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A B S T R A C T

Workflow management systems (WfMSs) are commonly used to organize/automate sequences of tasks as
workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow
environment is desirable, as users usually rely on their rich, local environments for fast prototyping and
refinements before they consider using more powerful computing resources. However, existing WfMSs do not
simultaneously support local interactive workflow environments and HPC resources. In this paper, we present a
mechanism for on-demand access to remote HPC resources from desktop/laptop-based workflow management
software to compose, monitor, and analyze scientific workflows in the CyberWater project. CyberWater is an
open-data and open-modeling software framework for environmental and water communities. In this work,
we extend the open-model, open-data design of CyberWater with on-demand HPC accessing capacity. In
particular, we design and implement the LaunchAgent and JobManager, which can be integrated into a local
desktop/Laptop environment to allow on-demand usage of remote HPC resources for computational modeling
workflows effectively and efficiently. LaunchAgent manages user authentication to remote resources, prepares
computation-intensive or data-intensive tasks as batch jobs, submits jobs to remote resources, and monitors
quality of services for users. LaunchAgent interacts seamlessly with other components in CyberWater, providing
advantages of user-friendly feature-rich desktop software experience and increased computing power through
on-demand HPC/Cloud usage. In our evaluations, we demonstrate how a hydrological modeling workflow that
consists of both local and remote tasks can be constructed and show that our new on-demand HPC/Cloud usage
helps speed up hydrology workflows while allowing asynchronous HPC/Cloud access from workflows using a
desktop graphical user interface.
1. Introduction

Scientific discovery often requires the execution of various cou-
pled computational tasks using diverse data from local and remote
resources. These tasks can be organized into stages, based on their data
dependencies. A workflow management system (WfMS) is a type of
software system with which an end-user can describe the data depen-
dencies of tasks, compose workflows, and launch such workflows for
execution in designated computing environments. Nowadays, different
types of computing environments are supported by WfMSs. In a typ-
ical WfMS, workflows are described as directed acyclic graphs (DAG)
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where each vertex is a computation task, and the edges describe the
data dependency between tasks. Such DAGs are then submitted to an
execution environment, which is either a High-Performance Computing
(HPC) system, or a Cloud system, or a local desktop/server computer.
For example, in the Pegasus WfMS [1], one can provide an abstract
workflow as a ‘‘DAX’’ file, and Pegasus translates it to an ‘‘execution
workflow’’, which is then submitted to one of the supported execution
environments. For a simple, small size workflow, a local computer
can be used as the execution environment. For larger workloads, a
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Pegasus/HTCondor pool of worker nodes [2] can be used instead, in
which the tasks are mapped to a collection of worker nodes.

Although widely-used WfMSs such as Pegasus allow users to utilize
various types of execution environments to launch computation tasks,
there are three major limitations in practice. First, the choice between
local and remote execution sites is not flexible: workflows are typically
only allowed to run in their entirety in either local or remote envi-
ronments. For workflows running in a local environment, computation
power is limited; for workflows running remotely, it can take much
longer time to prototype, design, develop, and debug. Second, from a
workflow user’s perspective, correctly preparing an abstract workflow
requires a lot of effort for complex workflows. For example, Pegasus
WfMS users must either manually create the DAX file, or use one of
the supported programming interfaces to generate the DAX file. In
contrast, desktop-based WfMSs such as VisTrails [3], provide a feature-
rich GUI-based frontend, which allows users to drag and drop widget
boxes to form a complex workflow, and gives users comprehensive and
timely information such as execution provenance. Third, there is lack
of systematic real-time assistance for users to knowledgeably select an
appropriate HPC platform for their jobs to maximize users’ benefits
in terms of performance/cost ratio when multiple HPC platforms are
available.

To address these limitations, we present on-demand access to HPC/-
Cloud resources from desktop-based WfMSs, a novel approach to pro-
vide desktop-based (or laptop-based) workflows with an automated
mechanism for on-demand access to remote computing resources, so
that rich configurations and relatively small computation tasks can
be performed in a user’s local environment, and only computation-
ally expensive tasks are offloaded to powerful HPC/Cloud resources
whenever needed. On-demand access to HPC/Could is achieved by
the development of LaunchAgent, handling the offloading of compu-
tational tasks (i.e., workflow items) to remote HPC/Cloud resources,
so that users can select specific computationally expensive tasks to be
offloaded to HPC/Cloud platforms automatically during the workflow
configuration via its local graphical user interface (GUI), to achieve
significant speedup. LaunchAgent supports both direct Slurm-based [4]
access and Airavata gateway [5] access to remote computing resources.
Such a more flexible design allows users to make use of both mid-
size campus-based clusters and large-size grid computing resources
(e.g., from NSF XSEDE/ACCESS [6]).

This work is part of the CyberWater project [7–9], which aims
to create an open-modeling and open-data framework to accelerate
collaborative water research. CyberWater framework system currently
adopts VisTrails, a Python-based desktop workflow management soft-
ware, to support functionalities such as provenance management and
reproducible computing for exploratory computation tasks. With Cy-
berWater various data agents, model agents, and generic model agent
toolkit [8], users can compose and configure their workflows to inte-
grate heterogeneous environmental data sources and diverse computa-
tional models, and enable model coupling through their desktop/laptop
GUI. However, the original VisTrails software only supports a syn-
chronous workflow controller, which schedules workflow tasks/items
using a predefined pipelined structure and disallows independent com-
putational tasks in the workflow to be offloaded to HPC platform(s)
and run in parallel, resulting in an unnecessary delay for the entire
workflow computation. To address this issue, we design and develop
an asynchronous HPC task scheduling middleware, which enables inde-
pendent computational tasks to be scheduled and submitted to remote
HPC/Cloud platforms simultaneously with non-blocking LaunchAgent.
Furthermore, to aid users in better selecting HPC platforms and al-
locations for their jobs at hand, we also design and develop an HPC
site-recommendation mechanism to provide users with useful infor-
mation including expected job execution time and cost for available
choices.

To demonstrate our approach and development in CyberWater
framework, our CyberWater case study uses hydrological models in-
308

cluding the Variable Infiltration Capacity (VIC) model [10–14] and d
the Distributed Hydrology Soil Vegetation Model (DHSVM) [15] over
several watersheds in Pennsylvania, USA. Our experiments show not
only a drastic acceleration of computation of hydrological model appli-
cations via on-demand access to HPC resources, but also a significant
speedup of using asynchronous workflows in CyberWater compared
to the synchronous ones. The initial work on HPC on-demand access
for synchronous modeling workflows in CyberWater was reported
in Ref. [16], which has been significantly extended. The extensions
include the new development of asynchronous workflow control, a
non-blocking version of LaunchAgent, an HPC site-recommendation
method, and comprehensive performance study on asynchronous versus
synchronous modeling workflows with on-demand HPC access. The
major contributions of our work are as follows:

• We present on-demand access to HPC/Cloud resources from
desktop-based workflow systems, a novel approach that enables
offloading computationally expensive tasks to remote HPC/Cloud
platforms, while utilizing the desktop-based WfMS’ feature-rich
GUI frontend to facilitate users’ complex workflow construction
and configuration as well as workflow provenance for repro-
ducible computing.

• We design and develop an asynchronous workflow control mech-
anism to support asynchronous workflows in CyberWater with
on-demand HPC/Cloud access to maximize the capacity of on-
demand HPC/Cloud access for independent workflow tasks and
thus further speed up workflow computations in the CyberWater
system.

• We develop a non-blocking LaunchAgent library in CyberWater
to support on-demand access to remote computing resources in-
cluding various HPC platforms, Google Cloud, and campus-based
clusters/servers.

• We design a mechanism for HPC site recommendations to aid
users in selecting appropriate HPC platforms/allocations to opti-
mize the performance/cost ratio for their offloaded computational
jobs.

• We present a real-world hydrological modeling use case study
to validate and evaluate our approach in the CyberWater frame-
work system, ranging from entirely local desktop/laptop work-
flow computation versus on-demand HPC computation to asyn-
chronous workflow versus synchronous workflow with on-demand
HPC access.

The remainder of this paper is organized as follows. Section 2
briefly overviews the background of CyberWater to set up the context.
Section 3 presents our approach, design, and implementation. Section 4
rovides use cases of reproducible end-to-end model simulations to
emonstrate the use of the HPC module and asynchronous workflow
eature for open data and open model integration in CyberWater.
inally, Section 5 concludes the work and gives planned future work.

