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ABSTRACT

High-resolution, continuous groundwater data is important for place-based adaptive aquifer management. This
information is unavailable in many areas due to spatial sparsity of and temporal gaps in groundwater monitoring.
This study advances the ability to generate high-resolution (1 km?), temporally continuous estimates of
groundwater level (GWL) changes by incorporating 1 km? covariates and existing piezometer observations into
predictive modeling. We employed a hybrid machine learning (ML) model, primarily using the geographically
weighted random forest (RFgy) model. To assess the performance of the RFgy model, we conducted a compre-
hensive comparison with the SGS geostatistical method and non-spatial ML models (RF and XGBoost). The
framework was implemented across the Indus Basin using biannual (July and Oct) GWL data from piezometers
and local covariates from 2003 to 2020. The RFg, model demonstrated superior accuracy in predicting GWLs,
improving R? by 10 %, 17 %, and 22 % compared to SGS, RF, and XGBoost, respectively. Notably, SGS, RF, and
XGBoost substantially underestimated the GWL in deeper wells (7-11 m), whereas RFg,, showed a much smaller
underestimation (up to ~ 3 m). The 90 % prediction interval revealed that RFgy had less uncertainty (1-3 m)
followed by RF (2-5 m), and SGS and XGBoost (up to 8 m) for most testing piezometers. Incorporating high-
resolution covariates into RF,, predictive modeling provided reliable estimates of GWL changes for unmoni-
tored sites. Using the reconstructed GWL data, we examined the GWL changes in head (i.e., upstream) and tail (i.
e., downstream) farms within canal distributaries, illustrating faster groundwater drawdown in tail farms (e.g.,
0.82 m/yr) than head farms (0.02 m/yr in the Hakra canal distributary). Densely populated urban areas (e.g.,
Lahore, Multan, and Faisalabad) had the highest GWL decline (e.g., up to 0.9 m/yr). The framework can be used
in other groundwater-stressed regions to support better aquifer management in the face of limited in-situ
observations.

1. Introduction

and domestic uses is causing groundwater decline in aquifers worldwide
(Asoka et al., 2017; Ostad-Ali-Askari and Shayannejad, 2021; Rodell

Groundwater is a critical natural resource that supports various
human activities and ecological functions (Aeschbach-Hertig and Glee-
son, 2012). Groundwater availability is threatened by unsustainable use
and climate change (Cuthbert et al., 2019; Kaur et al., 2021; Ostad-A-
li-Askari et al., 2020). Overexploitation of groundwater for irrigation
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et al., 2018). In particular, vast areas of the transboundary Indus Basin
are facing mounting groundwater stress due to increasing agricultural
and urban water demands coupled with shrinkage of available water
resources (Smolenaars et al., 2022; Watto and Mugera, 2016; Mehmood
et al., 2022). The Indus Basin has witnessed a substantial increase in
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groundwater dependency, leading to a rapid decline in groundwater
level (GWL) with an average depletion rate of ~ 0.4 m/yr in the last two
decades (Akhtar et al., 2022; MacDonald et al., 2016; Nourani et al.,
2023). Effective management of groundwater resources requires un-
derstanding of aquifer dynamics and identifying hotspots of ground-
water depletion (Du et al., 2020; Ostad-Ali-Askari et al., 2019).
Long-term, continuous data about GWL changes facilitates the devel-
opment of adaptive management plans by illuminating the hydrological
behavior of the aquifer under anthropogenic impacts and climate vari-
ability (Saito et al., 2021; Stewart, 2015).

Groundwater monitoring initiatives have been undertaken by several
water system authorities in the Indus Basin, Pakistan including SMO
(Scarp Monitoring Organization), WASA (Water and Sanitation Agency),
and DLR (Directorate of Land Reclamation) (Bhatti et al., 2017; Lytton
et al., 2021). Previous studies have utilized the piezometer data to
evaluate groundwater changes in the Indus Basin (Abbas et al., 2023;
MacDonald et al., 2016; Sajjad et al., 2022). Nevertheless, critical
knowledge gaps persist because evaluations of groundwater changes
have been limited to specific regions due to inadequate and uneven
distribution of piezometers. Consequently, assessments are unavailable
for many areas facing acute water stress, including urban areas, which
often lack extensive groundwater monitoring. Furthermore, defective/
discontinuous piezometer monitoring, and the addition of new pie-
zometers at different points in time have resulted in data gaps across
both space and time (Basharat et al., 2014; MacAllister et al., 2022). The
presence of these data gaps can lead to incomplete and inaccurate as-
sessments of local to regional groundwater resources, which can hamper
adaptation decisions. There is an important need to leverage the pre-
dictive modeling tools to generate high-resolution, continuous ground-
water data to facilitate sustainable water management plans.

Numerous techniques, including physically-based simulations (Deng
and Bailey, 2020; Singh, 2014; Talebmorad and Ostad-Ali-Askari, 2022)
and data-driven modeling (Sun et al., 2022; Zanotti et al., 2019) have
been used to estimate groundwater changes over time and across space.
Physically-based hydrological models generally have better reliability
and higher accuracy to simulate groundwater dynamics for small-scale
applications (Aliyari et al., 2019). However, predicting groundwater
changes with high accuracy using physically-based models is chal-
lenging in large, complex hydrological systems due to over-
simplification of the system and hydrological processes (e.g., aquifer
properties and appropriate initial and boundary conditions) and limited
availability of input data (Ahmed et al., 2020; Singh, 2014; Zeydaline-
jad, 2022). Data-driven modeling has emerged as a promising alterna-
tive to physically-based models owing to the simplicity in design
independent of hydrogeological characteristics of the aquifer and
applicability in small to large basins (Wunsch et al., 2018; Yin et al.,
2021; Zanotti et al., 2019). Two widely used data-driven approaches to
groundwater modeling include: (1) linear methods [e.g., weighted
average (Pappas et al., 2014), autoregressive integrated moving average
(Oikonomou et al., 2018), and geostatistical methods (Yang and Xing,
2021)]; and (2) non-linear machine learning (ML) methods [e.g. random
forest (RF) (Koch et al., 2019; Tang et al., 2019) and artificial neural
networks (ANNSs) (Collados-Lara et al., 2023; Ostad-Ali-Askari et al.,
2017; Zanotti et al., 2019)].

Linear methods are widely used because of their simplified algo-
rithms and fast computational processing (Chung et al., 2019; Sahoo
et al., 2017; Valipour et al., 2013). For example, kriging is a powerful
linear geostatistical approach for predicting values between data points
when certain fundamental conditions of the underlying random function
are met (Cui et al., 2016). However, kriging does not offer information
on the probability of points exceeding specific data values or thresholds.
This leads to a tendency to smoothen the output (Varouchakis et al.,
2012), resulting in conditional bias (i.e., overestimation of small values
and underestimation of larger ones) in kriged values for un-sampled sites
(Karami et al., 2022; Varouchakis et al., 2012). Conditional geo-
statistical simulation methods such as sequential Gaussian simulation
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(SGS), a stochastic approach, was developed to overcome this smoothing
effect by generating multiple, equally probable stochastic realizations,
which effectively preserve local variability in the data (Manchuk and
Deutsch, 2012; Mariethoz and Caers, 2014).

