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A B S T R A C T

The electric power distribution system (PDS) and the water distribution system (WDS) are coupled with
each other through electricity-driven water facilities (EdWFs), such as pumps, water desalination plants, and
wastewater treatment facilities. However, they are generally owned and operated by different utilities, and
there does not exist an operator that possesses full information of both systems. As a result, centralized
methods are not applicable for coordinating the operation of the two systems. This paper proposes a
decentralized framework where the PDS and WDS operators solve their own operation problems, respectively,
by sharing only limited information. Nevertheless, the boundary variables (i.e., the variables shared between
two systems) are discontinuous due to their dependence on the on/off nature of EdWFs. Unfortunately, mature
decentralized/distributed optimization algorithms like the alternating direction method of multipliers (ADMM)
cannot guarantee convergence and optimality for a case like this. Therefore, this paper develops a novel
algorithm that can guarantee convergence and optimality for the decentralized optimization of PDS and WDS
based on a recently developed algorithm called the SD-GS-AL method. The SD-GS-AL method is a combination
of the simplicial decomposition (SD), gauss–seidel (GS), and augmented Lagrangian (AL) methods, which can
guarantee convergence and optimality for mixed-integer programs (MIPs) with continuous boundary variables.
Nonetheless, the original SD-GS-AL algorithm does not work for the PDS-WDS coordination problem where
the boundary variables are discontinuous. This paper modifies and improves the original SD-GS-AL algorithm
by introducing update rules to discontinuous boundary variables (called the Auxiliary Variables Update step).
The proposed mixed-integer boundary compatible (MIBC) SD-GS-AL algorithm has the following benefits: (1)
it is capable of handling cases whose boundary variables are discontinuous with convergence and optimality
guaranteed for mild assumptions, and (2) it only requires limited information exchange between PDS and WDS
operators, which will help preserve the privacy of the two utilities and reduce the investment in building
additional communication channels. Simulations on two coupled PDS and WDS test cases (Case 1: IEEE-13
node PDS and 11-node WDS, and Case 2: IEEE-37 node PDS and 36-node WDS) show that the proposed MIBC
algorithm converges to the optimal solutions while the original SD-GS-AL does not converge for both test cases.
The ADMM does not converge for the first test case while it converges to a sub-optimal solution, 63 % more
than the optimal solution for the second test case.

1. Introduction

Power operators generally need to adjust the control settings of
power systems, e.g., power generation, periodically, i.e., every 5 min-
utes to one hour, to meet the time-varying electricity demands and
other operating conditions. Ideally, power operators use optimization
technology to determine the periodic adjustments of power generation
in order to reduce operational costs, which is generally referred to
as optimal power flow (OPF) [1]. An analogous process in the water
sector is called optimal pump scheduling (OPS) [2,3]. In this problem,
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water system operators pursue an operation schedule of pumps that

can satisfy the requirement of water supply with the objective of

minimizing the electricity cost for operating the pumps. As a matter

of fact, OPF and OPS are two coupled problems since the power

distribution system (PDS) and water distribution system (WDS) are

interconnected via electricity-driven water facilities (EdWF). However,

the two problems are solved independently by the power and water

operators, respectively.
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Nomenclature

Sets: OPS

P
W

Set of pipes with a pump installed

W, W Node, edge sets of water network

 T
w

Set of nodes connected to a tank

Sets: MIBC SD-GS-AL

𝑘 Set of iteration 𝑘, {1, 2,… 𝑘}

 Set of iteration 𝑘 with non-zero 𝒚

p Feasible set of OPF

w Feasible set of OPS

CH (.) Convex hull

Parameters: OPF

𝛥𝑡 Duration of a time period

𝓁𝑖𝑘 Squared of current carrying capacity of line
𝑖𝑘

𝑆𝑖𝑘 MVA limit of line 𝑖𝑘

𝑣
𝑖
, 𝑣𝑖 Minimum and maximum voltage limits

𝑐𝑖,𝑡, 𝒄 Grid electricity price

𝐸Int
𝑖

Initial SoC of ESS at node 𝑖

𝐸Rat
𝑖

, 𝑆Rat
𝑖

SoC and MVA capacity of ESS at node 𝑖

𝑝Load
𝑖,𝑡

, 𝑞Load
𝑖,𝑡

Active, reactive power demand at node 𝑖

𝑝l
𝑖,𝑡
, 𝑞l

𝑖,𝑡
Active, reactive power demand of water
pump at node 𝑖

𝑝PV
𝑖,𝑡

, 𝑞PV
𝑖,𝑡

Active, reactive power output from solar
PV at node 𝑖

𝑟Batt
𝑖

, 𝑟Cvt
𝑖

Resistances of battery and converter in ESS

𝑟𝑖𝑘, 𝑥𝑖𝑘 Resistance and reactance of line 𝑖𝑘

Parameters: OPS

𝑓R

𝑖
, 𝑓

R

𝑖 Minimum, maximum water injection limits
of water source at node 𝑖

𝑓T

𝑖
, 𝑓

T

𝑖 Minimum, maximum water flow limits of
the water tank at node 𝑖

𝑓
𝑘
, 𝑓𝑘 Minimum, maximum water flow of pipe 𝑘

𝑆w
𝑖
, 𝑆

w

𝑖 Minimum, maximum volume of water tank
at node 𝑖

𝑧
𝑖
, 𝑧𝑖 Minimum, maximum head gain limits at

node 𝑖

𝐴𝑖 Cross-sectional area of the water tank at
node 𝑖

𝑎1,𝑘, 𝑎0,𝑘 Characteristics coefficients of pump at pipe
𝑘

𝑓D
𝑖,𝑡

Water demand at node 𝑖

ℎ𝑖 Elevation at node 𝑖

𝑀 Big-M parameter

𝑅P
𝑘

Head loss coefficient of pipe 𝑘

𝑆w
𝑖,0

Initial volume of water in a tank at node 𝑖

Ignoring the coupling of PDS and WDS may result in conflicting so-
lutions of OPF and OPS, which may increase the cost and/or risk [4–6].
More and more researchers have realized this issue in recent years and
considered PDS and WDS as a coupled system which is referred to as the
distribution-level energy-water nexus (DEWN) [7,8]. For example, [7]
investigated the optimal operation problem of DEWN by combining the
OPF and OPS problems into one that is called optimal power-water
flow in [9]. Nevertheless, the original DEWN optimization problem

Parameters: MIBC SD-GS-AL

𝜖 Convergence tolerance

𝜌 Penalty parameter

𝐽 Maximum number of inner loop iterations

𝐾 Maximum number of outer loop iterations

Variables: OPF

𝓁𝑖𝑘,𝑡 Squared of current flow on line 𝑖𝑘 at time 𝑡

𝑝ES
𝑖,𝑡
, 𝑞ES

𝑖,𝑡
Active, reactive power output of ESS at
node 𝑖

𝑝G
𝑖,𝑡
, 𝑞G

𝑖,𝑡
Active and reactive power from grid at node
𝑖

𝑝Loss
𝑖,𝑡

Active power loss in ESS at node 𝑖

𝑝𝑖𝑘,𝑡, 𝑞𝑖𝑘,𝑡 Active, reactive power flow on line 𝑖𝑘

𝑣𝑖,𝑡 Squared of voltage at node 𝑖 at time 𝑡

Variables: OPS

𝛼𝑘,𝑡 Pump on/off status variable at pipe 𝑘

𝑓R
𝑖,𝑡

Water flow injected from water source at
node 𝑖

𝑓T
𝑖,𝑡

Water flow to water tank at node 𝑖

𝑓𝑖𝑘,𝑡/𝑓𝑘,𝑡 Water flow in pipe 𝑖𝑘/𝑘

𝑝
p

𝑘,𝑡
Power consumed by pump at pipe 𝑘

𝑤 Virtual objective function

𝑧𝑖,𝑡 Water head at node 𝑖

𝑧R
𝑘,𝑡

Water head imposed by pump at pipe 𝑘

Variables: MIBC SD-GS-AL

𝜑̌p Lagrangian lower bound of power subprob-
lem

𝜑̌w Lagrangian lower bound of water subprob-
lem

𝜑̂p Lagrangian upper bound of power subprob-
lem

𝜑̂w Lagrangian upper bound of water subprob-
lem

𝜆p∖𝜆w Lagrangian multipliers

𝐿𝑅p Value of Lagrangian relaxation of power
subproblem

𝐿𝑅w Value of Lagrangian relaxation of water
subproblem

𝑦𝑛,𝑡 Auxiliary variable

is a large-scale mixed-integer nonlinear program (MINLP), which is
computationally intractable to solve. A quasi-convex hull relaxation is
developed in [8] to convexify the MINLP model into a mixed-integer
convex programming (MICP) model, which is much easier to solve. The
MINLP model of DEWN optimization is linearized in [10] to further
improve the computational efficiency with the cost of a reduction in
model accuracy.

Moreover, the aggregation of EdWFs is considered a virtual power
plant and virtual energy storage to provide demand response services to
the power systems in [11–21]. The water booster pressure systems are
modeled as flexible loads for demand response in [22]. In [23], authors
investigated a market-clearing mechanism in a co-optimization model
that coordinates the operation of grid-connected reverse osmosis water
desalination plants and renewable-rich power systems for demand re-
sponse. Optimal placement of pumps-as-turbines and demand response
through water storage tanks is proposed in [24]. Ref. [25] proposed
an analytical model for quantifying the interdependence between the
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Fig. 1. Proposed framework for the decentralized coordination of power and water utilities.

resilience of power and water distribution systems. Restoration of
PDS after a disaster considering energy-water-gas interdependency is
considered in [26]. The same authors of [26] used a two-stage moment-
based distributionally robust approach to capture and represent the
uncertainties in renewable generation for managing the water-energy-
carbon nexus in [27]. Risk-based two-stage stochastic co-optimization
framework for the coordination of renewable-rich power systems and
water desalination plants is proposed in [28]. Literature [29] proposed
a coordinated restoration framework for a coupled power water system
to respond to disruptions using a two-stage risk-averse stochastic pro-
gramming. Ref. [30] further considered the uncertainty of renewable
energy based on the DEWN optimization model developed in [8]. In
short, whether it is for demand response, renewable management,
or resilience, the existing research converges to a conclusion—it is
beneficial to coordinate the operation of PDS and WDS, i.e., OPF and
OPS.