. Background

.1. CyberWater

CyberWater is a collaborative project for creating an open-data and
pen-modeling software framework [7–9,16]. The CyberWater project
ims at reducing user time and effort needed for hydrologic modeling
tudies by enabling flexible integration of diverse data sources and
sers’ computational models needed for executing complex workflows
ith on-demand remote HPC/Cloud resources. The CyberWater system
s based on the Meta-Scientific-Modeling (MSM) framework [7] to
ddress the challenges of accessing heterogeneous data sources and in-
egrating individual models. The CyberWater MSM framework consists
f four parts: a core (the MSM core), an interface to the Workflow
ngine, Data Agents, and Model Agents, as shown in the dashed box
n Fig. 1. Data Agents are dynamically loaded components that han-
le how to connect to and retrieve data from different external data
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Fig. 1. An overall architecture of the MSM framework system.

roviders through the Internet. Model Agents are dynamically-loaded
omponents that handle the input/output and execution specifications
f various hydrological models. The Core interacts with the Workflow
ngine through the Workflow Interface to prepare and trigger indi-
idual tasks (e.g., data retrieving tasks and model execution tasks)
pecified in workflows.
VisTrails [3], a Python-based graphical science workflow system

running in desktop environments, is currently adopted in the Cyber-
Water project as the workflow management system and provides the
Workflow Engine that MSM core interacts with. Through the VisTrails
workflow system within the CyberWater framework, users can simply
drag and drop component modules in their rich desktop environments
to compose complex workflows. When the workflow is executed, each
component module (i.e., workflow item) of the workflow is executed
locally on a desktop/laptop. VisTrails is an open-source scientific work-
flow and provenance management system that supports simulations,
data exploration, and visualization. Like other existing Scientific Work-
flow Management Systems (WfMSs), VisTrails2 processes a sequence
of tasks by stringing individual VisTrails modules altogether into a
pipeline and executing each pipelined independent computational task
in a sequence. Users can compose complex hydrology workflows using
VisTrails graphic user interfaces. Then, the tasks defined in the work-
flow are captured by the MSM Core, which triggers actions such as
data fetching, model execution, and data processing/transformation, by
means of Model Agents and Data Agents.

2.2. Synchronous workflow in VisTrails

VisTrails adopted in the CyberWater MSM only supports
synchronous blocking workflow scheduling. In VisTrails, each module
is represented by a Python class, which specifies the computation
and implements a set of ports for connection in data and control
flow [17]. For software and programming middleware, the pipelined
xecution model has always been considered fundamental [18]. It can
e represented as an algorithmic pipeline skeleton, where a series of
ata enter the input module and pass through successive modules via
orts until the final result is computed. This type of pipeline workflow
xecutes in a synchronous mode, where each task is completed within
fixed period, corresponding to the longest cycle-time to operate
module [19]. Each module performs computation and passes its
roduced data set to the following-connected module in a period.
Orthodoxly, the execution order of the workflow is driven by data

equests, and in VisTrails, the modules are executed in a bottom-
p mechanism, with which each input is generated on-demand by
ecursively executing upstream modules, and the execution order is

2 www.vistrails.org.
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Fig. 2. The pseudo-code flattens the acyclic graph into a linear list in topologically
sorted order.

scheduled in topologically sorted order by fitting each module as a node
in an acyclic graph and traversing them with the Depth-First Search
(DFS) algorithm.

To support on-demand access to HPC/Cloud resources from desktop-
based WfMS, CyberWater develops an HPC module in the generic model
agent toolkit to provide a bridge between the local workflow and the
HPC resources, which submits a job of the computational model to be
executed in remote HPC clusters, and retrieves the result data back to
local workflow environment for provenance, analysis, and visualization
in the same workflow. Although the capability of on-demand access to
HPC computation power and storage already drastically enhanced the
performance, the synchronous blocking pipelined workflow schedul-
ing mechanism of the original VisTrails still significantly limits the
effectiveness and efficiency of workflows fundamentally.

There are three major components in the CyberWater framework
to ensure the workflow can be executed in topologically sorted order:
(1) Module, (2) Pipeline Scheduler, and (3) Workflow Controller. In
the following discussion, we provide a concise overview of these three
components.

Module: A module is represented as a node in the workflow
graph, and CyberWater adopts heterogeneous execution models
encapsulated within Python packages in these modules to per-
form computation, data generation, and data transfer facilitated
through the interconnected ports existing between modules.
Pipeline Scheduler: The pipeline scheduler is implemented by a
class named ‘‘pipeline’’ derived from the base class
‘‘DBWorkflow’’, which defines the fundamental attributes of the
pipeline. It also depends on the ‘‘Graph’’ class, which provides
the method for validation of workflow as an acyclic graph and
flatten the graph into a linear list in topological sorting order as
illustrated in Fig. 2.
Workflow Controller: In CyberWater’s VisTrails, the execution
of a workflow is controlled by the execution engine/workflow
controller, which serves as the interface with database (db)
layer. The db layer consists of three components: the domain
objects, the service logic, and the persistence methods. The
workflow controller is responsible for keeping track of invoked
operations and capturing the provenance of workflow execution.
The underlying principle of pipelined workflow execution in
CyberWater’s VisTrails involves the pipeline scheduler assigning
a unique moduleId to each module in workflow configured with
parameters in the graphic interface. The pipeline scheduler then
generates a list of modules in the topological sorting order for
the workflow controller to execute sequentially.

.3. Airavata gateway framework

Apache Airavata [5] is a science gateway software framework to

ompose, execute, and monitor distributed applications running in

http://www.vistrails.org
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Fig. 3. SciGaP integration overview. SciGaP can expose API services to both
browser-based and non-browser applications.

environments from local clusters to computational grids and clouds.
The Airavata framework is a collection of distributed microservice
components of identity management, application and experiment man-
agement, job and workflow management, and digital object-sharing
management. For instance, Science Gateway Platform (SciGaP) [20]
rovides Apache Airavata software as a hosted middleware service
n Indiana University (IU) Intelligent Infrastructure systems.3 SciGaP
exposes public APIs that science gateways can use to outsource those
general capabilities, as shown in Fig. 3. Through the API services, re-
earchers can register an application by specifying information such as
xecutable script path, environment variables, input/output arguments,
nd data files. The API services also allow the gateway administrator to
dd computing resources (e.g., clusters) so that when a SciGaP gateway
ser requests an experiment execution, the corresponding jobs will be
reated, launched on a designated HPC cluster, and monitored by the
ob management services.
As illustrated in Fig. 3, Science Gateways may have web portals,

on-browser desktop/device-based apps, or a combination of both
or their end-user researchers. To this end, the Airavata framework
rovides software development kits (SDKs) to connect with SciGaP
nd Apache Airavata services. The API services provided by SciGaP
ave been successfully used in different domains.4 Web browser-based
nterfaces using the Django web framework have been developed and
rovided as a reference to enable users to configure, launch, and moni-
or jobs/workflows. However, the browser-style integration sometimes
s not suitable for certain scientific workflow applications such as
yberWater applications that require feature-rich desktop-based Vis-
rails workflow management tools. On one hand, CyberWater uses the
jango web interfaces for tasks such as user registration and computing
esource management, but on the other hand, it utilizes the Python
DK to configure, launch, and monitor applications from programs.
ur integration method of the SciGaP API services into the CyberWater
ystem is described in Section 3.1.

. Methodology

The concept of on-demand access to HPC/Cloud in the CyberWater
ystem refers to the flexibility and capability of users to offload those
pecific computationally expensive tasks to HPC/Cloud at individual
orkflow item/module granularity instead of at the entire workflow
evel, in which the overall workflow still runs locally on a desk-
op/laptop with only the selected computationally expensive workflow
tem(s) to be offloaded to remote HPC/Cloud platforms in an automated
anner. To achieve on-demand access to HPC/Cloud resources, an HPC
odule is developed in the generic model agent toolkit in CyberWa-
er [8], which provides users with the unique on-demand capacity to

3 https://uits.iu.edu/services/intelligent-infrastructure.
4 SciGaP collaborators and clients: https://scigap.org/pages/collaborations.
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Fig. 4. The new HPC/Cloud-enabled CyberWater software framework with LaunchAgent
integration. LaunchAgent extends the open-model and open-data design of the Cyber-
Water MSM framework and allows the selection of computationally expensive tasks to
be launched as remote jobs in different remote computing environments.

launch jobs of their model execution to the selected remote HPC/Cloud
platform, and then to retrieve results back to the workflow when
the execution is completed. In the following subsections, we present
the design of LaunchAgent (a core component of our HPC module),
the design of asynchronous workflow control in CyberWater, and the
design of HPC site-recommendation to help users select appropriate
HPC sites to maximize their performance/cost ratio.

3.1. Design of LaunchAgent

LaunchAgent is a core component for on-demand HPC/Cloud ac-
cess in the CyberWater software framework. LaunchAgent is designed
to help workflow engines offload computationally intensive tasks to
remote HPC/Cloud resources on demand through Python program-
ming APIs. As shown in Fig. 4, a locally installed workflow engine
(e.g., VisTrails) on a desktop can manage a workflow as a graph of
computational tasks/modules. For the default local computation setup,
tasks are scheduled by the local computer’s operating system scheduler,
and communication between tasks happens in the form of memory
objects/local files.

