
IEEE JOURNAL OF SOLID-STATE CIRCUITS 1

Mobile-PBR: A 28-nm Energy-Efficient Rendering
Processor for Photorealistic Augmented Reality

With Inverse Rendering and Background Clustering
Shiyu Guo , Graduate Student Member, IEEE, Yuhao Ju , Member, IEEE, Xi Chen , Student Member, IEEE,

Sachin S. Sapatnekar , Fellow, IEEE, and Jie Gu , Senior Member, IEEE

Abstract— This work presents a low-power physical-based ray-
tracing (PBRT) rendering processor for photorealistic augmented
reality (AR) rendering applications on mobile devices, referred to
as mobile physical-based renderer (Mobile-PBR). By introducing
inverse rendering (IR) and background clustering, Mobile-
PBR enables complicated photorealistic lighting effects such as
reflection, refraction, and shadow with minimum resources on
mobile edge devices. The key features of this work include:
1) an ASIC rendering processor that embeds an end-to-end
ray-tracing (RT) solution with IR for AR on mobile devices;
2) a reconfigurable mixed-precision processing element (PE)
design supporting diverse computing tasks for both IR and RT
modes; 3) background clustered field of view (FOV)-focused 3-D
construction reducing conventional background scene complexity
from O(nlogn) to O(1); 4) scalable partitioning scheme for com-
plex 3-D objects with an average of 13× speed up on test scenes;
and 5) use of global RT scheduler (GRTS) and global memory
access controller (GMAC) to overcome the challenges of irregular
memory access pattern and varied PE runtime with overall
684× speed up compared with the baseline design. A 28-nm test
chip was fabricated demonstrating 500- and 1418-frames/s/W
power efficiency in IR and RT modes, respectively, achieving
28.8× and 3.95× higher RT rendering efficiency compared with
existing ASIC solutions, and having an average performance
of 25.8 frames/s on various testing scenes, enabling real-time
physical-based RT rendering on mobile edge devices.

Index Terms— 3-D construction, deep neural network (DNN),
inverse rendering (IR), low-power processor, physical-based
ray-tracing (RT) rendering, system on chip (SoC).

I. INTRODUCTION

AS THE applications of augmented reality (AR) or virtual
reality (VR) expand rapidly with growing demands for

enhanced visual realism, photorealistic image generation and

Received 22 May 2024; revised 20 July 2024, 14 September 2024,
and 10 October 2024; accepted 14 October 2024. This article was approved
by Associate Editor Chia-Hsiang Yang. This work was supported in part by
Air Force Research Laboratory (AFRL) through Defense Advanced Research
Projects Agency (DARPA) Real Time Machine Learning (RTML) Program
under Award FA8650-20-2-7009 and in part by NSF under Grant CCF-
2008906. (Corresponding author: Jie Gu.)

Shiyu Guo, Yuhao Ju, Xi Chen, and Jie Gu are with the Depart-
ment of Electrical and Computer Engineering, Northwestern Univer-
sity, Evanston, IL 60208 USA (e-mail: shiyuguo2021@u.northwestern.edu;
yuhaoju2017@u.northwestern.edu; xichen2020@u.northwestern.edu; jgu@
northwestern.edu).

Sachin S. Sapatnekar is with the Electrical and Computer Engineering
Department, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
sachin@umn.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSSC.2024.3484212.

Digital Object Identifier 10.1109/JSSC.2024.3484212

Fig. 1. Overview of RT rendering operation.

insertion have become essential features for the emerging
AR applications providing real-time workplace and household
visual assistance. Physically based ray-tracing (PBRT) [1] is
often used where synthesized images are generated by simu-
lating the real environment and tracing the light transportation
to achieve photorealistic effects, such as reflection, refraction,
and soft shadows.

PBRT is widely used in product design, medical visualiza-
tion, video games, and movie effects. To enable photorealistic
rendering effects, there is a strong demand to support
physical-based ray tracing (RT) on mobile devices [2].

RT is a rendering technique in computer graphics used to
realistically simulate the way light interacts with objects to
produce realistic images. The overview of the RT rendering
algorithm is shown in Fig. 1. First, multiple camera rays r (t)
are generated from the origin and extended into 3-D space,
which can be represented as a mathematical model r (t) = o +

td. r (t) represents the position of the ray and d represents the
direction of the ray. Next, the intersection between rays and
the 3-D primitives is checked. For all the intersections, the
light transportation effects, such as reflection and refraction
are computed during the ray-space interaction. Finally, all the
shading effects for objects are combined and computed to
determine the resulting pixel value.

However, the challenges of RT rendering on mobile devices
are tremendous. To render a photorealistic object in 3-D
space, all the information, including environmental lighting,
geometry for background meshes, and material maps for all the
surfaces is needed. Besides the large amount and various types
of data maps, the iterative RT flow also causes uncertainty in
computing time and thus requires powerful GPU platforms for
real-time RT rendering [2].

0018-9200 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0001-5040-1238
https://orcid.org/0000-0003-2509-400X
https://orcid.org/0009-0007-5111-6571
https://orcid.org/0000-0002-5353-2364
https://orcid.org/0000-0003-2912-7294

2 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 2. Challenges for RT rendering on mobile edge devices.