However, an important fact was ignored in most of the above-
mentioned research: the PDS and WDS in a specific city or region are
generally owned and operated by different utilities, i.e., the power
and water utilities. In other words, there does not exist an entity that
possesses full information of both systems. As a result, the centralized
schemes proposed in existing research are not practical. To this end,
we propose to coordinate the OPF and OPS under a decentralized
framework in this paper. Namely, the OPF and OPS will be solved by
power and water operators, respectively, with only a limited amount
of information needed to be shared between the two operators, as
shown in Fig. 1. The variables that are shared by two subproblems in a
decentralized optimization problem are called boundary variables [31]
in this paper. In the context of this research, OPF and OPS are the two
subproblems, and the boundary variables are the power consumption
of EdWFs, e.g., pumps, water desalination plants, and wastewater
treatment facilities. It is worth noting that the boundary variables in
this decentralized optimization problem are discontinuous due to the
on/off characteristics of the EdWFs.

Recently, there have been a number of algorithms for decentralized/
distributed optimization in the literature. For example, authors in [9]
leveraged the alternating direction method of multipliers (ADMM) [32,
33] for the distributed optimization of optimal power-water flow.
However, they did not consider the on–off operation of the EdWFs
(i.e., binary variables). Moreover, the ADMM requires subproblems to
be convex and boundary variables to be continuous for the guarantee of
optimality and convergence. Similar issues apply to the benders decom-
position method (BDM) leveraged in [34–36]. Moreover, the BDM may
not always work when both master and subproblem models contain
integer variables. In addition, other mature algorithms, such as the
analytical target cascading [37,38], auxiliary problem principle [39],
and cutting plane consensus [40] are also proven to converge for simple
cases where all subproblems are continuous and convex.

In recent years, other algorithms like the Alternating Direction
Inexact Newton (ALADIN) [41] method and the SD-GS-AL method [42],
which is the combination of the simplicial decomposition (SD), gauss–
seidel (GS), and augmented Lagrangian (AL) methods, are developed
and geared for the mixed-integer cases. Namely, some subproblems are
mixed-integer programs (MIP) where the integer variables are inside
the subproblems. Nevertheless, these algorithms are not guaranteed
to converge and be optimal for cases like the PDS-WDS coordinated
optimization problem where integer variables are located on the bound-
ary of subproblems. Therefore, this paper proposes a mixed-integer
boundary compatible (MIBC) SD-GS-AL algorithm, which can guarantee
convergence and optimality for these cases by incorporating update
rules to discontinuous boundary variables (called the Auxiliary Vari-
ables Update step) in the original SD-GS-AL algorithm. In summary,
the main contributions of the paper are given as follows:

1. From the engineering perspective, this research respects the fact
that the two systems are operated by different operators and
proposes to coordinate the two systems via a new decentral-
ized method, i.e., the MIBC SD-GS-AL algorithm. The proposed
method has the following benefits: (a) it is capable of han-
dling mixed-integer boundary variables with convergence and
optimality guaranteed for mild assumptions (i.e., (1) the global
optimal solution of the coordinated OPF-OPS is unique, and
(2) the objective function is linear), (b) it only requires limited
information exchange between PDS and WDS operators, which
will help preserve the privacy of the two systems and reduce the
investment in building communication channels.

2. From the perspective of mathematical method, being different
from the original SD-GS-AL algorithm [42], the MIBC SD-GS-
AL algorithm guarantees optimality and convergence for MIP
subproblems that share discontinuous boundary variables, which
is made possible by introducing the Auxiliary Variables Update
step to the original SD-GS-AL algorithm. Note that the proposed
algorithm is general and applicable to other problems that have
similar features.

The rest of the paper is organized as follows: Section 2 describes
the decentralized formulation of the coordinated OPF-OPS problem.
Section 3 introduces the MIBC SD-GS-AL decentralized algorithm for
the coordination of PDS and WDS. Section 4 provides the simulation
results of the proposed framework and algorithm. Section 5 provides
the conclusion and potential future research.

2. Decentralized formulation of the coordinated OPF-OPS problem

2.1. Original formulation of OPF in PDS

The distributed energy resources (DERs), such as energy storage
systems (ESSs) and solar photovoltaics (PVs), and grid power, which
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supply water pumps in the water network and other loads in the
power distribution network, are modeled in this paper. The resulting
distribution OPF, adopted from [8,43], is given as follows:

Min.
∑
𝑖

∑
𝑡

𝑐𝑖,𝑡𝑝
G
𝑖,𝑡 = 𝒄⊤𝒑𝐆 (1a)

S.t.:
(
𝑝𝑖𝑘,𝑡

)2
+
(
𝑞𝑖𝑘,𝑡

)2
= 𝑣𝑖,𝑡𝓁𝑖𝑘,𝑡 (1b)

𝑣𝑖,𝑡 − 𝑣𝑘,𝑡 − 2
(
𝑟𝑖𝑘𝑝𝑖𝑘,𝑡 + 𝑥𝑖𝑘𝑞𝑖𝑘,𝑡

)

+
((

𝑟𝑖𝑘
)2

+
(
𝑥𝑖𝑘

)2)
𝓁𝑖𝑘,𝑡 = 0 (1c)

0 ≤ 𝓁𝑖𝑘,𝑡 ≤ 𝓁𝑖𝑘 (1d)
(
𝑝𝑖𝑘,𝑡

)2
+
(
𝑞𝑖𝑘,𝑡

)2
≤
(
𝑆𝑖𝑘

)2

(1e)
(
𝑣
𝑖

)2
≤ 𝑣𝑖,𝑡 ≤

(
𝑣𝑖
)2

(1f)

0 ≤ 𝐸Int
𝑖 −

∑
𝑡

(
𝑝ES𝑖,𝑡 + 𝑝Loss𝑖,𝑡

)
𝛥𝑡 ≤ 𝐸Rat

𝑖 (1g)

(
𝑝ES𝑖,𝑡

)2

+
(
𝑞ES𝑖,𝑡

)2

≤
(
𝑆Rat
𝑖

)2
(1h)

(𝑟Batt𝑖 + 𝑟Cvt𝑖 )
(
𝑝ES𝑖,𝑡

)2

+ 𝑟Cvt𝑖

(
𝑞ES𝑖,𝑡

)2

= 𝑝Loss𝑖,𝑡 𝑣𝑖,𝑡 (1i)

𝑝G𝑖,𝑡 + 𝑝ES𝑖,𝑡 + 𝑝PV𝑖,𝑡 − 𝑝Load𝑖,𝑡 − 𝑝l𝑖,𝑡

=
∑
𝑗

(
𝑝𝑗𝑖,𝑡 − 𝑟𝑗𝑖𝓁𝑗𝑖,𝑡

)
+
∑
𝑘

𝑝𝑖𝑘,𝑡 (1j)

𝑞G𝑖,𝑡 + 𝑞ES𝑖,𝑡 + 𝑞PV𝑖,𝑡 − 𝑞Load𝑖,𝑡 − 𝑞l𝑖,𝑡

=
∑
𝑗

(
𝑞𝑗𝑖,𝑡 − 𝑥𝑗𝑖𝓁𝑗𝑖,𝑡

)
+
∑
𝑘

𝑞𝑖𝑘,𝑡 (1k)

𝑞l𝑖 = 𝑝l𝑖𝑡𝑎𝑛(𝜃
l
𝑖), (1l)

where 𝒄 is a vector of grid electricity price and 𝒑𝐆 is a vector of
electric power purchased by PDS from the grid. As such, the objective
function (1a) minimizes the power purchased from the grid. The Dis-
tFlow model [44,45] is adopted to model balanced power flows as in
(1b). Note that the index 𝑖𝑘(𝑗𝑖) refers to a distribution line connecting
node 𝑖(𝑗) and 𝑘(𝑖). The voltage drop on a distribution line is represented
by constraint (1c). Thermal and power carrying limits of distribution
lines are given by constraints (1d) and (1e), respectively. Constraint
(1f) denotes the voltage limits. Constraints (1g)–(1i) represent the
operating constraints of ESSs. For a detailed description of this high-
fidelity ESS model, please refer to [8]. Constraints (1j) and (1k) are
nodal active and reactive power balance equations, respectively. The
constraint (1l) represents the reactive power demand due to the EdWFs,
where 𝜃l

𝑖
(is considered fixed) is the power factor angle of the EdWFs.

Unless otherwise stated, the bold symbols represent matrices/vectors
of corresponding variables throughout the paper.