Non-linear ML approaches have gained interest in groundwater
modeling due to their efficient handling of non-linearity and dynamic
behavior of earth system variables (Chen et al., 2020; Sun, 2013; Tao
et al., 2022). For example, Chen et al. (2020) simulated groundwater
storage changes in the Heihe River Basin using ML algorithms (multi-
layer perceptron (MLP) and support vector machine (SVM)). They found
that ML algorithms performed better than numerical models. Chen et al.
(2019) used ANNs to predict long-term groundwater storage variations
in the Songhua River Basin by using remote sensing data and in-situ
observations. The applications of ANN, RF and XGBoost algorithms for
groundwater level prediction have been widely reported in other recent
studies (e.g., Rahman et al., 2020; Tao et al., 2022). Among these, RF
algorithms have proven to be a robust, efficient regressor that can
outperform other ML methods (Zi-chen et al., 2021). RF is a tree-based
non-parametric, data-driven model (Breiman, 2001a), which handles
multi-collinearity in predicting non-linear functions (Luo et al., 2021).
Despite the strengths of RF in predicting groundwater dynamics (Hengl
etal., 2018; Koch et al., 2019; Wang et al., 2018), it has some limitations
due to its non-spatial, global nature. It ignores the spatial dependencies
among the observations which can potentially result in biased pre-
dictions (Hengl et al., 2018). One way to overcome this limitation is to
use hybrid algorithms that combine classical RF models and soft
computing methods (Sahoo et al., 2017), enhancing modeling precision
and adaptability of the classic model (Zhang, 2003). Herein, we
employed a geographically weighted random forest (RFgy) model,
which is a hybrid form of the global RF model (Georganos et al., 2021).
The RFgy, model combines a spatial weighting matrix with the global RF
algorithm using the distance-decay kernel function and a bandwidth
parameter to spatially weight the observations (Fotheringham et al.,
2003). Thus, the approach allows local calibration of the RF model by
fitting sub-models in space, obeying the working principle of
geographically weighted regression (GWR) (Fotheringham et al., 2003;
Georganos and Kalogirou, 2022).

ML models have been widely used to fill temporal gaps in ground-
water observations, and hindcast and forecast groundwater changes
(Oikonomou et al., 2018; Pham et al., 2022; Rahman et al., 2020; Zanotti
et al., 2019). Previous studies trained ML models to identify temporal
patterns concealed in historical groundwater data, and subsequently
used those patterns to predict groundwater changes for desired time
steps (e.g., Rahman et al., 2020). These models generally performed well
when trained with a certain amount of data (Bailly et al., 2022; Taie
Semiromi and Koch, 2019) that allowed capturing the complexity of the
time series by building sufficient decision trees (Breiman, 2001a; Jha
et al.,, 2018). However, the temporal frequency of piezometer moni-
toring in the Indus Basin, often biannual (MacAllister et al., 2022), is
inadequate for effectively training and constructing precise GWL esti-
mates using temporal predictive modeling. Furthermore, temporal pre-
dictive modeling using ML methods often encounters challenges when it
comes to providing estimations for locations that lack monitoring data.
ML models are not inherently capable of extrapolating beyond the
spatial and temporal bounds of their training data (Brenning, 2023;
Takoutsing and Heuvelink, 2022). It has been shown that decision-tree
based ML methods can be ineffective when applied to regions outside
the scope of their training data (Hengl et al., 2018). As a result, previous
studies typically focused on only a handful of monitoring wells to predict
groundwater changes (Pham et al., 2022; Sun et al., 2022; Wunsch et al.,
2018; Yin et al., 2021), limiting the utility of this approach for large-
scale applications that involve unmonitored sites.

This paper advances the ability to generate high-resolution (1 km?),
continuous estimates of GWL changes by incorporating 1 km? covariates
and existing piezometer observations into predictive modeling. To
overcome the constraints imposed by limited training data through time,
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Fig. 1. Map and key attributes of the study area in the Indus Basin: (a) geographical scope, (b) topography, (c) major land use/land cover classes, and (d)

groundwater irrigation hotspots and population density.

we introduce a novel framework that employs spatial ML-based pre-
dictive modeling iterated over time using a hybrid RFg, model. Instead
of relying solely on temporal data and traditional modeling approaches,
the framework spatially trains the models at each piezometer based on
local covariates and groundwater data from neighboring piezometers.
Subsequently, spatial patterns mapped at training piezometers are in-
tegrated with gridded (1 km?) local covariates data to provide high-
resolution estimates of GWL changes. Incorporating the high-
resolution covariates into predictive modeling facilitates the estima-
tion of GWL changes at unmonitored sites. The primary objectives of this
study were threefold: (1) to evaluate the performance of a spatial ML
method (RFgy) in comparison to a geostatistical method (SGS) and non-
spatial ML models (RF and XGBoost) to predict GWL changes; (2) to
reconstruct high-resolution (1 kmz), biannual estimates of GWL changes
across the Indus Basin from 2003 to 2020, and (3) to utilize the recon-
structed GWL data to assess distributed groundwater changes in un-
monitored groundwater stress hotspots. The framework is transferable
to other groundwater-stressed data-sparse regions around the world
since it can be applied independent of aquifer characteristics.

2. Material and methods
2.1. Study area

The study area occupies ~ 151,970 km? in the central part of the
Indus Basin, including agro-urban settings (Fig. 1a). Arid and semi-arid
continental climatic conditions dominate the region. Annual rainfall is
300-900 mm with monsoon period (Jun-Aug) contributing 70 % of the
total rainfall. Five main rivers (Indus, Jhelum, Satlej, Ravi, and Chenab)

flow through the study area. The main canals and distributaries receive
water from the main rivers and supply water for irrigation in thirty-two
canal command areas (Fig. 1a). The elevation within the study area
ranges from 2000 m (a.m.s.1.) in the western and northern parts to 50 a.
m.s.l. in vast agricultural areas (Fig. 1b). The aquifer is unconfined in
nature with a single layer and mainly composed of sand, silt, gravel, and
other combinations of rock materials (Umar et al., 2022). The major
land use/land cover classes include cropland, urban land, shrubs and
forest (Fig. 1c). The region includes pockets of populous metropolitan
areas. For example, population density can reach 20,000 capita/km? in
major cities such as Lahore, Multan, and Faisalabad (Fig. 1d). Ground-
water is the main source of water supply for domestic purposes and
irrigated agriculture and continuous pumping has caused groundwater
to decline by 0.4 m/yr in the last two decades (Arshad et al., 2022; Watto
et al,, 2021). Groundwater withdrawal for irrigation varies among
different canal command areas with higher quantities of pumping re-
ported in the upstream canal command areas (e.g., Bist Doab, Upper
Bari) (Fig. 1d).

2.2. Input data

We compiled input data from a variety of sources, including ground-
based observations, remote sensing products and previously published
data.

Groundwater data from piezometers: As a proxy for GWL, we
compiled depth to groundwater data from 3,000 piezometers provided
by Punjab Irrigation Department (PID), Pakistan and 969 piezometers by
Indian Water Resource Information System (IWRIS) from 2003 to 2020
(Fig. 2a). The data consist of biannual observations (June: pre-monsoon
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Fig. 2. Spatial distribution of piezometers monitoring groundwater changes: (a-f) operational piezometers, including piezometers that were continuously operating
and newly added piezometers between 2003 and 2020, and (g) piezometers with defective observations in different periods between 2003 and 2020 and four ex-

amples of discontinuous piezometer records (Well 1 through 4).

and October: post monsoon). A drop in the piezometric water levels
represents the change in GWL with reference to the ground surface. We
performed a data quality check to identify the total number of wells,
wells with complete data, null data, and defective observations (Fig. S1
in Supplementary Material (SM)). In 2003, there were only 753 pie-
zometers with complete data, which gradually increased to 2,820 pie-
zometers by the year 2014 and then decreased to 1,728 in 2020 (Fig. S1
in SM). A larger number of new observations were recorded between
2008 and 2013 at piezometers that were operational, particularly in
central Punjab in Pakistan. However, these piezometers lacked complete
historical data (Fig. 2b-d). Likewise, continuous biannual GWL data
were unavailable for 659 monitoring wells that were defective/

discontinued in different periods of time between 2003 and 2020
(Fig. 2g).