With the help of LaunchAgent, specific tasks along with their input
files can be offloaded to remote computing resources to accelerate the
user’s workflow via the use of the HPC module in the generic model
agent toolkit. LaunchAgent manages user authorization so that users
have proper access to remote resources. It also composes, submits,
and monitors the computation tasks for the users. Through the design
of a universal Python API, a local workflow engine can periodically
check the submitted tasks’ status in remote sites and download output
files when the tasks are finished. Listing 1 below illustrates how a
IC application can be deployed in the BigRed3 cluster using the
aunchAgent interface. This example assumes a user has already been
llocated with an account and credentials for the BigRed3 HPC system.
t step 1 in Listing 1, a user initializes the LaunchAgent library by
pecifying a registered HPC site (‘bigred3’), with the provided username
nd password. Then at step 2, the local ‘‘vic’’ folder is uploaded to
he remote site, and this folder stores the running environment of
IC5 (including input files and configuration files). After that, at step
, the configure_slurm _job function generates the remote batch job
cript for the HPC site, based on the given execution logic specified
n the ‘‘execute_script’’. Then, the run_monitor_job function submits the
enerated job scripts to the remote HPC site and returns from the
unction until the job is finished on the HPC/Cloud side. At last, the
odel outputs generated on the remote site are downloaded back to
he local environment.

https://uits.iu.edu/services/intelligent-infrastructure
https://scigap.org/pages/collaborations
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# 1. HPC resources authentication
agent = LaunchAgent(site_name = ’bigred3’,

project_name = ’cyberwater’, username = args
.username, passwd= args.passwd)

# 2. Upload local folder.
agent.upload_folder(’vic’)
# 3. Configure commands and resources for

experiment
job_id = agent.configure_slurm_job(nodes = 1,

ntasks_per_node = 2, walltime_in_mins= 10,
execute_script = ’vic/run.sh’)

# 4. Run the job remotely and wait until job
finishes.

agent.run_monitor_job(job_id)
# 5. Download all results to local directory.
agent.download_folder(’./results_vic_ssh’)

Listing 1: An example of LaunchAgent applied to the VIC hydrological
model.

The initial prototype implementation of the LaunchAgent library
hown in Listing 1 requires a blocking call ‘‘agent.run_monitor_job
(job_id)’’: the workflow engine needs to wait for the completion of
the remote jobs before it can proceed to submit/execute other jobs.
Such a design works well for simple synchronized workflows that
have a sequential execution order. In a more complex asynchronous
workflow, however, multiple components can execute concurrently
when there are no data dependencies between them. In such cases,
the initial blocking approach limits the potential performance gain. For
this reason, we designed a non-blocking (i.e., asynchronous) approach
to launching remote jobs. Compared with the blocking approach, the
steps of LaunchAgent library initialization, job configuration and data
uploading/download in the non-blocking approach are the same as the
steps in the blocking approach. Only the ‘‘agent.run_monitor_job’’ call
(step 4 in Listing 1) is changed and split into two pieces:

1. agent.launch_job(job_id)
2. status = agent.get_job_status(job_id)

This separation of job launching and monitoring allows users to
launch multiple remote jobs without blocking and users only check job
status when needed.

To coordinate the execution order of multiple asynchronous jobs,
LaunchAgent assigns each Slurm-based or Gateway-based job with a
unique job ID and maintains a JSON-based document database that
records the updated status of all configured remote jobs. Each remote
job goes through a sequence of statuses: CREATED, PENDING, RUN-
NING, COMPLETED/FAILED. For the Slurm-based method, the remote
job status is fetched by LaunchAgent using Slurm ‘‘scontrol show job’’
command; and for the Gateway-based method, an equivalent function
‘‘api_server_client.get_experiment_status’’ is used. Note that each time
when the job status changes, the updated status is persisted to the user’s
local filesystem, and such job state data allows the workflow engine
to either redo (resubmit) or undo (cancel) an unfinished remote job
when there is a failure (e.g., the internet connection drops, gateway
service becomes unavailable). A use case of the new non-blocking job
launching design is shown in Section 4.1, where we run a workflow
that couples the VIC5 model with the DHSVM model.

Typically, researchers have access to two types of cluster resources:
on-campus clusters and remote clusters accessible through services such
as ACCESS (i.e., the previous XSEDE5). At Indiana University, there
are high-performance/high-throughput clusters such as BigRed 3,6 and
Karst. Those resources typically require University IDs to operate and

5 https://www.xsede.org.
6 Supercomputers for academic research at IU, https://kb.iu.edu/d/alde.
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sually have lesser computing capacity. On the other hand, extreme-
cale computing infrastructure provided by ACCESS,7 such as TACC
tampede28 and PSC Bridges-29 provide significantly higher computing
apacity. To this end, LaunchAgent has been designed to suit both
settings through two channels: a direct Slurm-based channel, and an
Airavata gateway-based channel. The details of these two channels can
be found in [16]. Here we mainly focus on the direct Slurm-based
channel, as it is a more actively updated channel through which we
develop new functionalities such as asynchronous job management.

We developed the direct Slurm-based channel for LaunchAgent using
Paramiko SSH2 Python library.10 The direct Slurm-based LaunchAgent
provides functions such as remote authentication, file management,
and job control/monitoring for user tasks offloaded to remote slum-
based HPC systems. With the direct Slurm-based method, each user has
his/her own login credentials to remote resources, which allows them
to access HPC/Cloud systems directly through LaunchAgent. A typical
use case of the Slurm-based LaunchAgent is campus-based clusters, to
which most university students/faculties have direct access.

With the programming interface shown in Listing 1, a user needs
o configure the folder to be uploaded, which includes input data and
unning configurations. LaunchAgent automatically archives the user’s
older, submits it to remote computing resources, and retrieves output
ata once the job finishes. For authentication, Slurm-based LaunchAgent
llows users to authenticate themselves using their HPC login user
ame, with either passwords or SSH key pairs. Initially, we devel-
ped our prototype on Indiana University’s BigRed3 supercomputer.
sing the generic Slurm-based agent, we were able to launch parallel
rograms from personal computers. To accommodate more compute-
ntensive modeling applications on broader HPC platforms, we added
upport for ACCESS/XSEDE supercomputers, such as PSC Bridges-2
nd TACC Stampede2. We realize that different systems have different
equirements for user authorization and authentication and then add
ew support for them in the direct Slurm-based LaunchAgent implemen-
ation. For example, PSC Bridges-2 requires a user to upload his/her
SH login public key through a specific key management web page
operated by PSC), and Stampede2 requires multi-factor authentication
MFA) for each SSH session.
Apart from the ACCESS/XSEDE HPC resources, the direct Slurm-

ased LaunchAgent also supports cloud computing sources such as
Google Cloud Platform and JetStream Cloud. To initialize Slurm clus-
ters from those Cloud providers, we utilize the Slurm-GCP tool11 for
the Google Cloud Platform, and use the JetStream Elastic Slurm Cluster
tool12 for JetStream Cloud. Both Slurm-GCP and JetStream Elastic
Cluster tools allow dynamic resizing of clusters by allocating additional
cloud virtual machines on demand.

Alternatively, LaunchAgent can support the Gateway-based channel,
developed based on the SciGaP framework. The Gateway channel al-
lows a gateway administrator to pre-configure a set of remote resources
for all CyberWater community users. A new user can register him/her-
self through the Gateway web portal (https://cyberwater.scigap.org).
Once a user joins the CyberWater gateway and is approved by the
administrator, he/she gains access to a group of pre-configured HPC
systems defined by the group resource profile. The interface of using
the gateway channel is similar to that shown previously in Listing 1
(however, with the GateWay channel, the CyberWater gateway user-
name/password is used during the agent initialization function, instead

7 https://access-ci.org/.
8 Texas Advanced Computing Center. Stampede2 HPC system, https://

www.tacc.utexas.edu/systems/stampede2.
9 Pittsburgh Supercomputing Center. The Bridges-2 HPC System, https://

www.psc.edu/resources/bridges-2.
10 https://www.paramiko.org.
11 https://cloud.google.com/solutions/deploying-slurm-cluster-compute-
engine.
12
 https://github.com/XSEDE/CRI_Jetstream_Cluster.

https://www.xsede.org
https://kb.iu.edu/d/alde
https://cyberwater.scigap.org
https://access-ci.org/
https://www.tacc.utexas.edu/systems/stampede2
https://www.tacc.utexas.edu/systems/stampede2
https://www.psc.edu/resources/bridges-2
https://www.psc.edu/resources/bridges-2
https://www.paramiko.org
https://cloud.google.com/solutions/deploying-slurm-cluster-compute-engine
https://cloud.google.com/solutions/deploying-slurm-cluster-compute-engine
https://github.com/XSEDE/CRI\T1\textunderscore Jetstream\T1\textunderscore Cluster
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of per-HPC-system credentials). With an appropriate HPC site selected,
the Gateway-based LaunchAgent can use the selected site in the group
esource profile to launch computational tasks. More details of the
ateway channel design can be found in [16].
The LaunchAgent component is invoked by the use of our developed

PC module in the CyberWater generic model agent toolkit, which
rovides a straightforward HPC configuration mechanism with a GUI
nterface, hiding all detailed operations to access HPC remote resources
rom users. A real-world example using the HPC module is described in
ection 4.1, where we configure VIC5 model and DHSVM model with
he HPC module of generic model agent toolkit for remote execution.

.2. Asynchronous workflow control

It becomes more common for modern WfMSs to support adaptive
cheduling and parallel workflow execution [21]. In the following,
e will focus on the design of pipeline parallelism in CyberWater,
.e., the design of asynchronous workflow control in CyberWater to
vercome the limitation of VisTrails’ workflow control, and maximize
he effectiveness of CyberWater’s on-demand HPC access.
To increase the degree of parallelism in CyberWater for on-demand

ccess to HPC, a new asynchronous HPC pipeline scheduling middle-
are is designed and developed to enable independent tasks residing
n different branches of the workflow to be offloaded to different
PC resources simultaneously, through scheduling workflow items in
n asynchronous mode. In contrast to synchronous workflow schedul-
ng, multiple independent workflow items/jobs are submitted to the
emote HPC/Cloud resources through a non-blocking job submission
echanism, without waiting for the first submitted job to finish before
ubmitting another one.
To achieve asynchronous workflow control in CyberWater for on-

emand HPC job submissions, our design encompasses the following
omponents:

1. The LaunchAgent is designed to be non-blocking, returning con-
trol to the CyberWater workflow immediately after a user’s task
is submitted to a selected remote HPC/Cloud platform. Whether
the submitted job is executed or not in the remote site does not
block the workflow progression.

