector variable without giving a 
verbal explanation.
Level 3: Students add two compatible collector variables to their mod-
els (or modify their models so there is now a new set of compatible 
collector variables) and discuss either the purpose of adding collectors 
to their models or why these variables specifically should be collector 
variables OR students discuss why a collector variable shouldn’t be 
present in their model or shouldn’t be a collector and delete/modify 
this variable
Level 4: When adding two compatible collector variables to their mod-
els (or modifying their models so there is now a new set of compat-
ible collector variables), students discuss both the purpose of adding 
collectors to their models and why these variables specifically should 
be collector variables.

Construct-
ing and 
Interpreting 
Collector and 
Flow Struc-
tures (CF)

Level 1: Students construct, delete, or modify a collector and flow 
structure but provide no verbal reasoning or interpretation of said 
structure or their interpretation discusses the collector and flow in 
traditional causal terms (X causes Y).

Collectors and flows are complex types of relationships found 
within dynamic modeling. They represent how one element 
or variable is transforming or is being transferred from one 
state into another. This allows students to model how a sys-
tem can change over time. In the case of evaporative cooling, 
the Kinetic Energy of Liquid Molecules is being transformed 
into the Potential Energy of Gas Molecules.
Note that “interactions” include discussions on how other 
variables are affecting the flow rate in the collector and flow 
system.

Level 2: When students discuss a collector and flow structure, their dis-
cussion correctly interprets these structures as transfer relationships (or 
otherwise indicate that the valve represents a transformation process) 
or discusses how the relative amount of the collector variables are 
changing over time. However, this interpretation does not get into the 
rationale behind this relationship or discuss how it interacts with other 
aspects of system behavior.
Level 3: When students discuss a collector and flow system they either 
provide a rationale for including (or removing)this structure in this 
model or discuss how the collector and flow structure interacts with 
other aspects of model or system behavior. (Students must still inter-
pret the collector and flow structure correctly to receive this score).
Level 4: When students discuss a collector and flow system they 
provide both a rationale for including this structure in their model 
and discuss how the collector and flow structure interacts with other 
aspects of model behavior. (Students must still interpret the collector 
and flow structure correctly to receive this score).

Construct-
ing and 
Interpreting 
Feedback 
Loops and 
Circular 
Causal Chains 
(FL)

Level 1: Students create but do not correctly identify a feedback struc-
ture or students incorrectly declare a structure to be a loop

For these systems, we are anticipating that the feedback loop 
is involved with the collector and flow structures students 
have built in their models.Level 2: Students recognize or propose a circular/feedback structure in 

their model but do not discuss its function or effect on their model
Level 3: Students provide a verbal explanation of a circular structure 
but only examine its effect on local behavior (feedback loop structure 
and immediately adjacent elements)
Level 4: Students discuss the effect of feedback loop or circular struc-
ture on overall model behavior.

Table 2  (continued) 
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implementation was consulted as a form of member 
checking. This narrative analysis along with our pre-
vious quantitative analysis allowed us to fully address 
Research Question 1: How do students apply ST as 
they build and revise computational systems models in 
this unit?

In parallel with this qualitative analysis of each ST 
behavior, we conducted a thematic analysis of the scre-
encasts to determine aspects of the learning environ-
ment that seemed to support students in ST (phase 
4). Through our initial examination of student scre-
encasts, we identified two major categories of support 
from the learning environment: peer sharing/reviews 
and teacher supports. We then went through all of the 
screencasts and the classroom videos (which primar-
ily captured Mr. H’s pedagogical moves), highlighting 
key moments where these two aspects of the learning 
environment were helping students with their emerg-
ing ST skills. From this thematic analysis, we were able 
to write a cohesive narrative for both of these aspects 
of the learning environment. As with our other quali-
tative analysis, we had another colleague who was also 
present during the data collection and data analysis 
process review our findings. As such, we were able to 
address Research Question 3: What supports from the 
learning environment assist students with applying ST 
in this unit?

Results
Research question 1: How do students apply ST as they 
build and revise computational systems models in this 
unit?
Based on our analysis of student screencasts, there is 
clear evidence of student behaviors that correlate with all 
seven indicators of the Dynamic ST Tool and that the fre-
quency of these seven indicators is not uniform (Table 3). 
In the following paragraphs, we will explore how these 
student behaviors manifested during the process of creat-
ing and revising computational models as well as the rela-
tive frequency of each behavior.

Evaluating system variables
Evaluating system variables is a common ST behavior 
students exhibit as they build and revise computational 
models. Students need to input variables into SageMod-
eler before they can set relationships between these vari-
ables, making this an unavoidable part of the modeling 
process. However, students often set these variables into 
their models without meaningful discussions as 54% of all 
instances of evaluating system variables were not accom-
panied by a verbal explanation (Level 1) and an additional 
18% of instances involved a superficial explanation (Level 
2). These silent additions of variables make it difficult 
to ascertain student reasoning behind these additions. 
When students are less certain about the variables they 
want to add to their model, they often list out possible 
variables and briefly discuss their merits. For example, 
when Amy and Leia are trying to decide what to add to 
their model Amy asks:

Amy: What should we put? Density? IMF strength?
Leia: Doesn’t IMF strength affect the speed of par-
ticle evaporation?
Amy: Maybe? Let’s ask Mr. H.

This example highlights how Amy and Leia are consider-
ing what variables to add to their models alongside how 
these variables interact with other parts of their models, 
suggesting an overlap between evaluating system ele-
ments and analyzing single causal relationships.

Students can also evaluate system variables when they 
are renaming or recontextualizing existing variables. 
When Robyn and Phillip are testing their model, Robyn 
reconsiders the variable “temperature of the hand”, which 
is their main outcome variable.

Robyn: I feel like we should name this something 
different because it is not really temperature of the 
hand itself, it is how it feels. So, this should be “tem-
perature of liquid felt”?
Phillip: How about “Temperature Felt”.

Table 3  Summary table of student ST behaviors
Category Group 1 Group 2 Group 3 Group 4 Group 5 Total % of Total Time
EV 39.75 23.5 16 24.75 20.5 124.5 2.8%
SC 72.25 37.25 35 36.25 24 204.75 4.7%
LC 10 7 1 2.5 3.75 24.25 0.6%
MO 51.5 23.5 18.75 51.75 29.5 175 4.0%
CC 8.75 13.75 10.75 7.75 5 46 1.0%
CF 26.5 17.75 22.75 11.25 9 87.25 2.0%
FL 6.25 8 0.5 2.5 7.5 24.75 0.6%
Note that “Percent of total time” is calculated from eleven 80 minute class periods (880 minutes) multiplied by the number of screencast groups (five) to reach 
4400 min of total class time
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Robyn then changes the “temperature of the hand” vari-
able to “temperature felt”.