TABLE I
STATE-OF-THE-ART RENDERING HARDWARE FOR AR/VR APPLICATIONS

As Fig. 2 shows, the challenges in mobile RT render-
ing are summarized as follows: 1) complex common 3-D
objects [3] with high memory requirements exhaust the lim-
ited on-chip memory space on edge devices; 2) unstructured
memory access patterns between different processing elements
(PEs) and complex control flow lead to scheduling difficulty
during computation; 3) RT computing has extremely low
error tolerance, which requests high precision for computing;
4) hardware resources limitation on edge devices; and 5) com-
plex computations, such as division and square root require
high computing resources and complex computing flow for
the edge devices.

The current state-of-the-art rendering hardware implementa-
tions are shown in Table I. There are four main categories: 1)
ASIC implementations [4], [5], [6]; 2) GPU servers [7]; 3) VR
and AR headsets [8], [9], [10]; and 4) mobile GPUs [11].
Most of the platforms are using rasterization rendering as
their rendering algorithm due to its lower cost and easier
implementation.

Fig. 3. Photorealistic rendering effect limitations for rasterization.

Unfortunately, rasterization rendering breaks down the 3-D
scene into separate graphic buffers and renders them onto a
2-D screen. It fails to produce photorealistic results due to its
fundamental approach to rendering objects without recording
the physical behavior of light rays and requires additional
techniques for light approximations, as shown in Fig. 3.

Only a few ASICs have been fabricated so far as a mobile
RT solution for real-time AR/VR rendering [2], [4], [5],
[6]. In [4], the proposed processor bypasses the conventional
RT rendering operations [12] by introducing a deep neural
network (DNN) rendering technique called neural radiance
field (NeRF, [13]). In this work, conventional RT computations
are replaced by brain-inspired visual attention-based DNN
operations. However, instant 3-D modeling is not supported
in this work due to the complex memory requirements for
the hash table (>23 MB) [5]. In [5], a NeuGPU is proposed,
featuring a special segmented hashing with a spatial pruning
module for both instant 3-D modeling and NeRF rendering.
However, the original NeRF algorithm is limited to opaque sur-
faces and needs a special handle and more effort for complex
lighting effects such as reflection, refraction, and shadow [14].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: MOBILE-PBR: A 28-nm ENERGY-EFFICIENT RENDERING PROCESSOR 3

Fig. 4. Computing flow for Mobile-PBR.

In [6], the work proposed and implemented a processor for
memory contention reduction during 3-D background scene
construction but a large amount of computing and memory
for background scene primitives are still needed.

To address the challenges for mobile RT rendering, in this
article, we introduce a new processor, a mobile physical-
based renderer (Mobile-PBR), which adopts inverse rendering
(IR) [15] to extract background physical information and
RT rendering for 3-D object insertion [16]. The rendering
flow is shown in Fig. 4. In this flow, IR is used to acquire
background geometry, reflectance, and lighting information
from RGB images captured by regular cameras. The decoded
3-D geometry and background physical information are used
for photorealistic RT rendering tasks. Mobile-PBR proposes
an efficient data structure, and scalable computing scheme
and therefore bypasses conventional background construction,
enabling real-time photorealistic rendering on mobile devices
with minimal cost.

The key features of this work include: 1) an ASIC rendering
processor that embeds IR with RT solution for AR applications
on mobile devices; 2) a reconfigurable mixed-precision PE
design supporting diverse computing tasks for both IR and RT
tasks; 3) background clustered field of view (FOV)-focused
3-D construction reducing conventional background scene
complexity from O(nlogn) to O(1); 4) a scalable partitioning
scheme for complex 3-D objects, with an average of 13×

speed up on test scenes; and 5) use of global RT scheduler
(GRTS) and global memory access controller (GMAC) to over-
come the challenges of irregular memory access patterns and
compute resources with overall 684× speedup compared to
the baseline design. The 28-nm test chip achieves 3.95∼28.8×

higher RT rendering efficiency compared to the existing ASIC
solutions, enabling real-time PBRT rendering on mobile edge
devices.

The rest of this article is organized as follows. In Section II,
the rendering algorithm, scalability support of Mobile-PBR,
and the benefits are introduced, and the following Section III
describes the overall chip architecture and dataflow. Section IV
explains the details of reconfiguration mode for RT and IR
modes in PE. Section V shows the chip implementation results,
measurement results, and rendering cases of Mobile-PBR.

II. RENDERING ALGORITHM AND
SCALABILITY FOR MOBILE-PBR

A. Overall Rendering Flow for Mobile-PBR

There are three major computing steps for rendering tasks
in Mobile-PBR: 1) IR; 2) 3-D background construction; and

3) RT rendering. The major complexity comes from the
ray-object and ray-background intersection process, which
has a computational complexity of O(nlogn) [2], where n
represents the number of triangle primitives constructing 3-D
objects and scenes. In this work, the proposed rendering
flow greatly reduces the computational cost compared with
conventional RT rendering tasks.