2. The Workflow Controller is extended to facilitate the reschedul-
ing of pipelined workflow items by rearranging the execution
order of modules in the pipeline queue. This enhancement en-
ables dynamic adjustments to the workflow based on the status
of offloaded jobs to HPC platforms.

3. A JobManager is introduced to monitor (via StatusManager) and
manage the execution of submitted remote jobs. It is responsible
for tracking the progress of offloaded user tasks and handling
the completion of these tasks.

The non-blocking behavior of the LaunchAgent was discussed in
he previous subsection. This subsection focuses on the design of the
obManager. The Workflow Controller undergoes modifications to in-
orporate the newly developed JobManager into the process of checking
he status of submitted jobs on the remote HPC platform(s) before
rocessing the modules. The non-blocking asynchronous mechanism,
ositioned between the pipeline scheduler and the modified VisTrails
orkflow controller, operates as follows: When the controller is ready
o execute the next module, it calls the JobManager. The JobManager
irst checks the status of any submitted but incomplete job at the
orresponding remote HPC site via the StatusManager, then updates the
ob status table accordingly, and returns the job status.
There are two scenarios in which the Workflow Controller invokes

he Rearrangement procedure, as demonstrated by the pseudo-code
n Fig. 5, to rearrange the pipeline queue: (1) When a job has just
een submitted by the current HPC module; and (2) when a previously
ubmitted job by the pending HPC module has not been completed
312
Fig. 5. The pseudo-code for the rearrangement procedure in the modified workflow
controller component to rearrange the workflow pipeline list.

Fig. 6. A typical sequence diagram of non-blocking asynchronous-controller workflow
in CyberWater.

on the remote HPC platform. In these situations, the modified Work-
flow Controller invokes the topologicalSort function of the pipeline
scheduler to retrieve the subgroup list of successor modules from the
current/pending HPC module. The pipeline list is then rearranged by
moving the current/pending HPC module, along with its successor
modules, to the end of the pipeline list.

Once the submitted job has been completed with a status code of
‘‘COMPLETED’’ in the job status table, the workflow controller triggers
the LaunchAgent to download the result files. This process is illustrated
in a typical sequence diagram depicted in Fig. 6.

The JobManager monitors the status of submitted jobs (refer to
Fig. 7), tracks and manages jobs on remote HPC sites by utilizing the
StatusManager backend class within the LaunchAgent to send query
requests. This occurs prior to the execution of each workflow module,
specifically when there are pending jobs on the remote HPC platform.
Upon receiving a response from an HPC site, the JobManager updates
the job status table accordingly. Three main functions of JobManager
are described below. The entire operation process of JobManager is
llustrated in Fig. 9.

Create: During the initiation of workflow execution, an abstract
data type(ADT) named job status table is created. This ADT is
instantiated as a Python dictionary data type and consists of
three key fields: module ID, job ID and status. Table 1 describes
the structure of the job status table.
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Table 1
The table describes the usages of each field of the job status table within the JobManager component.
Field Description

moduleId The Id of the HPC module submitting the job.
jobId The Id of the job submitted within the HPC module.
jobStatus The status of the job on the HPC module. The state-transition diagram of the submitted job is depicted in Fig. 8.
Fig. 7. Component diagram of HPC asynchronous control middleware of CyberWater
VisTrails.

Fig. 8. The state-transition diagram of submitted job described in the job status
ictionary of JobManager middleware.

Check and Update: Whenever there is an incomplete job on a
remote HPC site, the JobManager queries its status and updates
the job status table. This action is performed each time a module
in the pipeline list is about to be executed by our modified
workflow controller, specifically for jobs that have not been
marked as ‘‘COMPLETED’’ in the status table.
Clear: Upon the completion of the entire workflow execution,
the job status table maintained within the JobManager instance
is automatically deleted, ensuring the cleanup of resources.

To elaborate on the mechanism of the dispatcher in JobManager, we
ive a simple workflow example as shown in Fig. 10, which includes 8
odule nodes with corresponding moduleId ranging from 1 to 8. At
he very beginning of the workflow execution, the order to execute
he modules is determined by topological sorting represented by the
equence of moduleId(s). Since there are two HPC modules (corre-
ponding to two independent model computations respectively) in the
orkflow, with the previous synchronous workflow control method,
odule 4 cannot be processed until module 3 finishes its job execution
nd retrieves the result files via a blocking submission. In contrast,
y applying the new asynchronous workflow control, module 3 will
eturn once it submits the job via a non-blocking submission; module 4
hen can submit its job without waiting for the completeness of the job
313

ubmitted by module 3. This way, the two HPC jobs are being parallelly
Fig. 9. Flowchart description of JobManager for asynchronous workflow control in
CyberWater.

Fig. 10. Illustration of the mechanism of dispatching routine in JobManager with the
example of 8 nodes in a workflow including 2 HPC modules with dependency in their
successor modules.

offloaded to and executed on remote HPC platforms from modules 3
and 4 respectively, speeding up the total execution time of the entire
workflow.

3.3. HPC site recommendations

As different HPC platforms have different computational powers,
available resources, and charge rates, it would be desirable if some
aid can be provided to users about how to intelligently select an
appropriate HPC site and allocation for a given job at hand, to optimize
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Table 2
Statistics collected from a remote execution configured by LaunchAgent.
Attribute Meaning Example

app_name The name of an application. ‘‘dhsvm’’
app_constraints The resource planning constraint. {‘‘max_cores’’:1}
app_config Application runtime configuration. {‘‘sim_days’’:365, ‘‘sim_cells’’:30 686, ‘‘step_size_hr’’:1}

resource_config Choice of site and resource allocation used
for remote execution

‘‘{site_name’’:‘‘BigRed3’’, ‘‘launch_info’’:{‘‘nodes’’:1, ‘‘ntasks_per_node’’:1,
‘‘partition’’:‘‘general’’, ‘‘walltime’’:‘‘00:10:00’’}}

𝑇𝑒𝑥𝑒𝑐 Time used for remote execution. 387 s
𝑇𝑢𝑝𝑙𝑜𝑎𝑑 Time spent for uploading local artifacts. 2.5 s
𝑇𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 Time spent for downloading remote results. 2.9 s
𝑇𝑞𝑢𝑒𝑢𝑒 Time spent for queuing for batch system. 30 s
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users’ performance/cost ratio. In addition to providing the flexibility for
a user to configure a remote run with different resource allocations,
LaunchAgent has been extended to give site recommendations based
on execution records of historical jobs and resource descriptions of
available execution sites. If an application (e.g., DHSVM or VIC5) has
been previously configured by LaunchAgent and finished successfully,
LaunchAgent can use the recorded job histories to estimate the execu-
tion time and data transfer time for future remote executions of the
same computational model. Note that a ‘‘future execution’’ can have
different application configurations (e.g., spatial and time resolution,
study area, and time period).

To make site recommendations, a generic performance model has
been added in LaunchAgent so that we can infer the execution time
and data transfer time of the same computational model application
when using different (computation) resource allocations. LaunchAgent
then ranks all allocation plans using predefined rules (e.g., minimized
total time) to give realistic site suggestions. We first introduce how
LaunchAgent collects execution data, then we describe how we model
and predict execution time and data transfer time and make reasonable
resource planning suggestions. Finally, we demonstrate how our time
prediction method works in practice and how the site recommendation
integrates with CyberWater front end.

3.3.1. Job statistics collection
Table 2 shows a non-exhausted list of attributes currently gathered

by LaunchAgent for each configured remote job. The recorded infor-
mation reveals the information of the application itself (app_name,
app_constraints, app_config), the used resource application (resou-
rce_config), and performance timing data (𝑇𝑒𝑥𝑒𝑐 , 𝑇𝑢𝑝𝑙𝑜𝑎𝑑 , 𝑇𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 ,
𝑇𝑞𝑢𝑒𝑢𝑒).

Besides the information in Table 2, LaunchAgent also maintains a
certain static description of different execution sites. For each site,
such static information includes the login address and an optional
‘‘core speed’’ field. The login address allows the LaunchAgent to contact
remote sites to get the updated queue/partition usage information, and
the ‘‘core speed’’ field gives hints about the relative computation speed
of each CPU core in an HPC site. Currently, LaunchAgent has pre-
configured several sites including IU BigRed3, TACC Stampede2, and
PSC Bridges2, and users can also add other sites from the GUI front
end.

We have also added credential management in LaunchAgent, so
credentials used for remote login are safely saved locally using the
system’s keyring service (e.g., Windows Credential Locker). With saved
credentials, LaunchAgent iterates over each candidate site and predicts
the time needed for a given workload, and recommends the best
resource plan based on users’ preferences.

