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Abstract— Physics Based Ray-Tracing (PBRT) rendering is a
process to generate synthesized images by simulating real
environment using the spatial, reflection, refraction, diffusion
information from the scene to achieve photorealism. Although
PBRT is widely used in architecture, video games, movie effects,
and VR/AR applications, the ray-tracing technique in PBRT for
realistic modeling of light transport suffers from major difficulties
on resource-limited edge devices due to its overwhelming
workload of computing and irregular memory access pattern
limiting to its real-time usage only on the state-of-the-art
GPUs. In this paper, we proposed a hardware acceleration
solution which incorporates novel techniques including
customized hardware data structure acceleration, scene
background information clustering, 3D Construction and
adaptive mix-precision computing scheme leading to a low-cost
ray-tracing rendering solution suitable for edge devices. The result
design has been implemented in 28nm CMOS technology.
Experimental results on open-source dataset show a 6X reduction
of computing workload, 56X saving of background memory
requirements and 33% power saving compared with baseline
design, enabling hardware adaptation of PBRT accelerator on a
resource-limited edge device.

Keywords— Physics Based Ray-tracing Rendering, Edge
Devices, AR/VR, Virtual Object Rendering, Software-hardware
codesign

1. INTRODUCTION

Physics based ray-tracing [ 1] is a photorealistic rendering technique
in computer graphics to generate computer-synthesized image from a
3D space. This technique works by tracing the light transportation
bouncing off all the surface, which makes it capable of simulating
various photorealistic effect such as reflection, refraction, soft shadows,
scattering, depth of field, motion blur, caustics, ambient occlusion, and
dispersion phenomena. To address the overwhelming workload, much
work has been performed recently to accelerate ray-tracing rendering
tasks using software approaches or general-purpose hardware
processors, such as NVIDIA Optix [2], Intel Embree [3], OpenGL [4],
MIC [5], NVIDIA RTX GPUs s, etc.

As the prevalence of mobile devices supporting Augmented Reality
(AR) and Virtual Reality (VR) applications continues to rise, there is an
increasing interest in improving the visual realism of the image scene
for enhanced user’s experience. However, there are significant
challenges: (1) Existing AR techniques based on rasterization rendering
cannot replicate the same visual effect as a physical lens, thus failing to
blend into the scene [7][10]. (2) Current AR solutions face the compute
bottleneck of tracking and recognizing the real-world objects and
environment because the tracking of the device’s position and
orientation need to be high precision for an object to be inserted
properly. (3) The memory overhead for complex 3D scenes limits the
usage of photorealistic rendering algorithm on the edge devices.
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To address the above challenges for high-quality AR/VR
applications, recent works have been integrating photorealistic ray-
tracing techniques to high-quality AR applications [8]. Unfortunately,
most prior works are implemented on GPCPU and GPGPU platforms
aiming for the best rendering quality, which consume too much power
and memory for resource-limited edge devices.

In this work, a power efficient ray-tracing solution is proposed to
address the challenges of photorealistic ray-tracing tasks on edge
devices. Fig. 1 shows the ray-tracing task for photorealistic AR/VR
applications. The contributions from this wok include: (1) Software-
hardware codesign of a customized Bounding Volume Hierarchy (BVH)
control scheme and efficient data structure are implemented with more
than 6X speed up on various test scenes; (2) Software-Hardware
codesign of a 3D viewpoint based background clustering scheme is
implemented with more than 56X memory saving on the background
maps and is able to reduce background traversal complexity with
negligible image quality loss; (3) A mix-precision computing scheme
is implemented in different rendering stage for the optimal cost-quality
trade-off for the rendering task, which leads to 21% reduction of the
power compared with the baseline design with minimum image quality
loss. At last, a28nm ASIC is implemented, achieving 41.6 MRay/s with
69.5mW, leading to 28~44X higher power efficiency than existing
ASIC solutions and 22X power efficiency then the state-of-the-art
mobile GPU for the ray-tracing rendering task.
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Fig. 1. Illustration of Ray-Tracing Rending task for AR applications for Virtual
Object insertion

II. BACKGROUND AND CHALLENGES

A. Ray-Tracing Rendering

Ray-tracing is a technique often used in computer graphics to
generate a synthesized 2D image, by extending camera rays into a
constructed 3D scene, performing the actual light ray transportation and
calculating the approximate value of the pixels in the final rendered
images.