Groundwater-related local covariates: We collected monthly
(June and October) data for six local covariates (i.e., land surface tem-
perature (LST), normalized difference vegetation index (NDVI), actual
evapotranspiration (ET,), population density (PD), night light (NL), and
precipitation (PRECIP)) at high-resolution (1 km?) in the 2003-2020
period (Fig. S2 in SM). We selected these covariates as indicators of
natural or anthropogenic influence on groundwater changes. Socioeco-
nomic development (e.g., increasing population) and vegetation growth
are among drivers of increasing water demand, contributing to
groundwater depletion (Arshad et al.,, 2022; Arshad et al., 2019;
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Table 1
Summary of variables, their spatiotemporal resolution, and data sources used in
this study.

Data Type Variables Product Spatial Sources

(temporal)
resolution

Groundwater
storage and
depletion

GWSA, GRACE JPL-
DEPgw SH
(Downscaled)

1km x 1 km (Arshad et al.,
(monthly) 2022)
https://doi.
org/10.6084/
m9.figsh
are.22301020
V5

(Noor et al.,
2023; Arshad
et al., 2023b)
https://doi.
org/10.6084/
Local m9.figsh
covariates are.24570
397.v4
https://ear
lywarning.usg

TRMM
(downscaled)

1km x 1km
(monthly)

Precipitation

1km x 1 km
(monthly)

ET, MODIS

s.gov/fews/pr
oduct/460
https://Ipdaa
c.usgs.gov/da
taset_discov
ery/modis
NASA Land
Processes
Distributed
Active
Archive
Center
https://hub.
worldpop.org
/geodata/1
isting?id = 64

NDVI MOD13A3 1km x 1 km

(monthly)

LST MOD11A2 1km x 1 km

(8 days)

1km x 1km
(yearly)

Population
density

WorldPop
Global High-
Resolution
Population
dataset

NL DMSP/OLS 0.008 ° x
0.008 °

(yearly)

https://figsh
are.com/artic
les/dataset/
Harmonizatio
n_of DMSP_
and_VIIRS_
nighttime_
light data_fro
m_
1992-2018_
at_the_global_
scale/
9828827/6
PID (Punjab
(Biannually: Irrigation
June and Department)
October) and

Indian Water
Resource

Groundwater GWL
changes
reference to
ground
surface

Piezometers Stations

observations

Information
System
(IWRIS)

Kamaran Dastjerdi et al., 2022). While monsoon precipitation helps
recharge the aquifer, high evapotranspiration and human water demand
in dry periods contribute to falling groundwater (Ahmed and Wiese,
2019; Basharat et al., 2014). More detail about data acquisition, sources
and preprocessing of local covariates are provided in TextS1 (See SM)
and Table 1.

Gravity Recovery and Climate Experiment (GRACE): High-
resolution groundwater storage anomalies (GWSA) and depletion
(DEPgw) data at 1 km? resolution were acquired from a previous study
(Arshad et al., 2022; Arshad et al., 2023a). The data set was produced
using data from the Gravity Recovery and Climate Experiment (GRACE)
by applying a spatial downscaling approach. The data was validated
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with in-situ observations (overall R?> = 81 %) between 2003 and 2020
for the irrigated Indus Basin (see Arshad et al., 2022).

2.3. Description of spatial methods

2.3.1. Sequential geostatistical simulation

The SGS method was used to predict the changes in GWL for un-
monitored sites and piezometers that had missing data. SGS works based
on the principal assumption of multi-Gaussian random function variable
(Delbari et al., 2009). We defined a regularly spaced 1 km? grid that
covered the study area. The SGS establishes a random path function
through all space grid nodes such that each node is visited once in the
sequence (Nussbaumer et al., 2018), thus producing multiple possible
ensemble realizations of GWL distribution based on the original
piezometer data (Manchuk and Deutsch, 2012). Since selecting a fixed
number of realizations is debatable, the experiment should be repeated
with many iterations until the variance of simulations stabilizes (Meta-
hni et al., 2019). In our case, we selected 250 realizations. Before per-
forming the SGS, we transformed the data into a normal distribution
using Gaussian anamorphosis transformation. Thereafter, the trans-
formed data were used to calculate the experimental semi-variogram
models with hyperparameters consisting of sill, range and a nugget ef-
fect. The simple kriging was performed on normally distributed data to
provide an estimate and variance at each location. Furthermore, a
conditional simulation step was performed using SGS on a grid size of 1
km?. Conditional realizations were produced using the same GWL used
in the semi-variogram models to ensure that the generated realizations
respect the observed values at the sampled locations. The results were
back transformed to obtain simulated output in the original units. More
detail bout SGS theory and algorithms can be found in Bai and Tah-
masebi (2022).

2.3.2. Machine learning methods

We used three ML methods to predict GWLs, namely non-spatial
models including extreme gradient boosting (XGBoost), and random
forest (RF), and the spatial random forest (geographical weighted
random forest (RFgy)). These methods are explained as follows:

XGBoost method: We used XGBoost, an ensemble ML approach
rooted in the gradient boost tree algorithm. XGBoost builds an ensemble
of decision trees, each dependent on the others. XGBoost effectively
manages multicollinearity effects and handles complex non-linear re-
lationships within the data. Mathematically, XGBoost prediction can be
expressed as:

Y=Y+ Zhr(Xi) 1)

Y; is the current prediction of GWL for the i" observation. The pre-
dicted GWLs for each observation is updated iteratively through multi-
ple boosting rounds (T), where each round contributes the output of a
decision tree (hy) based on the corresponding feature vector (X;). The
final prediction is the sum of predictions from all boosting rounds. This
process allows XGBoost to improve predictions by focusing on the
samples that were previously mispredicted.

The hyperparameters of XGBoost regression involve the learning
rate, tree depth, the number of boosting rounds, minimum child weight,
and gamma, among others. We used an open source “XGBoost” package
available in R programming (Chen and Guestrin, 2016).

RF method: The RF machine learning method accounts for the non-
linear relationships among variables through independent decision trees
(Breiman, 2001b). RF bootstraps data randomly and develops multiple
decision trees to make predictions using sub-regression models on each
tree. RF helps to avoid overfitting the training dataset and outperforms
typical decision tree methods (He et al., 2016). The RF model developed
in this study can be expressed as follows:
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each iteration.

@

Each decision tree (hy) in the random forest model provides an in-
dividual prediction for each GWL observation based on the corre-
sponding feature vector (X;j). The final prediction is obtained by
averaging the predictions from all decision trees (T), resulting in an
ensemble prediction that typically offers better generalization and ac-
curacy compared to a single decision tree.