Students also discuss where to add variables based on 
their impact on model behavior. As Robyn adds tem-
perature to their model based on feedback from another 
group, Phillip questions its position in their model 
(Fig. 5).

Phillip: And why does temperature not affect the 
model the way he (the other group) had it? (Points to 
the transfer valve between # of liquid particles and # 
of gas particles)
Robyn: Because he had it affect evaporation, and 
this (points to particle evaporation speed) is our 
evaporation.

This example shows that the students are not only consid-
ering which variable to add to their model, but how the 
variable should be positioned in relation to other aspects 
of their model, once again highlighting the interconnect-
edness between different ST behaviors that occurs dur-
ing the modeling process. It also shows a more mature 

understanding of what their “particle evaporation speed” 
variable represents in this system.

Analyzing single causal relationships
Throughout the modeling process, students frequently 
need to reconsider and discuss the relationships that 
exist between variables in their models. Whenever stu-
dents are setting, modifying, or discussing a relationship 
between two variables, they are analyzing single causal 
relationships. As such, this ST behavior is common (205 
total minutes) across the entire unit. While students can 
silently set relationships between variables, they also fre-
quently write out written explanations for these single 
causal relationships in the box provided by SageModeler. 
For example, Zion justifies the “more and more” relation-
ship between temperature and evaporation by writing 
“Higher temperature speeds up evaporation. The higher 
the temp, the faster the molecules will move, allowing 
more to escape”, drawing on his growing knowledge to 
provide a high-level explanation for why an increase in 
temperature would have an exponential impact on the 
evaporation rate. Students also often discuss individual 

Fig. 5  Phillip and Robyn discuss temperature as a variable
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causal relationships when they are using the simulation 
features present in SageModeler, creating a clear overlap 
between these two practices.

Analyzing linear causal chains
In contrast to the previous two ST behaviors, analyz-
ing linear causal chains is fairly uncommon across all 
five groups, with only 24 min recorded across the entire 
course. When working with their partners, students 
seldom stop what they are doing and explain their rea-
soning for an entire causal chain to each other. As such, 
examples of this behavior tend to occur when students 
are explaining their models to other people. For example, 
when Mr. H asked Zion and Conrad to “walk me through 
your model”, Zion responded:

Zion: So, we have the temperature of the liquid, 
which affects the average speed of particles, which 
affects the number of particles escaping. But for 
the IMFs, the higher the number, the less particles 
escape. This affects evaporation and also decreases 
the temperature which affects the temperature felt 
on the hand.

In this example, Zion is going through each linear causal 
chain in his model, listing individual relationships. While 
he does not provide reasoning for the individual relation-
ships in these causal chains, nor does he discuss the net 
relationship, he tacitly acknowledges that multiple path-
ways work together to influence the outcome by discuss-
ing the impact of the IMF on the primary causal chain.

Students also tend to analyze linear causal chains when 
they are reviewing peer models. When Amy and Leia are 
looking at another group’s model for the first time, they 
start going through the main causal chain in a linear 

fashion, listing each relationship, “So IMF of particles 
affects the number of particles escaping, which leads to a 
decrease in temperature… why is this such a mess” (Fig. 6). 
In this example, despite Conrad and Zion’s model com-
plexity, Amy and Leia impose a linear causal chain expla-
nation to make sense of the phenomenon. In subsequent 
feedback to Conrad and Zion, Amy and Leia recommend 
that they “simplify their model” and remove unnecessary 
variables. This example shows the tendency of students 
to think in linear causal chains and interpret models 
through that lens even when more complexity is present.

Interpreting graphical model output
In contrast to analyzing linear causal chains, interpret-
ing graphical model output is the second most common 
form of ST at 175 min across all five groups. As with sev-
eral other ST behaviors, we can see evidence of students 
interpreting graphical model output without the need for 
discourse as students silently move the slider bars up and 
down. It is important to note that in those cases it is not 
clear what purpose the simulation is serving, whether it 
is to make sense of a single relationship, a linear causal 
chain, or the model as a whole. However, more sophisti-
cated examples of this behavior require that students ver-
balize their thought processes and therefore reveal how it 
synergizes with other ST behaviors.

Students also examine model output to make sense of 
peer models. When looking at Conrad and Zion’s model, 
Phillip and Robyn use the simulate tools to analyze the 
relationship between IMF and Evaporation (Fig. 7).

Robyn: Do we have any questions as to why he 
included something?
Phillip: Why does the IMF decrease the rate of evap-
oration?

Fig. 6  Amy and Leia’s linear causal analysis of Conrad and Zion’s model
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Robyn: Oh, fix this (moves the sliders so they are 
even and then continues to move the IMF slider). It 
doesn’t really change it a lot though.
Phillip: (moves temperature up and down) Tempera-
ture does though.

By using the simulation features, Robyn and Phillip cor-
rectly deduce that there is an asymmetric relationship 
between IMF, Temperature, and Evaporation, with Tem-
perature having a disproportionate impact on the rate of 
evaporation compared to IMF. When Robyn shares this 
observation with Zion, Zion is able to defend his design 
choices.

Robyn: (to Zion): I just was wondering why the IMF 
of the liquid doesn’t change it much, but it might not 
have much to do with it.
Zion: Well, I have temperature to be exponentially 
increasing (The model shows that as temperature 
increases, the evaporation rate increases expo-
nentially). So, the lower down the temp is, the less 
impact the IMF will have.

In this example, the analysis of graphical model out-
put supports a meaningful discussion on how the con-
vergent impact of these two input variables (IMF and 
Temperature) impact the overall behavior of this model 
(as mediated through the rate of evaporation labeled as 
“Evaporation”).

In addition to using the simulate feature some students 
utilized the graphing feature to analyze their model. After 
inputting experimental data into SageModeler from the 
temperature vs. time experiment (where students tested 
how the temperature of water, acetone, and rubbing alco-
hol changed over the course of evaporation), Brianna and 
Kate used the graphing features of SageModeler to look 
at how their model was measuring temperature over time 
(Fig. 8). Given that their model output graph showed the 
temperature increasing over time (which is contrary to 
their experimental data), the students recognized that 
they needed to make changes to their models moving 
forward.