If the user wants to cancel a job during the execution of a workflow,
canceling the workflow will not cancel the jobs that were already sub-
mitted to the remote HPC platforms. Given that, CyberWater provides
an interface displaying the job ID, site name, status, created time, and
remote ID, by which a user can check multiple jobs and then click the
‘cancel’ button to cancel the job as illustrated in Fig. 11.
314
Fig. 11. The cancel interface of CyberWater VisTrails to cancel the jobs running on
the remote HPC platform.

3.3.2. Site recommendations
As LaunchAgent gathers more execution statistics of user model

pplications with different resource allocation and runtime configu-
ations, it can then estimate the execution, upload, download, and
ueue time of the same computational model under different resources
nd application configurations. An optimization goal for site recom-
endation is to minimize the total waiting time experienced by users
or job completion (𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑒𝑥𝑒𝑐 + 𝑇𝑢𝑝𝑙𝑜𝑎𝑑 + 𝑇𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 + 𝑇𝑞𝑢𝑒𝑢𝑒). Site
ecommendation involves two primary considerations: (1) determining
he optimal site for job launch, and (2) allocating resources, specif-
cally the number of CPU cores. While the choice of site affects the
pload/download time, considering both site choice and resource allo-
ation impacts queue time and execution time. Within CyberWater, the
ite recommendation incorporates factors such as the availability and
ompute capacity across geologically dispersed computing resources.
elow, we outline the current estimations of the four time components
ithin CyberWater.

• Execution time (𝑇𝑒𝑥𝑒𝑐) of a computational model (e.g., DHSVM)
at a specific site is modeled by Eq. (1) as below:

𝑇𝑒𝑥𝑒𝑐 = 𝑇𝑟𝑒𝑓 ×
24 × 𝑠𝑖𝑚_𝑑𝑎𝑦𝑠 × 𝑠𝑖𝑚_𝑐𝑒𝑙𝑙𝑠

𝑛𝑟_𝑐𝑜𝑟𝑒𝑠 (1)

This simplified linear model assumes that simulation execution
takes less time when the problem size is smaller (fewer sim_days
or sim_cells), or when there are more computing resources (larger
nr_cores). The reference execution time 𝑇𝑟𝑒𝑓 is calculated based on
the execution history of the computational model (e.g., DHSVM)
application at the target site. More advanced execution-time mod-
eling may be incorporated into our tool in the future.
Even if the application has never been executed at a target site
but has execution histories on other sites, CyberWater can still
provide realistic predictions of the execution time. Initially, it
estimates the 𝑇𝑟𝑒𝑓 based on the execution histories on the other
sites and then iteratively refines the prediction for the target
site as more performance data become available. These cross-site
execution time prediction capabilities are elaborated further in
Fig. 12.

• Upload/Download time (𝑇𝑢𝑝𝑙𝑜𝑎𝑑 / 𝑇𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑) is estimated in a
similar way, but without considering the effect of nr_cores in Eq. (1
).
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• Queue time (𝑇𝑞𝑢𝑒𝑢𝑒) estimation in LaunchAgent is implemented
using Slurm’s ‘‘srun –test-only’’ feature. For any job with a specific
allocation configuration (e.g., number of nodes, choice of parti-
tion, and walltime), this specific Slurm feature estimates the job
start time based on the current job queue information on remote
systems. We acknowledge that such estimation can be biased due
to the effects of early-terminated jobs, job queue back-filling, and
job reservations, but this is the only generally accessible method
at present to the best of our knowledge.

The devised predictive function of users’ job execution time gen-
ralizes across different HPC sites and varying job workloads. While
e utilize a Slurm feature for queue waiting time estimation, we note
hat, for computationally expensive tasks, their execution time typically
ay constitute a significantly more substantial portion of the total time
ompared to queue time.
The main logic of the site recommendation works by iterating all

andidate sites and estimating the (𝑇𝑒𝑥𝑒𝑐 , 𝑇𝑢𝑝𝑙𝑜𝑎𝑑 , 𝑇𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 , 𝑇𝑞𝑢𝑒𝑢𝑒) when
he same application is configured with different numbers of cores. The
hoice of the number of cores starts at 1, and gets doubled each time
e.g., 2, 4, 8, . . . ), until:

1. The core number reaches the maximum number of allowed cores
for this application (the ‘‘max_cores’’ is from the app_constraints
field in Table 2), or

2. The core number reaches the number of available cores of the
selected site, or

3. The execution time no longer decreases (using more cores can no
longer speed up the application due to the limited scalability)

After all candidates are tried, a list of all possible plans will be
generated, where the plan with the shortest total time (𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑒𝑥𝑒𝑐 +
𝑇𝑢𝑝𝑙𝑜𝑎𝑑 + 𝑇𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 + 𝑇𝑞𝑢𝑒𝑢𝑒) will rank the highest and is ready to be
launched. Note that LaunchAgent currently also support other ranking
preferences such as minimizing normalized service units (NUs) based
on XSEDE SU converter,13 this allows researchers to make the best
use of their ACCESS/XSEDE allocations when considering service units
between different systems are transferable.

Fig. 12 shows a demonstration of the execution time predictions for
4 subsequent DHSVM jobs in two sites (IU BigRed3 and PSC Bridges-
2). The four jobs are all configured for the same geographic area with
the same amount of cells (sim_cells = 30686). Job 1 is launched in
the BigRed3 HPC system for the simulation of the first 6 months of
2010 (sim_days = 181, site_name = ‘‘BigRed3’’), and Job 2, 3, and 4
are launched in a different HPC system for a longer full-year period
(sim_days = 365, site_name = ‘‘Bridges2’’). For each job, we plot the
predicted execution time for the target HPC systems in dashed lines,
and the actual execution time (𝑇𝑒𝑥𝑒𝑐) in bars. Job 1 is the only job that
has no predicted execution time, since it is the first DHSVM job that
LaunchAgent has recorded and there are no previous DHSVM execution
histories available to make predictions. For Job 2, even though the
DHSVM model is configured at a different site with a different and
longer simulation period, LaunchAgent is able to make a relatively
accurate execution time prediction (288s vs. the actual 290 s execution
time for Job 2) based on the execution history of Job 1. The prediction
is based on the execution time modeling shown in Formula (1) which
considers the effects of core speeds of different sites, and is capable of
predicting the performance of various simulation configurations. The
𝑇𝑟𝑒𝑓 in Formula (1) also gets updated when there are more execution
histories of the same application available: both Job 3 and 4 are
also submitted to Bridges2 with the same configuration as Job 2. The
increasing collected execution data makes the predictions on Bridges2
more reliable over time.

13 XSEDE SU converter: https://portal.xsede.org/su-converter. A newer ver-
ion of the converter is now accessible at https://allocations.access-ci.org/
xchange_calculator.
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Fig. 12. Demonstration of execution time prediction with LaunchAgent. Job 1 is a
half-year DHSVM execution on BigRed3, and job 2,3,4 are full-year DHSVM execution
on Bridges2.

Fig. 13. The recommendation system interface for 3 platforms including bridges2-
shared, bridges2, and BigRed3 for VIC5 model sorted by SUs ascendingly.

With the recommendation function integrated with the CyberWater
frontend, users can choose the best site/platform. Fig. 13 shows the
recommendation list for 3 platforms by demonstrating each site’s name,
the partition name, the number of nodes applied, the number of cores
applied, the wall time in minutes, the queue time, the upload time,
download time, total time, and SUs and NUs. Users can sort the list by
a certain column by simply clicking the header tab, and then select the
option by clicking the row where the chosen option locates, e.g., users
can click the ‘‘SUs’’ (service units) header tab to get the options list
sorted by service units charged as Fig. 13.

In Fig. 13, the ‘‘Wall Time’’ is the Slurm walltime to allocate
for the remote execution. We currently configure this walltime to be
1.5 times the estimated execution time, so that applications are less
likely to be terminated early due to under-estimated execution time.
Also, LaunchAgent checked resource plans ranging from 1 to 64 cores
accross various sites. Although VIC5 is capable of utilizing more than
64 cores, LaunchAgent determined that using additional cores did not
further reduce execution time (measured in minutes). Consequentently,
LaunchAgent stopped checking with more than 64 cores.

4. Use case and performance analysis

4.1. Use case

In this section, we demonstrate how CyberWater framework’s con-
venient and on-demand access to HPC/Cloud systems works through
real-world hydrological modeling workflow examples. We then focus
on the comparisons of computational performance for synchronous ver-
sus asynchronous modeling workflows in different local/HPC execution
environments.

CyberWater offers various data agents for users to retrieve diverse
forcing data online, generic model agent toolkit to execute user’s

https://portal.xsede.org/su-converter
https://allocations.access-ci.org/exchange_calculator
https://allocations.access-ci.org/exchange_calculator
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Fig. 14. The overall HPC-enabled workflow running VIC5 module in Bridges2 platform
with one-year data of the WBSusquehanna river basin.

models either locally or remotely on High-performance computing
platforms, and visualization utilities to display the model simulation
results. Note that users interact CyberWater with its graphical user
interfaces (GUI) in their local desktop/laptop workflow environments.
By utilizing the HPC module in CyberWater, we can launch the selected
tasks on remote HPC systems. Importantly, CyberWater allows users
to integrate the input/output of such on-demand remote execution
seamlessly with the local workflow management system. Also, it is con-
venient and desirable to run the user’s model locally by using RunMod-
uleAgent instead of the HPC module in the CyberWater generic model
agent toolkit, if the user’s model does not need much computation
power during the model prototyping and debugging stages.

