A Preliminary Study on Using Large Language
Models in Software Pentesting

Francis Hahn
University of South Florida
fhahn @usf.edu

Kumar Shashwat
University of South Florida
kshashwat @usf.edu

Lawrence Hall
University of South Florida
lohall@usf.edu

Jay Ligatti
University of South Florida
ligatti @usf.edu

Abstract—Large language models (LLM) are perceived to
offer promising potentials for automating security tasks, such
as those found in security operation centers (SOCs). As a first
step towards evaluating this perceived potential, we investigate
the use of LLMs in software pentesting, where the main task
is to automatically identify software security vulnerabilities in
source code. We hypothesize that an LLM-based AI agent can
be improved over time for a specific security task as human
operators interact with it. Such improvement can be made, as a
first step, by engineering prompts fed to the LLM based on the
responses produced, to include relevant contexts and structures so
that the model provides more accurate results. Such engineering
efforts become sustainable if the prompts that are engineered
to produce better results on current tasks, also produce better
results on future unknown tasks. To examine this hypothesis,
we utilize the OWASP Benchmark Project 1.2 which contains
2,740 hand-crafted source code test cases containing various
types of vulnerabilities. We divide the test cases into training
and testing data, where we engineer the prompts based on the
training data (only), and evaluate the final system on the testing
data. We compare the Al agent’s performance on the testing
data against the performance of the agent without the prompt
engineering. We also compare the Al agent’s results against those
from SonarQube, a widely used static code analyzer for security
testing. We built and tested multiple versions of the AI agent
using different off-the-shelf LLMs — Google’s Gemini-pro, as
well as OpenAI’s GPT-3.5-Turbo and GPT-4-Turbo (with both
chat completion and assistant APIs). The results show that using
LLMs is a viable approach to build an AI agent for software
pentesting that can improve through repeated use and prompt
engineering.

I. INTRODUCTION

Large language models (LLMs) have made massive ad-
vancements in recent years. It has been hoped that LLMs can
play a pivotal role in automating cyber security operations,
denting the asymmetric advantages enjoyed by adversaries.
LLMs have demonstrated human-like reasoning capabilities

Workshop on SOC Operations and Construction (WOSOC) 2024
1 March 2024, San Diego, CA, USA

ISBN 979-8-9894372-3-8
https://dx.doi.org/10.14722/wosoc.2024.23002
www.ndss-symposium.org

University of South Florida

Xinming Ou Dmitry Goldgof
University of South Florida
xou@usf.edu goldgof @usf.edu
Armin Ziaie Tabari
CipherArmor

tabari @cipherarmor.com

S. Raj Rajagopalan
Resideo
siva.rajagopalan @resideo.com

that are likely useful for analyzing security events, such as
those found in a security operations center (SOC). Companies
are racing to embrace LLMs in security service offerings, e.g.,
Microsoft’s Security Co-pilot !. However, there is currently
very little information available regarding how these systems
are designed and very little evidence regarding the effective-
ness of using LLMs in the security domain. Recently, using
LLMs in security pentesting has attracted some interest [2],
[3]. Using LLMs in pentesting shares many similarities using
LLMs in SOC operations. Both need to address the large
amounts of false alarms, and the ability of “hunting” for
attacks/vulnerabilities that are not readily reported by existing
tools. The reasoning involved in these security operations is
often nuanced and context-relevant. It is hard to build a one-
size-fit-all tool that can handle all situations, and thus human
involvement is needed for the reasoning to move forward and
for making a final decision. The challenge is that human’s
brains, while more capable handling the nuanced situations
than a computer program, are bandwidth-limited and can easily
succumb to burnout [7] from repeated tasks with similar
structures. Unlike a traditional computer program, an LLM
can be trained on large amounts of data and produce responses
to queries (prompts) that often times demonstrate the type of
nuanced reasoning capability of a human brain. Thus using
LLMs in these security tasks has the potential to automate
those tasks that are hard to automate using traditional computer
programs.