2.2. Original formulation of OPS in WDS

The water distribution network comprises water sources, tanks,
pumps, and pipes. The water network is considered a directed graph,
W =

(
W, W

)
. We assume that a water pump is a type of pipe that

imposes a head gain when the pump is on and acts as a closed pipe
when the pump is off. Moreover, we assume that the pumps convert
electric power into mechanical power at a constant efficiency of 𝜂

and operate at a constant power factor. The resulting optimal pump
scheduling (OPS) model, adopted from [8,46], is given as follows :

Min.
∑
𝑘∈P

W

∑
𝑡

𝜆𝑤𝑘,𝑡𝑝
p

𝑘,𝑡
= 𝝀⊤

𝒘
𝒑𝐩 (2a)

S.t.:

𝑓R
𝑖,𝑡 + 𝑓T

𝑖,𝑡 +
∑
𝑗

𝑓𝑗𝑖,𝑡 = 𝑓D
𝑖,𝑡 +

∑
𝑘

𝑓𝑖𝑘,𝑡, (𝑖 ∈ W) (2b)

𝑧𝑖,𝑡 − 𝑧𝑗,𝑡 + ℎ𝑖 − ℎ𝑗 = 𝑅P
𝑘
sgn(𝑓𝑘,𝑡)𝑓

2
𝑘,𝑡
, (𝑘 ∈ W ⧵ P

W
) (2c)

⎧⎪⎨⎪⎩

𝑧𝑖,𝑡 − 𝑧𝑗,𝑡 + ℎ𝑖 − ℎ𝑗
+ 𝑧R

𝑘,𝑡
= 𝑅P

𝑘
𝑓 2
𝑘,𝑡
,

if 𝛼𝑘,𝑡 = 1

𝑓𝑘,𝑡 = 0, if 𝛼𝑘,𝑡 = 0

, (𝑘 ∈ P
W
) (2d)

𝑆w
𝑖
⩽ 𝑆w

𝑖,0
−

𝑡∑
𝑡=0

𝑓T
𝑖,𝑡 ⩽ 𝑆

w

𝑖 , (𝑖 ∈  T
w
) (2e)

𝑧𝑖,𝑡−1 = 𝑧𝑖,𝑡 −
𝑓T
𝑖,𝑡
𝛥𝑡

𝐴𝑖

(𝑖 ∈  T
w
) (2f)

𝑓
𝑘
≤ 𝑓𝑘,𝑡 ≤ 𝑓𝑘 (2g)

𝑧
𝑖
≤ 𝑧𝑖,𝑡 ≤ 𝑧𝑖 (2h)

𝑓R

𝑖
≤ 𝑓R

𝑖,𝑡 ≤ 𝑓
R

𝑖 (2i)

𝑓T

𝑖
≤ 𝑓T

𝑖,𝑡 ≤ 𝑓
T

𝑖 (2j)

𝑧R
𝑘,𝑡

= 𝑎1,𝑘𝑓𝑘,𝑡 + 𝑎0,𝑘 (2k)

𝜂𝑝
p

𝑘,𝑡
= 𝑓𝑘,𝑡𝑧

R
𝑘,𝑡

= 𝑎1,𝑘𝑓
2
𝑘,𝑡

+ 𝑎0,𝑘𝑓𝑘,𝑡, (2l)

where, 𝜆𝑤𝑘,𝑡 is the electricity price rate and 𝑝
p

𝑘,𝑡
is the power con-

sumed by EdWFs. More information on how to calculate 𝜆𝑤𝑘,𝑡 will be
provided when we introduce the MIBC SD-GS-AL algorithm. As such,
the objective function (2a) minimizes the cost of power purchased
from the PDS. Eq. (2b) represents a nodal water balance in the water
network. Constraints (2c) and (2d) describe the hydraulic character-
istics of a pipe without a pump and with a pump, respectively. The
filling and emptying of a water tank are modeled as in constraint
(2e). The constraint (2f) represents the head change of water tanks
due to water filling and emptying. Constraints (2g)–(2j) describes the
operating constraints of a water network. The constraint (2k) is the
head gain characteristics of water pumps. The constraint (2l) describes
the power consumed by the water pump.

2.3. Convex hull relaxation

Due to constraints (1b) and (1i) in (1) and (2c), (2d) and (2l)
in (2), the OPF model (1) and the OPS model (2) are in non-linear
programming (NLP) and MINLP forms, respectively. It has been found
in [8] that if one can find the convex hull relaxation for the OPF
problem of the MINLP form (1), solving the corresponding MICP model
can obtain an exact solution to the original OPF problem with less
computational burden. Therefore, in this paper, convex (and quasi-
convex) hull relaxation [8,47] is adopted for the convexification of
the aforementioned non-convex constraints. For the accuracy of convex
(and quasi-convex) hull relaxations, readers are referred to [8,47]. The
convex hulls relaxation of (1b) is given as follows:
{

𝑝2
𝑖𝑘,𝑡

+ 𝑞2
𝑖𝑘,𝑡

≤ 𝑣𝑖,𝑡𝓁𝑖𝑘,𝑡

𝑆
2

𝑖𝑘𝑣𝑖 + 𝑣
𝑖
𝑣𝑖 𝓁𝑖𝑘 ≤ 𝑆

2

𝑖𝑘(𝑣𝑖 + 𝑣𝑖).
(3)

The convex hulls relaxation of (1i) is given as follows:

⎧⎪⎨⎪⎩

(𝑟Batt
𝑖

+ 𝑟Cvt
𝑖

)(𝑝ES
𝑖,𝑡
)2 + 𝑟Cvt

𝑖
(𝑞ES

𝑖,𝑡
)2 ≤ 𝑝Loss

𝑖,𝑡
𝑣𝑖,𝑡

𝑟Batt
𝑖

(𝑞ES
𝑖,𝑡
)2 + 𝑣

𝑖
𝑝Loss
𝑖,𝑡

≤ (𝑆
ES

𝑖 )2(𝑟Batt
𝑖

+ 𝑟Cvt
𝑖

)

(𝑆
ES

𝑖 )2𝑣𝑖 + 𝑣
𝑖
𝑣𝑖𝑝

Loss
𝑖,𝑡

≤ (𝑆
ES

𝑖 )2(𝑣
𝑖
+ 𝑣𝑖).

(4)

Quasi-convex hulls relaxation of (2c) is given as follows:

𝑧𝑖,𝑡 − 𝑧𝑗,𝑡 + ℎ𝑖 − ℎ𝑗

⎧⎪⎪⎨⎪⎪⎩

⩽ (2
√
2 − 2)𝑅𝑃

𝑘
𝑓𝑘𝑓𝑘,𝑡 + (3 − 2

√
2)𝑅𝑃

𝑘
𝑓
2

𝑘

⩾ (2
√
2 − 2)𝑅𝑃

𝑘
𝑓
𝑘
𝑓𝑘,𝑡 − (3 − 2

√
2)𝑅𝑃

𝑘
𝑓 2

𝑘

⩾ 2𝑅𝑃
𝑘
𝑓𝑘𝑓𝑘,𝑡 − 𝑅𝑃

𝑘
𝑓
2

𝑘

⩽ 2𝑅𝑃
𝑘
𝑓
𝑘
𝑓𝑘,𝑡 + 𝑅𝑃

𝑘
𝑓 2

𝑘
.

(5)

Similarly, the quasi-convex hulls relaxation of (2d) is given as follows:

𝑅𝑃
𝑘
𝑓 2
𝑘,𝑡

−𝑍1 ≤ 0 (6a)
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𝑍2 − 𝑅𝑃
𝑘
𝑓 2
𝑘,𝑡

≤ 0 (6b)

0 ≤ 𝑓𝑘,𝑡 ≤ 𝑀 ∗ 𝛼, (6c)

where, 𝑍1 = 𝑧𝑖,𝑡 − 𝑧𝑗,𝑡 + ℎ𝑖 − ℎ𝑗 + 𝑧𝐺
𝑘,𝑡

+ 𝑀 ∗
(
1 − 𝛼𝑘,𝑡

)
and 𝑍2 =

𝑧𝑖,𝑡 − 𝑧𝑗,𝑡 + ℎ𝑖 − ℎ𝑗 + 𝑧𝐺
𝑘,𝑡

+ 𝑀 ∗
(
𝛼𝑘,𝑡 − 1

)
. The convex hull relaxation

of (6b) is given as follows:

𝑍2 − 𝑅𝑃
𝑘
𝑓𝑘,𝑡𝑓𝑘,𝑡 ≤ 0. (7)

Finally, the convex hulls relaxation of (2l) is given as follows:

𝜂𝑝
p

𝑘,𝑡
≥ 𝑎1,𝑘𝑓

2
𝑘,𝑡

+ 𝑎0,𝑘𝑓𝑘,𝑡 (8a)

𝜂𝑝
p

𝑘,𝑡
≤ (𝑎1,𝑘𝑓𝑘,𝑡 + 𝑎0,𝑘)𝑓𝑘,𝑡 (8b)

2.4. Coordinated OPFOPS formulation under the decentralized framework

This subsection presents the formulations of the coordinated OPF-
OPS problem under the decentralized framework. Originally, the coor-
dinated OPF-OPS is a single optimization problem, which is given as
follows:

(CO.) min 𝑓 ∶=
∑
𝑡

𝑐𝑡𝑝
G
𝑡 = 𝒄⊤𝒑𝐆 (9a)

s.t. 𝒑𝐥 = 𝒑𝐩 (9b)

𝒙𝐩 ∈ p,𝒙𝐰 ∈ w, (9c)

where,

p ∶= {(1c)–(1h), (1j)–(1l), (3), (4)} (10)

is a convex constraint set of the OPF model (1) while the mixed-integer
convex constraint set (w) of the OPS model (2) is defined as follows:

w ∶= {(2b), (2e)–(2k), (5), (6a), (6c), (7), (8)} . (11)

Moreover, the decision variables of the OPF model (1) and the OPS
model (2) are collectively referred to as 𝒙𝐩 and 𝒙𝐰, respectively. The
expression (9a) represents the objective function of the coordinated
OPF-OPS, e.g., minimization of power purchased from the grid. Con-
straint (9b) links the OPF and OPS models, where 𝒑𝐥 represents the
power demand of EdWFs (e.g., pumps) from WDS in the OPF model,
while 𝒑𝐩 represents EdWF power from PDS in the OPS model.