The hyperparameters of a RF regression are mtry “number of vari-
ables randomly sampled”, ntress “number of trees to grow”, and node
size” minimum number of observations in a terminal node”. The

“randomForest” in R is used to perform analysis (Breiman, 2001b).
RFg,, method: The XGBoost and RF methods are non-spatial, global
models that do not address spatial heterogeneity. The RFg, (or local RF)
model utilizes a local version of the RF regression proposed by Geor-
ganos et al. (2021). The principle working mechanism of the RFg,, model
is based on geographically weighted regression (GWR) which uses
neighboring data points to weight the observations geographically and
fit sub-models at each location. Thus, the RFg, model performs local
rather than global estimations. The fitted local sub-models in the RFgy,
framework help to address the spatial heterogeneity, and outperform
non-spatial models, including RF (Fotheringham et al., 2003; Georganos
etal., 2021; Georganos and Kalogirou, 2022). The general concept of the
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RFg, method can be explained based on simple regression and RF:
Yi=aX;+eji=1:n 3

Y; is the GWL for the i piezometer’s observation. aX; is the global
prediction of RF based on X set of covariates (e.g., ET, NDVI, NL, etc.)
and e indicates the prediction error. In the RF,, framework, the global
RF model is calibrated at each location “i” by considering a local subset
of spatial observations within a neighborhood defined by spatial
weights. The RFg, method used here can be expressed using the
following equation:

Yi=a(w, vi, W)Xi+e,i=1:n 4)

where, a(u;,v;y W)X; matrix indicated the prediction of RF model
calibrated at the i"" operational piezometer having geographical co-
ordinates (u;,v;j) and X set of covariates; uj, and v; represent the latitude
and longitude, respectively, of the ith observation; and e is the prediction
error in the modeled GWL. Spatial weight matrix (SWM) is constructed
to spatially weight observations in the RFg,, model. The spatial weights
(W) for each location are calculated using adaptive Gaussian method as
follows:

W, = exp|~d3 /6%, | ®)

where, Wj is the spatial weights between location i and j, dj; is the
distance betweeniandj, 6ig)is an adaptive bandwidth kernel indi-
cating the k™ number of nearest observations near location i.

During the development of a local RFg, model, the number of
neighborhood points (or kernel) plays an important role in making

reliable predictions. The local RF model uses a certain number of
neighborhood observations to train the model. The maximum distance
between the kernel and training data point indicates the bandwidth. We
used an adaptive kernel to calculate the “k” number of nearest obser-
vations. The hyperparameters for RFg,, model are ntree,mtry, bandwidth
(bw).

2.4. Hyperparameters tuning and optimization

Hyperparameters tuning is performed to select the best combination
of hyperparameters. The RGS (Random Grid Search) method was used as
tuning strategy for hyperparameters tuning of XGBoost (learning rate,
tree depth, the number of boosting rounds, eta and gamma), and RF
(ntree, mtry, and nodesize) (Bergstra and Bengio, 2012). We specified a
predefined range of values for each hyperparameter, and used the search
algorithm to randomly sample combinations of these values (Jiménez
et al., 2008). For each combination, the model’s performance was
evaluated using cross-validation (CV). Thereafter, we identified the
hyperparameters values that resulted in the best model performance on
unseen data. In the case of the RFg, model, the out-of-bag (OOB) method
was applied to attain the optimal value of bandwidth (Georganos and
Kalogirou, 2022). We tested OOB accuracy with various bandwidths and
selected the optimal bandwidth with the best performance. The optimal
bandwidth along with other optimized hyperparameters (mtry, and
ntrees) of the RF model were used to train and test the local RFg,, model.
In the case of SGS, the variogram model’s parameters for kriging esti-
mations were selected during the leave-one-out cross-validation process



A. Arshad et al.

(2) Obsekved
0( 33?# WL

Journal of Hydrology 628 (2024) 130535

600
Km

300 450

600
Km 0 75 150

Groundwater level (m)
¢ 2-4
@ 4-8
< 8-12
{3 12-16
@ 16-20
@ 20-24

@22

/ Country boundry

300

Difference (m)

o -7.2--50
@ -49--30
© -29--10
0 -09-0.0
O 01-10

O 1.1-30
@:1-50

@;s1-70

/ Country
boundry

(d)

10

0.5|[—— XGBOOST N T Meanx15SD
v RF t * Mean
g 0.4{|——RFgw )“ 6 . .
gl _
> \ E 2] 1S
5 [ = 0 . 5 .
2 M g ‘ N
[ \ o "2 T
o IAIRR -4 N
' AN -6 H i
| J - )
=10

SGS
*Gsoc;:p @A:gw GS

Error (m)

Fig. 5. (a) GWL predictions generated by the four models (SGS, XGBOOST, RF and RFy,) and comparison with observed (OBS) GWL at training piezometers, (b)
model prediction error based on the OBS, and (c-d) probability distribution function and error bars indicating the bounds of the models’ prediction error.

(Asa et al., 2012). This method involves iteratively leaving out one
observation, predicting it based on neighboring data, and calculating
prediction errors ('predicted - observed value’). Thus, the leave-one-out
cross-validation helps select optimal variogram model parameters (e.g.,
searching neighborhood and semi-variogram parameters) while
ensuring best predictions with minimum RMSE.

2.5. Assumptions and general framework for reconstructing GWL

The proposed framework utilizes two different approaches and four
models to reconstruct the high-resolution data, providing distributed (1

km?) estimates of GWL changes for temporally missing observations at
monitored and unmonitored sites. The approaches (and models) are
geostatistical (SGS) and ML (XGBoost, RF and RFg,,). The specific steps
to reconstruct the GWLs for the study area are summarized as follows:

(1) Preparing GWL data and covariates: The biannual (June and Oct)
GWL data from piezometers (P; predictand) and covariates were
structured in a matrix Dp for a specific month (t) represented as
Dp [(YXXi X PJ(uxV) ), ie€1,23 .,N;j€1,23,., k]t’
where, Y represents predictand (GWL), X; is covariate i, N stands
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(2

—

for total number of covariates, P; stands for operational piezom-
eter with spatial coordinate (u x v) and k stands for total number
of operational piezometers for a specific month (t). The data
matrix Dp for each specific month (t) has dimensions of “n” rows
of operational piezometer locations and “m” columns of total
number of variables. This matrix structure was applied for each of
the biannual predictions (July and October) from 2003 to 2020
(total 36 predictions).

Preparing training and testing data: We employed stratified
sampling which uses the ’createDataPartition’ function from the
’caret’ package in R to split Dp into training and testing
(Hyndman and Athanasopoulos, 2018). We used 70 % of the data
for the training set while the remaining 30 % was used for the
testing set and validation. Since the number and distribution of
operational piezometers vary from year to year, therefore, the
stratified sampling was applied to Dp matrix of every year.

(3) Training models at training piezometers: The training set of

predictands (GWLs) and local covariates from Dp for a given time
step (t: e.g., June 2003) with 1 to k™ locations of operational
piezometers were used to train the ML models with optimized
hyperparameters. In the geostatistical method, an experimental
variogram was fitted, and simple kriging was applied to the
training set to obtain kriging estimates. These estimates act as the
starting point for the SGS method, ensuring accurate GWL pre-
dictions at unsampled locations. The training performances of the
models were evaluated by comparing the predicted GWLs with
observed GWLs at training piezometers.

(4) Testing models at testing piezometers: The trained ML models
were tested using only testing covariates from Dp to predict GWLs
at testing piezometers. In the geostatistical method, SGS simula-
tions were performed based on kriging estimates to generate
multiple equally probable realizations of predicted GWLs at grid
size of 1 km? covering the entire study area. We validated the
predictive performance of the models by comparing their results
with observed GWLs at testing piezometers.

(5) Generating GWLs at unmonitored sites and filling missing

piezometer data: It was assumed that the spatial model developed
with the training data at operational piezometers were applicable
at sub-pixels of high-resolution local covariates. So, the 1 km?
gridded (G) local covariates (X;) represented as
[(Xi X Gyuxy) ), 1 € 1,2,3, ., N;j € 1,2,3,.., k], were im-
ported to test the ML models, generating 1 km? GWL data at
unmonitored sites and piezometers with missing data.

(6) Repeating Stepl-5 for June and October of each year and thus
generating 36 predictions per grid cell from 2003 to 2020.