In this paper we evaluate the viability of using LLMs in
software pentesting. In the software development life cycle,
pentesting is often considered one of the last steps [9]. The de-
velopment team and the pentesting team often work separately
— remotely or in different locations, which adds a barrier to
communication between them. Given the workload of a regular
pentester it is hard for them to go through the code files line
by line and craft a software pentesting plan curated just for
a specific codebase. They often end up testing things that are
limited to their information and expertise. Software pentesters

Uhttps://www.microsoft.com/en-us/security/business/ai-machine-learning/
microsoft-security-copilot

https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-security-copilot
https://www.microsoft.com/en-us/security/business/ai-machine-learning/microsoft-security-copilot

use a number of tools for checking program source code and
identifying vulnerabilities, such as Fortify?> and SonarQube?.
These tools often report a large number of findings that turn
out to be false alarms. Large numbers of false alarms lead
to pentester fatigue, and eventually ignoring code analyzer’s
output altogether. It would be ideal if these automated tools
can “learn from” the pentesters as to why certain findings
are false alarms, and use the learned knowledge to refine
future output for the pentesters. This would only be possible
for a traditional computer program if the developer of the
tool is involved in its usage and modify the tool based on
the observed deficiencies. However this is unrealistic since
developers of tools and the tools’ users (pentesters) work under
quite different constraints and paces. The feedback loop from
users to developers and back to users (revised tool) is too long
to produce any practical impact. LLMs, on the other hand,
can be “trained” on the fly in various ways. One approach
is through providing more prompts that offer the needed
knowledge and context, so that the same LLM model can
produce responses that match better with users’ expectations.
This may lead to a dynamic Al security agent that can adapt
to the specific usage environment and become more efficient
as it interacts with the human user.

To evaluate this hypothesis, we built a number of Al agents
using OpenAI’'s GPT models [1], [6] and Google’s Gemini
model [8]. Specifically, we used the LLMs GPT-3.5-Turbo,
GPT-4-Turbo, and Gemini-pro. For the GPT models, we built
two agents for each model, one using the Chat Completions
API* and the other using the Assistants API°. We designed
prompts for these LLMs and feed the program source code
to them. We then ask a question to the LLMs about what
vulnerabilities are present in the source code and the location
(line number) of the vulnerability. We use the test cases
published in the OWASP Benchmark Project® to evaluate the
accuracy of these Al agents. The benchmark contains 2740
Java programs with a variety of vulnerabilities such as SQL
injection, cross-site scripting, weak hashing algorithm, and so
on. We compare the results against SonarQube which is a
widely tool used in software industry for checking software
source code for vulnerabilities. SonarQube also performs
better on the OWASP benchmark than the majority of other
static software pentesting tools. To examine the capability for
the Al agent to be improved through prompt engineering, we
divided the benchmark’s test cases into training and testing
set. The prompts used in the agents are augmented based
on observing the agents’ responses on the training set. The
goal of augmenting the prompts is to add guidance specific
to the category of the task the LLM is currently trying to
accomplish so that higher accuracy can be achieved. The new
prompts are then tested on the testing set, which has never been

Zhttps://www.microfocus.com/en-us/cyberres/application-security/
static-code-analyzer
3https://www.sonarsource.com/lp/products/sonarqube/static-code-analysis/
“https://platform.openai.com/docs/guides/text-generation
Shttps://platform.openai.com/docs/assistants/overview
Shttps://owasp.org/www-project-benchmark/

seen during the prompt engineering process. We compare the
performance of the Al agents using the original base prompts,
and the agents using the augmented prompts. We observed the
following.

1) Without prompt engineering, the LLMs’ accuracy is
either below or on par with that of SonarQube.

2) With prompt engineering, GPT-4-Turbo using the Assis-
tants API demonstrated substantial improvements on the
accuracy, outperforming or being on par with SonarQube
in most of the vulnerability categories.

These results show that there is a viable path for using LLM
to build an Al agent that can be constantly improved through
prompt engineering driven by usage. We further compared the
cases where an LLM model performs differently. The analysis
shows that a key reason why LLMs cannot perform better is
the insufficient understanding of program code flow.

II. BACKGROUND
A. Software Pentesting

Software pentesting’s goal is to identify security vulner-
abilities in program code. It is widely used as part of a
company’s secure software development life cycle [4]. Tools
used in software pentesting are divided into two categories:
static application security testing (SAST) tools and dynamic
application security testing (DAST) tools. The work described
in this paper focuses on SAST only.