4.1.1. Synchronous HPC on-demand workflow
To demonstrate on-demand access to HPC in the CyberWater frame-

work, we first compose a synchronous hydrological modeling workflow
through CyberWater GUI. This workflow uses the VIC5 model to study
the West Branch Susquehanna14 river basin for the period 1995–1996.
This study area covers more than 17,700 square kilometers.

As shown in Fig. 14, we define the time/space range of the studied
problem by configuring the TimeRange and SpaceRange module for the
WBSusquehanna river basin. Then, from the NLDAS (North American
Assessment-Land Data Assimilation System)15 [22], we use the Hourly
NLDAS Forcing for VIC5 group module, which internally contains an
NLDASAgent data agents to fetch 7 variables including temperature,
longwave radiation, shortwave radiation, precipitation, pressure, water
vapor pressure, and wind speed, and the corresponding unit conver-
sions. This way, CyberWater will pull the seven chosen types of datasets
of the specified time/space range from the NLDAS site to the local cache
directories. After that, we use several ‘‘Generator’’ modules to prepare
the forcing data and parameter files for the VIC5 execution. Then, the
HPC module is used to launch the VIC5 hydrological model to the PSC
Bridges-2 system. During the remote launch, all prepared data are sent
to the remote HPC/Cloud system; the VIC5 model is then executed in
the remote HPC/Cloud environment; and, finally, all output results are
downloaded to the specified local output directory. This entire launch

14 USGS information used: https://waterdata.usgs.gov/pa/nwis/uv?siteno=
01553500.
15 The NASA Goddard Earth Sciences Data and Information Services: https:
//ldas.gsfc.nasa.gov/nldas/v2/models.
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Fig. 15. The resulting VIC5 simulated total runoff for the West-Branch Susquehanna
river basin.

Fig. 16. The case study space range for the VIC5 model and DHSVM model, the yellow
grids indicate the spatial area for the VIC5 model and the blue square marks the space
boundary for the DHSVM model.

process is conducted automatically by the execution of the HPC module
in the workflow.

CyberWater also provides post-analysis and visualization modules,
such as the msmShowChart module. The msmShowChart module is used
to display useful information such as surface runoff and baseflow for
view. For example, Fig. 15 shows the total runoff, which is the sum
of baseflow and surface runoff time series of the studied example
workflow. The ‘‘baseflow’’ means the portion of the streamflow that is
sustained between precipitation events, and it is contributed by slowly
moving water within the porous media due to soil moisture or ground-
water. ‘‘Surface runoff’’ describes the excess amount of water from rain,
snowmelt, or other resources that move over the land surface. The
msmDatasetOperation module in Fig. 14 sums the baseflow and surface
runoff computed from VIC5 to obtain the total runoff.

4.1.2. Asynchronous HPC on-demand workflow
In this section, we demonstrate the asynchronous modeling work-

flow capability offered by CyberWater through constructing and exe-
cuting the VIC (version 5) model and The Distributed Hydrology Soil
Vegetation Model (DHSVM) in two different High-Performance Com-
puting platforms respectively, and parallelly. In this use case, the river
basin selected to illustrate is the West-Branch Susquehanna (WBS) river
basin, which covers more than 17,700 square kilometers including 299
modeling cells with 5-year data. The case study area for the DHSVM
model is a subarea of the one used for the VIC5 model, as Fig. 16
displays, and the ForcingDataFileGenerator module of the generic model
agent toolkit can implement the extract of the subrange of the DHSVM
model from the original space range for the VIC5 model.

Workflow construction initializes with a TimeRange module for a
simulation between 2010/01/01 00:00:00 (timeini) and 2015/01/01
00:00:00 (timeend). Since this simulation is hourly, it requires 43,825
data files as each forcing data file represents one hour (i.e., one-
time step) covering the entire watershed with 299 modeling cells at
a spatial resolution of 1/8 degree per cell. In other words, each forcing
data file is a map with 299 cells representing one hour time step to
be retrieved from NASA; then add a SpaceRange box with the limits:

https://waterdata.usgs.gov/pa/nwis/uv?siteno=01553500
https://waterdata.usgs.gov/pa/nwis/uv?siteno=01553500
https://ldas.gsfc.nasa.gov/nldas/v2/models
https://ldas.gsfc.nasa.gov/nldas/v2/models
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Fig. 17. Workflow used to bring all forcing data required to run the VIC5 model and
DHSVM model.

−76.213, −78.9155, 41.933, and 40.454 (x_max, x_min, y_max, y_min
respectively) to specify the four bounds of the study area.

NLDASAgent module is used to access the forcing data required for
the simulation from the NASA Earth database. An NLDASAgent module
is added to bring the following forcing variables: Temperature [K],
Pressure [Pa], Radiation Flux Long Wave [W/m2], Radiation Flux Short
Wave [W/m2], Total Precipitation [mm/h], Specific Humidity [kg/kg],
u-wind [m/s], and v-wind [m/s]. The resulting workflow is shown in
Fig. 17.

For the VIC5 model, the forcing data input should be in specific
units determined by the individual variables. In this scenario, the
temperature must be in Celsius, and the unit of pressure should be
kilo Pascal, and for this case study, the total precipitation will need
to be in meters per hour. Thus, users need to check whether the units
of the data retrieved from the data sources meet the requirements of
the executable model. If not, unit conversion is necessary, and the
msmUnitConversion module is provided in CyberWater to perform the
unit transformation. For instance, to convert the temperature from the
NASA Earth database in Kelvin to Celsius, the user needs to configure
the input parameter ‘‘operation’’ in the msmUnitConverison module as
‘‘𝑥 − 273.15’’. This ‘‘operation’’ setting allows users to conduct mathe-
matical formula operations using ‘‘x’’ as the variable representing the
dataset given in the input port. Similarly, the ‘‘operation’’ can be set
into ‘‘𝑥∕1000’’ to transform the pressure from Pascal to kilo Pascal and
filling ‘‘operation’’ as ‘‘𝑥∕1000’’ to convert the total precipitation from
millimeters per hour to meters per hour via other two msmUnitCon-
verison boxes. CyberWater offers the msmDatasetOperation module to
facilitate mathematical operations between two datasets, which can
be applied in computing the magnitude of the wind speed based on
the information of the two components associated with two directions
of the wind speed (𝑥2 + 𝑦2)∕2, where x and y represents U-Wind and
V-Wind separately obtained by NLDASAgent module. Additionally, we
can also use the msmDatasetOperation module to calculate the Water
Vapor Pressure which is required for the energy-balance model of the
VIC model, by performing the operation (𝑥 ∗ 𝑦)∕0.62, where x is the
Specific Humidity [kg/kg], and y is Pressure [PA]. Besides, Pexp as
a needed forcing variable can be output via the msmDatasetOperation
module with the equation below:

𝑃𝑒𝑥𝑝 = 𝑥

𝑒
(

17.3𝑦
𝑦+237.3

) , (2)

where x is Pressure [kPa], y is Temperature [◦C] read from the an-
tecedently connected msmUnitConverison module boxes, and e is a
mathematical constant approximately equal to 2.7183 for here. The last
forcing variable necessary for VIC model is Relative Humidity, which
can be obtained by conducting the operation ‘‘2.63 ∗ 𝑥 ∗ 𝑦’’, in which
and y represent Specific Humidity [kg/kg] retrieved by NLDASAgent
odule and the Pexp variable yielding from msmDatasetOperation mod-

ule, and the resulting workflow as Fig. 18 shows.
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Fig. 18. Adding msmUnitConverison modules and msmDatasetOperation modules to
erform data unit conversions and mathematic operations on datasets.

.1.2.1. MainGenerator. To start constructing the VIC5 model with
generic model agent toolkit, bring a MainGenerator module to set up
the working directory for the model simulation where it receives all the
forcing datasets as inputs. In addition, all forcing data are collected for
VIC5 model by this MainGenerator module. The working directory path
will be passed through the output port WD_Path to all the following
connected components in the generic model agent toolkit to construct
the VIC5 model.

4.1.2.2. AreaWiseParamGenerator. Add an AreaWiseParamGenerator to
set up the parameter files (e.g., soil parameter files and vegetation
parameter files) for the model. For the illustration in this example, these
files need to be created by the user before using the AreaWiseParamGen-
erator module in advance.

4.1.2.3. ForcingDataFileGenerator. Add a ForcingDataFileGenerator, re-
sponsible for the creation of the forcing data files of the model. This
component takes the forcing information gathered from Data Agents and
the MainGenerator, and saves it into the user’s specified folder.

4.1.2.4. InitialStateFileGenerator. Add an InitialStateFileGenerator. This
module is responsible for placing the initial state files in the right folder
in the working directory.

4.1.2.5. HPC. Add an HPC module, which is responsible for accessing
remote High-Performance Computing (HPC) facilities on demand. It
retrieves the results back to the workflow when the execution of the
user’s model on the remote HPC platform is completed. Users need to
select the HPC platform and its corresponding credentials and configure
the executable model and arguments for execution, and formats of the
resulting data file.

