

1 A cross-systems primer for synthetic microbial 2 communities

3
4 **Elijah C. Mehlferber^{1,2*}, Gontran Arnault³, Bishnu Joshi⁴, Laila P. Partida-
5 Martinez⁵, Katy A. Patras^{4,7}, Marie Simonin³, Britt Koskella^{8,9*}.**

6 ¹School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

7 ²Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA

8 ³Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France

9 ⁴Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas,
10 USA

11 ⁵Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto

12 ⁶Politécnico Nacional (Cinvestav), Irapuato 36824, México

13 ⁷Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston,
14 Texas, USA

15 ⁸Department of Integrative Biology, University of California, Berkeley, CA, United States

16 ⁹San Francisco Chan Zuckerberg Biohub, San Francisco, CA, United States

17 *Corresponding Authors

18 Abstract

19 The design and use of Synthetic Communities, or SynComs, represents one of the most promising
20 strategies for disentangling the complex interactions within microbial communities, and between these
21 communities and their hosts. Compared to natural communities, these simplified consortia provide the
22 opportunity to study ecological interactions at tractable scales, as well as facilitating reproducibility and
23 fostering interdisciplinary science. However, the effective implementation of the SynCom approach
24 requires several important considerations regarding the development and application of these model
25 systems. There are also emerging ethical considerations when both designing and deploying SynComs
26 in clinical, agricultural, or environmental settings. Here, we outline current best practices in
27 developing, implementing and evaluating SynComs across different systems, including a focus on
28 important ethical considerations for SynCom research.

30 **Introduction**

31 Microbial organisms represent the bulk of the diversity present on Earth and as sequencing
32 technologies and computational tools have advanced, we have become increasingly aware of the
33 important role they play across systems. As these organisms live in complex and often highly dynamic
34 communities, there is a clear need to understand when and why microbial taxa coexist, how they
35 interact with one another, and how these interactions translate to function – especially given that these
36 outcomes often cannot be predicted based on knowledge of individual taxa. One of the most promising
37 strategies to disentangle these complex relationships within communities and between communities
38 and their hosts is the design of model consortia, generally referred to as synthetic communities, or
39 SynComs.

40 SynComs can be defined as “consortia of microorganisms designed to mimic, at some scale, the
41 observed functions and structure of the microbiome in natural conditions”¹. This approach was first
42 pioneered in 1965 when Russel Schaedler colonized germ-free mice with defined bacterial isolates²,
43 although the term “Synthetic Community” was first used, to the best of our knowledge, by Kim et al. in
44 2008 to describe a three species community comprised of soil bacteria³. The approach has since gained
45 popularity in both plant and human systems^{4–6}. Historically, SynComs have been composed of bacterial
46 species and have primarily focused on coexistence, competition, cross-feeding and functions encoded
47 on bacterial genomes or plasmids. Though less common, researchers can also include fungal, protist,
48 archaeal, and viral taxa within these experimental communities^{7,8}. Given their popularity, most of the
49 examples included throughout this piece will focus on bacterial SynComs, though we acknowledge the
50 importance of these multi-kingdom community approaches. It is further important to delineate between
51 the types of synthetic communities discussed in this piece: those composed of naturally sourced
52 organisms meant to model some functions of their originating communities^{9,10}, versus those that
53 represent a group of Synthetic Organisms designed to perform a certain function^{11,12}, usually via
54 genetic engineering, with the latter being more typically used in Synthetic Biology.

55 Compared to natural communities, SynComs provide several advantages to researchers. Their
56 defined membership enables the reconstitution of identical communities across experiments, allowing
57 reproducibility across time and labs¹³. Like the development of model systems in biology, this approach
58 allows researchers to integrate knowledge of a given system to accelerate progress and foster
59 interdisciplinary science. While most research on microbiomes relies on destructive sampling,

60 SynComs allow for repeated manipulation of the community to dissect the role of individual species
61 (and their abundances) in its assembly and function.

62 The SynCom approach can be used to facilitate answers to fundamental research questions, as
63 well as for specific applications, and is equally suitable for host-associated and free-living microbial
64 communities (Figure 1). In both cases, SynComs provide excellent opportunities to model ecological
65 interactions at tractable scales and can offer key insights into community dynamics. As applied
66 systems, non-host associated (environmentally-derived) SynComs can be harnessed for bioremediation,
67 chemical engineering, and biofuel production. Host-associated SynComs can be used to increase crop
68 production in agricultural settings, through both growth promotion and disease protection, as well as to
69 understand and treat microbiome-associated animal diseases. In the context of human health, SynComs
70 can be designed to treat disease and dysbiosis, such as enrichment of opportunistic pathogens, which
71 are associated with infectious (e.g. *Clostridioides difficile* infection¹⁴) or metabolic (e.g. *diabetes*
72 *mellitus*¹⁵) origins. A better fundamental understanding of how within-microbiome interactions affect
73 the balance of microbial taxa and ability of resident communities to resist pathogen invasion will
74 support the development of targeted microbial interventions to reduce such community disturbances. In
75 all cases, SynComs address the need to understand the host-microbe and microbe-microbe interactions
76 underlying these phenotypes, and act as potential interventions for re-establishing stable microbial
77 communities.