To solve the problem (9) in a decentralized manner, it is decom-
posed into two subproblems. In our proposed framework, the power
operator solves the following subproblem:

(PO.) min
𝒙𝐩

𝑓𝑝
(
𝒙𝐩

)
∶=

∑
𝑡

𝑐𝑡𝑝
G
𝑡 = 𝒄⊤𝒑𝐆 (12a)

s.t. 𝒑𝐥 = 𝒚 (12b)

𝒙𝐩 ∈ p, (12c)

while the water operator solves the following subproblem:

(WO.) min
𝒙𝐰

𝑤 (i.e., (𝝀𝑘
𝐰
)⊤𝒑𝐩) (13a)

s.t. 𝒑𝐩 = 𝒚 (13b)

𝒙𝐰 ∈ w, (13c)

where 𝒚 is a vector of auxiliary variables introduced to render a
decomposable structure, the expression (12a) represents the objective
function of the power subproblem, e.g., minimization of power pur-
chased from the grid, and 𝑤 is the virtual objective function of the
OPS, introduced to facilitate the introduction of the algorithm. The
reason why we use a virtual objective function for the OPS subproblem
is detailed in Section 3. The proposed decentralized formulation of (9)
(i.e., (12) and (13)) has one significant advantage: it does not require
any entity with access to both p and w. It is important to note
that there does not exist any entity that has access to both PDS and
WDS information. Therefore, the proposed decentralized formulation

of coordinated OPF-OPS provides a real-world-compatible framework
for the coordination of PDS and WDS.

It can be observed from (12b) and (13b) that the two subproblems
are still coupled through 𝒚 as EdWFs powers 𝒑𝐩 in a WDS act as a
load 𝒑𝐥 in a PDS. If two models are solved independently without
being coordinated by a proper decentralized algorithm, the boundary
variables, i.e., 𝒑𝐥 and 𝒑𝐩 may not match with each other, which will
result in increased cost and/or insecure operation of both systems.
Note that the EDWFs powers 𝒑𝐥 and 𝒑𝐩 are boundary variables which
are discontinuous due to their dependence on binary variables that
represent the on/off nature of EdWFs. To be specific, while Eq. (2l)
means that pump power (𝑝p

𝑘,𝑡
) is dependent on the water flow (𝑓𝑘,𝑡) on

a pipe where a pump is installed, (2d) indicates that a water flow on a
pipe where a pump is installed is dependent on binary variable (𝛼𝑘,𝑡).
As a result, pump power (𝑝p

𝑘,𝑡
) is a binary-dependent and discontinuous

boundary variable.

3. MIBC SD-GS-AL decentralized algorithm

As mentioned in the introduction section, existing decentralized or
distributed optimization algorithms are not guaranteed to converge and
be optimal when they are used to coordinate subproblems (12) and (13)
since the boundary variables of these two problems are discontinuous
(as explained in Section 2.4). Therefore, this paper proposes a MIBC
SD-GS-AL decentralized optimization algorithm. We first provide an
overview of the proposed MIBC SD-GS-AL algorithm in Section 3.1
and then discuss the privacy-preserving feature of the MIBC SD-GS-AL
algorithm in Section 3.2. Last but not least, the comparison of ADMM,
original SD-GS-AL, and MIBC SD-GS-AL algorithms is provided in the
last subsection.

3.1. Overview of the proposed algorithm

The key steps of the proposed MIBC SD-GS-AL algorithm can be
found in Algorithm 1. Note the boundary variables 𝒑𝐥 and 𝒑𝐩 need
to match at each time instant as the optimization models (12) and
(13) are multi-period optimization models with a total of 𝑇 periods.
There is a 𝑁 × 𝑇 number of 𝑦, and they are collectively referred to
as 𝒚 here, i.e., 𝒚 = (𝑦𝑛,𝑡) ∈ R

𝑁×𝑇 , where 𝑁 is the number of coupling
points (i.e., EdWFs) between PDS and WDS and 𝑇 is the number of time
periods. To make the formulations and algorithm brief, the subscripts
are eliminated in our formulations. Before we formally introduce the
algorithm, we would like to introduce some new variables. We use
𝜶𝐩 and 𝜶𝐰 to collectively represent all the binary/integer decision
variables (including those that are located at the boundary) of the OPF
and the OPS models, respectively. Even though there are no integer
(including binary) variables present in the PDS constraint set (10), we
have introduced binary variables 𝜶𝐩 here for the generalization (for the
potential future adoption) of the proposed algorithm. Moreover, we use
𝜶 to represent integer/binary variables that are located at the boundary
of the subproblem, i.e., 𝜶 is a subset of 𝜶𝐰 in this case. And, 𝜶𝐩 and 𝜶𝐰

are subsets of 𝒙𝐩 and 𝒙𝐰, respectively.
The algorithm is initialized by assigning convergence tolerance 𝜖

and penalty parameter 𝜌 in Step 1, along with maximum inner and
outer loop iterations, 𝐽 and 𝐾, respectively. Note that Step 2 to Step 8
constitutes the outer loop while Step 3 is the inner loop. Moreover,
the starting points for auxiliary variable 𝒚, binary variables 𝜶𝐩 and
𝜶𝐰, Lagrangian multipliers 𝝀𝑘

𝐩
and 𝝀𝑘

𝐰
, and Lagrangian lower bounds

𝜑̌p and 𝜑̌w are assigned. For the initial values of auxiliary variable 𝒚

and Lagrangian multipliers 𝝀𝑘
𝐩
and 𝝀𝑘

𝐰
, we can use zero. For the initial

values of binary variables 𝜶𝐩 and 𝜶𝐰, we can use any feasible solution.
For the Lagrangian lower bounds 𝜑̌p and 𝜑̌w, we can use any small
negative number.

For the current iteration 𝑘, initial values of auxiliary variable 𝒚,
binary variables 𝜶𝐩 and 𝜶𝐰, Lagrangian multipliers 𝝀𝑘

𝐩
and 𝝀𝑘

𝐰
, and

Lagrangian lower bounds 𝜑̌p and 𝜑̌w are set to that of the previous
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Algorithm 1 MIBC SD-GS-AL decentralized Algorithm

1: Parameters initialization:

1. Initial parameters: Choose the initial parameters 𝜖, 𝜌, 𝐽 , 𝐾.
2. Starting point: Choose starting points for

𝒚0,𝝀𝐩
0,𝝀𝐰

0,𝜶𝐩
0,𝜶𝐰

0, 𝜑̌0
p
, 𝜑̌0

w
. Set 𝑘 = 1.

2: Iteration initialization: Set {𝒚,𝝀𝐩,𝝀𝐰,𝜶𝐩,𝜶𝐰, 𝜑̌p, 𝜑̌w}
𝑘 ∶=

{𝒚,𝝀𝐩,𝝀𝐰,𝜶𝐩,𝜶𝐰, 𝜑̌p, 𝜑̌w}
𝑘−1.

3: Continuous primal iteration: Solve the following optimization
problems (14a) and (14b) in parallel and then (14c) with the latest

available updates of 𝒑𝐥,𝒑𝐩, 𝒚,𝝀𝐩,𝝀𝐰,𝜶𝐩,𝜶𝐰. Repeat (14) 𝐽 times.

𝐿𝑅𝑘
p
,𝒙𝐩

𝑘,𝒑𝐥(𝑘) ← min
𝒙𝐩 ,𝒑

𝐥
{𝐿𝜌,p

(
𝒙𝐩, 𝒚

𝑘,𝝀𝐩
𝑘
)
∶

𝜶𝐩 ∈ 𝜶𝐩
𝑘} (14a)

𝐿𝑅𝑘
w
,𝒙𝐰

𝑘,𝒑𝐏(𝑘) ← min
𝒙𝐰 ,𝒑

𝐩
{𝐿𝜌,w

(
𝒙𝐰, 𝒚

𝑘,𝝀𝐰
𝑘
)
∶

𝜶𝐰 ∈ 𝜶𝐰
𝑘} (14b)

𝒚𝑘 ← min
𝒚

{‖‖‖𝒚 − 𝒑𝐥(𝑘)
‖‖‖
2

2
+
‖‖‖𝒑

𝐩(𝑘) − 𝒚
‖‖‖
2

2

}
(14c)

Finally, the Lagrangian upper bounds are computed as follows:

𝜑̂𝑘
p
← 𝐿𝑅𝑘

p
+

𝜌

2

‖‖‖𝒚
𝑘 − 𝒑𝐥(𝑘)

‖‖‖
2

2
(15a)

𝜑̂𝑘
w
← 𝐿𝑅𝑘

w
+

𝜌

2

‖‖‖𝒑
𝐩(𝑘) − 𝒚𝑘

‖‖‖
2

2
(15b)

4: Stopping test: If (𝜑̂𝑘
p

+ 𝜑̂𝑘
w
) − (𝜑̌𝑘

p
+ 𝜑̌𝑘

w
) ≤ 𝜖, Stop:(

𝒙𝐩
𝑘,𝒙𝐰

𝑘, 𝒚𝑘,𝝀𝐩
𝑘,𝝀𝐰

𝑘,𝜶𝐩
𝑘,𝜶𝐰

𝑘, 𝜑̌𝑘
p
, 𝜑̌𝑘

w

)
is the solution. Otherwise,

continue.
5: MIP primal iteration: Solve the following MIP subproblems (16a)
and (16b) in parallel to obtain intermediate Lagrangian lower

bounds and to update binary variables

𝜑̃p,𝜶𝐩
𝑘
← 𝜑p

(
𝒙𝐩,𝝀𝐩

𝑘 + 𝜌
(
𝒚𝑘 − 𝒑𝐥(𝑘)

))
, (16a)

𝜑̃w,𝜶𝐰
𝑘
← 𝜑w

(
𝒙𝐰,𝝀𝐰

𝑘 + 𝜌
(
𝒑𝐩(𝑘) − 𝒚𝑘

))
. (16b)

6: Iteration declaration and dual updates: The iteration is declared
forward iteration if the following inequality holds:

(𝜑̂p + 𝜑̂w) ≥ (𝜑̃p + 𝜑̃w) ≥ (𝜑̌p + 𝜑̌w). (17)

Perform the following updates if the iteration is declared forward:

𝝀𝐩
𝑘
← 𝝀𝐩

𝑘 + 𝜌
(
𝒚𝑘 − 𝒑𝑙(𝑘)

)

𝝀𝐰
𝑘
← 𝝀𝐰

𝑘 + 𝜌
(
𝒑𝑝(𝑘) − 𝒚𝑘

)

𝜑̌𝑘
p
← 𝜑̃p, 𝜑̌

𝑘
w
← 𝜑̃w

Otherwise, the iteration is declared neutral: Algorithm continues
without updates.