Traditional rendering engines and applications are mainly based on
low-cost rasterization technique, such as Microsoft Windows Mixed
Reality Toolkit (MRTK), OpenGL[4], Apple ARKit and Google
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ARCore. Different from rasterization technique, ray-tracing is a
photorealistic rendering technique which will simulate the
transportation of light rays in a 3D scene. Fig. 2(a) shows the ray-tracing
algorithm. By considering all the light transportation on all the object
and background surface, photorealism could be achieved. Fig. 2(b)
shows the difference between ray-tracing and rasterization, light
transportation effects such as reflection and shadow are hard to achieve
in rasterization rendering.
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Fig.2. (a) Ray-tracing technique overview. (b) Memory requirement for
common 3D mesh scenes compared with limited on-chip memory size. (c)
Real-time ray-tracing requirement for edge devices. (d) Difference between
ray-tracing and rasterization rendering. (e) Render results with low and high
computing precisions.

Mathematically, ray-tracing algorithm is solving the rendering
equation in (1) for every specific scene and ray casted by user camera:

Ly(P,w,) = fsz f (P, wy, w;)L;(P,w;)|cosb;| dw; (1)

As shown in Fig. 2(a), Lo is the radiance leaving at object point P
along the direction wo; f is the Bidirectional Reflectance Distribution
Function (BRDF) of the object surface, which takes this incoming light
direction i and outgoing direction o at point P, returning the ratio of
reflected radiance along o to the irradiance incident on the surface
from direction wj; Li is the incoming light along direction wi, i is the
angle between i and surface normal. The final pixel value is calculated
by simulating the transportation of the light ray and integrating all the
effects. Thus, ray-tracing is able to offer true ability for photorealistic
image synthesis and thus enhance the visual quality of AR/VR
applications [10][11].

B. Hardware Design Challenges

Modern processors such as GPUs are mostly used for ray-tracing
rendering tasks, but the power consumption is far beyond the ability of
resource-limited edge devices. For example, the power consumption for
Apple AlS5 Bionic chip is only 3.9W under modest workload, while
NVIDIA RTX 3090Ti consumes 398W under average workload. With
mobile devices rapidly becoming the central device in people’s daily
life, it is crucial to develop low-power real-time rendering solutions on
these resource-limited devices for mobile AR applications as shown in
Fig. 2(c). At the same time, ray-tracing algorithm is well-known for its
intense computing requirement and low error tolerance as shown in Fig.
2(e). As a result, most ray-tracing engines, such as NVIDIA Optix,
support double-precision floating point computing precision, which
results in higher cost and power, making it difficult to implement on
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resource-limited devices. Unstructured memory access pattern is also a
bottleneck in ray-tracing applications. Each cast ray will evaluate
intersections for every mesh primitive, which requires access to the
complete object with unstructured requests. With the objects growing
more and more complex shown in Fig. 2(b), it is impractical to save the
complete object on chip.

There have been missing solutions for ray-tracing rendering on
resource-limited edge devices. In this paper, a novel fixed-point power
efficient hardware ray-tracing accelerator is implemented with 28nm
CMOS technology, with customized scalable on-chip BVH
acceleration data structure, viewpoint-focused background scene
clustering for both power and memory saving and a mix-precision
computing scheme to achieve the optimal cost-quality trade-off for the
rendering tasks. A 22~44X higher power efficiency is achieved
compared with GPGPU and state-of-the-art mobile GPU.

III. PROPOSED RAY-TRACING RENDER ON EDGE DEVICES

In this section, a ray-tracing accelerating design is proposed with
three distinct customized techniques through software-hardware
codesign to address the current challenge in ray-tracing render on edge
devices, including hardware data structure design for intersection
acceleration, viewpoint-focused background clustering for memory
saving and mix-precision computing for optimal power-quality trade-
off. The performance and quality of the proposed techniques are
evaluated in the next section.