B. OWASP Benchmark

Vulnerability Area True Positive | False Positive | Total
Command Injection 126 125 251
Weak Cryptography 130 116 246
Weak Hashing 129 107 236
LDAP Injection 27 32 59
Path Traversal 133 135 268
Secure Cookie Flag 36 31 67
SQL Injection 272 232 504
Trust Boundary Violation 83 43 126
Weak Randomness 218 275 493
XPATH Injection 15 20 35
Cross-Site Scripting 246 209 455
Total 1415 1325 2740

TABLE I: OWASP Benchmark v1.2 Test Cases

The OWASP Benchmark is a Java test suite for evaluating
automated software vulnerability detection tools, including
both SAST and DAST. We used the test cases in v1.2, which
is a fully executable web application. The benchmark consists
of 2740 test cases, each of which is a separate webpage inside
the web app. All the vulnerabilities present in the benchmark
are fully exploitable. The benchmark organizes the test cases
based on the type of vulnerability present in the code. Each
test case has either zero or one vulnerability present. Ground

https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer
https://platform.openai.com/docs/assistants/overview

truth is given for each test case — true positive (vulnerability
present) or false positive (vulnerability not present). Table I
shows the distribution of test cases across vulnerability types
and ground truth.

C. SonarQube

SonarQube is a widely used SAST tool in industry. In this
work we used the SonarQube Community Edition’ test results
present inside the benchmark and compared them against the
LLMs’ results.

D. Large Language Models Used

Shorthand Name Model Name API Used
GPT-3.5-Turbo gpt-3.5-turbo ChatCompletion
GPT-4-Turbo gpt-4-1106-preview ChatCompletion
Gemini-Pro gemini-pro google-generativeai

GPT-3.5-Turbo Assis-
tant

GPT-4-Turbo
Assistant

gpt-3.5-turbo AssistantsAPI

gpt-4-1106-preview AssistantsAPI

TABLE II: LLMs Used in the Research

We used three LLMs: Google’s Gemini Pro [8], OpenAI’s
GPT-3.5-Turbo [1], and GPT-4-Turbo [6]. For each GPT model
OpenAl provides two versions of APIs to interact with the
models: the Chat Completions API and the Assistants API. In
the paper we use a shorthand name to refer to a combination
of LLM model and API used in the AI agent (Table II).

III. PROMPT ENGINEERING

We divide the test cases in the OWASP Benchmark into a
training set and a testing set. The division is done randomly
within each vulnerability category, to have 20% of the test
cases in each category in the training, and the rest in testing.
Only the code in the training set was seen in the prompt
engineering process.

A. Base Prompts

The goal of the base prompt is to provide just enough guidance
and context to the LLM to accurately portray the knowledge
and direction an entry level software penetration tester would
have when analyzing code. This can be seen in the format of
the prompt where it provides a role

“You are a security code analysis tool. Your job
is to find security vulnerabilities in the code ...”,

it also provides additional mandates that model how one would
perform due diligence when working in the field such as,
“Double check your report.” and “Only report something
.. if you are 100 percent confident We also provide
in the base prompt, working directives which explain what to
look for and when to report,

"https://docs.sonarsource.com/sonarqube/latest/

“Look at the following code and tell me what
vulnerabilities are present in it if any.”
and at the end of the prompt we go on to provide the types
of vulnerabilities present and how to report them.

You are a security code analysis tool. Your job is to find
security vulnerabilities in the code with minimum noise.
Double check what your report. Only report something
as a vulnerability if you are 100 percent confident that
it can be exploited now or in the near future. Look the
following code and tell me what vulnerabilities are present
in it if any. Mention the type of the vulnerability as one
of the following: cmdi for Command Injection, crypto
for Weak Cryptography, hash for Weak Hashing, ldapi
for LDAP Injection, pathtraver for Path Traversal, secure-
cookie for Secure Cookie Flag, sqli for SQL Injection,
trustbound for Trust Boundary Violation, weakrand for
Weak Randomness, xpathi for XPATH Injection, xss for
Cross-site scripting, none for None of these vulnerabilities.
CODE_GOES_HERE. All output must be in CSV for-
mat. You should output the category of the vulnerability
from the above mentioned list. The line number of vuln
and the reason. Don’t output the header for CSV. Eg:
weakhash,51,MDS5 hash function is used for hashing. MD5
is a weak hashing algorithm.