Fig. 7  Robyn and Phillip analyze Conrad and Zion’s model
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Choosing collector variables and constructing and 
interpreting collector and flow structures
As both of these practices deal with student conversa-
tions and use of collector and flow structures, they are 
often deeply intertwined and share a common narra-
tive. All of the student groups started off with an initial 
“model backbone” of a collector and flow relationship 
between number of liquid particles and number of gas 
particles (Fig. 5). Although they were given some instruc-
tion on the purpose of collectors and how to set flow 
relationships, many student groups had difficulty recre-
ating this initial backbone in their models. In the case of 
Conrad and Zion, they asked Mr. H for help, who showed 
them how to create a flow relationship between the col-
lector variables. Soon after being shown the mechan-
ics of building a collector and flow relationship, Conrad 
and Zion successfully recreated the model backbone and 
labeled the flow as “evaporation”, which demonstrates 
their growing understanding that this collector and flow 
relationship represents the transfer of liquid particles 
into gas particles, i.e. evaporation.

As Conrad and Zion began to add on to their back-
bone, they experimented with adding additional collector 
variables to their model. In this case, they made tem-
perature a collector that transformed into the number of 

gas particles. However, once Zion began simulating the 
model, he noticed that having temperature as a collector 
did not make sense.

Zion: The way you have it set up, temperature is put-
ting liquid into the number of gas particles, I think 
you have temperature as the wrong kind of thing. I 
am feeling like temperature would speed up evapo-
ration.

In this brief comment, Zion recognizes that the way 
they have their model set up suggests that temperature 
is somehow being transformed into gas particles. He also 
makes the observation that temperature is “the wrong 
kind of thing” and should not be treated as a collector. 
Finally, Zion suggests that temperature should “speed up” 
the rate of evaporation. These observations and subse-
quent revisions to their model demonstrate that Conrad 
and Zion are able to use this moment as an opportunity 
to reflect on their model and develop a stronger under-
standing of how to represent the system through collec-
tor and flow structures. This example also shows how 
students can self-correct and build stronger ST skills 
through independent practice with SageModeler. It also 
demonstrates how SageModeler can support students 

Fig. 8  Brianna and Kate use the graphing features of SageModeler
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in recognizing which elements can and cannot be rep-
resented by collector variables (i.e. transform from one 
form to another).

Unlike Conard and Zion, other groups often required 
direct assistance from Mr. H to understand the function 
of collectors within the model. For instance, early on Amy 
and Leia had a fairly straightforward model that showed 
the transfer of liquid to gas being impacted by the tem-
perature (Fig. 9A). While trying to decide how to include 
the concept of IMF in their model, Leia asked about other 
variables they should include in their model. Leia asked, 
“Should we put speed, like speed of evaporation, or should 
we put boiling point as well.” This suggestion to include 
boiling point, led Amy to replace the collector for “num-
ber of gas particles” with “boiling point” and later “how 
long till boiling point”. This single change led to a cascade 
of other changes until their model, while structurally 
resembling their earlier example, was largely unrecogniz-
able (Fig. 9B). At this point, they asked Mr. H for guid-
ance who subsequently told them.

Mr. H. Remember the backbone with the collectors. 
The transfer of number of liquid particles to number 
of gas particles? That shouldn’t change throughout 
the unit as that is the phenomenon we are trying to 
explain.

With this reminder to return to the initial collector back-
bone showing the transfer of number of liquid particles 
to number of gas particles, Amy and Leia were able to 

restore their previous model and continue the process 
of model revision. This example demonstrates the chal-
lenges that students faced with making sense of collector 
and flow relationships in SageModeler and how addi-
tional teacher support, in the form of one-on-one conver-
sations, was often critical for students to move forward in 
the modeling process. It also underscores the importance 
of a knowledgeable teacher in supporting students with 
ST in a computational modeling context.

Towards the latter half of the unit, many student groups 
became increasingly confident in their model backbone 
of the transfer relationship between the number of liq-
uid particles and the number of gas particles. Therefore, 
they were less likely to make major structural changes to 
this model backbone, like Amy and Leia did in the pre-
vious examples. However, this did not translate in most 
cases into students making a parallel collector and flow 
relationship, showing the transition from kinetic energy 
to potential energy that also characterizes evaporation 
and was a learning goal of the curriculum. Instead, stu-
dents tended to become more conservative with collec-
tor and flow relationships in the latter half of the unit 
(post-potential energy phase) and seldom tried any new 
approaches to collectors and flows after learning about 
potential energy. This suggests that these students are 
still not fully comfortable with independently construct-
ing collector and flow structures in SageModeler. In one 
notable exception, Conrad and Zion decided to make a 
secondary flow relationship between gas and liquid parti-
cles, this time showing the condensation relationship that 

Fig. 9  Amy and Leia’s efforts to modify their initial model. A Amy and Leia’s initial model. B Amy and Leia’s revised model
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can also exist when gas is transferred into a liquid. While 
this later effort does suggest that this group understood 
the mechanics and ST concepts underpinning collector 
and flow relationships, its overall impact on their model 
was negligible.

Constructing and interpreting feedback loops and circular 
causal chains
Compared with many of the other aspects of ST analyzed 
in this study, constructing and interpreting feedback 
loops and circular causal chains was a fairly uncommon 
occurrence (25  min). Even when students did create 
feedback loops, it was often either unintentional or went 
unaddressed in student discourse. However, there were a 
few notable instances where students were able to recog-
nize feedback loops in their model. When Amy and Leia 
were making model revisions, they noticed that they had 
created a model with two feedback loops (Fig. 10).

Amy: Oh, we made two feedback loops.
Leia: Should we have this (points to flow of particles 
from liquid to gas) affect the IMF?
Amy: Well IMF has to stay out of the feedback loop 
in order to be controlled, so we can’t change it.

In this example, Amy and Leia correctly identify that there 
are two separate causal feedback loops in their model (the 

loop between temperature of the hand, speed of evapora-
tion, and flow of particles and the loop between potential 
energy, kinetic energy, and flow of particles). While they 
do not discuss their reasoning behind these feedback loops 
(which seem to have been created in an ad-hoc fashion 
rather than being pre-planned structures) nor their impact 
on model behavior, they do briefly critique a third poten-
tial feedback loop. When Leia proposes a third feedback 
loop involving the strength of IMF, Amy is hesitant to cre-
ate this loop because she recognizes that IMF is a variable 
that they want to be able to control and that if it was part 
of a feedback loop, it would be dependent on other vari-
ables and could not be freely manipulated.