A. Bounding Volume Hierarchy (BVH) Control Scheme

The main bottleneck for ray-tracing objects is intersection
evaluation. As shown in Fig. 3(a), the 3D object is defined using a
collection of triangle meshes. To render an object, each triangle is
evaluated for ray-intersection. Increasing the number of triangles
enhances the smoothness of the object surface, however, it also
increases additional overhead in terms of memory storage and
computing time. Without any GPU or multicore acceleration, rendering
an opensource Stanford bunny object with 69451 triangle primitives
takes 2.5 hours on Intel® Core™ i7-8665U CPU for the image
resolution of 640x480, with more than 90% of time performing
exhaustive intersection search. To achieve faster ray-tracing process,
faster intersection checking process is needed. In this work, we
implement the concepts of Bounding Volume Hierarchy (BVH)
inference and Axis-Aligned Bounding Box (AABB) on a column-wise
ASIC controller to speed up triangle intersection checks. As shown in
Fig. 3(a), AABB is a 3D bounding box for all the triangles inside it.
Each node in a BVH tree represents a bounding box. Algorithm 1 shows
the traversal algorithm AABB intersection evaluation. AABB
evaluation starts from the root node and proceeds with the closest hit
for AABB until reaching the leaf node.

As shown in Fig. 3(b), the root Node N1 holds the bounding box
geometry of the entire object, and it has two child nodes at the next layer
which will store the bounding box of the sub-level primitives. The rays
are cast from the camera viewpoint and evaluated for AABB
intersection layer by layer. A Column BVH Controller is implemented
in each RU computing logic that will be able to accelerate all the tree
structure following the user-defined data format shown in Fig. 4(d). By
introducing BVH in the design before the triangle intersection stage,
large portions of the object can be quickly eliminated from the
evaluation list, thus speeding up the whole rendering process. As Fig.
3(c) shows, the final hardware implementation integrates the
performance optimization on the algorithm level and the resources
optimization on the silicon level to generate the final ASIC
implementation for a resource-limited edge device.

The top-level architecture of the proposed design is shown in Fig.
4(a). Render Unit (RU) is the main computing unit specifically designed
for ray-tracing rendering applications. The detail of each RU is shown
in Fig. 4(b), RT Controller inside each RU is used to navigate the
computing through different stages shown in Fig. 4(d). Local Mem in
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each RU is used to store the physical attributes of the rendering
background and user-defined object from each column BVH MEM.
Different from the conventional approaches for multi-core CPU (e.g.,
OpenMP) or GPGPU (NVIDIA GPU acceleration), a BVH traversal
acceleration along each RU column to save hardware cost while ease
software scheduling overhead. Fig. 4(d) shows the rendering executing
process within each individual RU. When the RU is running AABB
evaluation, the memory access pattern is irregular and unpredictable
because the scene and object geometries are not determined until the
rendering process started. Each Column BVH CTRL (CBC) is used to
address the memory access conflict within each RU column. After
AABB and triangle intersection evaluation, RU returns shading value
as the pixel value.

B. Background Scene Clustering

In photorealistic AR/VR applications, it is necessary to obtain
background physical attributes for ray-based effects, such as
refraction, reflection, and shadows. In conventional solutions,
complete 3D scene files are provided with a traversal complexity of
O(nlogn) [6]. N is the number of triangles in the given 3D scene. It is
too expensive to store a complete 3D background mesh on resource-
limited devices. In this work, a viewpoint focused background scene
clustering technique is developed and tested to simplify the
background. With the 2D physical attribute map for background scene,
the 3D physical scene can be rebuilt with little effort.