7: Auxiliary variables update: If 𝛼𝑘𝑛,𝑡 − 𝛼𝑘−1𝑛,𝑡 = 1, perform following
update for all 𝑛 and 𝑡:

𝑦𝑘𝑛,𝑡 ← 𝑦𝑎𝑛,𝑡 ∶ 𝑎 = max{}, ⊂ 𝑘.

If 𝛼𝑘𝑛,𝑡−𝛼𝑘−1𝑛,𝑡 = 0, perform: 𝑦𝑘𝑛,𝑡 ← 𝑦𝑘𝑛,𝑡. If 𝛼
𝑘
𝑛,𝑡−𝛼𝑘−1𝑛,𝑡 = −1, do: 𝑦𝑘𝑛,𝑡 ← 0.

8: Loop: Set 𝑘 ∶= 𝑘 + 1 and go back to Step 2.

iteration 𝑘 − 1 in Step 2. The 𝐿𝜌,p in (14a) and 𝐿𝜌,𝑤 in (14b) have the

following detailed expressions in Step 3:

𝐿𝜌,p = 𝒄⊤𝒑𝐆 − (𝝀𝑘
𝐩
)⊤𝒑𝐥 +

𝜌

2

‖‖‖𝒚
𝑘 − 𝒑𝐥

‖‖‖
2

2
, (18a)

𝐿𝜌,w = (𝝀𝑘
𝐰
)⊤𝒑𝐩 +

𝜌

2

‖‖‖𝒑
𝐩 − 𝒚𝑘

‖‖‖
2

2
. (18b)

Note that (18a) and (18b) are the augmented Lagrangian relaxations

of (12) and (13) and are computed in parallel by P-DSO and W-DSO,

respectively. In addition, the auxiliary variable 𝒚 is computed as in

(14c). The auxiliary variable computation (14c) can be assigned to

either of the operators (in our study, we assign it to the P-DSO) as the

only information shared is the boundary variables from both networks.

Finally, the Lagrangian upper bounds 𝜑̂p and 𝜑̂w are computed as in

(15). It is worth noting that, in Step 3, binary variables are fixed

so that PDS and WDS sub-problems are continuous. Note that binary

variables are fixed from the solutions of the previous iteration of MIP

subproblems in Step 5.

Note that Algorithm 1 is said to converge if the difference of

Lagrangian bounds ((𝜑̂p+𝜑̂w)−(𝜑̌p+𝜑̌w)) is within the limit of tolerance,

as stated in Step 4. When Algorithm 1 converges, 𝒑𝐩 = 𝒑𝐥 = 𝒚, 𝝀𝐰 = 𝝀𝐩

and the second term of (18a) and (18b) becomes zero. Therefore, the

WDS essentially minimizes the cost of power purchased (𝝀⊤
𝐰
𝒑𝐩), where

𝝀𝐰 can be interpreted as the rate of electricity paid by WDS to PDS. Note

that the virtual objective function 𝑤 of the OPS model will be dropped

onwards. In this paper, the proposed MIBC SD-GS-AL algorithm is used

to coordinate the MICP subproblems. Therefore, it converges to the

global optimal solution of the centralized implementation of MICP

subproblems (9).

In Step 5, the intermediate Lagrangian lower bounds and the binary

variables are obtained. The 𝜑p and 𝜑w ((16a) and (16b), respectively)

used to obtain the intermediate Lagrangian lower bounds 𝜑̃p and 𝜑̃w in

Step 5 are also computed in parallel by P-DSO and W-DSO, respectively,

and are given as follows:

𝜑p

(
𝒙𝐩,𝝀

𝑘
𝐩

)
= min

𝒙𝐩

{
𝒄⊤𝒑𝐆 − (𝝀𝑘

𝐩
)⊤𝒑𝐥 ∶ 𝒙𝐩 ∈ p

}
, (19a)

𝜑w

(
𝒙𝐰,𝝀

𝑘
𝐰

)
= min

𝒙𝐰

{
(𝝀𝑘

𝐰
)⊤𝒑𝐩 ∶ 𝒙𝐰 ∈ w

}
. (19b)

Note that the binary variables are not fixed in Step 5, although they are

fixed in Step 3. The intermediate Lagrangian lower bounds obtained

in Step 5 go through a quality check (17) in Step 6. The current

iteration 𝑘 is declared either forward or neutral step iteration based on

the inequality (17). If the inequality is satisfied, the current iteration

is declared forward step iteration. Otherwise, the current iteration is

declared neutral step iteration. If the iteration is declared forward,

Lagrangian lower bounds and Lagrangian multipliers are updated in

a decentralized manner. Otherwise, the algorithm continues without

updates.

Step 7 is proposed to handle the boundary variables 𝒑𝐩/𝒑𝐥 which are

binary-dependent (i.e., discontinuous). To solve continuous subprob-

lems in Step 3 in 𝑘th iteration, auxiliary variables 𝒚 from the previous

iteration (𝑘 − 1)th are used. However, if the binary variables, i.e., 𝜶

(note that this refers to those binary variables that are located at the

boundary of the subproblem) change in successive iterations in Step

5, auxiliary variables need to be updated accordingly. In the original

SD-GS-AL algorithm [42], this step does not exist, which leaves values

of auxiliary variables (that are binary dependent) unchanged. Con-

sequently, the original SD-GS-AL algorithm uses unchanged auxiliary

variables and fails to converge. For the update of auxiliary variables,

the following rules are introduced in Step 7:

1. If the difference of binary variables in successive iterations is 1,

the auxiliary variable 𝑦 for the next iteration is assigned to the

most recent non-zero 𝑦 value.

2. If binary variables do not change in successive iterations, auxil-

iary variables are left unchanged.
3. If the difference of binary variables in successive iterations is −1,

auxiliary variables are assigned to 0.
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Table 1
Comparison of ADMM, Original SD-GS-AL, and MIBC SD-GS-AL algorithms based on mathematical operations.

ADMM Original SD-GS-AL MIBC SD-GS-AL

(1) P-DSO and W-DSO solve the following two
models in parallel:

(1) P-DSO and W-DSO solve the following two models (1) P-DSO and W-DSO solve the following two models

𝒙𝐩 ,𝒑
𝐥(𝑘)

← min𝒙𝐩 ,𝒑
𝐥 {𝒄⊤𝒑𝐆−(𝝀𝑘)⊤𝒑𝐥+

𝜌

2

‖‖‖𝒑𝐩 (𝑘) − 𝒑𝐥‖‖‖
2

2
} in parallel with integer variables fixed: in parallel with integer variables fixed:

𝒙w
𝑘 ,𝒑𝐩(𝑘)

← min𝒙𝐰 ,𝒑
𝐩 {(𝝀

𝑘)⊤𝒑𝐩 +
𝜌

2

‖‖‖𝒑𝐩 − 𝒑𝐥 (𝑘)‖‖‖
2

2
} 𝐿𝑅𝑘

p
,𝒙𝐩 ,𝒑

𝐥(𝑘)
← min𝒙𝐩 ,𝒑

𝐥 {𝒄⊤𝒑𝐆 − (𝝀𝑘
𝐩
)⊤𝒑𝐥 +

𝜌

2
‖‖𝒚(𝑘) − 𝒑𝐥‖‖22} 𝐿𝑅𝑘

p
,𝒙𝐩 ,𝒑

𝐥(𝑘)
← min𝒙𝐩 ,𝒑

𝐥 {𝒄⊤𝒑𝐆 − (𝝀𝑘
𝐩
)⊤𝒑𝐥 +

𝜌

2
‖‖𝒚(𝑘) − 𝒑𝐥‖‖22}

(2) The central coordinator updates Lagrangian
multipliers as follows:

𝐿𝑅𝑘w ,𝒙𝐰
𝑘 ,𝒑𝐩(𝑘)

← min𝒙𝐰 ,𝒑
𝐩 {(𝝀𝐰𝑘 )

⊤𝒑𝐩 +
𝜌

2
‖‖𝒑𝐩 − 𝒚(𝑘)‖‖22} 𝐿𝑅𝑘w ,𝒙𝐰

𝑘 ,𝒑𝐩(𝑘)
← min𝒙𝐰 ,𝒑

𝐩 {(𝝀𝐰𝑘 )⊤𝒑𝐩 +
𝜌

2
‖‖𝒑𝐩 − 𝒚(𝑘)‖‖22}

𝝀𝑘
← 𝝀𝑘 + 𝜌

(
𝒑𝑝(𝑘) − 𝒑𝑙(𝑘)

)
P-DSO also computes the auxiliary variables as follows: P-DSO also computes the auxiliary variables as follows:

𝒚𝑘
← min𝒚

{‖‖𝒚 − 𝒑𝐥(𝑘)‖‖22 + ‖‖𝒑𝐩(𝑘) − 𝒚‖‖22
}

𝒚𝑘
← min𝒚

{‖‖𝒚 − 𝒑𝐥(𝑘)‖‖22 + ‖‖𝒑𝐩(𝑘) − 𝒚‖‖22
}

Finally, P-DSO and W-DSO compute the Lagrangian upper Finally, P-DSO and W-DSO compute the Lagrangian upper
bounds as follows: bounds as follows:

