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Abstract— Physics Based Ray-Tracing (PBRT) rendering is a 

process to generate synthesized images by simulating real 

environment using the spatial, reflection, refraction, diffusion 

information from the scene to achieve photorealism. Although 

PBRT is widely used in architecture, video games, movie effects, 

and VR/AR applications, the ray-tracing technique in PBRT for 

realistic modeling of light transport suffers from major difficulties 

on resource-limited edge devices due to its overwhelming 

workload of computing and irregular memory access pattern 

limiting to its real-time usage only on the state-of-the-art 

GPUs.  In this paper, we proposed a hardware acceleration 

solution which incorporates novel techniques including 

customized hardware data structure acceleration, scene 

background information clustering, 3D Construction and 

adaptive mix-precision computing scheme leading to a low-cost 

ray-tracing rendering solution suitable for edge devices. The result 

design has been implemented in 28nm CMOS technology. 

Experimental results on open-source dataset show a 6X reduction 

of computing workload, 56X saving of background memory 

requirements and 33% power saving compared with baseline 

design, enabling hardware adaptation of PBRT accelerator on a 

resource-limited edge device.    

Keywords— Physics Based Ray-tracing Rendering, Edge 

Devices, AR/VR, Virtual Object Rendering, Software-hardware 

codesign 

I. INTRODUCTION 

Physics based ray-tracing [1] is a photorealistic rendering technique 
in computer graphics to generate computer-synthesized image from a 
3D space. This technique works by tracing the light transportation 
bouncing off all the surface, which makes it capable of simulating 
various photorealistic effect such as reflection, refraction, soft shadows, 
scattering, depth of field, motion blur, caustics, ambient occlusion, and 
dispersion phenomena. To address the overwhelming workload, much 
work has been performed recently to accelerate ray-tracing rendering 
tasks using software approaches or general-purpose hardware 
processors, such as NVIDIA Optix [2], Intel Embree [3], OpenGL [4], 
MIC [5], NVIDIA RTX GPUs, etc. 

As the prevalence of mobile devices supporting Augmented Reality 
(AR) and Virtual Reality (VR) applications continues to rise, there is an 
increasing interest in improving the visual realism of the image scene 
for enhanced user’s experience. However, there are significant 
challenges: (1) Existing AR techniques based on rasterization rendering 
cannot replicate the same visual effect as a physical lens, thus failing to 
blend into the scene [7][10]. (2) Current AR solutions face the compute 
bottleneck of tracking and recognizing the real-world objects and 
environment because the tracking of the device’s position and 
orientation need to be high precision for an object to be inserted 
properly. (3) The memory overhead for complex 3D scenes limits the 
usage of photorealistic rendering algorithm on the edge devices. 

To address the above challenges for high-quality AR/VR 
applications, recent works have been integrating photorealistic ray-
tracing techniques to high-quality AR applications [8]. Unfortunately, 
most prior works are implemented on GPCPU and GPGPU platforms 
aiming for the best rendering quality, which consume too much power 
and memory for resource-limited edge devices. 

In this work, a power efficient ray-tracing solution is proposed to 
address the challenges of photorealistic ray-tracing tasks on edge 
devices. Fig. 1 shows the ray-tracing task for photorealistic AR/VR 
applications. The contributions from this wok include: (1) Software-
hardware codesign of a customized Bounding Volume Hierarchy (BVH) 
control scheme and efficient data structure are implemented with more 
than 6X speed up on various test scenes; (2) Software-Hardware 
codesign of a 3D viewpoint based background clustering scheme is 
implemented with more than 56X memory saving on the background 
maps and is able to reduce background traversal complexity with 
negligible image quality loss; (3) A mix-precision computing scheme 
is implemented in different rendering stage for the optimal cost-quality 
trade-off for the rendering task, which leads to 21% reduction of the 
power compared with the baseline design with minimum image quality 
loss. At last, a 28nm ASIC is implemented, achieving 41.6 MRay/s with 
69.5mW, leading to 28~44X higher power efficiency than existing 
ASIC solutions and 22X power efficiency then the state-of-the-art 
mobile GPU for the ray-tracing rendering task. 