Finally, the 1 km? raster output maps generated by the modeling
framework were used to: (1) provide high-resolution (information on
distributed GWL changes during the 2003-2020 period, (2) provide gap-
filled GWL data at desired monitoring wells, and (3) provide GWL es-
timates for unmonitored sites. The schematic diagram of the modeling
steps is presented in Fig. 3.
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2.6. Uncertainty quantification

Compounded uncertainty in GWL prediction can result from poten-
tial error in monitoring data, covariates from different remote sensing
products and various assumptions made in the modeling framework.
Therefore, we quantified the total uncertainty of predicted GWL at each
piezometer. We trained the ML models using 500 bootstrapping
resamples, generating 500 sets of predictions for the testing set. There-
after, quantile estimation was performed to determine the prediction
intervals at 0.05 and 0.95 quantiles (Nourani et al., 2023; Nourani et al.,
2022a). The width of prediction intervals was estimated by subtracting
the 0.05 quantile prediction from 0.95, which is a common measure of
prediction uncertainty (Takoutsing and Heuvelink, 2022; Nourani et al.,
2022b). For the SGS method, bootstrapped resampling data were used to
generate multiple possible realizations, and the variation among those
realizations served as a measure of uncertainty (Delbari et al., 2009).

2.7. Evaluation of prediction skill and model selection

The prediction skill of the four models to reconstruct GWLs for un-
monitored sites and piezometers with missing data was assessed by
comparing with observed data. We assessed the accuracy in two
different ways: (1) how accurately did the model predict GWLs at deep
wells based on training data from nearby shallower wells? (2) How was
the model’s performance affected by increasing the distance between
testing piezometers and training piezometers? In other words, how
effectively can models make a prediction to fill spatial gaps in GWL
data? To do so, we evaluated the prediction accuracy at near (within 8
km), medium distance (8 km to 16 km), and far (beyond 16 km)
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locations. We quantified predictive accuracy with validation data from
piezometers using goodness-of-fit metrics including R%, MSE (m), RMSE
(m), and Nash-Sutcliffe model efficiency coefficient (NSE), (see Table S1
in SM). Furthermore, we compared 1 km? estimates of GWL changes
with high-resolution GRACE-based GWSA data to validate predictions
for unmonitored sites. The model demonstrating the highest accuracy
was selected for further applications to study GWL changes in
groundwater-stressed areas with limited available data.

3. Results and discussion
3.1. Hyperparameters optimization of ML models

Grid search cross-validation (CV) results indicated that the XGBoost
model’s prediction error reduced as the boosting iterations “nrounds”
increased from 1 to 250. Optimal performance was observed with
nrounds (79), eta (0.3) and gamma (0.1) (Fig. S3). Likewise, the RF
model’s performance improved as the number of ntrees increased up to
250, bringing the MSE down from 3.9 m to 1.6 m. However, additional
increases in ntrees had no noticeable influence on the performance
(Fig. S4). In many cases, 150-200 ntrees have been reported to render
sufficient prediction accuracy (Lopes, 2019). Increasing mtry from 2 to 5
slightly affected the model’s prediction error. The optimal values of
nodes, ntree, and mtry bootstrapped for the RF model were selected as
16, 250 and 3 (Fig. S4). Optimal values of nodesize, mtry and ntress of
the RF model were introduced in the RFg, model. The RFg, model
required an appropriate bandwidth to spatially weight the observations.
To do so, we evaluated the predictive performance of the RFg,, model
between 20 and 200 nearest observations using adaptive bandwidth
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kernel (Fig. S5). The RFgy model’s prediction error reduced from 1.6 to
0.8 m as the bandwidth increased up to 76 nearest observations and then
the error started increasing with further increase in the bandwidth as
was reported by others (e.g., Fotheringham and Sachdeva, 2022). At the
optimal bandwidth of 76 nearest observations, the RFg, model
demonstrated superior performance compared to the RF model,
achieving a 63 % reduction in the prediction error. Other studies have
also reported better performance of RFg, models compared with RF
models (Khan et al., 2022).

3.2. Geographically weighted random forest and comparison with other
models

The predictive accuracy and reliability of each method on the
training set is presented in Fig. 4. The RF model demonstrated higher
reliability compared to the XGBoost model with an increase of R? and
NSE from 0.90 to 0.96 and 0.89-0.95, respectively. The RF’s superior
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performance over XGBoost for spatial data was also reported by (Zhang
et al.,, 2023). The SGS geostatistical approach, provided satisfactory
results when applied to the training dataset based on R? (0.96), NSE
(0.97) and RMSE (1.18 m). The comparison between the RF and SGS
methods revealed the remarkable superiority of SGS with comparatively
smaller RMSE. This outcome underscores the SGS model’s ability to
harness spatial dependencies, resulting in more accurate and realistic
predictions (Zakeri and Mariethoz, 2021). The RF model’s non-spatial
nature ignores the spatial dependencies among the observations (Heu-
velink and Webster, 2022). This can lead to biased predictions, espe-
cially when observations have a strong spatial correlation (Takoutsing
and Heuvelink, 2022). Further enhancing the RF model’s capabilities,
we developed the locally and spatially weighted RFg,, model. The RFg,
model outperformed all the other methods and significantly enhanced
the prediction accuracy, resulting in notable improvements in R? (0.96
to 0.99) and NSE (0.95 to 0.99), and a substantial reduction in RMSE
(1.53 to 0.35 m).
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Fig. 5 represents the spatial predictions of GWLs and error estima-
tions of SGS, XGBoost, RF and RFg, at training piezometers. The
observed values of GWLs were higher in the northern transboundary
areas and central Punjab, Pakistan (Fig. 5a), which is characterized by
higher water consumption and groundwater storage loss (Arshad et al.,
2022; Joshi et al., 2021; Ali et al., 2023). We observed significant dif-
ference in the predicted values of GWLs between the XGBoost and RF,
particularly across deeper wells (where GWLs > 20 m) in some parts of
the study area. The RFg, model effectively captured the spatial pattern
and magnitude of the observed GWLs at training piezometers. This is
likely because the RFg,, model was calibrated locally at each piezometer
and accounted for the effects of neighborhood observations to achieve
better predictive performance (Georganos et al., 2021; Georganos and
Kalogirou, 2022). The error estimations revealed that SGS, RF, and RF
approaches tended to overestimate and underestimate groundwater
levels (GWLs) across most piezometer observations. Notably, XGBoost
and RF demonstrated relatively higher levels of overestimation (up to
7.2 m) and underestimation (down to —7 m) at deeper piezometers on
the Indian side (Fig. 5b). The probability density plots and error bars of
SGS, XGBoost and RF approaches unveiled the higher spread of pre-
dicted values on both sides of zero mean within the range of 7.5 - —8.8
m, indicating relatively lower accuracy. By contrast, the histogram and
error bars of the RFg,, model displayed a narrower distribution around
zero mean, coupled with a higher density value of 0.45, highlighting its
better performance in minimizing prediction errors (Fig. 5c&d).

3.3. Statistical evaluation and prediction uncertainty at testing
Diezometers

The models trained in the previous step were also used to predict the
GWLs at testing piezometers to evaluate their prediction skill for
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unmonitored locations. The predictive performances of SGS, XGBoost,
RF and RFg, model at testing piezometers are presented in Fig. 6.
Goodness-of-fit metrics confirmed that the SGS approach demonstrated
relatively favorable performance compared to RF and XGBoost models
based on R> (0.81), NSE (0.80), and RMSE (3.1 m). The results of the
XGBoost model were the least accurate (R = 0.71, NSE = 0.70, and
RMSE = 3.8 m) (Fig. 6). The RF and XGBoost predictions predominantly
positioned below the 1:1 ratio line, particularly for deeper wells with
GWLs ranging 20-30 m. This indicated underestimations in predicted
values for deeper GWLs. In the case of the RFgy, the GWL predictions
were less scattered around the 1:1 ratio line, indicating its ability to
produce more accurate and consistent estimates of GWLs. Overall, the
local RFg,, outperformed other approaches with higher values of R?
(0.90) and NSE (0.89) and lower RMSE (2.0 m) (Fig. 6).