Fig. 1: Base Prompt

B. LLM Errors on Benchmark Cases under Base Prompts

After going through the prompt training set, we noticed
that the cases where LLMs tend to make mistakes are false
positives and that they can be broadly classified into two types.

1) Code Flow: In this type, the program being vulnerable
or not depends upon code flow and the LLM cannot reason
about the code flow correctly. Table III shows two simplified
examples of false positives from the benchmark. Both were
marked incorrectly by GPT-4-Turbo, and correctly by GPT-4-
Turbo Assistant. Under Benchmark #02669, we can see that
the value of bar is always going to be the string “safe3”,
thus the user-provided parameter param never gets injected in
the bar variable and the code is not vulnerable. In Benchmark
#007238, we can see the value of bar is always going to be
the string “safe”, and the user parameter will not be injected.

2) Use of weak algorithms: In this type the program being
vulnerable or not depends upon whether it uses a weak
algorithm, and the LLM fails to determine that the algorithm
is actually not weak. Table IV shows two simplified examples
from the benchmark, which again are false positive. Under
Benchmark #00443, “AES/GCM/NOPADDING” is not a weak
algorithm. In Benchmark #00640, the “getProperty” func-
tion tries to read the property “hashAlg2” from a file and
if the operation fails it falls back to “SHA-5". The value of
“hashAlg2” as stored in the file is SHA-256, not a weak

https://docs.sonarsource.com/sonarqube/latest/

Pathtraver: Benchmark #02669

Command Line Injection: Benchmark #00738

String bar = ‘“‘safel’’;
List<String> valuesList =
valuesList.add(* ‘safe2’’);
valuesList.add(param) ;
valuesList.add(‘‘safe3’’);
valuesList.remove (0) ;

bar = valuesList.get(1);

new ArrayList <>();

String bar;

int num = 86;

bar = ((7%42) — num > 200) ? ‘‘safe’’
param

TABLE III: Code Flow

hashing algorithm. Since the LLM is not given the file’s
content it is unable to determine what hashing algorithm is
used. The value of hashAlg2 is supplied in the augmented
prompt as shown in Table V.

C. Augmenting Prompts

Each error made by LLM falls into one of the two categories
as discussed above. Prompts are added to correct these errors
based on the category they belong to. Weak Cryptography,
Weak Hashing, and Weak Randomness fall in the “Use of
Weak Algorithms” category. Command Injection, LDAP Injec-
tion, Path Traversal, Secure Cookie Flag, SQL Injection, Trust
Boundary Violation, XPATH Injection, Cross-site scripting fall
in the “Code Flow” category. The added prompts are listed in
Table V.

IV. EXPERIMENTATION AND EVALUATION

For evaluation and experimentation purposes, we used the
OWASP software testing suite version 1.2. The suite contains
2740 source files designed with a single vulnerability from
the 11 categories as listed in Table I. In order to generate
the augmented prompts for each vulnerability, we divided the
dataset into a 20:80 split of the entire set of data. We only
looked at the 20% of the source files to generate the augmented
prompts and tested the performance of those prompts on the
80% of the data. This experimentation strategy models a real-
world scenario where a pentester would look at the pentesting
tool’s result and understand some reported findings are false
positives. The pentester then extrapolates the causes of the
mistake and provide additional guidance to the LLM in the
form of added prompts. Next time when a new program
is analyzed, the augmented prompts avoid making the same
errors. In our study two types of experiments were performed.

1) Our first experiment was performed using Figure 1 as

base prompt with limited information about the context
of the types of vulnerabilities present. We only provided
the categories of vulnerabilities to ensure that the for-
matting of the LLM’s output fits the scoring engine.

2) For the second experiment we appended the added

prompt from Table V for each vulnerability category.
The augmented prompts contained specific detailed
guidance pertaining to each category, based on the
observation from the training data.

The augmented prompts provide more context to the base
prompt by telling the LLM what is considered a vulnerability
with respect to the codebase. For example: under Weak
Hashing where we direct the LLM to consider only SHA1
and MD5 to be weak hashing algorithms, variables such as
hashAlgl and hashAlg2 are to be MD5 and SHA-256
respectively.