Generally, researchers have access to two types of remote HPC
resources: academic HPC clusters such as Bridges2, BigRed3, etc., and
commercial cloud computing sources like Google Cloud Platform. With
the HPC module, users can conveniently select the viable HPC platform
from the drop-down list in the input panel of the HPC module as Fig. 19
shows, either through the SSH direct connection channel or Airavate
gateway-based channel. Furthermore, the HPC module also offers the
flexibility for users to add and adopt their own new HPC platform by
simply providing the IP address or domain name of their customized
platform. Then the HPC module will store the platform configuration
and list this newly added platform in the drop-down list for the user
to choose in the next run. The HPC module can only be conducted
when all of its inputs are ready, which is guaranteed by connecting
the output port of the three previous components in Section 4.1.2.2,
Section 4.1.2.3, and Section 4.1.2.4 to the Ready_List input port of the
HPC module.

Similar to unit conversion for the original forcing data file, the
user can add two msmUnitConverison modules to convert the units of

datasets of variables ‘‘Surface Runoff’’ and ‘‘Baseflow’’ separately. To
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Fig. 19. The input panel configuration interface of the HPC module of the generic
model agent toolkit.

Fig. 20. Workflow to execute VIC5 model on Bridges2-share HPC platform and
isualize the resulting datasets.

ompute the ‘‘Streamflow’’ variable, the msmDatasetOperation module
an be used again to perform a mathematical operation ‘‘x + y’’, where
represents Surface Runoff and y is Baseflow, both in cubic meters
er second. In addition, for the purpose of visualizing the resulting
atasets computed from the VIC5 model by adding three msmShowChart
odules to create time series charts for the resulting datasets of ‘‘Sur-
ace Runoff’’, ‘‘Baseflow’’ and ‘‘Streamflow’’ by connecting the ‘‘result-
ng_dataset_name’’ output port from the two previous msmUnitConveri-
on modules for ‘‘Surface Runoff’’ and ‘‘Baseflow’’, and the ‘‘result-
ng_dataset_name’’ output port from the msmDatasetOperation module
or ‘‘Streamflow’’, with the input port of ‘‘dataset_names_mainAxis’’ in
hree msmShowChart modules respectively, and the current workflow
s shown in Fig. 20.
To construct the DHSVM model with the generic model agent

oolkit, repeat the steps described in Section 4.1.2.1 to Section 4.1.2.5
o add modules including MainGenerator, AreaWiseParamGenerator,
orcingDataFileGenerator, InitialStateFileGenerator, and HPC module in
he workflow for DHSVM model simulation.
Likewise, to convert the unit for the resulting variable ‘‘Streamflow’’

alculated by DHSVM model, the user can now add an msmUnitConveri-
onmodel and configure the ‘‘operation’’ parameter as ‘‘x/3600’’, where
represents Streamflow in cubic meters per hour to transform the new
nit into cubic meter per second. To visualize the resulting datasets
omputed by the DHSVM model, the user can add an msmShowChart
odule to create time series charts for the resulting ‘‘Streamflow’’
ataset. This is done by connecting the ‘‘resulting_dataset_name’’ out-
ut port from the first msmUnitConverison module, which processes
he ‘‘Streamflow’’ data calculated by the DHSVM model. The overall
orkflow is depicted in Fig. 21. The resulting surface runoff, baseflow

predicted by the VIC5 model brought from Bridges2-shared platform
and the comparison between the resulting streamflow predicted by the
VIC5 model and the DHSVM model from BigRed3 are plotted as Fig. 22.
Results shown in Figs. 15 and 22 are based on default parameters with
VIC5 and DHSVM models without any calibration.
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t

Fig. 21. Overall workflow to execute VIC5 model on Bridge2 HPC platform and
DHSVM model on BigRed3 platform asynchronously.

Fig. 22. (a) The resulting surface runoff predicted by the VIC5 model in WBSusque-
hanna retrieved from Bridges2-shared platform, (b) The resulting baseflow predicted
by the VIC5 model in WBSusquehanna retrieved from Bridges2-shared platform, and
(c) The comparison between the resulting streamflow predicted respectively by VIC5
model (left y-axis) from Brdiges2-shared platform and by DHSVM model (right y-axis)
from BigRed3.

4.2. Performance analysis

The performance of workflow-parallelism of Cyberwater is evalu-
ated by comparing the elapsed time of executing the HPC modules
synchronously and asynchronously. In this section, we present the
performance experiments on the modeling use case described in Sec-
tion 4.1.1 with different synchronous versus asynchronous workflow
setups, to analyze the performance advantage offered by asynchronous
workflow capability within CyberWater framework.

Fig. 23 presents the statistical time consumption for each step,
clearly illustrating the performance differences among the local runs,
synchronous remote executions, and asynchronous remote executions.
Firstly, we start with the local run of VIC5 and DHSVM models in syn-
chronous workflow in CyberWater. The baseline runtime environment
for our operations is a Windows 10 local PC machine with 16 GB of
RAM. Loading and reading 8 cached raw forcing datasets, each exceed-
ing 100 MB in size and spanning 5 years of data in the WBSusquehanna
watershed area, retrieved by the NLDASAgent module (illustrated in
Fig. 23 under the legend ’Loading Cached Forcing Dataset), takes
proximately 15 min. Following that, the ForcingFileGenerator module
f CyberWater generates the processed forcing data files required for
he VIC5 model in an additional 10 min, as indicated in Fig. 23 under
he label ’Generating Forcing Data Files for VIC5 Model’. These initial
tages of model preparation, involving loading the dataset cache and
enerating the forcing data file, are consistently performed on the
ser’s local machine. Transferring these preparatory steps to an HPC
latform, while marginally enhancing the performance, would impose
dditional computational demands on the HPC system. To optimize
esource utilization, we allocate only the model execution phase to
he HPC platform, while retaining the model preparation processes on
ocal machines, to maximize the utilization of local desktop computing
apacities. Subsequently, the RunModuleAgent module is used in the
ocal run scenario to execute the VIC model binary code in CyberWa-
er, consuming a total of 41 min for the entire VIC5 execution and
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Fig. 23. (a) Time breakdown for the workflow coupled with the VIC5 model running
with 1 CPU and the DHSVM model running with 1 CPU in different HPC setup
environments. (b) Time breakdown for the workflow coupled with the VIC5 model
running with 64 CPUs and the DHSVM model running with 1 CPU in different HPC
setup environments.

66 min for the first VIC model execution. Following this, the second
ForcingDataFileGenerator module generates the forcing data files accus-
tomed to the DHSVM model within 4 min, representing a significantly
smaller space range as a subset of the previous date. The inclusion
relationship between the two space range sets is depicted in Fig. 16
in Section 4.1. The second RunModuleAgent module executes DHSVM,
requiring 29 min for the DHSVM execution. Thus, the overall elapsed
duration of the use case of synchronous workflow running on the local
machine amounts to 97 min, with model execution constituting a sub-
stantial proportion. Next, to establish a baseline of on-demand access
to HPC in the synchronous workflow, the RunModuleAgent modules
are replaced by HPC modules within this workflow, facilitating the
ffloading and execution of the VIC5 model and DHSVM model in
ridges2 HPC system. Despite the time required for uploading inputs,
aiting for remote execution, and downloading result outputs, the
lapsed time to run the model is reduced to 35 min and 16 min for
he VIC5 model and DHSVM model. Notably, employing 64 CPU cores
n a node for VIC 5 model execution on the Bridges2 platform yields
pproximately 9 times speedup. As a result, the total execution time for
he synchronous workflow involving both the VIC5 and DHSVM models
as decreased by a factor of 2.5.
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Fig. 24. The sequence diagram illustrates the mechanism of how the workflow engine
executes the modules synchronously.

Fig. 25. The sequence diagram illustrates the mechanism of how the workflow engine
executes the modules asynchronously.