The first step is shown in Fig. 5(a). The IR flow proposed
by [15] is implemented in Mobile-PBR. A 2-D RGB image
captured by a regular camera is sent through a pre-trained
DNN-based physical decoder and encoder for IR inference
to estimate the background physical attributes (PAs). The
background PAs are used to reconstruct geometry, reflection,
and lighting for the 3-D background space. There are four
major background PA maps acquired from IR: albedo, normal,
lighting, and depth maps. For the lighting map, threshold
per-pixel lighting is applied to skip the lighting mapping
step for pixels that are dark or lack a light source, using a
programmable threshold value t , as shown in Fig. 5(a). The
2-D lighting map and depth map are used to construct a 3-D
lighting map, as shown in Fig. 5(b). To save the complete PA
maps on-chip, a background clustering scheme is developed
based on the similarity of neighbor pixel values of the 2-D
background map by applying an average filter. The result PA
maps are stored in an on-chip PAMEM. PAMEM is a shared
global memory across the computing array. Each PE accessing
the PAMEM passes through the per-pixel compression decoder
(PPCD) and the unified address converter (UAC) to fetch the
corresponding background PA parameters based on the PE task
ID from GRTS. The detailed mechanism and implementation
for GRTS are discussed in Section III, and the details for
PPCD and UAC are discussed in Section IV.

The second step is the FOV-focused 3-D construction and
geometry conversion using the IR PA maps, as shown in
Fig. 5(c). The view rays start from the user camera origin
and are cast to each pixel in the image viewing plane covered
by the camera FOV. The background PAs are provided by the
IR step in the first step. Fig. 6 shows the 2-D to 3-D ray
geometry conversion in Mobile-PBR between (PixelCamerax

and PixelCameray) and (PixelScreenx and PixelScreeny). Each
ray intersects with the background 3-D scene and takes the
PA maps acquired in the first step for the following rendering
operation. By introducing IR into 3-D RT flow, a large portion
of background triangle primitive intersection computing is
reduced to four constant-size 2-D FOV-focused PA maps.
In this way, the background scene intersection complexity
remains unaffected by the total number of primitives, reducing
from O(nlogn) to O(1) compared to the conventional RT
solutions [2].

In the last step, regular RT rendering is implemented with
a customized hardware acceleration architecture to render
3-D virtual objects. The overall rendering flowcharts for the
conventional RT workload and the RT workload proposed
in this work are shown in Fig. 7(a) and (b), respectively.
Compared with conventional RT workload, most of the iter-
ative background triangle bounding volume hierarchy (BVH)
[17], [18] construction operations such as copy, generate node,
sort, and KD-tree traverse [19] are replaced by PA maps

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

4 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 5. IR and 3-D construction in Mobile-PBR. (a) IR flow. (b) Global PAMEM. (c) 3-D construction flow with IR results.

Fig. 6. Geometry conversion for 3-D construction in Mobile-PBR.

from IR. As a result, around 76% RT workload can be
reduced compared with the conventional RT solution shown
in Fig. 7(c). The bottleneck of storing the complete complex
background triangular mesh geometry on-chip is addressed by
storing four 2-D PA maps on-chip.

These three major steps can reduce both computational
load and memory requirements for photorealistic RT rendering
but it requires optimized ASIC for optimal performance.
In Mobile-PBR, a computing core supporting all operations
is implemented and will be discussed in Section III.

B. Scalable 3-D Object Partitioning Scheme for Mobile-PBR

As introduced earlier, there are two major bottlenecks
for rendering objects in complex 3-D scenes on mobile
devices: 1) limited on-chip memory for complex back-
grounds and objects and 2) computing time for triangle
intersection. To address these bottlenecks, we adopt IR into
the rendering flow in this work to reduce the background
mesh intersection complexity. However, the memory and

computational complexity of the 3-D objects still remain the
same. As shown in Fig. 2, common complex objects or 3-D
background scene sizes can easily exceed the on-chip SRAM
size for edge devices.

To address the memory overhead caused by complex 3-D
objects, Mobile-PBR adopts a customized efficient data struc-
ture tailored to AR rendering applications on mobile edge
devices: global tracing bounding box (BBOX). Different from
the conventional acceleration solutions that build the BVH
acceleration with the axis-aligned BBOX [18], we introduced
two types of global tracing BBOX in this work: empty
BBOX (EBBOX) and target BBOX (TBBOX), as shown
in Fig. 8(a).

For each complex virtual 3-D object that could not directly
fit into the on-chip memory, it is necessary to segment the
object and process it segment by segment. Since RT is a
global-scope iterative process, rendering the object segment
by segment will lose the record of global light transportation
effects and result in lost shadow information, as shown in
Fig. 8(a). To address this issue, the object is defined as three
components in this work: EBBOX, TBBOX, and a subgroup
of user-defined triangle primitives inside TBBOX.