𝜑̂𝑘
p
← 𝐿𝑅𝑘

p
+

𝜌

2
‖‖𝒚𝑘 − 𝒑𝐥(𝑘)‖‖22 𝜑̂𝑘

p
← 𝐿𝑅𝑘

p
+

𝜌

2
‖‖𝒚𝑘 − 𝒑𝐥(𝑘)‖‖22

𝜑̂𝑘
w
← 𝐿𝑅𝑘

w
+

𝜌

2
‖‖𝒑𝐩(𝑘) − 𝒚𝑘‖‖22 𝜑̂𝑘

w
← 𝐿𝑅𝑘

w
+

𝜌

2
‖‖𝒑𝐩(𝑘) − 𝒚𝑘‖‖22

(2) P-DSO and W-DSO solve the following two models (2) P-DSO and W-DSO solve the following two models
in parallel to obtain intermediate Lagrangian lower bounds in parallel to obtain intermediate Lagrangian lower bounds
without fixing integer variables without fixing integer variables
𝜑̃p ,𝜶𝐩

𝑘
← min𝒙𝐩 ,𝒑

𝐥 {𝒄⊤𝒑𝐆 − (𝝀𝑘
𝐩
)⊤𝒑𝐥} 𝜑̃p ,𝜶𝐩

𝑘
← min𝒙𝐩 ,𝒑

𝐥 {𝒄⊤𝒑𝐆 − (𝝀𝑘
𝐩
)⊤𝒑𝐥}

𝜑̃p ,𝜶𝐰𝑘 ← min𝒙𝐰 ,𝒑
𝐩 {(𝝀𝐰𝑘 )⊤𝒑𝐩} 𝜑̃p ,𝜶𝐰𝑘 ← min𝒙𝐰 ,𝒑

𝐩 {(𝝀𝐰𝑘 )⊤𝒑𝐩}

(3) P-DSO and W-DSO update Lagrangian multipliers and (3) P-DSO and W-DSO update Lagrangian multipliers and
Lagrangian lower bounds as follows if the current iteration Lagrangian lower bounds as follows if the current iteration
is evaluated forward step iteration using (17): is evaluated forward step iteration using (17):
𝝀𝐩

𝑘
← 𝝀𝐩

𝑘 + 𝜌
(
𝒚𝑘 − 𝒑𝑙(𝑘)

)
, 𝜑̌𝑘

p
← 𝜑̃p 𝝀𝐩

𝑘
← 𝝀𝐩

𝑘 + 𝜌
(
𝒚𝑘 − 𝒑𝑙(𝑘)

)
, 𝜑̌𝑘

p
← 𝜑̃p

𝝀𝐰
𝑘
← 𝝀𝐰

𝑘 + 𝜌
(
𝒑𝑝(𝑘) − 𝒚𝑘

)
, 𝜑̌𝑘

w
← 𝜑̃w 𝝀𝐰

𝑘
← 𝝀𝐰

𝑘 + 𝜌
(
𝒑𝑝(𝑘) − 𝒚𝑘

)
, 𝜑̌𝑘

w
← 𝜑̃w

(4) W-DSO performs the following update
(a) If 𝛼𝑘

𝑛,𝑡
− 𝛼𝑘−1

𝑛,𝑡
= 1, do following

for all 𝑛 and 𝑡:
𝑦𝑘
𝑛,𝑡

← 𝑦𝑎
𝑛,𝑡

∶ 𝑎 = max{}, ⊂ 𝑘 .

(b) If 𝛼𝑘
𝑛,𝑡

− 𝛼𝑘−1
𝑛,𝑡

= 0, do: 𝑦𝑘
𝑛,𝑡

← 𝑦𝑘
𝑛,𝑡
.

(c) If 𝛼𝑘
𝑛,𝑡

− 𝛼𝑘−1
𝑛,𝑡

= −1, do: 𝑦𝑘
𝑛,𝑡

← 0.

3.2. Privacy-preserving and cost-saving on communication

To the best of our knowledge, the proposed MIBC SD-GS-AL al-
gorithm is the only applicable algorithm when boundary variables
are discontinuous. Additionally, the MIBC SD-GS-AL algorithm re-
quires the exchange of less information than other mature distributed/
decentralized algorithms do, which will bring at least two benefits:
(1) preserves the privacies of PDS and WDS, and (2) reduces the cost
of building communication channels between the two operators. For
example, in ADMM [32], the dual parameters, i.e., the Lagrangian
multipliers, need to be updated and communicated centrally, requiring
more information exchange (i.e., less privacy preservation) and more
communication channels. A similar issue applies to ALADIN [41], as
the Hessian matrix needs to be centrally updated and communicated.
However, in the proposed MIBC SD-GS-AL algorithm, WDS and PDS
update Lagrangian multipliers in a decentralized fashion (see Step 6),
and the hessian does not need to be computed.

3.3. Comparison of ADMM, original SD-GS-AL, and MIBC SD-GS-AL al-
gorithms: A focus on mathematical formulas

In this subsection, we provide a comparison of ADMM, original
SD-GS-AL, and MIBC SD-GS-AL algorithms from the perspective of
mathematical operations and formulas utilized in these algorithms. The
Table 1 succinctly provides what each operator has to do for all three
algorithms, highlighting the difference of these algorithms in terms of
mathematical operations and formulas.

4. Case study

This section first describes the simulation setup. Second, the ad-
vantages of the proposed framework and the algorithm are illustrated
via simulation results. The proposed approach is tested for both weak
coupling (single EdWF) and strong coupling (multiple EdWFs) of PDS
and WDS. For the sake of convenience, the electric pump is used as an
example of EdWFs in this paper.

Table 2
Pump characteristics parameters (Case 1 and 2).

Pump # Pipe 𝑎0 𝑎1

Case 1 Pump 1 9–10 94.46 0.043

Case 2
Pump 1 1–2 204.46 0.043
Pump 2 26–25 65.23 0.023

4.1. Simulation setup

For Case 1, the modified IEEE 13-node test feeder [48] is adopted
to represent the PDS, while the 11-node water network [49] is used to
represent the WDS, as shown in Fig. 2. For Case 2, the modified IEEE
37-node test feeder [48] is used to represent the PDS, while the 36-node
water network from Cherry Hills/Brushy Plains, New Haven, CT [49]
is adopted to represent the WDS, as shown in Fig. 3. In Figs. 2 and 3,
the network drawn with green color represents PDS while the network
drawn with blue color represents WDS. Power and water distribution
systems are chosen such that their area of coverage is similar.

As shown in Fig. 2, a weak coupling exists between PDS and WDS in
Case 1, i.e., an electric pump (between node 9 (i.e., reservoir) and node
10 in WDS) is supplied by node 680 of the PDS. In contrast, as shown
in Fig. 3, a stronger coupling exists in Case 2, i.e., the PDS and WDS are
coupled through two pumps. An electric pump, i.e., Pump 1 (between
node 1 (i.e., reservoir) and node 2 in WDS), is supplied by node 731 of
the PDS, while another pump (Pump 2) is supplied by node 724 of the
PDS. In Case 2 (Fig. 3), Pump 2 is equipped with a bypass pipe. Pump
2 is utilized when the tank is supplying the WDS, while the bypass
pipe is utilized when the tank is being filled. The pump characteristics
parameters used for both cases are provided in Table 2. Moreover, the
capacity of energy storage systems and solar photovoltaics used in PDS
of both cases is 700 KWh/150 KVA and 200 kW, respectively.

The power and water subproblems are multi-period optimization
models. To realize the multi-period operation, load and PV profiles
were used to modify the load and PV output, which are given in
Fig. 4. Moreover, algorithm parameters used for both Case 1 and Case
2 are provided in Table 3. For the initialization of 𝜶0, a feasible
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Fig. 2. PDS and WDS topology (Case 1).

Fig. 3. PDS and WDS topology (Case 2).

Fig. 4. Load and PV profiles (Case 1 and 2) [8].
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Fig. 5. Convergence error of MIBC SD-GS-AL for different load profiles (Case 1).

Table 3
Algorithm parameters used (Case 1 and 2).

𝜖 𝜌 𝐾 𝐽 𝒚0 𝝀𝐩
0∖𝝀𝐰

0 𝜑̌0
p

𝜑̌0
w

Case 1 6e−3 4e−4 300 3 𝟎 𝟎 −9999 −9999
Case 2 6e−3 6e−4 300 5 𝟎 𝟎 −9999 −9999

(definitely not optimal) scenario where all pumps operate at all times
is considered. As such, 𝜶0 = 𝟏 is used. Nonetheless, it is worth noting
that we can use any feasible solution for the initialization.

4.2. Algorithm validation

In this subsection, the MIBC SD-GS-AL algorithm is validated and
compared with the original SD-GS-AL algorithm and ADMM for three
different load profiles, provided in Fig. 4.

4.2.1. Case 1: 13-node PDS and 11-node WDS
Case 1 presents the performance of the proposed MIBC SD-GS-AL

algorithm when weaker coupling exists between PDS and WDS. Fig. 5
shows the convergence error (i.e., the difference between the upper
and lower bounds) of the proposed MIBC SD-GS-AL algorithm for three
different load profiles. The figure shows that the proposed MIBC SD-GS-
AL algorithm converges for all three different load profiles (note that
the zero convergence error refers to convergence). For the comparison
with the original SD-GS-AL and ADMM, since the difference of bound-
ary variables is used as a convergence criterion in the ADMM [32],
the boundary error (i.e., the sum of the square of the difference of
boundary variables for all time instances) has been utilized in this paper
for consistency. Figs. 6, 7, and 8 compare the proposed MIBC SD-GS-
AL algorithm with the original SD-GS-AL algorithm and ADMM for
three different load profiles. The Figures show that the boundary error
for both the original SD-GS-AL algorithm and ADMM fails to converge
while that of the proposed MIBC SD-GS-AL algorithm converges.