 
Fig. 1. Illustration of Ray-Tracing Rending task for AR applications for Virtual 

Object insertion 

II. BACKGROUND AND CHALLENGES 

A. Ray-Tracing Rendering 

Ray-tracing is a technique often used in computer graphics to 
generate a synthesized 2D image, by extending camera rays into a 
constructed 3D scene, performing the actual light ray transportation and 
calculating the approximate value of the pixels in the final rendered 
images.  

Traditional rendering engines and applications are mainly based on 
low-cost rasterization technique, such as Microsoft Windows Mixed 
Reality Toolkit (MRTK), OpenGL[4], Apple ARKit and Google 
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ARCore. Different from rasterization technique, ray-tracing is a 
photorealistic rendering technique which will simulate the 
transportation of light rays in a 3D scene. Fig. 2(a) shows the ray-tracing 
algorithm. By considering all the light transportation on all the object 
and background surface, photorealism could be achieved. Fig. 2(b) 
shows the difference between ray-tracing and rasterization, light 
transportation effects such as reflection and shadow are hard to achieve 
in rasterization rendering.  

 
Fig.2. (a) Ray-tracing technique overview. (b) Memory requirement for 

common 3D mesh scenes compared with limited on-chip memory size.  (c) 

Real-time ray-tracing requirement for edge devices. (d) Difference between 
ray-tracing and rasterization rendering. (e) Render results with low and high 

computing precisions. 

Mathematically, ray-tracing algorithm is solving the rendering 
equation in (1) for every specific scene and ray casted by user camera: 

 ����, ��� �  
 ���, ��, �������, ���|�����| ���
 

��  (1) 

As shown in Fig. 2(a), L0 is the radiance leaving at object point P 
along the direction ωo; f is the Bidirectional Reflectance Distribution 
Function (BRDF) of the object surface, which takes this incoming light 
direction ωi and outgoing direction ωo at point P, returning the ratio of 
reflected radiance along ωo to the irradiance incident on the surface 

from direction ωi; Li is the incoming light along direction ωi, θi is the 
angle between ωi and surface normal. The final pixel value is calculated 
by simulating the transportation of the light ray and integrating all the 
effects. Thus, ray-tracing is able to offer true ability for photorealistic 
image synthesis and thus enhance the visual quality of AR/VR 
applications [10][11]. 

B. Hardware Design Challenges 

Modern processors such as GPUs are mostly used for ray-tracing 
rendering tasks, but the power consumption is far beyond the ability of 
resource-limited edge devices. For example, the power consumption for 
Apple A15 Bionic chip is only 3.9W under modest workload, while 
NVIDIA RTX 3090Ti consumes 398W under average workload. With 
mobile devices rapidly becoming the central device in people’s daily 
life, it is crucial to develop low-power real-time rendering solutions on 
these resource-limited devices for mobile AR applications as shown in 
Fig. 2(c). At the same time, ray-tracing algorithm is well-known for its 
intense computing requirement and low error tolerance as shown in Fig. 
2(e). As a result, most ray-tracing engines, such as NVIDIA Optix, 
support double-precision floating point computing precision, which 
results in higher cost and power, making it difficult to implement on 

resource-limited devices. Unstructured memory access pattern is also a 
bottleneck in ray-tracing applications. Each cast ray will evaluate 
intersections for every mesh primitive, which requires access to the 
complete object with unstructured requests. With the objects growing 
more and more complex shown in Fig. 2(b), it is impractical to save the 
complete object on chip. 

There have been missing solutions for ray-tracing rendering on 
resource-limited edge devices. In this paper, a novel fixed-point power 
efficient hardware ray-tracing accelerator is implemented with 28nm 
CMOS technology, with customized scalable on-chip BVH 
acceleration data structure, viewpoint-focused background scene 
clustering for both power and memory saving and a mix-precision 
computing scheme to achieve the optimal cost-quality trade-off for the 
rendering tasks. A 22~44X higher power efficiency is achieved 
compared with GPGPU and state-of-the-art mobile GPU. 