The detailed BBOX flow is shown in Fig. 8(b). If the
cast ray intersects with BBOX, the BBOX intersection flag
(BBIF) will be set to 1 and proceed to the 3-D partition
check. Otherwise, BBIF will be set to 0 and the rest of
the computation is skipped for the next iteration of RT light
transport. In the 3-D partition check, the type of the intersected
BBOX is checked. If the ray intersects with TBBOX, the
BBOX intersection evaluator (BBIE) inside each PE will call
the triangle mesh intersection evaluator (TIE) to compute
the ray-triangle intersection, RT light transport with shading
computation. If the ray intersects with EBBOX, the stage
will proceed to RT light transport and skip shading com-
putation. In this way, EBBOX is only used to record light
transportation estimation and shadow computation without

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: MOBILE-PBR: A 28-nm ENERGY-EFFICIENT RENDERING PROCESSOR 5

Fig. 7. Computing flow and comparison results between Mobile-PBR and conventional ray-tracing rendering. (a) Rendering flowchart for conventional RT
workload. (b) Rendering flowchart for the RT workload in this work. (c) Workload reduction compared with conventional RT solutions.

Fig. 8. 3-D object partitioning scheme in Mobile-PBR. (a) Global tracing bounding box with EBBOX and TBBOX. (b) Scalable 3-D model partitioning
flow in Mobile-PBR. (c) Examples of common 3-D objects with the original triangle primitives number and different BBOX layers.

shading effect. During the ray-object intersection evaluation
stage, the triangle primitives in both TBBOX and EBBOX
can directly be skipped if the ray has no intersection with
the BBOX. The segmentation for the objects is determined by
both objects and on-chip buffer size. Examples of Stanford
bunny, cheburashka, and fandisk are shown in Fig. 8(c).
The rendering time for each 3-D object varies based on its
complexity, as different shapes result in varying configurations
of BBOX and differing numbers of BBOX layers. As the
BBOX layer goes deeper, more BBOX coordinates need to
be stored on-chip, but fewer triangle primitive coordinates
are needed to store in the OBJMEM. Different layers of
BBOX and corresponding triangle primitives are determined
offline with the consideration of on-chip buffer size. With this
scheme, the intersection evaluation time is greatly reduced,
and complex 3-D objects can be segmented for the RT process
without losing the RT effect. As a result, shown in Fig. 9(a)
and (b), an average of 13× speed up for 3-D model intersection

evaluation is achieved compared with the baseline design
with only 5.6% memory overhead for storing extra BBOX
information on-chip.

III. OVERALL CHIP ARCHITECTURE AND
DATAFLOW OF MOBILE-PBR

A. Overall Chip Architecture of Mobile-PBR

Fig. 10 shows the overall chip architecture of Mobile-PBR.
A reconfigurable 8 × 6 PE array serves as the computing core
in both IR and RT modes. IR inference is accelerated by the
computing array in IR mode. RT rendering task is accelerated
by the same computing array with a different configuration.
In IR inference mode, the PAMEM banks are reconfigured as
input MEM banks, and each PE row shares the same WMEM
with weight stationary dataflow. The results of IR inference are
saved to OMEM banks. A global digital controller oscillator
(DCO) provides a tunable global clock to the chip. The top

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

6 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 9. Comparison results between the proposed 3-D object partitioning
scheme and the baseline scheme without the BBOX evaluation scheme.
(a) Scalability results for complex 3-D models and on-chip memory overhead
for saving BBOX information. (b) Speed up with model partitioning on
different test objects.

Fig. 10. Overall chip architecture of Mobile-PBR.

Fig. 11. Dataflow modes in PBR: IR inference mode and RT rendering
mode.

mode controller consists of DNN control and RT control. They
are used to control the computing mode switching and data
flow switching. The GMAC is used for scheduling global
memory access among the PE array in RT mode. The GRTS
is used for scheduling dynamic computing requests from each
PE in RT mode.

Fig. 12. Proposed computing flow and comparison results. (a) GMAC and
GRTS top-level view and detailed implementation with RTTC. (b) Benefits
and costs for GRTS and GMAC.

B. Dataflow Overview in Mobile-PBR

Two reconfigurable dataflows in Mobile-PBR are shown in
Fig. 11: IR mode and RT mode. In IR inference mode, the PE
array is configured as a systolic array for acceleration. The
resulting PA maps are stored in OMEM. When switching to
RT rendering mode, the PA maps from IR are reloaded to
PAMEM for RT computation. The overall memory reloading
latency is constrained by the limited I/O p-i-ns on-chip. The
specifics of the I/O interface are discussed in Section V-A.
Each ray cast from the camera origin into the 3-D space has a
different and unpredictable workload. As a result, multiple PEs
may request access to the same SRAM address at the same
time, leading to memory access conflicts. For the same reason,
multiple PEs may complete the rendering tasks simultaneously
and enter the idle stage, resulting in low PE utilization.