78 In the following sections we outline current best practices in developing, implementing and
79 evaluating SynComs, including a focus on important ethical considerations for SynCom research and
80 application (Figure 2). This piece is not a comprehensive review of SynCom-associated studies, nor is
81 it the first to outline approaches to developing SynComs^{1,4,5,11,16,17}, but rather serves as a cross-systems
82 primer for those hoping to develop a SynCom for research or application, or for evaluating SynCom-
83 associated work. The information provided herein represents a comprehensive starting point for those
84 unfamiliar with the field, and citations have been chosen carefully to give readers the opportunity to
85 follow up on any points, or explore specific systems, in greater detail.

86 **Designing the community**

87 Many strategies exist to design SynComs depending on the objectives and research system of interest.
88 These can be summarized as a continuum from bottom-up to top-down designs (Figure 3). The bottom-
89 up approach relies on the assembly of a specific set of microbial strains of interest, chosen due to their
90 suitability to some criteria of the study (including the feasibility of isolating and culturing them)

91 (Figure 3a). In this case, phenotypically and genomically defined strains are typically combined to
92 characterize microbial interaction dynamics and mechanism, community functions, and emergent
93 properties of known strain assemblages. These simple SynComs have facilitated the discovery of inter-
94 microbial antagonism pathways between microorganisms¹⁸, as well as microbial cross-feeding and
95 degradative synergies that are critical for ecosystem functioning¹⁹. For example, the OMM mouse
96 community, , shows how microbial interactions and cross-feeding can impact their host by shaping
97 their exposure to certain metabolic by-products²⁰. This approach is crucial for identifying the molecular
98 mechanisms driving microbial interactions, but it relies on simplification of the microbial diversity and
99 environmental conditions. Strains are often selected because of the extensive knowledge available on
100 their genetic and phenotypic attributes (i.e. model strains) and not because they co-exist in nature (i.e.
101 from different sources of isolation). Moreover, they are selected because they can grow alone, leading
102 to bias in the types of strains being included. Additionally, recent work has demonstrated that strains
103 coexisting within a stable complex community might fail to coexist in pairwise co-cultures, showing
104 that multi-species coexistence is an emergent phenomenon²¹.

105 In contrast to building SynComs from characterized strains, a top-down design relies on
106 assembling a large diversity of strains (for example, by sampling of a natural source) and reducing their
107 complexity in a stepwise fashion to gain insight into the sub-components of the community (Figure 3b).
108 The objectives for this approach can be wide-ranging, from mimicking the natural phylogenetic
109 diversity, to identifying core taxa or core functions of a microbiome, to understanding the specific role
110 of taxa of interest in complex assemblages. Simplification of the initial community can be achieved
111 through natural or knowledge-driven filtering approaches or bottlenecks. One such straightforward
112 approach is to let the environment or host ‘filter’ or select for strains capable of colonizing and
113 surviving in/on it from the initial strain pool²². Complementary approaches include performing
114 experimental evolution to enrich taxa or functions of interest over multiple cycles of reinoculation²³ or
115 applying random filtering such as serial dilution²⁴ to create random subsets of the wider community for
116 subsequent exploration. Alternatively, knowledge-driven filtering can be performed based on existing
117 data that informs add-in/drop-out of taxonomic or functional groups of interest, which can be identified
118 from functional assays or metagenomes²⁵, and/or microbial hubs identified via co-occurrence
119 networks²⁶. These bottom-up and top-down approaches for SynCom development are complementary
120 and necessary to eventually “meet in the middle”, allowing researchers to understand and predict
121 microbiota assembly and functions across scales of complexity.