III. PROPOSED RAY-TRACING RENDER ON EDGE DEVICES 

In this section, a ray-tracing accelerating design is proposed with 
three distinct customized techniques through software-hardware 
codesign to address the current challenge in ray-tracing render on edge 
devices, including hardware data structure design for intersection 
acceleration, viewpoint-focused background clustering for memory 
saving and mix-precision computing for optimal power-quality trade-
off. The performance and quality of the proposed techniques are 
evaluated in the next section. 

A. Bounding Volume Hierarchy (BVH) Control Scheme 

The main bottleneck for ray-tracing objects is intersection 
evaluation. As shown in Fig. 3(a), the 3D object is defined using a 
collection of triangle meshes. To render an object, each triangle is 
evaluated for ray-intersection. Increasing the number of triangles 
enhances the smoothness of the object surface, however, it also 
increases additional overhead in terms of memory storage and 
computing time. Without any GPU or multicore acceleration, rendering 
an opensource Stanford bunny object with 69451 triangle primitives 
takes 2.5 hours on Intel® Core™ i7-8665U CPU for the image 
resolution of 640×480, with more than 90% of time performing 
exhaustive intersection search. To achieve faster ray-tracing process, 
faster intersection checking process is needed. In this work, we 
implement the concepts of Bounding Volume Hierarchy (BVH) 
inference and Axis-Aligned Bounding Box (AABB) on a column-wise 
ASIC controller to speed up triangle intersection checks. As shown in 
Fig. 3(a), AABB is a 3D bounding box for all the triangles inside it. 
Each node in a BVH tree represents a bounding box. Algorithm 1 shows 
the traversal algorithm AABB intersection evaluation. AABB 
evaluation starts from the root node and proceeds with the closest hit 
for AABB until reaching the leaf node.  

As shown in Fig. 3(b), the root Node N1 holds the bounding box 
geometry of the entire object, and it has two child nodes at the next layer 
which will store the bounding box of the sub-level primitives. The rays 
are cast from the camera viewpoint and evaluated for AABB 
intersection layer by layer. A Column BVH Controller is implemented 
in each RU computing logic that will be able to accelerate all the tree 
structure following the user-defined data format shown in Fig. 4(d). By 
introducing BVH in the design before the triangle intersection stage, 
large portions of the object can be quickly eliminated from the 
evaluation list, thus speeding up the whole rendering process. As Fig. 
3(c) shows, the final hardware implementation integrates the 
performance optimization on the algorithm level and the resources 
optimization on the silicon level to generate the final ASIC 
implementation for a resource-limited edge device.  

The top-level architecture of the proposed design is shown in Fig. 
4(a). Render Unit (RU) is the main computing unit specifically designed 
for ray-tracing rendering applications. The detail of each RU is shown 
in Fig. 4(b), RT Controller inside each RU is used to navigate the 
computing through different stages shown in Fig. 4(d). Local Mem in 
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each RU is used to store the physical attributes of the rendering 
background and user-defined object from each column BVH MEM. 
Different from the conventional approaches for multi-core CPU (e.g., 
OpenMP) or GPGPU (NVIDIA GPU acceleration), a BVH traversal 
acceleration along each RU column to save hardware cost while ease 
software scheduling overhead. Fig. 4(d) shows the rendering executing 
process within each individual RU. When the RU is running AABB 
evaluation, the memory access pattern is irregular and unpredictable 
because the scene and object geometries are not determined until the 
rendering process started. Each Column BVH CTRL (CBC) is used to 
address the memory access conflict within each RU column.  After 
AABB and triangle intersection evaluation, RU returns shading value 
as the pixel value.  

B. Background Scene Clustering  

In photorealistic AR/VR applications, it is necessary to obtain 

background physical attributes for ray-based effects, such as 

refraction, reflection, and shadows. In conventional solutions, 

complete 3D scene files are provided with a traversal complexity of 

O�nlogn� [6]. N is the number of triangles in the given 3D scene. It is 

too expensive to store a complete 3D background mesh on resource-

limited devices. In this work, a viewpoint focused background scene 

clustering technique is developed and tested to simplify the 

background. With the 2D physical attribute map for background scene, 

the 3D physical scene can be rebuilt with little effort. 