To avoid memory conflicts and improve PE utilization,
GRTS and GMAC are implemented in this work, as shown
in Fig. 12(a). There is one RT token checker (RTTC) inside
both GRTS and GMAC. The RTTC employs a clock-controlled
rotating register to sequentially monitor the status or memory
requests of each PE in the array, checking one PE per clock
cycle and storing the results in a fixed size FIFO as shown in
Fig. 12(a). The size of the FIFO corresponds to the number
of PEs in the computing array, which is 48 in this test chip.
GRTS uses the RTTC result from the PE array to refresh the
checked PE status if the computation is done. GMAC uses
the RTTC result to direct MEM write requests sequentially to
avoid conflicts. By doing so, the PE refresh status and memory
access requests can be pipelined with minimal cost: A 42.8×

overall speedup from GRTS for total computing time and 16×

overall speedup from GMAC for memory accessing time are
achieved by introducing 2.8% and 0.6% extra hardware cost,
comparing with the baseline scheme in which waits for all PE
to finish and launch another round of computation for the PE
array.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: MOBILE-PBR: A 28-nm ENERGY-EFFICIENT RENDERING PROCESSOR 7

Fig. 13. Reconfigurable PE in Mobile-PBR. (a) PE configuration in RT and IR modes. (b) Datapath for PPCD, UAC, and object shading computation in
each PE.

IV. RECONFIGURABLE COMPUTING
MODE IN MOBILE-PBR

A. PE Configuration in RT Mode

In Mobile-PBR, each PE unit can be reconfigured to
both IR and RT modes. As shown in Fig. 13(a), in RT
mode, all the computing modules are enabled in the PE
compute units (PCUs): 64-bit division, 64-bit sqrt, and
a mixed-precision multiplication–accumulation (MAC). The
mixed-precision MAC is implemented with a pipelined hard-
ware reuse scheme: the 16-bit multiplier and adder calculate
32-bit multiplication in four clock cycles. During the object
intersection evaluation stage, 64-bit precision is enabled to
avoid false intersection results. The results from 64-bit MAC
are used for 64-bit division and 64-bit sqrt. Each PE consists
of a 4-kB local OBJMEM for storing object information
such as object refractive index, object albedo index, object
diffuse color, object specular exponent, BBOX coordinates,
and triangle mesh coordinates as shown in Fig. 13(b).

Each PE unit communicates and fetches background PA data
from PAMEM through GRTS, PPCD, and UAC. As shown in
Fig. 13(b), each PE sends task requests (x , y) to the x channel
and y channel in PPCD. The request IDs x and y are processed
through a comparator tree for the channel ID of each task
request. The compression offset is programmed in advance to
align with the compressed PA maps. The output of PPCD is the
channel ID of PA maps. Channel IDs x and y are sent through
UAC to convert to the requested PAMEM access address.

During the intersection and shading computation, the data
stored in the global PAMEM and local OBJMEM are sent
to the PCU. The RT shading flow inside each PE is shown
in Fig. 13(b). The computing requests for ray generation and
ray iteration are issued from GRTS. In each PE controller, the
RT intersection hashmap decoder (RIHD) and RT controller
(RTC) are implemented for the customized computing flow
in Mobile-PBR. During light transportation, the light ray
direction is recorded in each PE. The BBIF, axis-aligned

Fig. 14. Computation details for BBIE, TIE, and light transportation in each
PE.

BBOX ID (AABB ID), and triangle mesh group address
(TMGA) are stored in the local PE RIHD for geometry
intersection evaluation. The PE task ID, BBIE, object shader
(OS), and triangle intersection evaluator are stored in the local
PE RTC for independent RT tasks. The RTC within each PE
communicates with GRTS for dynamic task pipelining.

The detailed computations for BBIE and TIE are shown in
Fig. 14. As introduced in the scalable 3-D object partitioning
scheme, during the intersection evaluation stage, the BBOX
intersection is evaluated first. In this work, each BBOX is
defined using two coordinate pairs: min (x, y, z) and max
(x, y, z). Each BBOX contains three pairs of slabs. The
intersection is evaluated for each slab pair. For each slab pair,
tmin and tmax are computed. If tmin < tmax, the ray intersects
with the BBOX; otherwise, the ray misses the BBOX. Once
the ray intersects with TBBOX, BBIF is set to 1 and TIE is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

8 IEEE JOURNAL OF SOLID-STATE CIRCUITS

Fig. 15. Chip micrograph and specifications.

Fig. 16. Measured power and frequency with voltage scaling.

launched for ray-triangle intersection evaluation. The detailed
computation is shown in Fig. 14. The triangle mesh coordi-
nates are stored in OBJMEM. In the end, the tnear value against
a threshold value is used to determine if the ray intersects with
the triangle mesh. Ideally, tnear should be compared with 0 for
intersection evaluation, but due to the quantization effect, the
threshold value is no longer 0. TIE requires extremely high
computing accuracy and has very low error resilience. A false
intersection or false miss will change the shape of the final
rendered object [20]. As shown in Fig. 14, division and sqrt
are used in light transportation computation, lower precision,
such as 32-bit or 48-bit, will cause visible degradation in the
rendering result [21]. In Mobile-PBR, 64-bit INT precision is
supported in the PCU to address the high accuracy require-
ment.

After intersection evaluation, each PE computes the shading
effect for the object surface, including ambient, diffuse, and
specular lighting individually. The PCU results are stored
in local shading registers for lighting effect accumulation as
shown in Fig. 13(b). By implementing the proposed architec-
ture in each PE, all the RT tasks can be completed individually
within each PE.