122 A crucial aspect in SynCom design is the meticulous sourcing and selection of the strains.
123 Depending on the objectives of the study, strains can be sourced from the study system (e.g. same soil
124 or individual), from across environments, or even from (inter)national strain collections. It is important
125 to acknowledge that the sourcing of strains poses a significant limitation to the SynCom approach, as
126 even complex SynComs may lack certain keystone taxa (i.e. those with outsized impact on community
127 stability or function²⁷) that might be essential for realistic community dynamics⁴. During the selection
128 process, careful consideration must be given to the number of strains that align with the project's goals
129 and system complexity²⁸. Factors like ease of cultivation and growth rates play a role in determining
130 the feasibility of incorporating specific strains, but it is critical to appreciate the varying growth
131 capabilities of strains under different conditions (i.e. acknowledging that selection based on one set of
132 criteria likely reduces success or function of the SynCom under different conditions). Mitigating these
133 effects can be achieved by aligning media and culture conditions with the specific requirements of the
134 studied system²⁹. Additionally, it is important to note that the convenience of handling specific strains
135 does not always correspond directly to their significance within the system.

136 **Strain preparation and Inoculation**

137 Various factors must be considered to standardize the use of SynComs across experiments and studies
138 (Box 1). First, the choice between *in vitro* and *in vivo* systems is fundamental, necessitating
139 consideration of the ecological relevance and applicability of the chosen system. When studying host-
140 associated communities, an *in vitro* approach may be most appropriate (at initially for hypothesis
141 generation and when the relevant interactions are solely inter-microbial, but if the interactions of
142 interest are host-microbial, an *in vivo* approach is necessary. Next, the impact of inoculum
143 concentration must be considered given the density- and frequency-dependent nature of many
144 microbial interactions³⁰. This can be achieved by inoculating at ecologically relevant densities or
145 inoculating at lower densities and allowing the community to establish *in situ*. There may be
146 compelling reasons to increase the concentration, especially when the SynCom is required to
147 outcompete the resident community (host or environment) within a coalescence framework³¹.
148 Establishing standardized protocols for SynCom inoculation is essential, including the timing and
149 frequency of inoculation³², growth prior to inoculation (i.e. physiological state of the strains³³ and
150 media composition), and subsequent sampling of community dynamics. Additionally, it is necessary to
151 determine if these communities can be stored throughout the duration of the study³⁴, or if they need to
152 be remade each time to ensure that they have the same concentration, evenness, and physiological state.

153 **Evaluating a SynCom**

154 When designing a SynCom it is important to remember the oft cited quote by George Box, “all models
155 are wrong, some are useful”. SynComs, after all, are meant to be tractable models of natural systems.
156 The question is not whether they represent those systems perfectly, but rather if they represent the
157 features of the system that the researchers aim to study. It is therefore of critical importance that the
158 SynCom is designed with specific questions and context in mind, that these questions are well
159 articulated, and that the features selected to be represented in that model are relevant to the system in
160 its natural or applied environment. For fundamental questions, employing a simplified SynCom can
161 prove highly advantageous in demonstrating the feasibility or existence of specific functions or
162 interactions (Fig. 1). For example, Yang et al.³⁵ employed a community consisting of 6 species from the
163 same genus, and although highly simplified compared to natural communities, this SynCom allowed
164 them to test the role of community diversity in robustness against invasion, though of course a more
165 complex community might reveal additional contributing factors. More complex questions might
166 require more complex communities. To identify a conserved set of host (*Arabidopsis thaliana*) genes
167 that are upregulated in response to colonization by bacteria, Maier et al.³⁶ constructed a SynCom
168 consisting of 38 strains representing the breadth of phyla naturally associated with the plant.
169 Establishing that this was a general plant response required a SynCom that captured more of the natural
170 diversity that is found to associate with their host. While these two communities are quite different,
171 each is sufficient to represent models of the interactions of interest.

172 When evaluating the effectiveness of a SynCom, it is important to focus on the system being
173 modeled rather than the composition or complexity compared to other established communities (Fig. 3).
174 For every SynCom study, there will be a tradeoff between tractability and relevance. Simple communities
175 are easier to work with, but less representative of real systems. They run the risk of missing emergent
176 properties and context-specific outcomes, such as higher order competitive interactions, priority effects,
177 or the impact of rare keystone members, making them potentially less generalizable. In contrast, while
178 more complex models might capture these effects, they can be harder to implement, show lower
179 reproducibility, and offer significant challenges when it comes to data interpretation.

180 Researchers must think critically about their questions and ensure that their community is
181 sufficiently designed to answer them, while also transparently communicating the limitations of their
182 model. To ensure your SynCom aligns with the questions being asked, methods can be implemented to
183 validate community performance. This includes understanding what features of your community you
184 need to validate (sequencing depth, growth, survival, interactions, productivity, host phenotypes,

185 ecosystem function etc.) and identifying methods to do so (see Box 1 for suggested computational
186 resources). In light of new methods for barcoding/labeling strains³⁷ and multi-omics approaches, both
187 validating composition (or change in composition) of the SynCom and evaluating the functions of the
188 SynCom can be done simultaneously, but depending on if the study is focusing on ecological (validate
189 composition) or functional (validate function) properties of the community both approaches might not
190 be needed.