While introducing on-demand access to HPC in CyberWater reduces
the overall workflow execution time, further enhancements can be
made by extending the LaunchAgent tool to a non-blocking version for
job submission and implementing a pipeline parallelism mechanism in
CyberWater to execute HPC module(s) asynchronously. Fig. 24 shows,
in a straightforward way, how each module works and collaborates
within the CyberWater framework in a synchronous workflow: the
entire cycle for a model to run remotely with the HPC module includes
he model’s input data uploading, queuing, executing, and output re-
ults downloading; the next model can be processed only when the
hole cycle of the former model finishes. In contrast, the asynchronous
orkflow of CyberWater enables to offload of multiple models to HPC
ite(s) in an asynchronous manner without blocking the workflow, and
hen to execute these models on HPC in parallel, where monitoring the
tatus of remote jobs with the JobManager component periodically. As
ndicated in Fig. 25, the newly extended workflow engine will move
orward to data preparation for the successive model after it submits
he previous job to the HPC platform. Therefore, the time for queuing
nd executing the former model overlaps with the time for preparing
he data, uploading the input, submitting, queuing, and executing the
ob for the following model. To demonstrate, we conduct the third
xperiment with CyberWater’s new asynchronous workflow for on-
emand access to Bridges2 HPC system for offloading the VIC5 model
nd DHSVM model execution. As shown in Fig. 23(b), we observe that
hen the VIC5 model task waits to start and executes, the second
odel, DHSVM, generates its forcing data files, uploads the inputs,
ueues for allocation, and begins computation in the meantime, which
esults in the overall elapsed time of the entire workflow drops to
2 min from the previous 74 min consumed using the synchronous
orkflow with the same HPC resource configurations, achieving 1.42
imes speedup.
The results of the last two experiments illustrate minor overall

erformance variations of the same asynchronous workflow using two
ifferent HPC platforms, which is mainly due to the difference in
ueuing time among various HPC platforms. In the fourth experiment,
e run the VIC5 in the BigRed3 system, which also includes 64 cores in
node, but always needs more queue time, in this situation, the total
ime for the VIC5 model running in the HPC platform increases.t As a
esult, the DHSVM model finishes earlier, which causes the workflow
ngine turns to the other sub-branch where DHSVM model locates and
ownloads the result files of DHSVM model from Bridges2 platform,
nd then hangs on until the VIC5 model job status becomes ‘‘com-

leted’’. This case costs 56 min, 4 min longer than the one to run the
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models on the Bridges2 platform in the third experiment. The last one
switches the HPC platforms for two models, i.e., the DHSVM model
is offloaded to BigRed3 platform, and the VIC5 model is offloaded
to Bridges2 platform. In general, the new asynchronous workflow in
CyberWater allows independent offloaded models to be executed in
parallel with on-demand HPC access, which significantly improves the
performance of the corresponding synchronous workflow with the same
HPC resource configurations.

5. Related works

An overview of related works and tools is helpful for understanding
the landscape and highlighting the key distinctions between our pro-
posed framework and existing ‘‘state-of-the-art’’ tools. Notable among
these tools are FirecRest [23], NEWT [24], PSI/J [25], Globus GRAM
[26], SAGA [27], DRMAA [28], and GISandbox [29], each contributing
to the evolving field of HPC.

FirecREST, developed by the Swiss National Supercomputing Centre
(CSCS), is a RESTful Web API designed to enhance the accessibility of
HPC resources for communities using web applications. While sharing
similarities with NEWT in principle, FirecRest differs in its architecture
design and API implementation. PSI/J is an open, language-agnostic
Job Abstraction API (JAAPI), which enables the portability of HPC
applications across diverse HPC platforms with varying scheduler im-
plementations. Other significant JAAPI efforts include Globus GRAM,
SAGA, and DRMAA. GISandbox, a science gateway constructed upon
Jupyter Notebooks, is specifically tailored for geospatial computing.
Its objective is to empower users to execute notebooks on cloud or
supercomputer resources. These existing works within HPC commu-
nities predominantly focus on developing ‘‘state-of-the-art’’ tools with
three main objectives: (1) Web API Accessibility: Offering Web APIs
to facilitate user access to HPC resources. (2) Portability: Enabling
the portability of HPC applications across different HPC systems and
schedulers. (3) Science Gateway Approach: Providing a science gateway
approach for users to adopt HPC as their computing platform within
specific domains.

It is important to note that these tools are primarily centered around
HPC platform sites, where workflows are executed on HPC platforms,
and schedulers operate on HPC sites. Additionally, the tools utilizing
JAAPI do not directly engage with the utility of users’ local desk-
tops/laptops. This is a key distinction from our proposed framework,
which places a primary emphasis on the desktop side. Our work takes
a user-centric perspective, concentrating on computing systems with
a desktop orientation. This distinctive approach establishes a new
computing ecosystem that leverages both local and HPC resources
seamlessly, diverging from the prevalent HPC-oriented paradigm em-
phasized by ‘‘state-of-the-art’’ tools. Within this novel computing frame-
work, HPC resources are accessed on-demand exclusively for compu-
tationally intensive tasks (e.g., workflow items). The entire workflow,
however, is orchestrated and overseen by a desktop workflow system.
Our CyberWater framework incorporates non-blocking LaunchAgent,
asynchronous workflow control, and JobManager, residing on desk-
tops/laptops. While these functionalities, such as job submission and
status monitoring, parallel those found in existing HPC tools, they
offer additional benefits, such as supporting offloading computationally
expensive operations from local computers to remote HPCs.

The limitations of prevailing HPC-oriented approaches in existing
tools are twofold:

1. Underutilization of Local Desktop Computing Capacity: Existing
tools often fail to leverage the computing capacity of users’ ubiq-
uitous local desktop computers effectively. Access to HPC/Cloud
resources is not cost-free and is typically tied to project funding,
raising sustainability concerns. Our approach advocates access-
ing HPC on-demand solely for computationally expensive tasks,
allowing the remaining workflow to be executed on desktops.
320
This optimizes the use of HPC resources, directing saved comput-
ing power towards demanding tasks within the HPC community.
Notably, certain workflow items, such as GUI-based configura-
tions, data visualization, plotting, and interactive computing, are
better suited for desktops than HPCs. CyberWater also facilitates
reproducible computing, with provenance information managed
more conveniently and efficiently on users’ desktops.

2. Restricted Accessibility of HPC-Oriented Tools: Present HPC-
oriented tools are confined to specific HPC sites, limiting their
accessibility to users who have access to those particular super-
computers. In contrast, our new computing ecosystem imposes
no specific requirements on HPC sites. CyberWater extends flex-
ibility to users by providing a diverse array of HPC platform
options, including Bridges2, Stampede2, Jetstream from AC-
CESS, and Google Cloud. Users can even add new HPC facilities
themselves, fostering adaptability and workload balance across
various HPC resources.

Furthermore, unlike existing tools, our CyberWater framework in-
troduces a novel feature: site recommendation based on predicting
user task execution time. This assists users in selecting the most ap-
propriate HPC platform for their specific tasks, thereby optimizing
performance/cost ratios. This unique capability sets CyberWater apart
from current ‘‘state-of-the-art’’ HPC tools. In summary, our CyberWater
framework is a valuable complement to existing HPC-oriented tools, of-
fering enhanced flexibility, accessibility, sustainability, and predictive
site recommendation for optimal performance and cost efficiency.

6. Conclusions

This paper presents our novel work for CyberWater, a frame-
work system for open data and model integration, to enable seamless
on-demand access to HPC platforms via an asynchronous workflow
mechanism developed on a desktop workflow computing system. In
this framework, HPC modules in the workflow are processed asyn-
chronously, enhancing the performance of the CyberWater workflow
system through workflow parallelism. In a nutshell, we design and
develop the LaunchAgent tools in CyberWater to utilize either a direct
Slurm-based channel or gateway-based SciGaP channel to generally
offload computational expensive tasks to various high-performance
computing resources selected by users. We introduce the JobMan-
ager into CyberWater and extend the original VisTrails synchronous
workflow mechanism into an asynchronous workflow mechanism to
significantly improve the performance of independent models offloaded
to remote HPC platforms at workflow level. The JobManager is respon-
sible for re-queuing the modules in the workflow pipeline to facilitate
asynchronous workflow scheduling and control in CyberWater. A GUI-
based HPC module is developed as a component of the generic model
agent toolkit in CyberWater for users to construct their workflow and
submit the job to the remote HPC platform on demand effortlessly and
effectively, without users’ writing any HPC scripts/codes or knowing
any specific HPC platforms’ operation details. Furthermore, an HPC
site recommendation system has been designed and developed to
help users select the optimal remote HPC platform and configuration,
aiming to save time and/or reduce costs. To the best of our knowl-
edge, this study represents the first work of its kind in open data
and modeling framework with general on-demand access to HPC re-
sources through asynchronous workflow, facilitated by intelligent HPC
site recommendation. We believe that these unique system features
characterize the future workflow computing systems to form a new
computing ecosystem where desktops/laptops can seamlessly access
HPC resources on demand in a general and systematic manner. Such
a future computing ecosystem will not only take advantage of user-
friendly and rich GUI functionalities and ubiquitous computing power
of desktops/laptops, but also offer valuable HPC resources to those truly
computational expensive jobs on an on-demand basis, significantly
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enhancing the usability, scalability, and sustainability of the overall
computing ecosystem composed of desktops/laptops and various HPC
resources. We are currently working on more data-intensive compu-
tational tasks and expanding the functionality of the LaunchAgent
utility to submit multiple tasks within a job to further optimize the
performance of models for repetitive computations over modeling grids
with CyberWater framework.

The CyberWater framework, designed to address the unique mod-
eling challenges of water science and engineering, introduces innova-
tive methods and techniques. Particularly, its approach of establishing
an efficient and sustainable new computing ecosystem, harnessing
the computational power of users’ personal desktops/laptops with on-
demand access to high-performance computing (HPC)/Cloud resources,
offers a versatile solution applicable beyond the realm of water science.
The methodologies honed within the CyberWater framework, including
asynchronous workflow control, LaunchAgent, JobManager, and HPC
site recommendation on desktop workflow system, possess inherent
adaptability and can be readily extended to other desktop computing
systems for diverse domains. For instance, the integration of user-
owned computing resources with dynamic and on-demand access to
HPC/Cloud capabilities holds promise for facilitating scientific comput-
ing in fields such as agriculture, transportation, biology, and medicine.
By leveraging the principles developed in CyberWater, organizations
and researchers in various domains stand to benefit from a robust,
scalable, and sustainable computing infrastructure.
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