B. PE Configuration in IR Mode

IR inference mode is shown in Fig. 13(a). Double input
and weight stationary are supported in the IR dataflow. The
clock gating (CG) and input gating module gate off the unused
input ports, excessive computing logic in RT mode, and local
OBJMEM banks for power-saving purposes. The PCU in
IR mode supports two 8-bit MAC operations for 8-bit input
and weight and a maximum 32-bit accumulation output. The
whole 2-D computing array is configured as a systolic array

Fig. 17. IR average quantization accuracy loss and runtime breakdown for
PBR.

Fig. 18. IR results and SSIM on four PA maps.

to support DNN operations. The IR result is accumulated
and saved to OMEM banks. Overall, around 32% of power
saving is achieved in IR mode compared with the baseline
implementation without CG techniques.

V. CHIP IMPLEMENTATION, MEASUREMENT
RESULTS, AND CASE STUDY

A. Chip Implementation

A 2-D 8 × 6 Mobile-PBR processor was designed and
fabricated using a 28-nm CMOS process. The chip micrograph
and implementation are shown in Fig. 15. The active die area
is 1.60 × 2.22 mm with a supply voltage of 0.6–0.9 V and
200- and 148-MHz operating frequency in IR and RT modes,
respectively. IR mode can support 8-bit integer bit precision
for DNN acceleration, and RT mode can support 8–64-bit mix-
precision for MAC, division, and sqrt operations. The total
on-chip SRAM is 296 kB. This chip provides a 32-bit scan
I/O interface to load and read out all on-chip SRAM content.
A field-programmable gate array (FPGA) board is engaged
in chip testing for data streaming in and out of the test chip
through scan IO ports for verification and measurement.

B. Performance Measurement Results

Fig. 16 shows the measured power and frequency with the
voltage scaled down to 0.6 V. The nominal supply voltage for
both IR mode and RT mode is 0.9 V with 40-mW IR power
at 200 MHz and 55-mW RT power at 148 MHz.

In Mobile-PBR, a customized rendering architecture is
implemented to accelerate the IR–RT rendering flow. GRTS
and GMAC provide the ability for dynamic access and task
scheduling for parallel computing processes across the whole

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: MOBILE-PBR: A 28-nm ENERGY-EFFICIENT RENDERING PROCESSOR 9

Fig. 19. Rendering results for Mobile-PBR. (a) Example for background cluster rendering result. (b) IR–RT rendering result and FPS performance on
different 3-D objects with different materials. (c) RT-only rendering result and FPS performance. (d) Runtime breakdown for Mobile-PBR compared with
baseline implementations.

TABLE II
IR–RT RENDER THROUGHPUT WITH DIFFERENT MODELS

computing array. An average of 25.8 frames/s is achieved
when rendering various scenes. The 500- and 1418-frames/s/W
power efficiency has been achieved at 0.9 V for IR and RT
modes, respectively.

In the evaluation, floating point (FP) 16-bit results are used
as ground truth maps. Fig. 17 shows the average quantization
loss results on the IR synthetic dataset by [15] and the runtime
breakdown for Mobile-PBR. The IR resolution is 480 ×

640. In our experiment and evaluation, we used the same
log-encoded loss function on physical maps proposed in [15]
to calculate the accuracy drop caused by quantization. Fig. 18
shows two more examples of IR results for normal, albedo,
depth, and lighting maps compared with the reference FP16-bit
results. There is an average of 0.4%, 6.4%, 8.9%, and 0.9%
accuracy loss on lighting, albedo, normal, and depth maps,
respectively. No SSIM loss is observed in the final rendered
result between the baseline background maps (FP16) and the
quantized clustered maps as shown in Fig. 19(a).

C. Rendering Results for IR and RT

More IR–RT results with different objects and materials are
shown in Fig. 19(b). The performance of each rendering case
is also shown. There are two computing modes: IR and RT.

PAMEM needs to be reloaded when switching between IR and
RT modes. The reported performance excludes the off-chip
MEM reloading time.

As a result, an average of 25.8 frames/s is achieved in the
end-to-end IR–RT rendering flow running at maximum fre-
quency for IR and RT modes, meeting the real-time rendering
requirement of 24 frames/s [22]. In Fig. 19(c), the result of
RT-only mode is shown. In this mode, users need to provide
the pre-defined scene and its PA maps. Only RT computation is
needed in this case. In RT-only mode, 78 frames/s is achieved
when inserting four virtual spheres with different materials and
geometries. Photorealistic effects such as reflection, shadow,
and refraction are rendered properly in the result. Table II
presents more IR–RT renders throughput for more common
3-D objects from [3]. Fig. 19(d) shows the overall on-chip
runtime breakdown and improvement of Mobile-PBR and the
baseline design.