In another example, Zion creates a feedback loop and 
takes note of its impact on model behavior (Fig.  11). 
When he uses the simulation features to test his model, 
Zion remarks, “Oh. we should be able to set this (points to 
Kinetic Energy). But the thing is, we did make a feedback 
loop so we can’t move it now.” Here Zion recognizes that 
he has created a feedback loop structure, and that the cir-
cular nature of this structure means that Kinetic Energy 
no longer functions as an independent variable that he 
can freely manipulate. While it doesn’t appear that he 
deliberately chose to create this feedback loop structure, 
he was able to quickly identify its presence in his model 
and its impact on model behavior, thus showing a rela-
tively sophisticated application of ST to interpreting his 

Fig. 10  Amy and Leia’s model with feedback loops
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model’s structure. Zion subsequently removed the direct 
relationship between potential energy and kinetic energy, 
thus eliminating this feedback loop structure.

Our case study analysis of 4440 min of collective class 
time (880  min across five groups) provides evidence 
of students engaging in a broad range of ST behaviors. 
Additionally some behaviors, such as analyzing single 
causal relationships occurred far more common than 
other behaviors such as constructing and interpreting 
feedback loops and circular causal chains. Through these 
screencasts, we came to deeply appreciate the value of 
student writing and student discourse in understanding 
student ST. Across multiple examples, there was often a 
substantial incongruity between student’s visual repre-
sentations of evaporative cooling through their compu-
tational models and their written and spoken discourse 
about their models. Another key finding was the overlap 
between the various ST behaviors students demonstrated 
as they built and revised their models in real time. This 
overlap suggests that a natural synergy may exist between 
different aspects of ST and further emphasizes how the 
affordances of computational modeling, particularly the 
simulation features, support multiple aspects of ST. As 
such these results strongly suggest that examining stu-
dent written and verbal discourse during the modeling 
process can provide invaluable insights into student ST 
that are overlooked when one only examines student 
models as a final product or through post-modeling 
interviews.

Research question 2: How do student ST behaviors change 
over the course of this unit?
Over the course of the evaporative cooling unit, there 
was a substantial shift in the ST behaviors of the stu-
dents in this class (Tables  4A and 4B). These changes 
in student ST behaviors reflect both the nature of the 
curriculum for the evaporative cooling unit and chang-
ing student priorities as the unit progressed. In general 
we have subdivided the unit into two distinct halves: the 
pre-potential energy phase and the post potential energy 
phase based on whether or not students have been intro-
duced to potential energy in the context of evaporative 
cooling. The first six lessons represent the pre-potential 
energy phase, where students are being exposed to new 
elements of evaporative cooling but have not been intro-
duced to potential energy and thus only have enough 
information to include a unitary collector and flow sys-
tem representing the transfer of mass from liquid to gas 
through evaporation. The final five lessons, or the post-
potential energy phase, take place once students have 
learned about potential energy and can therefore include 
a secondary collector and flow system that represents 
the transfer of energy from kinetic to potential through 
evaporative cooling. In general the post-potential energy 
phase also focuses on model refinement and validation 
through the temperature vs. time experiment. Both lin-
ear causal analysis and model output analysis were fairly 
consistent across the unit as a whole. Although some stu-
dent groups did take advantage of the graphing features 

Fig. 11  Conrad and Zion’s energy feedback model
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of SageModeler after being introduced to these features 
during the last few lessons of the unit, the total amount 
of time spent analyzing model output did not change 
substantially. Because the students did not exhibit any 
substantial change in the overall amount of time analyz-
ing model output, it appears that some students shifted 
from using the simulation features to analyze model 
output towards using the graphical features to compare 
model output with external data as was intended by the 
design of this unit (Fig. 8).

In contrast, students spent substantially more time 
evaluating system variables in the pre-potential energy 
phase of the unit (92 min; 3.8% of class time) compared 
to the post potential energy phase of the unit (32.75 min; 
1.6% of class time). Such a large drop off suggests that 
student models began to crystallize around a common 
set of variables in the post potential energy phase. While 
this can partially be explained by the fact that the post 
potential energy phase did not encourage students to 
add additional variables (once Potential energy had been 
introduced), it also suggests students becoming more 
hesitant to remove or reconsider any existing variables. 
The more modest decline in analyzing single causal rela-
tionships (5.2% of class time to 4.1% of class time) also 
supports the idea of increasing hesitation to modify their 
models as the unit progressed. However, the 81  min 
(4.1% of class time) spent on single causal relationships 
in the post-potential energy phase still demonstrates that 

students were actively rearranging and modifying the 
relationships in their models throughout the whole unit.

In a far more dramatic change, students were far less 
likely to be focusing on ST behaviors associated with col-
lector and flow systems (choosing collector variables and 
constructing and interpreting collector and flow struc-
tures) in the second half of the unit (1.6% and 2.9 % of 
class time vs. 0.4% and 0.9% of class time respectively). 
This data strongly reflect the finding that once students 
have finished trying to make changes with the collector 
and flow system at the heart of the model backbone, they 
largely avoid making any further modifications to any col-
lector and flow structures. Such hesitation to work with 
collector and flow structures in the post-potential energy 
phase suggests a lack of confidence in their understand-
ing of collector and flow structures and demonstrates 
the inherent difficulty of creating collector and flow 
structures. Ironically, the unit was designed to encour-
age students to begin making a parallel collector and flow 
structure showing the transformation between kinetic 
energy and potential energy in the post potential energy 
phase, as students should have been creating a collector 
and flow model showing how the kinetic energy of liq-
uids transforms into the potential energy of gas. As such 
the hesitation of students to work with collector and flow 
features in the post potential energy phase largely pre-
vented them from making these necessary improvements 
to their models. This is a clear example of how despite the 
unit being ostensibly designed to promote a particular 
behavioral pattern (in this case students adding a paral-
lel collector and flow relationship), student’s experiences 
in the pre-potential energy phase led to a contradictory 
outcome.