We compare the various LLM models’ performance along
side with the performance of SonarQube, an open-source
platform used for continuous code inspection and analysis.
All LLM models are provided the same base prompt and
augmented prompts. In Table VI, the accuracy percentage is
calculated by total number of correctly predicted cases (either
true positive or false positive) divided by the total number of
cases on the testing data. The results show that for the GPT-
4-Turbo model using the Assistants API, the accuracy of the
Al agent outperforms that of SonarQube under the augmented
prompts, for most of the vulnerability categories. We also see
a consistent improvement of accuracy under the augmented
model over the base model, for this combination of LLM
model and API. This result indicates that GPT-4-Turbo using
Assistants API provides a viable path towards using LLMs
in software pentesting. In the next section we provide more
detailed discussions on the results.

V. DISCUSSION

As shown in Table VI, we can see that the augmented
prompts do not always increase performace. However, the
augmented prompts perform better for at least one LLM in
each category. We rate each LLLM based on two criterias:

1) Ability to learn from augmented prompts
2) Overall performance in each category

A. GPT-3.5-Turbo

GPT-3.5-Turbo with ChatCompletion generally had the
poorest accuracy compared with the other LLMs for the base
prompt. It showed a significant jump in performance with aug-
mented prompts in most categories. However, the augmented
prompts did not yield better results for Path Traversal, SQL
Injection, Weak Randomness, and XPATH Injection.

Weak Cryptography: Benchmark #00443

Weak Hashing: Benchmark #00640

javax.crypto.Cipher ¢ =
getInstance (* *AES/GCM/NOPADDING’ *)

javax.crypto.Cipher. String algorithm = benchmarkprops.

getProperty (‘ “hashAlg2’’, ‘‘SHAS’’);

TABLE IV: Weak Algorithms

Vulnerability

Prompt

Command Injection

Before reporting cmdi, carefully look at the value that is being supplied to arglist variable. If the arglist value contains a
constant string not containing the param then there is no cmdi vunerability.

Weak Cryptography

Only DES/CBC/PKCS5Padding is considered a weak crypto algorithm. cryptoAlgl is DES/ECB/PKCS5Padding and hashAlg2
is AES/CCM/NoPadding. Consider that benchmark file is always read successfully.

Weak Hashing

Only SHA1 and MDS5 are considered weak hashing algorithms. hashAlgl is MD5 and hashAlg2 is SHA-256. Consider that
benchmark file is always read successfully.

LDAP Injection

Before reporting 1dapi, carefully look at the filter for the ldap client. If the user provided parameter can’t be injected into
the filter then there is no ldapi security vulnerability.

Path Traversal

Before reporting pathtraver, carefully look at the bar value that is being injected in the filename variable. If user provided
parameter isn’t being injected in the filename parameter then there then there is no vulnerability.

Secure Cookie Flag

Before reporting securecookie, carefully look at the bar value that is being supplied to the cookie. If user provided parameter
isn’t being injected in the cookie then there then there is no securecookie vulnerability.

SQL Injection

Before reporting sqli, carefully look at the bar value that is being injected in the sql query. If user provided parameter isn’t
being injected in the sql query then there then there is no vulnerability. For this codebase, SQL queries without the use of
PreparedStatement can be safe from SQL Injection.

Trust Boundary Violation

Before reporting trustbound, carefully look at the value that is being supplied to request.getSession().putValue(var, "ANY

NUMBER?”); If the var value contains a constant string not containing the param then there is no vunerability.

Weak Randomness

The use of java.util.Random means a weak cryptography vulnerability is present. For this code base the use of
java.security.SecureRandom(”SHA1PRNG”) implies a strong cryptography is used.

XPATH Injection

Before reporting xpathi, carefully look at the value that is being supplied to the expression which is fed to nodelist.If the
expression value contains a constant string not containing the param then there is no xpathi vunerability.

Cross-Site Scripting

Before reporting xss, carefully look at the bar variable that is specified to response.getWriter function. If the bar variable
contains a constant string not containing the param then there is no xss vunerability.

TABLE V: Added Prompts

B. GPT-4-Turbo

GPT-4-Turbo with ChatCompletion showed a noticable in-
crease in performance from GPT-3.5-Turbo in all categories
except for Weak Randomness among the base prompts. Perfor-
mance for the augmented prompts out performed SonarQube
but stayed relatively within the same performance range as the
augmented prompts of GPT-3.5-Turbo.