D. Comparison Results

The comparison results with prior works are shown in
Table III and Fig. 20. Mobile-PBR achieves much higher
throughput and efficiency compared to the NVIDIA GTX
1080Ti GPU [23] and Intel i7-8665 CPU [24] running the
same algorithm. Compared with the prior reconfigurable single
instruction multiple threads (SIMTs) processor for mobile
RT [6], Mobile-PBR achieves higher throughput with higher
power efficiency and can support both DNN and RT opera-
tions. Compared with the DNN rendering accelerator designs
from [4] and [5], this work has lower rendering throughput but
offers better power efficiency in RT tasks and with the support
of both DNN and RT modes. In addition, by following the
proposed data flow and architecture in this article, Mobile-PBR
offers flexible scalability to scale up the number of computing
cores with larger silicon implementation with low effort.
Mobile-PBR achieves 28.8× and 3.95× higher RT rendering
efficiency compared to prior ASIC implementations [4], [5],

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

10 IEEE JOURNAL OF SOLID-STATE CIRCUITS

TABLE III
COMPARISON TABLE WITH PRIOR WORKS

Fig. 20. Efficiency comparison over NVIDIA GTX 1080Ti GPU, Intel
i7-8665 CPU, and prior ASICs.

and [6], enabling real-time PBRT on low-cost resource-limited
edge devices.

VI. CONCLUSION

This article presented a novel RT rendering flow and scal-
able architecture, Mobile-PBR, combining the systolic DNN
accelerator with individual RT processing cores for end-to-
end photorealistic RT rendering tasks on mobile devices.
Mobile-PBR is designed based on an 8 × 6 2-D computing
array which can be reconfigured to a systolic array in IR
mode and parallel processing cores in RT mode. This design
achieves 500- and 1418-frames/s/W power efficiency in IR and
RT modes, respectively. By implementing the IR–RT-based
rendering flow, Mobile-PBR achieves 3.95× and 28.8× higher
RT efficiency compared with prior ASIC designs. A test chip
was fabricated using 28-nm CMOS technology under a 0.9-
V supply voltage, with a 148-MHz operating frequency in
RT mode and a 200-MHz operating frequency in IR mode.
Mobile-PBR has an average performance of 25.8 frames/s in
end-to-end IR–RT rendering tasks and 78 frames/s in RT-only
rendering tasks, enabling real-time RT rendering on mobile
devices.

REFERENCES

[1] M. Pharr, Physically Based Rendering. Cambridge, MA, USA:
MIT Press, 2024. [Online]. Available: https://mitpress.mit.edu/
9780262048026/physically-based-rendering/

[2] Y. Deng, Y. Ni, Z. Li, S. Mu, and W. Zhang, “Toward real-time
ray tracing: A survey on hardware acceleration and microarchitecture
techniques,” ACM Comput. Surveys, vol. 50, no. 4, pp. 1–41, Jul. 2018.

[3] The Stanford 3D Scanning Repository. Accessed: May 18, 2024.
[Online]. Available: https://graphics.stanford.edu/data/3Dscanrep/

[4] D. Han, J. Ryu, S. Kim, S. Kim, and H.-J. Yoo, “2.7 MetaVRain:
A 133 mW real-time hyper-realistic 3D-NeRF processor with 1D-
2D hybrid-neural engines for metaverse on mobile devices,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2023,
pp. 50–52.

[5] J. Ryu et al., “20.7 NeuGPU: A 18.5 mJ/Iter neural-graphics processing
unit for instant-modeling and real-time rendering with segmented-
hashing architecture,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Feb. 2024, pp. 372–374.

[6] H.-Y. Kim, Y.-J. Kim, J.-H. Oh, and L.-S. Kim, “A reconfigurable SIMT
processor for mobile ray tracing with contention reduction in shared
memory,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 4,
pp. 938–950, Apr. 2013.

[7] Introducing the NVIDIA RTX Ray Tracing Platform, NVIDIA Devel-
oper, Santa Clara, CA, USA, 2024. [Online]. Available: https://
developer.nvidia.com/rtx/ray-tracing

[8] RealityKit, Apple Developer Documentation, Apple Inc., Cupertino,
CA, USA, 2024. [Online]. Available: https://developer.apple.com/
documentation/realitykit

[9] HoloLens 2 Hardware. Accessed: May 18, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/hololens/hololens2-hardware

[10] OpenXR Mobile SDK | Oculus Developers. Accessed: May 18,
2024. [Online]. Available: https://developer.oculus.com/documentation/
native/android/mobile-intro/

[11] BLOG | Samsung Research. Accessed: May 18, 2024. [Online].
Available: https://research.samsung.com/blog/Galaxy-S23-Series-
Realistic-Graphics-Powered-by-Ray-Tracing-Technology

[12] S. G. Parker et al., “OptiX: A general purpose ray tracing engine,” ACM
Trans. Graph., vol. 29, no. 4, p. 66, 2010.

[13] B. Mildenhall et al., “NeRF: Representing scenes as neural radiance
fields for view synthesis,” in Proc. Comput. Vis., A. Vedaldi, H. Bischof,
T. Brox, and J.-M. Frahm, Eds., Cham, Switzerland: Springer, 2020,
pp. 405–421.

[14] Y. Zhan, S. Nobuhara, K. Nishino, and Y. Zheng, “NeRFrac: Neural
radiance fields through refractive surface,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Paris, France, Oct. 2023, pp. 18356–18366.

[15] Z. Li et al., “OpenRooms: An open framework for photorealistic indoor
scene datasets,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 7186–7195.