While students spent less time working with collec-
tor and flow structures, the amount of time working 
with feedback loops and circular structures substantially 
increased in the latter parts of this unit (from 0.1% to 1.2 
% of class time) during the post potential energy phase. 
Given that many of these feedback loops were created by 
accident, it does suggest that students were more likely to 
try more complex arrangements of relationships in their 
models. There were also more instances of students iden-
tifying feedback loops that were present in their model, 

Table 4B  Student ST behaviors over the course of the 
evaporative cooling unit. Student ST behaviors aggregated into 
the “Pre-Potential Energy” Phase (First 6 lessons) and the “Post 
Potential Energy Phase” (Last 5 lessons)
Category Pre poten-

tial energy 
(minutes)

Pre potential 
energy 
percent

Post poten-
tial energy 
(minutes)

Post po-
tential 
energy 
percent

EV 91.75 3.8% 32.75 1.6%
SC 123.75 5.2% 81 4.1%
LC 12.5 0.5% 11.75 0.6%
MO 83.25 3.5% 91.75 4.6%
CC 38.25 1.6% 7.75 0.4%
CF 69.25 2.9% 18 0.9%
FL 1.75 0.1% 23 1.2%

Table 4A  Student ST behaviors over the course of the evaporative cooling unit. Student ST behaviors each day of class
Category L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
EV 0 3.25 0 45.5 24.75 18.25 0 18.5 0 5.5 8.75
SC 0 9.25 0.5 59.5 20 34.5 0 38.5 0.25 20.5 21.75
LC 0 0 0 4 1.75 6.75 0 3.75 0 1.5 6.5
MO 0 3.75 0.5 51.25 13.75 14 0 18 2.5 36 35.25
CC 0 6.5 0 21 6 4.75 0 4.5 0 1.25 2
CF 0 23.75 0 25.5 8.5 11.5 0 7.25 0.75 5 5
FL 0 0 0 0 0 1.75 0 8.25 1 0 13.75
Note L1 = Lesson 1, L2 = Lesson 2…
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even if they did not always actively interpret their impact 
on model behavior. Student use of feedback language can 
be partially explained by the efforts of Mr. H to use the 
language of feedback loops towards the end of the unit in 
the post-potential energy phase. However, despite these 
efforts to include feedback loops and adjacent concepts 
in the post-potential energy phase of the unit, their rela-
tive scarcity suggests that additional efforts are needed to 
support students in understanding feedback structures in 
this unit.

Research question 3: What supports from the learning 
environment assist students with applying ST in this unit?
In addition to finding strong evidence of students using 
ST as they built and revised models, we also investigated 
how the learning environment created in this unit sup-
ported students in these endeavors. Through examining 
student screencasts and classroom videos, we found two 
broad aspects of the learning environment that impacted 
student use of ST in this evaporative cooling unit: stu-
dent cooperation through peer groups and teacher peda-
gogical support.

Student cooperation through peer groups
Throughout the unit, students had many opportunities to 
work with other peer groups to share ideas and engage 
in collaborative conversations around ST. As shown in 
a previous example, the peer review process created an 
opportunity for Robyn and Phillip to use the simulation 
features to interpret the relationship between IMF and 
rate of evaporation in Zion’s model (Fig. 7).

Phillip: Why does the IMF decrease the rate of evap-
oration?
Robyn: Oh, fix this (moves the sliders so they are 
even and then continues to move the IMF slider). It 
doesn’t really change it a lot though.
Phillip: (moves temperature up and down) Tempera-
ture does though.

This peer review session not only facilitated Robyn and 
Phillip in analyzing model output, but also allowed Zion 
to share his thoughts on the causal relationship between 
IMF and rate of evaporation and how this single causal 
relationship interacted with the relationship between 
temperature and rate of evaporation.

Robyn: (to Zion): I just was wondering why the IMF 
of the liquid doesn’t change it much, but it might not 
have much to do with it.
Zion: Well, I have temperature to be exponentially 
increasing (their model shows that as temperature 
increases, the rate of evaporation will increase expo-

nentially). So, the lower down the temperature is, the 
less impact the IMF will have.

This conversation showcases both Robyn and Phillip’s 
ability to interpret model output and Zion’s understand-
ing of how two related aspects of his model (temperature 
and IMF) work together to impact model behavior on 
a common downstream variable. As such it represents 
how peer feedback can be a mutually beneficial process 
strengthening the ST prowess of both student groups.

In another example, Zion offers to assist Amy and Leia 
who are trying to figure out how to incorporate IMF into 
their model (Fig.  12). When Amy and Leia reach out 
to Zion, they first ask for his advice on the relationship 
between evaporation and the “strength of the IMF”. Taking 
a broader approach to his critique, Zion points out mul-
tiple issues with individual relationships in this model.

Zion: My first issue is that evaporation rate has no 
impact on temperature. You have IMF that affects 
the speed of evaporation, but you also need temper-
ature to affect the speed of evaporation. Also, IMF 
decreases the speed of evaporation not increases.
Leia: So, IMF decreases the speed because the higher 
the IMF, the slower it is?
Zion: Yes. Also to answer your first question, evap-
oration doesn’t affect IMF, speed of evaporation 
would affect evaporation.

In a fairly rapid succession, Zion suggests that Amy and 
Leia add in a separate temperature variable (most likely 
temperature of the hand) to impact the evaporation rate, 
change the directionality of the relationship between IMF 
and speed of evaporation, and change the causality of the 
relationship between evaporation and the causal chain at 
the top of the model. Such comments show Zion’s ST and 
seem to have helped Amy and Leia make much needed 
changes to their model as they subsequently incorpo-
rated most of these ideas directly into their model.

One can notice the differences between the conversa-
tion Zion had with Robyn and Phillip, and the one he 
had with Amy and Leia. With the latter there was not a 
mutual process of both groups learning from each oth-
er’s models and building their ST together. Instead, Amy 
and Leia mostly took up Zion’s ideas without any com-
ments or counterargument and thus were not given 
the opportunity to engage in a mutual ST discussion as 
had occurred between Robyn and Zion. The differences 
in the tone of these two discussions provide insight 
into the power dynamics that can occur within peer-
peer classroom interactions. While Zion felt comfort-
able in providing a rationale for their modeling choices 
to Robyn and Phillip, Amy and Leia seemed to defer to 
Zion as an expert rather than as a mutual peer. Because 
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peer feedback is often more productive when both par-
ties are sharing authority, the presence of unequal power 
dynamics suggests that additional scaffolding for peer 
review conversations is needed to encourage students 
like Amy and Leia to take a more active role in defending 
their ideas. It might also be helpful to remind students 
like Zion to not view other students’ models as a puzzle 
that needs to be solved but as one of many approaches to 
representing a phenomenon. Lastly, having a more mutu-
alistic peer-peer interaction is likely to be more effective 
in helping students like Amy and Leia understand why 
they are making revisions to their models and thus avoid 
repeating the same modeling mistakes multiple times as 
what happened with their attempts to modify their back-
bone collector and flow relationship.