4.2.2. Case 2: 37-node PDS and 36-node WDS
In Case 2, we study the performance of the proposed MIBC SD-GS-

AL algorithm when stronger coupling exists between PDS and WDS.
Fig. 9 shows the convergence error of the proposed MIBC SD-GS-AL
algorithm for three different load profiles. The figure shows that the
proposed MIBC SD-GS-AL algorithm converges for all three different
load profiles. In addition, Figs. 10, 11, and 12 compare the proposed
MIBC SD-GS-AL algorithm with the original SD-GS-AL algorithm and

Table 4
Validation of relaxation technique.

Method Load profile Objective value

Case 1

MINLP centralized
1 $ 10855.72
2 $ 8333.41
3 $ 10569.71

MICP centralized
1 $ 10855.70
2 $ 8333.42
3 $ 10569.70

MINLP decentralized
1 N/A
2 N/A
3 N/A

MICP
decentralized
(MIBC
SD-GS-AL)

1 $ 10855.74
2 $ 8333.42
3 $ 10569.72

Case 2

MINLP centralized
1 $ 7141.75
2 $ 5479.18
3 $ 6954.12

MICP centralized
1 $ 7141.75
2 $ 5479.22
3 $ 6954.23

MINLP decentralized
1 N/A
2 N/A
3 N/A

MICP
decentralized
(MIBC
SD-GS-AL)

1 $ 7141.75
2 $ 5479.18
3 $ 6954.11

ADMM for three different load profiles. The Figures show that the
boundary error for the original SD-GS-AL algorithm fails to converge
while that of the proposed MIBC SD-GS-AL algorithm and ADMM
converge. However, the ADMM converged to a sub-optimal solution,
63% more than the global optimal solution while the proposed MIBC
SD-GS-AL algorithm converged to the global optimal solution for all
three load profiles.

4.2.3. Validation of relaxation technique

Both the original and MIBC SD-GS-AL algorithms need subproblems
to be in the MICP form. Since neither the PDS nor WDS subproblems
are originally mixed-integer convex, this paper leverages convex hulls
relaxation for the PDS subproblem and convex and quasi-convex hulls
relaxation for the WDS subproblem from [8]. Although there is no theo-
retical guarantee of the accuracy of the relaxed optimization problem,
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Fig. 6. Comparison of MIBC SD-GS-AL, original SD-GS-AL, and ADMM for load profile 1 (Case 1).

Fig. 7. Comparison of MIBC SD-GS-AL, original SD-GS-AL, and ADMM for load profile 2 (Case 1).

the convex (and quasi-convex) hull relaxations have been proven to
be very tight and can provide feasible and optimal solutions to many
cases, as shown in [8]. For the study of the accuracy of the relaxation
techniques, we have compared the centralized mixed-integer non-linear
program (MINLP) model, the centralized MICP model, the decentral-
ized MICP model using MIBC SD-GS-AL, and the decentralized MINLP
model in terms of objective value. The centralized MICP model refers
to the model (9), while the centralized MINLP model refers to the same
model (9) with the original non-linear and non-convex constraints (1b),
(1i), (2d), and (2l). Note that constraint (2c) is also non-linear and non-
convex. However, to model the sign function in (2c), a huge number of
binary variables (=2*number of pipes*time periods) are needed. The
centralized MINLP model with non-linear non-convex constraint (2c)
did not terminate after more than 4 h. Hence, the centralized MINLP
model includes non-linear and non-convex constraints (1b), (1i), (2d),
and (2l) and convex relaxation (5) of (2c) in the Table 4. Note that the
adopted convex relaxation (5) of (2c) does not require binary variables
to convexify it. From the Table 4, it is seen that the objective value for
all three models matches for all three load profiles in both test cases.
Note that the MIBC SD-GS-AL algorithm is only applicable to MICP

models (not MINLP models); therefore, results of MIBC SD-GS-AL are
provided for MICP models only in the Table.

4.3. Engineering validation of the simulation results

In this subsection, the engineering validation of the simulation
results is made. For brevity, results for only Load Profile 1 of both test
cases are presented.

4.3.1. Case 1: 13-node PDS and 11-node WDS
Fig. 13 shows how the operation of a water pump in a WDS varies

with the electricity price in a PDS. It is seen that the water pump
operates when the electricity price is low. Figs. 13 and 14 illustrate
that even when it has to operate during high electricity price periods,
it consumes low power. As a result, the reservoir supplies none or a
low amount of water to the network, and the tank supplies more (the
positive tank flow indicates the tank supplying the network), as seen
from Fig. 15. Moreover, during the low electricity price periods, the
reservoir supplies more water, and the tank gets filled (the negative
tank flow indicates the tank being filled), as depicted in Fig. 15. Unless



Applied Energy 359 (2024) 122588

11

S. Sharma and Q. Li

Fig. 8. Comparison of MIBC SD-GS-AL, original SD-GS-AL, and ADMM for load profile 3 (Case 1).

Fig. 9. Convergence error of MIBC SD-GS-AL for different load profiles (Case 2).

otherwise stated, cms refers to the water flow measured in cubic meters

per second.

4.3.2. Case 2: 37-node PDS and 36-node WDS

Here, we make the engineering validation of the obtained results for

Case 2. From Table 2, it can be observed that Pump 1 is a high-power-

consuming pump. Therefore, Pump 1 operates when the electricity

price is low while the less-power-consuming Pump 2 operates when

the electricity price is high, as seen from Figs. 16 and 17. From Fig. 3,

it is seen that Pump 1 supplies water to the network from the reservoir

while Pump 2 supplies water to the network from the tank. Hence,

at least one of the pumps has to operate always in order to supply

water to the customers. Therefore, as seen from Figs. 17 and 18, the

reservoir supplies water to the network, and the water tank gets filled

when Pump 1 operates (during low electricity price periods) while the

water tank gets emptied (the positive tank flow indicates the tank being

emptied) when Pump 2 operates (during high electricity price periods).

5. Conclusion

This paper presents a MIBC SD-GS-AL algorithm for the coordination
of PDS and WDS. Unlike the existing distributed/decentralized algo-
rithms like ADMM [32] and the original SD-GS-AL algorithm [42], this
paper deals with a unique situation: the sub-problems, in our case, have
integer-dependent boundary variables. Therefore, a new decentralized
algorithm was needed. The proposed MIBC SD-GS-AL algorithm has
been shown to work in such a setting. Moreover, unlike existing algo-
rithms, the proposed algorithm requires limited information exchange
only, resulting in cost savings on communication channels and privacy
preservation. Last but not least, the convergence and optimality of the
proposed algorithm are guaranteed. The proposed algorithm was tested
on two coupled PDS and WDS test cases. The test results show that
the proposed MIBC algorithm converges to the optimal solutions while
the original SD-GS-AL does not converge for both test cases. Moreover,
the ADMM does not converge for the first test case while it converges
to a sub-optimal solution, 63% more than the optimal solution for the
second test case.
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Fig. 10. Comparison of MIBC SD-GS-AL, original SD-GS-AL, and ADMM for load profile 1 (Case 2).

Fig. 11. Comparison of MIBC SD-GS-AL, original SD-GS-AL, and ADMM for load profile 2 (Case 2).

Fig. 12. Comparison of MIBC SD-GS-AL, original SD-GS-AL, and ADMM for load profile 3 (Case 2).
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Fig. 13. Electricity price vs. pump operation (Case 1).

Fig. 14. Consumption of electric power by the water pump (Case 1).

Fig. 15. Tank and reservoir operation (Case 1).
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Appendix. Optimality and convergence

In Ref. [42], the original SD-GS-AL algorithm has been proved for
MIP subproblems that share continuous boundary variables. In this
subsection, we show that optimality and convergence still hold for MIP
subproblems with discontinuous boundary variables. It is worth noting
that the following key features ensure that the proposed algorithm
converges to the global optimal solution of (9):

1. The Lagrangian upper bound, computed using continuous sub-
problems as stated in Step 3, is a global upper bound.
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Fig. 16. Electricity price vs. pumps operation (Case 2).

Fig. 17. Power consumption by water pumps (Case 2).
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Fig. 18. Tank and reservoir operation (Case 2).

2. For the computation of the Lagrangian lower bound, mixed-
integer convex sets p and w are utilized. However, as men-
tioned in [50], minimizing linear objective function over mixed-
integer convex sets p and w is equivalent to minimizing linear
objective function over convex hulls sets, CH(p) and CH(w).
Therefore, the Lagrangian lower bound obtained is a global
lower bound.

3. The Lagrangian multipliers are computed based on the values of
variables obtained from continuous subproblems; see Step 6.

Now, we show that the sequence
{
(𝒙𝑘, 𝒚𝑘)

}
generated by Algorithm

1 converges to the global optimal solution of the centralized implemen-
tation of MICP OPF and OPS subproblems (9) as 𝑘 → ∞. This is divided
into two parts. Part 1 proves the convergence, while Part 2 verifies
the optimality. For brevity and convenience, we adopt the following
definitions:

𝐿𝜌 ∶= 𝐿𝜌,p + 𝐿𝜌,w,

𝜑𝑐 (𝒙,𝝀) ∶= 𝜑𝑐
p

(
𝒙𝐩,𝝀𝐩

)
+ 𝜑𝑐

w

(
𝒙𝐰,𝝀𝐰

)
,

𝜑 (𝒙,𝝀) ∶= 𝜑p

(
𝒙𝐩,𝝀𝐩

)
+ 𝜑w

(
𝒙𝐰,𝝀𝐰

)
,

𝜑̂ (𝒙, 𝒚,𝝀) ∶= 𝜑̂p

(
𝒙𝐩, 𝒚,𝝀𝐩

)
+ 𝜑̂w

(
𝒙𝐰, 𝒚,𝝀𝐰

)
,

𝑓 (𝒙, 𝒚) ∶= (9a).