[16] T. Whitted, “An improved illumination model for shaded display,”
Commun. ACM, vol. 23, no. 6, pp. 343–349, Jun. 1980, doi:
10.1145/358876.358882.

[17] I. Wald, “On fast construction of SAH-based bounding volume hierar-
chies,” in Proc. IEEE Symp. Interact. Ray Tracing, Sep. 2007, pp. 33–40.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/358876.358882

GUO et al.: MOBILE-PBR: A 28-nm ENERGY-EFFICIENT RENDERING PROCESSOR 11

[18] J. H. Clark, “Hierarchical geometric models for visible surface algo-
rithms,” Commun. ACM, vol. 19, no. 10, pp. 547–554, Oct. 1976, doi:
10.1145/360349.360354.

[19] Z. Li, Y. Deng, and M. Gu, “Path compression kd-trees with multi-layer
parallel construction a case study on ray tracing,” in Proc. 21st ACM
SIGGRAPH Symp. Interact. 3D Graph. Games. New York, NY, USA:
ACM, Feb. 2017, pp. 1–8.

[20] K. Vaidyanathan et al., “Watertight ray traversal with reduced preci-
sion,” in High Performance Graphics. Goslar, Germany: Eurographics
Association, 2016, pp. 33–40.

[21] T. Ize. Robust BVH Ray Traversal (JCGT). Accessed: May 18, 2024.
[Online]. Available: https://jcgt.org/published/0002/02/02/

[22] X. Min, H. Duan, W. Sun, Y. Zhu, and G. Zhai, “Perceptual video quality
assessment: A survey,” 2024, arXiv:2402.03413.

[23] GeForce GTX 1080 Ti | Specifications | GeForce. Accessed:
May 18, 2024. [Online]. Available: https://www.nvidia.com/en-
gb/geforce/graphics-cards/geforce-gtx-1080-ti/specifications/

[24] Intel® CoreTM i7-8665U Processor (8M Cache, up to 4.80 GHz)
Product Specifications. Accessed: May 18, 2024. [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/193563/intel-
core-i7-8665u-processor-8m-cache-up-to-4-80-ghz.html

Shiyu Guo (Graduate Student Member, IEEE)
received the B.S. degree from Southeast University,
Nanjing, China, in 2019. She is currently pursu-
ing the Ph.D. degree in computer engineering with
Northwestern University, Evanston, IL, USA.

Her current research interests include computer
architecture, graphics processors, and low-power
machine learning accelerator design.

Yuhao Ju (Member, IEEE) received the B.S. degree
from the University of Electronic Science and
Technology of China, Chengdu, China, in 2017,
and the M.S. degree from Northwestern University,
Evanston, IL, USA, in 2019, where he is currently
pursuing the Ph.D. degree in computer engineering.

His current research interests include com-
puter architecture and machine learning accelerator
design.

Xi Chen (Student Member, IEEE) received the
B.E. degree in electrical engineering from Southeast
University, Nanjing, China, in 2018. He is currently
pursuing the Ph.D. degree in computer engineering
with Northwestern University, Evanston, IL, USA.

His current research interests include power
management circuit design and machine learning
accelerator design.

Sachin S. Sapatnekar (Fellow, IEEE) received the
B.Tech. degree from Indian Institute of Technology
at Bombay, Bombay, India, the M.S. degree from
Syracuse University, Syracuse, NY, USA, and the
Ph.D. degree from the University of Illinois, Cham-
paign, IL, USA.

He taught at Iowa State University, Ames, IA,
USA, from 1992 to 1997, and has been at the
University of Minnesota, Minneapolis, MN, USA,
since 1997, where he holds a Distinguished McK-
night University Professorship and the Robert and

Marjorie Henle Chair.
Dr. Sapatnekar is a fellow of the ACM. He was a recipient of the nine

conference Best Paper Awards, the Best Poster Award, the two ICCAD
ten-year Retrospective Most Influential Paper Awards, the SRC Technical
Excellence Award, and the SIA University Research Award.

Jie Gu (Senior Member, IEEE) received the B.S.
degree from Tsinghua University, Beijing, China, the
M.S. degree from Texas A&M University, College
Station, TX, USA, and the Ph.D. degree from the
University of Minnesota, Minneapolis, MN, USA.

He was an IC Design Engineer with Texas Instru-
ments, Austin, TX, USA, from 2008 to 2010, focus-
ing on ultralow-voltage mobile processor design and
integrated power management techniques. He was a
Senior Staff Engineer with Maxlinear, Inc., Carlsbad,
CA, USA, from 2011 to 2014, focusing on low-

power mixed-signal broadband SoC design. He is currently an Associate
Professor with Northwestern University, Evanston, IL, USA. His research
interests include novel circuits and architectures for emerging computing
applications.

Dr. Gu was a recipient of the NSF CAREER Award. He has served as
a program committee and conference organizer for numerous conferences,
such as ISSCC, CICC, ISPLED, DAC, ICCAD, ICCD, and GLSVLSI.
He is an Associate Editor of the Journal of Solid-State Circuits (JSSC) and
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS
(TCAS-II).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Northwestern University. Downloaded on December 30,2024 at 04:49:01 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/360349.360354