As shown in Fig. 5, the indoor scenes have the feature of clustered 

pixels in the same plane with similar surface normal value (e.g. wall, 

table, floor), and there is a great dissimilarity between different planes 

and the materials. In the proposed scheme, albedo and normal maps 

are clustered using Simple Linear Iterative Clustering (SLIC) and 

saved on chip with an efficient data structure shown in Fig. 4(c). The 

proposed background clustering scheme encodes a 3D complex 

background scenes in 2D representations, introducing the background 

geometry and material effects into the rendering process with minimal 

cost and runtime.  

 

 

 
Fig. 3. BVH Acceleration. (a) BVH example. (b) BBOX Traversal flow. N is 
the AABB node storing the hierarchical bounding volume of the object 

triangles, when the ray hit the leaf node, it will perform triangle intersection in 

the leaf AABB. (c) Software-hardware codesign flow of the proposed 
acceleration scheme.  

 

 
Fig. 4. Overall block diagram for the render design and memory mapping. (a) 

Design top-level block diagram. The main component of the design is a N×M 
Rendering Unit (RU) array with BVH structure. (b) Block diagram for a single 

Rendering Unit. (c) Memory mapping in Physical Attribute MEM. (d) BVH 

control flow and column MEM mapping. 

C. Mix-precision Computing: cost and quality trade-off 

Ray-tracing is a computing intensive task with extremely low error 
tolerance. Previous work has been done to implement reduced precision 
architecture on high-end GPU, however, this solution may not be 
feasible for certain GPGPUs that need to support rasterization due to 
their inherent nature of general-purpose computing workloads and 
hardware limitation [14][15]. In this work, a mix-precision hardware 
scheme is implemented with the optimal power-quality trade-off in the 
proposed designs. 

Fig. 6(a) shows the relative power consumption comparison among 
various combinations of mix-precision settings. Each design is named 
after the fixed-point precision of the critical computing units within the 
RU: mac, sqrt and division. For example, 24b24s24d represents 24bit 
mac with 24bit sqrt and 24bit division. As shown in Fig. 6(a), as the 
precision reduces, the power and area cost will be lower, however, 
lowering precision may cause rendering failure during intersection 
computing. In the evaluation section, we added render image quality as 
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an evaluation metric. 8 different combinations of design with proposed 
mix-precision scheme, are evaluated. By considering all the factors that 
contribute to the final rendering result, the optimal tradeoff in the 
power-quality space is achieved.  
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Fig. 5. Proposed ray-tracing flow with background cluster and 3D 

construction.  

 

 
Fig. 6. Power and Area cost break down. (a) Relative power consumption for 

different combination of the design. (b) Area cost for different hardware 
components for each RU. (c) Rendering stages distribution in each RU. 

IV. EVALUATION AND RESULTS 

This section shows the evaluation method and the experiment result 
for the proposed schemes. 

A. BVH Acceleration Evaluation 

 As Fig. 7(a) shows, 7 common complex 3D objects are tested:  
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Fig. 7. BVH Performance Comparison. (a) Render runtime improvement with 
BVH acceleration on different testing objects. (b) Memory and hardware 
overhead for BVH acceleration hardware.  

 By incorporating BVH structure into the design, an average of 6.3X 
speed up with only 5.7% average area overhead and 5.6% increase in 
memory storage for the hierarchical AABB are achieved compared with 
the baseline design.  

B. Background Scene Clustering and Image Quality Evalutation  

 In photosynthesis, objective comparison between pixel-level value 
between the testing image and the reference image sometimes does not 
match human observations of the image [12]. As a result, Deep Image 
Structure and Texture Similarity (DISTS) [13] metric is used in our 
evaluation to quantitively evaluate the rendering result. DISTS is based 
on human vision system and provides a more accurate measure than 
other image metrics Mean Squared Error (MSE), which only considers 
the pixel-level differences. DISTS offers the ability to capture and 
measure the structural and texture similarity of the original image and 
the “degraded” image.  