The comparison of prediction uncertainty maps among different
modeling approaches revealed distinct variations (Fig. 7). The uncer-
tainty in predictions produced by the SGS method varied across the
study area, ranging from 1 m to 8 m. Most testing piezometers indicated
higher uncertainty values ranging between 6 and 8 m. The XGBoost
model exhibited relatively smaller uncertainty, although they were
higher than those of the RF model. This was especially prominent in the
case of deeper piezometers located on the Indian side. The RF model’s
prediction uncertainty depicted a narrower range of values, primarily
falling between 2 m and 5 m across most piezometers. Some specific
piezometers exhibited relatively higher uncertainty (>7 m). In contrast,
the prediction uncertainty map for the RFg,, model indicated a reduced
range of values compared to the RF model and the other models (Fig. 7).
These results underscore that the RFg, method outperforms other ML
models and the SGS method in terms of prediction accuracy.
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Fig. 10. RFy,, based biannually (June and Oct) reconstructed time series of GWL changes at piezometers recording GWLs during the 2014-2020 period.

3.4. Evaluation of high-resolution GWL estimates

The 1 km? estimates of GWL were constructed by testing the ML
models using high-resolution covariates. In the case of SGS, the esti-
mates of GWL were obtained by conducting simulations on a grid size of
1 km? (Fig. S6 in SM). Taking Lahore City as an example, we evaluated
the predictive potential of estimated GWLs for deep wells (30-37 m)
based on the neighborhood training data encompassing shallower (4-11
m in the west) and deeper wells (GWL ~ 11-19 m in the east) (Fig. 8a).
The spatial patterns of estimated GWLs showed good agreement with
observational data for shallow to very shallow wells in the suburbs
(Fig. 8b-e). However, for deeper wells within the city, SGS, XGBoost, and
RF underestimated the GWLs by 7 m, 10 m, and 11 m, respectively,
based on the average of three validation piezometers. In contrast, the
RFg, model closely estimated GWLs at deeper wells in urban areas with
an average deviation of 2 m from the observed values. The RFg, model
helped detect hotspots of groundwater drawdown in Lahore City,
reflecting higher GWLs in the central parts of the city and shallower
GWLs in the suburbs. Analyzing the GWL profile along the A-B transect
illustrates the superior performance of the RFg,, model in capturing the
non-linear aquifer behavior, matching observed levels over all the
validation piezometers along the A-B transect (Fig. 8b-e). While the SGS,
XGBoost, and RF estimated GWLs with a linear increasing pattern that
aligned with the training data, they showed larger underestimations at
deeper wells located along the A-B transect. Overall, incorporating
anthropogenic factors in the RFg, model improved its accuracy in
human-impacted areas, where the SGS model underperformed due to its
reliance on neighborhood data alone. Although XGBoost and RF also
considered these human factors, their non-spatial approach resulted in
less accurate predictions.

We also evaluated the results depending on the distance of tested
locations from training piezometers (Fig. 9). Notably, the XGBoost
model exhibited comparatively weaker performance, particularly at far
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distances (>16 km), where R? and RMSE were 0.26 and 5.58 m,
respectively. The RF model demonstrated improved accuracy, achieving
R? of 0.32 for far locations and R? of 0.64 for those located within 8 km
of the training piezometers. Generally, the predictive accuracy of
XGBoost and RF decreased when they were tested on far distances from
their original training locations. Brenning (2023) also reported that
geostatistical (kriging) and ML methods (RF) provided the best estima-
tion near training sites while estimation bias increased with distance
from training observations. The RFg,, model outperformed both XGBoost
and RF, particularly excelling in predicting far GWLs (R?> = 0.85 and
RMSE = 2.12 m (Fig. 9) due to accounting for the geographic autocor-
relation of observations in the training set, which helps make reliable
prediction on neighborhood locations of testing data (Sekulic et al.,
2020). These findings underscore the crucial role of geospatial consid-
erations and model selection in GWL predictions. Based on the superior
performance of the RFg,, model, we applied this model to estimate GWL
at unmonitored locations and at sites whose records had missing data.

3.5. Temporal and map view of reconstructed GWL data from 2003 to
2020

The RFgy model was applied biannually (July and October) to
reconstruct high-resolution and continuous GWLs from 2003 to 2020 at
unmonitored sites and at piezometers having missing observations. As
an example, reconstructed GWLs matched observed GWLs for a series of
piezometers recording GWL since 2014. Application of the RFg, model
provided GWL data at this site for the 2003-2013 period when GWLs
were unavailable (Fig. 10). Testing of the RFg,, model at piezometers
with available data confirmed reasonable hindcast of GWL estimates.
Chen et al. (2019) used a similar assumption while hindcasting
groundwater storage changes (1980-2001) before the GRACE period
(2002-2019) in the Songhua River Basin using ANNs. To further confirm
the accuracy of reconstructed results for non-monitored sites, we also
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Fig. 11. (a) trend rate of GWL changes, (b-c) average depletion and trend rate of groundwater storage loss based on GRACE GWSA data, (d) grided correlation
coefficient, and (e) average temporal changes in GWLs and GWSA from 2003 to 2020 across non-monitored sites.

compared the estimated GWLs with GRACE-based groundwater storage
anomalies (GWSA) and depletion changes from 2003 to 2020 (Fig. 11).
The GWLs is declining at faster rate by 0.3-0.98 m/year in the eastern
side (India) and southern regions of Pakistan (Fig. 11a). The larger
decline rates of GWLs were mainly observed in the hotspot regions with
larger groundwater depletion (0.75-1.5 m/yr) (Fig. 11b) and ground-
water storage loss (GWSA: —0.15 - —0.30 m/year) (Fig. 11 c). The grided
correlation coefficient of GWL changes from 2003 to 2020 at most grids
showed a negative correlation (-0.60 to —0.96) with GRACE-based
GWSA data indicating that groundwater storage loss is significantly
associated with the decline rate of GWLs (Fig. 11 d). The increasing rate
of groundwater storage loss in the study area has been well documented
by previous studies (Ali et al., 2023; Arshad et al., 2022a). Regional
average temporal decline in GWLs was consistent with GRACE-based
GWSA from 2003 to 2020 across non-monitored sites (Fig. 11e). Thus,
the strong correlation between the GRACE-based GWSA and GWL un-
derscores reasonable accuracy of the reconstructed data non-monitored
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sites.

The reconstructed data showing the GWL changes between 2003 and
2020 for piezometers having defective observations located in different
settings (agricultural and peri-urban) are provided in the SM (Fig. S7),
showing spatiotemporal changes in GWLs (Fig. S8). While GWLs drop-
ped from 2003 to 2020 in many areas, the changes were more pro-
nounced in the south-east (Multan, Khanewal etc.). Also, some hotspots
were detected in the upstream urban regions (e.g., Lahore) due to
aquifer overdraft for human consumption and irrigation water supply
(Aslam et al., 2022). The spatial heterogeneity of GWL variation is also
associated with substantial human footprints in the already vulnerable
regions as well as arid and semi-arid nature of the study region (Zhu
et al., 2021).