Teacher pedagogical supports
Perhaps one of the strongest assets available to students 
was Mr. H himself. Mr. H generally encouraged stu-
dents to take creative liberties with their models and to 
make productive mistakes in this unit. However, Mr. H 
also frequently offered advice and guidance to students 
throughout the modeling process like the one addressed 
in a previous example (Fig. 9B), in which Mr. H reminded 
the students of the purpose of the core backbone thereby 
helping them revise the collector and flow relationship 
in their model. While Amy and Leia did restore their ini-
tial backbone (the transfer relationship between liquid 
to gas particles), a subsequent revision where they acci-
dently deleted the transfer valve between the number 
of liquid and number of gas particles inadvertently led 
to them creating a “sink” (the “speed of conversion vari-
able” with the faucet symbols) in their model, showing 

that the number of liquid and number of gas particles 
are removed from the system by the speed of conversion 
(Fig. 13). They inevitably ask Mr. H for advice.

Mr. H.: So, you have all of your collectors going to a 
sink. Aren’t these (number of liquid and number of 
gas particles) meant to be transferred? Why are they 
going down?
Amy: I don’t know.
Mr. H: Well, it seems that you have somehow turned 
that (speed of conversion) into a sink instead of a 
valve. So, all of your liquid and gas particles are 
being absorbed by the sink rather than transferring 
to each other. See how they are both decreasing. Here 
is how you can fix that.

Mr. H begins by exploring Amy and Leia’s model, point-
ing out the main structural components. He then gives 
Amy and Leia an opportunity to share their thoughts 
on the structural components of their model to see if 
this sink relationship was created intentionally. Upon 
recognizing that the students needed specific support 
with understanding the “sink” structure they created, 
Mr. H provides additional information on the behavioral 
impacts of the sink structure before helping them restore 
the initial transfer relationship. In this manner, Mr. H is 
giving students the information they need to improve 
their model and to help further their understanding of 
key aspects of ST. However it is important to note that 
while Mr. H is initially trying to help Amy and Leia figure 
out the source of their problem in a manner preserving 
their agency, his tone changes to be more direct towards 
the end. While this direct advice likely allowed Amy 

Fig. 12  Zion critiques Amy and Leia’s model
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and Leia to more quickly improve their model, it also 
removed a key sensemaking opportunity and reinforced 
a larger pattern of these two students being “recipients of 
advice” reducing their agency as computational modelers 
and system thinkers.

In addition to providing one on one support for stu-
dents needing help with creating and maintaining models 
with meaningful collector and flow structures, Mr. H also 
offered whole class instruction on key ST concepts. Soon 
after assisting Amy and Leia with their collector and flow 
relationships, Mr. H gave an informational talk on collec-
tors and how to use them in these models.

There have been some issues that I have noticed 
creeping into your models. First off. Collectors are 
quantitative. They are things that you want to mea-
sure, they are things that you want to keep track of 
and how they flow from one part to another. That is 
the only time you should use a collector. When you 
are talking about a quantity of something flowing 
from one idea to another idea that has a quantity. 
It’s appropriate for us to use collectors to track par-
ticles of liquid to particles of gas. It’s not appropriate 
to use a collector to track temperature.

This brief informational talk in particular seemed to help 
the screencast students restore the appropriate collec-
tor and flow backbone for their models, as many groups 
(including Amy and Leia) were still uncertain about 
how collectors should be used in their models prior to 
this brief lecture. As such it represented a key support 
for helping students with the ST behaviors of choosing 

collectors and constructing and interpreting collector 
and flow structures.

Discussion and conclusion
Discussion
Research question 1 reflection: the importance of in-situ 
written and verbal evidence for ST
This paper introduces and pilots a novel and exploratory 
methodological approach for evaluating students’ sys-
tems thinking (ST) competencies. In contrast to prior 
work in the field that has focused primarily on assessing 
students’ final model artifacts as proxies for inferring the 
quality and extent of their applied ST, we present find-
ings that trace the process and progression of students’ 
ST application. This more holistic perspective affords 
deeper insights into how ST becomes interwoven within 
students’ learning progressions during the modeling pro-
cess. By examining the unfolding practice of ST rather 
than mere end products, a more nuanced understanding 
of the reciprocal interactions between content knowledge 
acquisition and ST skill development can be garnered. 
This is particularly true with respect to analyzing stu-
dent writing and student conversations. Student writing 
and student conversations throughout this study demon-
strate that the presence of a specific relationship within 
a model does not necessarily mean that students under-
stand the implications of said relationship or what it truly 
represents within their model. Indeed, such relationships 
could be crafted by accident, adapted from peer models, 
or the result of careful discussion and demonstrative of 
advanced ST competencies. Without having the more 
holistic context afforded by student written and verbal 

Fig. 13  Amy and Leia’s “Sink” model
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discourse, it is difficult to interpret the reasoning behind 
student modeling decisions.

Student conversations and verbal communication can 
also show the depth of student ST in ways that tran-
scend a traditional structural analysis of student models 
as a finished product. For example, it is not possible to 
assess how students are using model output features as 
a means to drive ST centered conversations and model 
revisions from traditional pre-post test assessments or 
through post-modeling interviews. Likewise, the abil-
ity for students to provide rich and meaningful feedback 
on peer models is also a critical aspect of student ST that 
has not been emphasized in many earlier studies. Indeed, 
the richness of ST evidence collected from student writ-
ing and student verbal communication highlights the 
limitations of only using student models as evidence of 
student ST. Instead, these findings suggest that research-
ers should view and assess ST as a process rather than 
as a product. While this parallels Hmelo-Silver and col-
leagues’ interview-based approach to assessing student 
ST (2007), using methods that can capture student ST 
behaviors during classroom activities can allow for future 
researchers to gain deeper insights into how students 
build competence with ST and to identify effective teach-
ing strategies for supporting students in ST. This holistic 
approach can also help future researchers better under-
stand the synergy between different aspects of ST during 
the modeling process and clarify how specific aspects of 
the computational modeling environment are supporting 
students with ST.