The original raw RGB albedo and normal map representing 

background information with the resolution of 640×480 is 921KB. 

With the proposed efficient data structure, only 16KB is needed to 

store the background albedo or normal map. Hence, 56X reduction of 

memory storage is achieved, making it possible to store the 

background scene on the chip without accessing off-chip memory, 

which makes it possible for real-time end-to-end rendering tasks.  

C. Hardware Evaluation, Cost-Quality Trade-off for Mix-Precision 

Scheme 

To find out the optimal tradeoff in cost-quality space, we proposed 
a customized matric for evaluation: 

������������ � � !��"�#�$%$����� ��  × !��"'��(��� �)
× !��"�*��+� �� 

 p represents a combination of hardware configuration. 
RenderIndex(p) represents the normalized cost value of each design p. 
DISTSLoss(p) represents the DISTS index loss of the rendering result 
for design p. Power(p) and Area(p) represent the normalized power and 
area of design p. In the testing scene, 8 different objects are tested for 
the rendering task with different hardware configurations. Fig. 8(a) 
shows the quantitative rendering results for different 3D objects. As 
shown in Fig. 8(b), RenderIndex(32b32s64d) has the lowest value, 
which represents the optimal cost-quality among all design 
configurations. 
 Design 32b32s64d is implemented. Compared with the baseline 
scheme, the proposed implementation achieves 16.7% of area saving 
and 33.4% of power saving with only 0.6% to 1.65% loss. 
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testing 8 Objects:  armadillo, chebura, fandisk, rocker-arm, stanford bunny, 

Utah teapot, dragon, and duck. (c) Area and power saving for mix-precision 
computing scheme compared with baseline design. 

D. Design Implementation and performance 

A mixed-precision ray-tracing accelerator with 10×8 RU array is 
implemented in 28nm CMOS technology. The area for the design is 
5.5275 mm2. Fig. 9 shows the layout of 8 BVH traversal implemented 
RU column. The design runs at 200MHz under 0.9V supply. By 
implementing hardware data structure design for intersection 
acceleration for every RU column, the rendering throughput of the 
proposed design is improved by 6X compared with the baseline design 
without the optimization. Background clustering results in 56X saving 
on-chip memory storage for background albedo and normal map. By 
using mix-precision computing scheme for optimal power-quality 
trade-off, 16.7% of area saving and 33.4% of power saving is achieved.  

Table 1. Performance comparison with previous ray-tracing hardware 

implementations 

 
 Table 1 compares this work with previous solutions. The proposed 
design reaches 41.6 MRay/s with the power consumption of 69.5mW 
at peak performance. As a result, 22X~44X higher power efficiency 
(MRay/s per watt) is achieved compared with the existing ASIC and the 
state-of-the-art mobile GPU solutions, providing a highly efficient 
solution to image insertion for AR/VR in highly resource-limited edge 
devices. 
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Fig. 9. (a) Layout of the render design. (b) Performance (MRay/s) 

improvement of baseline design. (c) RT power efficiency. 

V. CONCLUSION 

In this work, a low-power hardware acceleration solution with 
software-hardware codesign is proposed to deliver the challenging ray-
tracing rendering operations for AR/VR on mobile edge devices.  
Special data structure acceleration hardware and viewpoint-focused 
background clustering method with inverse rendering are implemented 
for speed up and memory saving. In addition, a mix-precision 
computing scheme is adopted for optimal cost-quality trade-off. 
Experiments on an implementation in 28nm show that the overall 
rendering process is speed up by 6X on average by implementing BVH 

acceleration structure with only 5% overhead for on-chip memory and 
power cost. Finally, the implemented ray-tracing render accelerator 
achieves a 28X~44X higher power efficiency compared with existing 
ASIC and 22X compared with the state-of-the-art mobile GPU, 
enabling real-time ray-tracing on low-power edge devices. 
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