3.6. Application in critical water-stressed and data-sparse regions

The reconstructed high-resolution GWL data were analyzed to assess
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Fig. 12. Spatiotemporal GWL changes in Lahore City and comparison with groundwater storage (GWS) loss indicated by GRACE-based GWSA between 2003

and 2020.

the groundwater changes in regions of higher water stress and limited
available data. The selected areas include thirty-two canal command
areas, secondary water channels (or distributaries), and densely popu-
lated urban areas.

3.6.1. Assessing GWL changes in data-sparse and unmonitored urban
regions

The per capita water availability in the region has decreased from
1,700 m® (year 1992) to 1,090 m® (year 2012) (Kamal et al., 2012).
Rapid urbanization driven by population growth and industrialization
has put a strain on the available water supplies, and per capita water
availability in the basin is projected to decrease to 850 m® by the year
2025 (IWMI, 2000). The water consumption in major cities is also pro-
jected to increase (e.g., Lahore (from 734 MCM/yr to 1,635 MCM/yr),
Faisalabad (from 279 MCM/yr to 623 MCM/yr), and Multan (from 169
MCM/yr to 378 MCM/yr) from 2010 to 2050) (Basharat, 2016). To
provide insight about potential vulnerabilities of these major cities, we
assessed the GWL changes in Lahore (area: 1,772 km?, population: 13.5
million), Multan (area: 227 kmz, population: 2.1 million), and Faisala-
bad (area: 211 km?, population: 3.6 million) between 2003 and 2020.
These urban areas are already hotspots for GWL decline with minimum
(and maximum) trend rate of 0.1 m/yr (and 0.9 m/yr) between 2003
and 2020 (Fig. S9). The reconstructed high-resolution data at 1 km?
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illustrates distributed GWL changes in unmonitored sites within and
around Lahore City where there were only a few piezometers between
2003 and 2020 (Fig. 12). A decline in groundwater was observed as
indicated by gradually increasing depth to groundwater from the ground
surface. The pixels with deeper GWLs (e.g., 17-27 m) were mainly
detected in the central part of the city in 2003, spreading outward into
peri-urban regions by the year 2020. The ongoing decline in GWL was
consistent with GRACE-based GWS depletion between 2003 and 2020
(Fig. 12) and previous studies (Aslam et al., 2022; Zahran et al., 2023).

3.6.2. Groundwater status in canal command areas

There is a critical need to understand the historical and current
groundwater status in the irrigated canal command areas in the Indus
Basin to inform sustainable groundwater use by the agriculture sector.
The reconstructed biannual GWL data were used to assess groundwater
changes in the thirty-two irrigated canal command areas located in the
study area. Further, we gained insight into the causes of GWL changes
due to shifts in water demand (estimated by actual ET) and supply
(estimated by canal water (CW) and precipitation) (Table 2).

Falling GWLs: Fifteen canal command areas showed a statistically
significant (p < 0.05) increasing rate of GWL decline since 2003 (Table 2
and Fig. S10a). In general, canal command areas irrigated from the
eastern rivers (Ravi, and Satluj) had a higher increase in GWL decline
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Table 2
GWL changes in thirty-two canal command areas between 2003 and 2020.
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Canals Rivers (Country)  PRECIP (mm/yr) ET (mm/yr) CW (mm/yr) Sen’s slope (GWL: m/yr) Decline status
Muzffgarh Canal Indus (PK)* 206.00 1239.56 743.00 -0.13 Significant decreasing (P < 0.05)
Upper Sadigia Canal Sutlej (PK) 240.00 727.50 865.00 —0.12

CRBC/Paharpur Canal Indus (PK) 325.62 992.97 200.00 —0.09

Rangpur Canal Chenab (PK) 238.00 1238.44 271.00 —0.08

Fordwah Sutlej (PK) 113.51 1283.67 482.00 —0.06

Haveli Canal Chenab (PK) 167.34 1295.97 564.00 —0.04 No change (P > 0.05)
Bannu Scarp Indus (PK) 398.32 984.81 170.00 —0.03

Thal Canal Indus (PK) 300.33 829.85 544.00 —0.02

Upper Bari Ravi (PK) 658.26 1218.16 500.00 —0.02

Upper Bahawal & Qaim Canal Sutlej (PK) 223.00 1294.44 917.00 —0.01

Gugera Chenab (PK) 259.54 1182.26 616.00 —-0.01

Upper Chenab Canal Chenab (PK) 481.56 1219.81 249.00 0.00

Pakpattan Canal Sutlej (PK) 250.00 1371.34 607.00 0.00

Panjnad Canal Indus (PK) 65.00 1277.85 704.00 0.00

Marala Ravi Canal Chenab (PK) 694.44 1195.16 180.00 0.01

Lower Sadigia Canal Sutlej (PK) 240.00 1050.23 865.00 0.02

Upper Jehlum Canal Jehlum (PK) 429.00 1212.55 738.00 0.02

Lower Jehlum Canal Jehlum (PK) 252.00 1141.48 411.00 0.03 Significant increasing
Raya Branch (BRBD Inetranl) Chenab (PK) 535.50 1192.77 250.00 0.04 (P < 0.05)
Upper Dipalpur Canal Ravi (PK) 349.00 1263.89 420.00 0.06

Bahawal Canal Sutlej (PK) 150.00 1087.74 763.00 0.08

Dera Ghazi Khan Canal Indus (PK) 138.00 1245.41 960.00 0.08

Jhang (Lower Chenab Canal) Chenab (PK) 325.76 1121.74 452.00 0.09

Lower Bari Doab Canal Ravi (PK) 151.84 1277.50 688.00 0.09

Ghotki Canal Indus (PK) 140.00 1192.13 700.00 0.10

Central Bari Doab Canal Ravi (PK) 370.58 1106.30 576.00 0.11

Sidhnai Canal Ravi (PK) 240.00 1375.63 500.00 0.12

Abbasia Canal Chenab (PK) 145.00 980.64 375.00 0.14

Lower Dipalpur Canal Ravi (PK) 464.00 1341.84 528.00 0.15

Mailsi + Lower Pakpattan canals Ravi (PAK) 183.00 1388.31 472.00 0.17

Dehli Doab Sutlej (IND)** 710.00 1275.00 320.00 0.33

Bist Doab Sutlej (IND) 1153.00 1350.00 150.00 0.60

*PK stands for Pakistan.
**IND stands for India.

rate. On the Indian side, the GWL is falling at a statistically significant
rate of 0.60 m/yr and 0.33 m/yr in irrigated areas across Bist and Dehli
Doab, respectively. In Pakistan, the highest significant increasing rates
of GWL decline were observed in the downstream canal command areas
such as Mailsi + Lower Pakpattan canals (Multan) followed by Lower
Dipalpur, and Abbasia Canal. GWL fell at a rate of 0.17 m/yr in the
Mailsi + Lower Pakpattan canals (Multan) between the 2003 and 2020
when the average ET demand (~1,388 mm/yr) was higher than the
water supply (precipitation = 183 mm/yr and CW = 432 mm/yr with a
difference of 733 mm/yr) (Table 2). As a result of increased irrigation
demand and reduced water availability from rain and canal water,
groundwater recharge diminished, contributing to the rapid GWL
decline in the Mailsi + Lower Pakpattan canals (Fig. S10a). The GWL
dropped dramatically by the year 2010, when the irrigated region in
Mailsi + Lower Pakpattan canals suffered a reduction in annual pre-
cipitation (~-19 % below 2003-2020 average). However, ET remained
steady and even increased slightly (~0.5 %) over this period. The rates
of GWL decline over the Lower Dipalpur, and Abbasia Canals were
recorded as 0.15 m/yr and 0.14 m/yr, respectively (Table 2). The actual
ET was higher than the combined water supply from precipitation and
canal water by ~ 350 mm/yr (Lower Dipalpur) and ~ 461 mm/yr
(Abbasia). Studies reported that the Lower Dipalpur canal always
operated in water deficit because deliveries were smaller than entitle-
ments (Siddiqi et al., 2018; Wescoat et al., 2018). In addition, the eastern
rivers flow dropped after the Indus Water Treaty (Wescoat et al., 2018)
and despite the water transfers from the western rivers through link
canals, long stretches of the rivers remain dry most of the year. The lack
of surface water has the double devil effect of reducing recharge while
also forcing agricultural producers to extract more water from the
aquifer to irrigate the crops (Arshad et al., 2022; Hashmi, 2021). In
contrast, the rate of GWL decline was smaller (0.03 m/yr) over the
Lower Jhelum canal command area (Table 2) with very small
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fluctuations between 2003 and 2020 (Fig. S10a) as water deliveries were
quite close to the entitlements (Wescoat et al., 2018). Managing water
demands through canal water supply also assists to reduce the declining
rate of groundwater level (Kaur et al., 2023).