As shown in Fig. 5, the indoor scenes have the feature of clustered
pixels in the same plane with similar surface normal value (e.g. wall,
table, floor), and there is a great dissimilarity between different planes
and the materials. In the proposed scheme, albedo and normal maps
are clustered using Simple Linear Iterative Clustering (SLIC) and
saved on chip with an efficient data structure shown in Fig. 4(c). The
proposed background clustering scheme encodes a 3D complex
background scenes in 2D representations, introducing the background
geometry and material effects into the rendering process with minimal
cost and runtime.

Algorithm 1 BVH Traversal
1: while true do

2 if NodeisLeaf then
3: for i < triCount do
1 IntersectTri(ray, trijnode — Le ftFirst + i])
5 if stackPtr == 0 then
6: break
7 else
8: node = stack[-stackPtr]
9: end if
10: end for
1 distl = Intersect AABB(ray, LN ode)
12: dist2 = Intersect AABB(ray, RN ode)
13: if distl > dist2 then

14: swap(LNode, RNode)

15: if LNodeMiss then

16: if stackPtr == 0 then

17z break

18: else

19: node = stack[-stackPtr]
20: end if

1 else

2 Node = LNodeMiss

3: if RNodelntersect then

| stack[-stackPtr] = RNodelntersect
5 end if

26: end if

27: end if

28: end if

29: end while
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C. Mix-precision Computing: cost and quality trade-off

Ray-tracing is a computing intensive task with extremely low error
tolerance. Previous work has been done to implement reduced precision
architecture on high-end GPU, however, this solution may not be
feasible for certain GPGPUs that need to support rasterization due to
their inherent nature of general-purpose computing workloads and
hardware limitation [14][15]. In this work, a mix-precision hardware
scheme is implemented with the optimal power-quality trade-off in the
proposed designs.

Fig. 6(a) shows the relative power consumption comparison among
various combinations of mix-precision settings. Each design is named
after the fixed-point precision of the critical computing units within the
RU: mac, sqrt and division. For example, 24b24s24d represents 24bit
mac with 24bit sqrt and 24bit division. As shown in Fig. 6(a), as the
precision reduces, the power and area cost will be lower, however,
lowering precision may cause rendering failure during intersection
computing. In the evaluation section, we added render image quality as
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an evaluation metric. 8 different combinations of design with proposed
mix-precision scheme, are evaluated. By considering all the factors that
contribute to the final rendering result, the optimal tradeoff in the
power-quality space is achieved.
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IV. EVALUATION AND RESULTS

This section shows the evaluation method and the experiment result
for the proposed schemes.

A.

BVH Acceleration Evaluation
As Fig. 7(a) shows, 7 common complex 3D objects are tested:
Scalable BVH Intersection Performance
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Fig. 7. BVH Performance Comparison. (a) Render runtime improvement with
BVH acceleration on different testing objects. (b) Memory and hardware
overhead for BVH acceleration hardware.
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By incorporating BVH structure into the design, an average of 6.3X
speed up with only 5.7% average area overhead and 5.6% increase in
memory storage for the hierarchical AABB are achieved compared with
the baseline design.

B. Background Scene Clustering and Image Quality Evalutation

In photosynthesis, objective comparison between pixel-level value
between the testing image and the reference image sometimes does not
match human observations of the image [12]. As a result, Deep Image
Structure and Texture Similarity (DISTS) [13] metric is used in our
evaluation to quantitively evaluate the rendering result. DISTS is based
on human vision system and provides a more accurate measure than
other image metrics Mean Squared Error (MSE), which only considers
the pixel-level differences. DISTS offers the ability to capture and
measure the structural and texture similarity of the original image and
the “degraded” image.

The original raw RGB albedo and normal map representing
background information with the resolution of 640x480 is 921KB.
With the proposed efficient data structure, only 16KB is needed to
store the background albedo or normal map. Hence, 56X reduction of
memory storage is achieved, making it possible to store the
background scene on the chip without accessing off-chip memory,
which makes it possible for real-time end-to-end rendering tasks.