C. Gemini-Pro

Gemini-Pro showed consistent performance between the
base and augmented prompts for most categories and matches
the capabilities of the GPT-3.5-Turbo and GPT-4-Turbo mod-
els with ChatCompletion. It is also noted that Gemini-Pro
had the highest performance among all of the experiments in
the Trustboundary category with 71% accuracy for the base
prompt and 70% accuracy for the augmented prompts.

D. GPT-3.5-Turbo-Assistant

GPT-3.5-Turbo with the Assistant API showed similar re-
sults to GPT-3.5-Turbo with ChatCompletion and Gemini-Pro.

However, there were a few instances where the base prompts
outperformed all previous tests. The augmented prompts
showed a similar behavior as with the previous models, but
overall increased performance was seen with this model and
API pairing. However, with this experiment we saw a unique
occurence where the augmented prompt had three cases of
lower performance in the augmented prompts, in particular for
the SQL Injection, Weak Randomness, and XPATH Injection
categories.

E. GPT-4-Turbo-Assistant

GPT-4-Turbo with the Assistant API showed the best per-
formance among all of the LLMs and API pairings, aside
from Trustboundary where Gemini-Pro performed the best in
testing. The base prompts showed a significant increase in
performance across all categories aside from Trustboundary
and LDAP injections which had comparable performance to
the GPT-3.5-Turbo and Assistant API pairing. The augmented
prompts showed similar behavior to all other experiments
with regards to showing improvements to performance from

Vulnerability SonarQube Prompt GPT-3.5- GPT-4-Turbo Gemini Pro GPT-3.5- GPT-4-Turbo
Turbo Turbo Assistant
Assistant

. . Base 38.2% 49.2% 50.2% 53.8% 70.3%

Command Line Injection | 49.8%
Augmented 49.2% 47.7% 50.2% 50.2% 74.3%
Base 28.0% 50.0% 53.0% 46.5% 74.5%

Weak Cryptography 89.0%
Augmented 53.0% 52.5% 53.5% 54.5% 89.7%
. Base 32.6% 51.5% 32.9% 44.5% 71.8%

Weak Hashing 83.0%
Augmented 54.2% 55.3% 53.7% 50.0% 85.1%
L Base 11.8% 42.5% 44.6% 53.1% 51.0%

LDAP Injection 54.2%
Augmented 42.5% 40.4% 44.6% 51.0% 57.4%
Base 50.3% 48.5% 50.0% 56.7% 62.6%

Path Traversal 100%
Augmented 49.0% 47.6% 49.5% 53.0% 70.5%
. Base 46.2% 52.8% 56.6% 64.5% 94.3%

Secure Cookie Flag 46.2%
Augmented 54.7% 52.8% 54.7% 41.1% 84.9%
L Base 52.7% 53.9% 54.4% 51.0% 62.4%

SQL Injection 50.4%
Augmented 50.7% 51.4% 54.9% 45.0% 67.8%
. Base 34.1% 54.0% 71.0% 45.0% 56.0%

Trust Boundary Violation | 34.1%
Augmented 61.0% 66.0% 70.0% 42.1% 53.0%
Base 44.8% 39.6% 43.0% 55.4% 93.1%

Weak Randomness 100%
Augmented 40.9% 40.9% 42.7% 47.2% 98.7%
L Base 45.7% 40.7% 40.7% 33.3% 59.2%

XPATH Injection 57.1%
Augmented 45.7% 40.7% 40.7% 14.8% 74.0%
. . Base 45.4% 50.6% 58.4% 52.1% 78.7%

Cross-Site Scripting 45.9%
Augmented 50.1% 49.5% 55.0% 53.6% 76.0%

TABLE VI: Experimentation Results

base to augmented prompts. This came with an exception
Secure Cookie Flag category where the GPT-4-Turbo with
Assistant API showed similar results of lower performance
in the augmented prompts as with the GPT-3.5-Turbo and
Assistant API pairing.

FE. On Evaluation Strategy

In our evaluation we used the same prompts for all the
LLMs. In reality it makes more sense to adopt a more tailored
approach, where prompts are engineered based on the specific
LLM’s responses and the improvements seen. A single one-
size-fit-all process for prompt engineering, while removing
human bias in the evaluation process, does not reflect how
LLMs are used and tailored. A more human-centered approach
for evaluation could potentially address this limitation.