 ∶= p ∪ w,

𝒙𝑘 ∶= (𝒙𝑘
𝐩
,𝒙𝑘

𝐰
) (vector concatenation) ,

𝜶𝑘
𝐚
∶= (𝜶𝑘

𝐩
,𝜶𝑘

𝐰
),

(𝒙 − 𝒚) ∶=
((
𝒚 − 𝒑𝐥

)
,
(
𝒑𝐩 − 𝒚

))
.

For limit point (𝒙̄, 𝒚̄) of the sequence
{
(𝒙𝑘, 𝒚𝑘)

}
generated by Algorithm

1, the convergence condition at 𝒙 ∈  is defined as [42]:

𝐿′
𝒙
(𝒙, 𝒚; 𝑠) ≥ 0 for all 𝑠 ∈ 𝑋 − {𝒙} , (A.1)

where 𝐿′
𝒙
(𝒙, 𝒚; 𝑠) = 𝑙𝑖𝑚𝛽→0

𝐿(𝒙+𝛽𝑠,𝒚)−𝐿(𝒙,𝒚)

𝛽
. Furthermore, the Direction

Related Assumption is given as follows: for any iteration 𝑘, 𝑠𝑘 is chosen
such that 𝒙𝑘 + 𝑠𝑘 ∈  and 𝐿′

𝒙
(𝒙, 𝒚; 𝑠) ≥ 0. Note that 𝑠𝑘 is a gradient of

𝒙𝑘.
Part 1: The sequence

{
(𝒙𝑘, 𝒚𝑘)

}
generated by Algorithm 1 always

converges to the limit point (𝒙̄, 𝒚̄).
Here, we prove that the limit point (𝒙̄, 𝒚̄) of the sequence

{
(𝒙𝑘, 𝒚𝑘)

}
of feasible solutions to the problems (12) and (13) satisfies the con-
vergence condition (A.1). According to the Armijo rule [51], we have

𝐿
(
𝒙𝑘 + 𝛽𝑘𝑠𝑘, 𝒚𝑘

)
− 𝐿

(
𝒙𝑘, 𝒚𝑘

)

𝛽𝑘
≤ 𝜎𝐿′

𝒙

(
𝒙𝑘, 𝒚𝑘; 𝑠𝑘

)
(A.2)

for any 𝜎 ∈ (0, 1). As 𝐿′
𝒙
(𝒙𝑘, 𝒚𝑘; 𝑠𝑘) < 0 according to the Direction

Related Assumption (defined above) and 𝛽𝑘 ≥ 0, above expression can
be rewritten as 𝐿(𝒙𝑘+𝛽𝑘𝑠𝑘, 𝒚𝑘) < 𝐿(𝒙𝑘, 𝒚𝑘). We also have 𝐿(𝒙𝑘+1, 𝒚𝑘+1) ≤
𝐿(𝒙𝑘 + 𝛽𝑘𝑠𝑘, 𝒚𝑘) < 𝐿(𝒙𝑘, 𝒚𝑘) and 𝐿(𝒙𝑘+1, 𝒚𝑘+1) < 𝐿(𝒙𝑘, 𝒚𝑘). Also, 𝐿 is

bounded from below, we have lim𝑘→∞ 𝐿(𝒙𝑘, 𝒚𝑘) = 𝐿̄ > −∞. Hence, we
have

lim
𝑘→∞

𝐿
(
𝒙𝑘+1, 𝒚𝑘+1

)
− 𝐿

(
𝒙𝑘, 𝒚𝑘

)
= 0.

Furthermore,

lim
𝑘→∞

𝐿
(
𝒙𝑘 + 𝛽𝑘𝑠𝑘, 𝒚𝑘

)
− 𝐿

(
𝒙𝑘, 𝒚𝑘

)
= 0. (A.3)

For the sake of contradiction, we assume that lim𝑘→∞(𝒙𝑘, 𝒚𝑘) = (𝒙̄, 𝒚̄)

does not satisfy the convergence condition. From the definition of
gradient related assumption [52], we have

lim sup
𝑘→∞

𝐿′
𝒙

(
𝒙𝑘, 𝒚𝑘; 𝑠𝑘

)
< 0. (A.4)

Hence, in conclusion, lim𝑘→∞ 𝛽𝑘 = 0. From the Armijo rule, after a
certain iteration 𝑘 ≥ 𝑘̄, we can define

{
𝛽𝑘

}
, 𝛽𝑘 = 𝛽𝑘∕𝛾 for some 𝛾,

where 𝛽𝑘 ≤ 1 and we have

𝜎𝐿′
𝒙

(
𝒙𝑘, 𝒚𝑘; 𝑠𝑘

)
<

𝐿
(
𝒙𝑘 + 𝛽𝑘𝑠𝑘, 𝒚𝑘

)
− 𝐿

(
𝒙𝑘, 𝒚𝑘

)

𝛽𝑘
. (A.5)

If we apply the mean value theorem to the right side of the above
expression, for some 𝛽𝑘 ∈ [0, 𝛽𝑘], we have

𝜎𝐿′
𝒙

(
𝒙𝑘, 𝒚𝑘; 𝑠𝑘

)
< 𝐿′

𝒙

(
𝒙𝑘 + 𝛽𝑘𝑠𝑘, 𝒚𝑘; 𝑠𝑘

)
. (A.6)

Moreover, lim sup𝑘→∞ 𝐿′
𝒙
(𝒙𝑘, 𝒚𝑘; 𝑠𝑘) < 0, and if we take a limit point 𝑠̄ of{

𝑠𝑘
}
such that 𝐿′

𝒙
(𝒙̄, 𝒚̄, 𝑠̄) < 0. Also, we have, lim𝑘→∞,𝑘∈ 𝐿′

𝒙
(𝒙𝑘, 𝒚𝑘; 𝑠𝑘) =

𝐿′
𝒙
(𝒙̄, 𝒚̄; 𝑠̄) and lim𝑘→∞,𝑘∈ 𝐿′

𝒙
(𝒙𝑘 + 𝛽𝑘𝑠𝑘, 𝒚𝑘; 𝑠𝑘) = 𝐿′

𝒙
(𝒙̄, 𝒚̄; 𝑠̄). From these

two factors, we can infer that 𝐿′
𝒙
(𝒙, 𝒚; 𝑠) is continuous. Now, from

expression (A.6), we have

𝜎𝐿′
𝒙
(𝒙̄, 𝒚̄; 𝑠̄) ≤ 𝐿′

𝒙
(𝒙̄, 𝒚̄; 𝑠̄) ⟹ 0 ≤ (1 − 𝜎)𝐿′

𝒙
(𝒙̄, 𝒚̄; 𝑠̄).

Since (1−𝜎) > 0, 𝐿′
𝒙
(𝒙̄, 𝒚̄; 𝑠̄) < 0 which is a contradiction. Therefore, the

limit point (𝒙̄, 𝒚̄) of the sequence
{
(𝒙𝑘, 𝒚𝑘)

}
i.e., lim𝑘→∞(𝒙𝑘, 𝒚𝑘) = (𝒙̄, 𝒚̄)

satisfies the convergence condition, which means algorithm 1 always
converges.

Part 2: The limit point (𝒙̄, 𝒚̄) of the sequence
{
(𝒙𝑘, 𝒚𝑘)

}
generated by

Algorithm 1 is a global optimal solution.
From Part 1, we have that the algorithm converges to the limit

point (𝒙̄, 𝒚̄). In other words, the algorithm produces a solution, (𝒙̄, 𝒚̄).
Here, we establish the global optimality of the solution (𝒙̄, 𝒚̄). The
optimality conditions (KKT conditions) associated with the (𝒙̄, 𝒚̄) ∈

argmin𝒙,𝒚
{
𝐿𝜌(𝒙, 𝒚,𝝀) ∶ 𝜶𝐚 ∈ 𝜶𝑘

𝐚

}
is given as follows:

𝛷𝒙 ∶=
[

∇𝑓 (𝒙̄) + [𝝀 + 𝜌(𝒙̄ − 𝒚̄)]⊤𝟏
]⊤ [

𝒙 − 𝒙̄
]

≥ 0 for all 𝒙 ∈ CH().

The above optimality condition can also be written as:

min
𝒙

{
𝛷𝒙

}
= 0.

The above expression can be re-written in terms of 𝜑(𝒙̄,𝝀+ 𝜌(𝒙̄− 𝒚̄)) as
follows:

𝜑̌(𝒙̄,𝝀 + 𝜌(𝒙̄ − 𝒚̄)) = 𝑓 (𝒙̄) + 𝝀⊤𝒙̄ + 𝜌 ‖𝒙̄ − 𝒚̄‖2
2
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= 𝐿𝜌(𝒙̄, 𝒚̄,𝝀) +
𝜌

2
‖𝒙̄ − 𝒚̄‖2

2
.

Note that

𝜑(𝒙𝑘,𝝀) ∶=min
𝒙

{
𝑓 (𝒙𝑘) + ∇𝒙𝑓 (𝒙

𝑘)⊤(𝒙 − 𝒙𝑘)

+𝝀⊤𝒙 ∶ 𝒙 ∈ 
}
.

𝜑̂ (𝒙̄, 𝒚̄,𝝀) ∶=𝐿𝜌(𝒙̄, 𝒚̄,𝝀) +
𝜌

2
‖𝒙̄ − 𝒚̄‖2

2
.

Hence,

𝜑(𝝀 + 𝜌(𝒙̄ − 𝒚̄), 𝒙̄) = 𝜑̂ (𝒙̄, 𝒚̄,𝝀) . (A.7)

The expression (A.7) implies that the upper and lower bounds of the
Lagrangian function converge as 𝑘 → ∞. In other words, Algorithm 1
converges to the global optimal solution [53].
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