C. Hardware Evaluation, Cost-Quality Trade-off for Mix-Precision
Scheme

To find out the optimal tradeoff in cost-quality space, we proposed
a customized matric for evaluation:

RenderIndex(p) = Norm(DISTSLoss(p)) x Norm(Power(p))
X Norm(Area(p))

p represents a combination of hardware configuration.
RenderIndex(p) represents the normalized cost value of each design p.
DISTSLoss(p) represents the DISTS index loss of the rendering result
for design p. Power(p) and Area(p) represent the normalized power and
area of design p. In the testing scene, 8 different objects are tested for
the rendering task with different hardware configurations. Fig. 8(a)
shows the quantitative rendering results for different 3D objects. As
shown in Fig. 8(b), RenderIndex(32b32s64d) has the lowest value,
which represents the optimal cost-quality among all design
configurations.

Design 32b32s64d is implemented. Compared with the baseline
scheme, the proposed implementation achieves 16.7% of area saving
and 33.4% of power saving with only 0.6% to 1.65% loss.
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testing 8 Objects: armadillo, chebura, fandisk, rocker-arm, stanford bunny,
Utah teapot, dragon, and duck. (c) Area and power saving for mix-precision
computing scheme compared with baseline design.

D. Design Implementation and performance

A mixed-precision ray-tracing accelerator with 10x8 RU array is
implemented in 28nm CMOS technology. The area for the design is
5.5275 mm?. Fig. 9 shows the layout of 8 BVH traversal implemented
RU column. The design runs at 200MHz under 0.9V supply. By
implementing hardware data structure design for intersection
acceleration for every RU column, the rendering throughput of the
proposed design is improved by 6X compared with the baseline design
without the optimization. Background clustering results in 56X saving
on-chip memory storage for background albedo and normal map. By
using mix-precision computing scheme for optimal power-quality
trade-off, 16.7% of area saving and 33.4% of power saving is achieved.

Table 1. Performance comparison with previous ray-tracing hardware
implementations

NVIDIA Qualcomm

q Reconf. SIMT i
Solutions 1] Ray Core[6] ~ GTx108Ti Adreno740  This Work
Process (nm) 90 16 4 28
Area (mm?) 16 - 471 5.5
Architecture SIMT FPGA SIMT | Mobile SIMT Asic
Prototype
. Viewpoint
v Pt optix| Vulkan, [ Reconstruction +
-Traci d OpenGL calable ay-
Ray-Tracing | Ray-Tracing Tracing
100MHz —
Clock Frequency 400 MHz 500MHz 1480MHz 980MHz 200MHz
. - FP8, FP16, FP16, FP32, §
Bit Precision FP32 FP24 FP32, FP64 P64 INT8-INT64
Power 221mwW 1w 250W 9.4W 69.5mW
Throughput
Efficiency * 27.38 17.7 0.003 35.21 789.7
(FPS/W)

*Report at peak performance

Table 1 compares this work with previous solutions. The proposed
design reaches 41.6 MRay/s with the power consumption of 69.5mW
at peak performance. As a result, 22X~44X higher power efficiency
(MRay/s per watt) is achieved compared with the existing ASIC and the
state-of-the-art mobile GPU solutions, providing a highly efficient
solution to image insertion for AR/VR in highly resource-limited edge
devices.
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Fig. 9. (a) Layout of the render design. (b) Performance (MRay/s)
improvement of baseline design. (c) RT power efficiency.

V. CONCLUSION

In this work, a low-power hardware acceleration solution with
software-hardware codesign is proposed to deliver the challenging ray-
tracing rendering operations for AR/VR on mobile edge devices.
Special data structure acceleration hardware and viewpoint-focused
background clustering method with inverse rendering are implemented
for speed up and memory saving. In addition, a mix-precision
computing scheme is adopted for optimal cost-quality trade-off.
Experiments on an implementation in 28nm show that the overall
rendering process is speed up by 6X on average by implementing BVH
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acceleration structure with only 5% overhead for on-chip memory and
power cost. Finally, the implemented ray-tracing render accelerator
achieves a 28X~44X higher power efficiency compared with existing
ASIC and 22X compared with the state-of-the-art mobile GPU,
enabling real-time ray-tracing on low-power edge devices.
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