VI. RELATED WORK

Deng et al. [2] presented PentestGPT, an LLM-based Al
agent to faciliate penetration testing. The authors created sep-
arate GPT sessions focusing on macroscopic and microscopic
sub tasks to address the memory loss problem. It also adopts
attack trees to guide the multiple GPT sessions towards the
goals of the pentesting. PentestGPT does not address the
question of whether the engineered prompts can be effective

on new pentesting tasks that have not been seen before.
Happe and Cito [3] discussed the vision of using LLMs in
pentesting. A prototype AgentGPT was constructed that can
help a pentester elevate privilege on a local host. There is
no systematic study on the effectiveness of AgentGPT and
no details were given about the prompts used or the prompt
engineering process. In addition to presenting a vision of using
LLM in software pentesting, our work conducted a prelimi-
nary study on the efficacy of LLM in this domain, through
experimentations on a well established benchmark. Our use
of prompt engineering is similar to the work by Espeje et
al. [5] which discusses various methods of prompt engineering
and how they can be used to improve the performance of
LLMs by categorizing the prompts in various formats and
then augmenting original proposals with higher performing
prompts to test the extent of the generation cabilities of the
LLMs. They use these methods of prompt engineering to test
the performance of the LLMs abilities for inductive reasoning,
deductive reasoning, mathematical reasoning, and multi-hop
reasoning.

VII. CONCLUSION

We present preliminary experimentation study on using
LLMs in software pentesting. Our results show that through

prompt engineering, an LLM can improve its accuracy over
usage, and its accuracy is on par or surpassed SonarQube, a
widely used static software pentesting.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation under award no. 2235102, and Office of Naval
Research under award no. N00014-23-1-2538. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the above funding agencies.

REFERENCES

[1] Tom B. Brown, Benjamin Mann, and et al. Language models are few-shot
learners. arXiv, 2023.

[2] Gelei Deng, Yi Liu, Victor Mayoral-Vilches, Peng Liu, Yuekang Li,
Yuan Xu, Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass.
PentestGPT: An LLM-empowered automatic penetration testing tool.
arXiv, 2023.

[3] Andreas Happe and Jiirgen Cito. Getting pwn’d by Al: Penetration
testing with large language models. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2023, page 2082-2086,
San Francisco, CA, USA, 2023.

[4] Michael Howard and Steve Lipner. The security development Lifecycle,
volume 8. Microsoft Press Redmond, 2006.

[5] Jessica Lépez Espejel, El Hassane Ettifouri, Mahaman Sanoussi Yahaya
Alassan, El Mehdi Chouham, and Walid Dahhane. GPT-3.5, GPT-4,
or BARD? evaluating LLMs reasoning ability in zero-shot setting and
performance boosting through prompts, 2023.

[6] OpenAl*. GPT-4 technical report. arXiv, 2023.

[7] Sathya Chandran Sundaramurthy, Alexandru G Bardas, Jacob Case,
Xinming Ou, Michael Wesch, John McHugh, and S Raj Rajagopalan. A
human capital model for mitigating security analyst burnout. In Eleventh
Symposium On Usable Privacy and Security (SOUPS 2015), pages 347—
359, 2015.

[8] Google Gemini Team. Gemini: A family of highly capable multimodal
models. arXiv, 2023.

[9] Anwesh Tuladhar, Daniel Lende, Jay Ligatti, and Xinming Ou. An
analysis of the role of situated learning in starting a security culture in a
software company. USENIX, 2021.

	Introduction
	Background
	Software Pentesting
	OWASP Benchmark
	SonarQube
	Large Language Models Used

	Prompt Engineering
	Base Prompts
	LLM Errors on Benchmark Cases under Base Prompts
	Code Flow
	Use of weak algorithms

	Augmenting Prompts

	Experimentation and Evaluation
	Discussion
	GPT-3.5-Turbo
	GPT-4-Turbo
	Gemini-Pro
	GPT-3.5-Turbo-Assistant
	GPT-4-Turbo-Assistant
	On Evaluation Strategy

	Related Work
	Conclusion
	References