Research question 2 reflection: challenges with collector and 
flow systems and feedback loops
In addition to demonstrating the importance of written 
and verbal discourse in assessing student ST, this study 
reinforces earlier studies showing the challenges students 
face with understanding collector and flow systems and 
feedback loops (Assaraf & Orion, 2010; Cox et al., 2019; 
Cronin et al., 2009; Pallant & Lee, 2017). Although stu-
dents were given an initial collector and flow system 
showing the transfer of liquid particles to gas particles 
as a structural backbone for their initial models (Fig. 4), 
student efforts to modify this backbone demonstrate a 
lack of understanding for collector and flow systems. 
It is important to reiterate that despite the unit being 
expressly redesigned to support students with creat-
ing a second parallel collector and flow system in the 
second half of the unit (post-potential energy phase), 
students largely avoided even making revisions to their 
existing collector and flow relationships in the post-
potential energy phase. As such, the absence of efforts 
to create new collector and flow systems in the later 
part of the unit strongly suggests that students lacked 

confidence in their ability to represent change overtime 
in SageModeler.

As with collector and flow systems, the results of this 
study suggest that more support is needed for students 
to fully understand how to construct and interpret feed-
back loops. Because the curriculum introduced students 
to feedback loops towards the second half of the unit and 
Mr. H frequently reinforced the importance of feedback 
loops, students were able to identify feedback structures 
in their models. However, these same remarks also sug-
gest that the feedback loop structure emerged through 
an ad-hoc process rather than being a deliberate model 
structure. Students identifying feedback loops that 
are present in their models and unpacking how these 
feedback loops impact local behavior is indicative of a 
growing understanding of feedback loops from an ST 
perspective. However, the absence of deliberately created 
feedback loops in student models provides evidence that 
additional support with this aspect of ST is needed.

The findings from this study showing that students 
have challenges with creating and interpreting collector 
and flow systems and feedback loops are unsurprising. 
Previous efforts to create hierarchical models for student 
ST have generally considered understanding how sys-
tems change over time (analogous to collector and flow 
systems in this study) and recognizing the cyclical nature 
of systems (analogous to feedback loops in this study) 
as being more difficult than choosing which variables to 
include in a model or setting single causal relationships 
between said variables (Assaraf & Orion, 2005; Monat & 
Gannon, 2015; Orgill et al., 2019; Stave & Hopper, 2007). 
In light of previous literature, these results suggest that 
students need additional support with building and ana-
lyzing collector and flow systems and feedback loops. 
As this was the first experience that these students had 
with building computational models with SageModeler, it 
is likely that they needed additional time to master the 
core mechanics of SageModeler, particularly as it applies 
to using collector and flow systems, before applying these 
mechanics to building a working model of evaporative 
cooling—a challenging concept. However, as several pre-
vious studies suggest, the time required for students to 
fully master the mechanics of SageModeler, particularly 
as they apply to dynamic time-based modeling, likely 
exceeds the time allotted for a single unit (Bowers et al., 
2023; Eidin et al., 2020, 2023a). Instead, it appears that 
designing a sequence of computational modeling units 
where students have more time to develop mastery with 
different aspects of SageModeler and with the various ST 
behaviors discussed in this study, might be a more opti-
mal approach.
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Research question 3 reflection: the importance of discourse in 
supporting ST
A third major finding that has emerged from this study 
is the importance of discourse in supporting students 
with ST. Constructivist approaches to science education 
have long acknowledged the importance of discourse 
in supporting student learning (Gillies, 2008; Osborne, 
2010; Premo et al., 2023). Within modeling literature, 
the benefits of discursive practices, such as sharing and 
receiving peer feedback, on improving student modeling 
outcomes are well established (Louca & Zacharia, 2012; 
Tsivitanidou et al., 2018). However, despite the strong 
connections established between ST and modeling, there 
has been little exploration as to how discourse practices 
benefit students in ST. These results show that when stu-
dents engage in discourse, either within peer groups or 
between peer groups, it benefits students in making sense 
of evaporative cooling as a system of interconnected ele-
ments. When working within a dyad or triad, students 
often need to discuss why they are including specific vari-
ables or relationships within their computational model. 
Such discussions create an opportunity for students to 
unpack their evidence and reasoning for including these 
components in their models, thus encouraging them to 
engage with ST aspects of “defining a system” and “causal 
reasoning” on a deeper level.

By sharing and receiving feedback from other groups, 
students can gain insights into different ways the phe-
nomenon can be represented as a system of intercon-
nected elements. If a peer model has a different way 
of representing how a key aspect of the phenomenon 
changes over time, they can use this experience to sup-
port how they are representing change over time in their 
own model. Conversely, peer feedback can assist students 
in recognizing how certain structural elements of their 
models, such as feedback loops, impact model behavior, 
encouraging a deeper exploration of how their model 
functions as a system and supporting further model 
revisions.

Because discourse is an important practice for allow-
ing students to unpack their ideas of how to represent a 
phenomenon as a system and for sharing these insights 
with their peers, it can support ST in science classrooms. 
It is also important to recognize that rich and meaningful 
discourse about scientific ideas, including ST, does not 
come naturally to students (Jiménez-Aleixandre et al., 
2000; Lemke, 1990; McNeill & Pimentel, 2010). Quality 
peer discourse requires teachers to develop a classroom 
culture that encourages students to respectfully engage in 
discourse using evidence and for students to learn how to 
give and receive feedback in a constructive manner (Ber-
land & Reiser, 2011; McNeill & Pimentel, 2010; Tasker & 
Herrenkohl, 2016). Lastly it is often necessary to consider 
power differentials that can occur within classrooms and 

be reinforced through peer discourse practices. When 
students, especially students of color and female stu-
dents, are positioned as “listeners” or “receivers of ideas” 
within small group settings, they often are less likely to 
take an active role in science sensemaking (Patterson, 
2019; Shah et al., 2020; Shah & Lewis, 2019). This is 
reflected in the experiences of Amy and Leia for whom 
discourse practices in this unit seemingly reinforced a 
lack of agency and independence over their model revi-
sion process.

Limitations
Although this study offers several key insights into how 
students use ST as they build and revise computational 
models, there are a number of limitations that need to be 
considered. As a case study that focuses on the ST behav-
iors of five student groups within one classroom, this 
study likely does not represent all possible approaches 
students can take towards ST within the context of com-
putational modeling. It is also important to recognize 
how the magnet school nature of FHS impacted the 
results of this study. Because this research took place 
within a STEM magnet school, these students, who were 
in their second year at FHS, likely have more familiarity 
with giving and receiving feedback from their peers and 
using digital learning tools, such as SageModeler com-
pared to other student populations. Therefore, it is likely 
that student engagement with ST would require addi-
tional support from the learning environment if this unit 
was implemented in a less privileged environment.