Rising GWLs: We identified five canal command areas where GWLs
increased between 2003 and 2020 (e.g., Muzffgarh Canal, Upper Sadiqia
Canal, CRBC/Paharpur Canal, Rangpur Canal, Fordwah) (Fig. S10b and
Table 2). For example, GWLs in Muzaffargarh Canal increased by 0.13
m/yr, although the actual ET exceeded the precipitation and canal water
supply by 291 mm/yr. Since this canal command area is located between
the junctions of all the rivers near the Panjnad, it is likely that seepage
from water channels contributed to increasing groundwater storage. The
increasing GWLs in the Upper Sadigia canal command area may be
associated with brackish quality of aquifer as well as precipitation and
canal water amount exceeding the actual ET by 377 mm/yr. Our find-
ings agree with other published results about GWL in the study area
(Hashmi, 2021; Sanmugan Prathapar et al., 2021).

No change: No significant changes in GWL were observed in twelve
canal command areas with p > 0.05 (Table 2). There is a possibility that
groundwater consumption in these canal command areas has not
exceeded the renewable surface water availability to trigger significant
groundwater table drawdown.

3.6.3. Characterizing GWL changes across secondary channels

The high-resolution GWL data were further utilized to characterize
the groundwater changes in small-scale water distributary channels
where irrigation is mainly pumped from the aquifer. To ilustrate this, we
provided an example of the Hakra Branch canal (Bahawal) and its
seventeen distributaries to characterize GWL changes in head and tail
farms for years 2003, 2008, 2013 and 2020 (Fig. 13a). The selection of
the Hakra Branch canal as a case study was motivated by its significant
role in irrigation management, a history of innovative practices, and its
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transboundary relevance in the Indo-Pak region. Notably, the region had
a sparse groundwater monitoring network, with only 13 monitoring
wells in 2003 and 2008, but by 2013, this increased to 70 wells, and in
2020, there were 67 operational monitoring wells. It was observed that
during the 2003-2020 period downstream GWLs dropped at a larger
rate (0.83 m/yr) in the Hakra-right distributory (Disty) followed by
Hakra-left Disty (0.30 m/yr) and 9R-Disty (0.16 m/yr). The GWL decline
rate was larger in the tail farms of each distributory as compared to the
head farms (Fig. 13a). This is mainly because farmers in the downstream
areas of each distributory used ~ 40 % more groundwtaer than the
upstream farmers (Awan et al., 2016).

We conducted an evaluation over Hakra-right Disty for a closer ex-
amination of the spatial pattern of GWL changes from head to tail farms.
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This distributary had 458 km? of croplands. Surface water diversions
were 10.27 m3/sec (or cumec) in the head farms and 0.51 m>/sec in the
tail farms (Fig. 13b). Based on actual ET, water use was higher in the
head farms and moderately lower in the tail farms, which received less
precipitation than the head farms (Fig. 13b). On average, GWL dropped
at a rate of 0.02 m/yr in the head farms, which received larger canal
water diversions. This is because the combined water supply from pre-
cipitation (285 mm/yr) and canal water (853 mm/yr) was less than the
actual demand (ET: 1519 mm/yr). The deficit (381 mm/yr on average)
was compensated by pumping groundwater to meet irrigation demands.
The decline rate of GWL in tail farms was much larger (0.82 m/yr) be-
tween 2003 and 2020 when the average water deficit was 810 mm/yr
(average ET demand = 1150 mm/yr, precipitation = 240 mm/yr, and
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CW =100 mm/yr), increasing the pressure on the aquifer (Fig. 13b). Our
results align with those reported by Awan et al. (2016). The recon-
structed GWLs at 1 km? resolution improves understanding of the spa-
tial-temporal distribution of GWL changes and emphasizes the need of
revisitng water allocation in the head and tail (i.e., upsteam and
downsteam) farms as highlifgted by a previous study (Qureshi, 2014).

4. Potential limitations and future work

This study’s temporal scope is limited to the analysis of historical
trends without considering post-2020 changes. This is because the
relevant data were only available up to 2020. The temporal resolution of
the estimated GWLs is limited to a biannual scale due to the frequency of
the available in-situ observational data, potentially missing finer-scale
variations. Future research can apply predictive modeling with inputs
from CMIP6 climate models to project groundwater levels under climate
change. Regional generalization, external factors like land use changes,
anthropogenic influences, and the quality of new GWL data at piezom-
eters should be comprehensively investigated in future research for a
more holistic view of groundwater changes across the Indus Basin.

5. Conclusions

We presented a comprehensive framework for generating high-
resolution (1 kmz), continuous biannual GWLs estimates in data-
sparse regions, with a focus on the Indus Basin. Our results from the
application of the framework in the Indus Basin demonstrated the su-
perior performance of the RFg, model relative to traditional machine
learning (RF and XGBoost) and Geostatistical (SGS) methods. The spatial
nature of the RFg, model and leveraging local covariates enhances its
predictive accuracy and captures complex heterogeneous patterns of
GWL changes, particularly in the human-impacted areas. Furthermore,
the framework can be applied to provide high-resolution GWL estimates
at unmonitored locations, bridging data gaps and overcoming the
scarcity of monitoring wells. Notably, our analysis revealed the RFgy,
model’s ability to accurately predict GWLs even at considerable dis-
tances from training piezometers. The temporal analysis revealed a
substantial increase in GWL decline in vast areas of the Indus Basin from
2003 to 2020, particularly in regions with higher water consumption.
These findings were consistent with GRACE-based estimates of
groundwater storage loss. The reconstructed high-resolution estimates
of GWL from 2003 to 2020 were utilized in data-scarce regions,
including densely populated urban areas such as Lahore, Multan, and
Faisalabad. Our results highlighted increasing water consumption
trends and their strain on GWL decline. In irrigated regions, fifteen canal
command areas displayed an increasing rate of GWL decline associated
with reduced surface water supplies (canal and precipitation),
increasing water demands and substantial increase in groundwater de-
pendency. High-resolution GWL estimates facilitate better understand-
ing of the spatial-temporal distribution of GWL changes from upstream
or head farms to downstream or tail farms within water distributaries.
This analysis revealed larger GWL drops in tail farms due to the larger
share of groundwater in their total water supply. The new spatiotem-
porally continuous GWL data provide valuable information to facilitate
adaptive water management plans in critically groundwater-stressed
regions of the Indus Basin. Our study presents a transferable frame-
work for addressing groundwater monitoring and prediction challenges
in data-sparse regions around the world.
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