The computational modeling context of SageModeler 
and the curricular context of the evaporative cooling 
unit also shaped how students could participate in ST 
and how we could assess student ST in this study. While 
“interactions between systems” is considered to be a key 
aspect of systems thinking by many scholars (Bielik et al., 
2023; Monat & Gannon, 2015; Verhoeff et al., 2018), the 
nature of evaporative cooling as a phenomenon, where 
the kinetic energy of liquid molecules themselves, not 
external energy (although some external kinetic energy 
is absorbed into the water from its surroundings), pri-
marily drives the evaporation process, did not encourage 
students to fully consider outside forces in their compu-
tational models. Not only is “interactions between sys-
tems” not emphasized by the context of this unit, but the 
nature of SageModeler also limits efforts to show how 
the system of evaporative cooling interacts with other 
systems and how it represents scale. Since SageModeler 
has students choose from a semi-quantitative set of rela-
tionships (or make a semi-quantitative custom graph in 
select cases), it is difficult to show a dramatic difference 
in magnitude of relationships using SageModeler. This 
means that it is challenging to incorporate factors that 
have relatively small impacts on system behavior, such 
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as humidity in the case of evaporative cooling, into stu-
dent computational models, without these factors having 
a disproportionate impact on system behavior. As such, 
students were limited in their ability to model smaller 
scale interactions between the phenomenon of evapora-
tive cooling and broader systems (such as the absorption 
of kinetic energy by the water from the broader class-
room environment). Therefore, it is likely that if a dif-
ferent computational modeling program or a different 
phenomenon served as the foundation for this study that 
students might have been able to explore some additional 
aspects of ST not covered by this research. However, we 
must also acknowledge that all modeling programs (and 
indeed all models) have limitations and that more sophis-
ticated modeling programs likely would have required 
additional classroom time for students to master, creat-
ing another barrier for engaging in other aspects of ST.

Conclusion and future directions
Key findings
This study investigated how a computational systems 
modeling unit supported students in Systems Thinking. 
Based on prior frameworks, coalescing in “A Framework 
for Computational Systems Modeling” (Arnold & Wade, 
2015; Shin et al., 2022; Stave & Hopper, 2007), we devel-
oped the Dynamic Systems Thinking through Modeling 
Analysis Tool with the following seven indicators cor-
responding to different ST behaviors: evaluating system 
variables, analyzing single causal relationships, analyzing 
linear causal chains, interpreting graphic model output, 
choosing collector variables, discussing collector and 
flow structures, and discussing feedback loops and circu-
lar causal chains. Using this instrument allowed for the 
categorization and description of how students used ST 
across this unit. In particular, student written, and verbal 
communication and discourse provided rich insights into 
their ST and overall understanding of the phenomenon 
in ways that were difficult to capture from just examining 
their models as stand-alone products. Another key find-
ing illustrated that over the course of the unit, students 
tended to become more reluctant to make major model 
revisions, particularly with regards to the collector and 
flow system that formed the backbone of their model. 
This is despite the second part of the unit being designed 
to encourage students to make a second collector and 
flow system to demonstrate the transition from kinetic 
to potential energy that occurs during evaporation. Con-
versely, students were more likely to identify and discuss 
feedback loops in the second half of this unit. Lastly, the 
results demonstrate that key pedagogical supports, such 
as providing opportunities for peer review and direct 
support to students by the teacher, were beneficial in 
assisting students with ST.

Implications for teachers and curriculum developers
Building on these findings, there are several implications 
for teachers and curriculum developers. One of the key 
takeaways from this study is the importance of construct-
ing computational models as a collective endeavor. Our 
findings demonstrate the beneficial impact of engaging 
students in constructing computational models at various 
social interactions, including paired work, peer feedback, 
and whole-class plenary discussions. This approach reso-
nates with scholarly recommendations to position model-
ing as a communal practice, emulating the ways in which 
scientists reach a consensus through dialogue and argu-
mentation (Jordan et al., 2018; Louca & Zacharia, 2012; 
Tsivitanidou et al., 2018). Research also suggests that facili-
tating a collaborative and dialogical environment within 
the context of one scientific practice, such as modeling, can 
transfer to students’ application of other scientific practices 
(Bierema et al., 2017). As such, we recommend that teach-
ers who are interested in implementing computational 
modeling units in their classrooms encourage student col-
laboration and foster a cooperative learning environment 
where students can build on each other’s ideas.

Another major teaching implication is that students 
need a broader timescale to develop familiarity with 
computational modeling tools and to build a firmer grasp 
of ST. Although students showed evidence of many ST 
behaviors across this unit and had little issue with ST 
behaviors such as analyzing single causal relationships 
and evaluating system elements, most students had dif-
ficulty with more advanced ST behaviors, particularly 
with discussing collector and flow structures and with 
discussing feedback loops and circular causal chains. 
Such challenges with these more advanced aspects of 
ST, especially with regards to creating and discussing 
collector and flow structures, could in part stem from 
a lack of understanding of how to represent such rela-
tionships within the computational modeling context 
of SageModeler. Therefore, it is likely that more time is 
needed to support students with both understanding 
these broader ST behaviors as well as the computational 
modeling environment of SageModeler. While one pos-
sible strategy would be to extend the initial introductory 
period students spend learning how to use SageModeler, 
given the length of this unit, we would suggest that future 
curricular developers and teachers spread out the learn-
ing of both ST and SageModeler over a number of units. 
This would allow for students to develop familiarity with 
ST and SageModeler over a broader timescale leading to 
a deeper understanding than is possible in a single six-
week unit.

Implications for research
This study also has several implications for how the field 
might approach research on ST moving forward. Firstly, 
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it demonstrates the importance of discourse as a way of 
assessing student ST. Because student discourse can elu-
cidate student reasoning for setting key relationships in 
their models and allow us to understand if certain model 
structures (i.e. feedback loops) were created intention-
ally or through ad-hoc tinkering, it provides a depth that 
is lacking from ST research solely focusing on analyzing 
models as final products. As such, we advocate for future 
researchers interested in analyzing student ST to con-
sider discourse analysis as a powerful research tool, both 
in the form of interviews (as shown in Hmelo-Silver et 
al., 2007) and through in-situ discourse as demonstrated 
in this study. Despite the advantages of using discourse 
to assess student ST, we also recognize the difficulties 
of scaling discourse analysis for large scale assessments. 
As such, we are interested in investigating how writing 
tasks in parallel to student models can be used to create 
more comprehensive assessments of student ST as part 
of a future project. Another possible direction for future 
research would be to explore the possibilities of teaching 
and learning ST outside of the context of computational 
modeling.
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