191 The classic approach to understanding bacterial community composition is through 16S rRNA
192 gene sequencing (though other targets such as *gyrB* and *rpoB* can be used). However, this method only
193 resolves relative abundance of the bacteria present, and can run into issues with copy number variation,
194 primer bias, as well as difficulties delineating at the species level and the inability to distinguish between
195 living and dead bacteria. When employing a well-defined SynCom, many of these issues can be
196 addressed or avoided by employing alternative/additional methods. Plating, if community members can
197 be morphologically distinguished, allows for a relatively cheap and effective determination of living
198 bacterial numbers and diversity. For more complex communities, absolute abundance can also be
199 approximated through qPCR^{38,39} or ddPCR⁴⁰ using general or species-specific primers. Further
200 corrections for copy number can be employed if the SynCom member genomes have been sequenced⁴¹,
201 and primer bias can be addressed through comparisons to known mock communities⁴², for example,
202 using the Zymo community standards. When addressing strain resolution, methods like DADA2⁴³ can
203 distinguish between strains if they differ by at least one base pair in the sequenced region (though this is
204 not the case for all taxonomic groups). Other approaches such as long read sequencing⁴⁴ or metagenomic
205 barcoding can be used to distinguish more closely related strains. Finally, live/dead PCR using PMA has
206 been employed to remove relic DNA from sequencing samples, limiting quantification to cells that are
207 still intact (and therefore likely alive) at the time of sequencing⁴⁵.

208 Perhaps more complicated is determining that a SynCom is performing the functions of interest.
209 When evaluating these functions, more complex “Omics” enabled methods can be employed.
210 Metagenomics can be used to quantify the genetic and functional composition of the community,
211 including both gene presence and relative abundance⁴⁶, and could be used to determine if these are
212 representative of the natural system. Further approaches could be applied to approximate a community
213 metagenome by normalizing genome assemblies (for gene content) against 16S rRNA gene sequencing
214 data. RNAseq can be applied to determine whether the host is responding to the SynCom under the
215 conditions of interest, as well as evaluating the microbial responses through community-wide
216 RNAseq⁴⁷. Additionally, both host and community can be evaluated simultaneously using dual RNA-

217 seq⁴⁸. The extent to which host and community responses are reflective of the actual system can be
218 further quantified by comparing gene expression in the natural and model systems⁴⁹.

219 **Ethical considerations in SynCom development and application**

220 When developing SynComs to model or treat human disease it is important that these systems are
221 representative of diverse human groups (i.e. those living across rural and urban settings, from different
222 geographic areas, and across the socio-economic continuum) and focus on both well-studied and
223 typically neglected diseases⁵⁰. Their design should consider that microbiome composition can vary
224 across geographic and economic boundaries^{51,52}, either by including these groups when defining
225 important strains or by designing communities to specifically represent them. When a SynCom is
226 intended for clinical application it must be composed of known, culturable, and reproducible
227 communities that are verified to be free from harmful pathogens or virulence factors that could pose
228 risks to human health. This is now possible because the genomes and features of the community (e.g.
229 metatranscriptome, metaproteome) can be more easily characterized. Even after this, however, rigorous
230 multi-center, longitudinal cohort studies are required to identify SynCom off-target effects, such as
231 unintentional transfer of pathobionts from donor to recipient⁵³, inadvertent propagation of genes (e.g.,
232 antimicrobial resistance genes), unintended impacts on the endogenous microbiota such as competitive
233 enrichment of other pathogens⁵⁴, or unanticipated effects on host metabolism or susceptibility to
234 disease. Finally, it is important to consider the long-term effects on the resident community, as well as
235 the potential for transmission beyond the original recipient, including horizontal transmission within
236 the household, as well as vertical transmission from parent to child⁵⁵.

237 Likewise, there are several critical factors that must be considered when SynComs are to be
238 used in natural or agricultural settings. We are optimistic that the field can learn from, and avoid, past
239 mistakes made with novel biological technologies (i.e. antibiotics or species introduction biocontrol) as
240 SynComs become more widely applied. Given the high densities at which microbial amendments are
241 typically introduced, these impacts could be more disruptive than ‘natural’ microbial dispersal⁵⁶.
242 Moreover, since many members of SynComs have been specifically selected to grow well (often across
243 diverse habitats), they should be considered to pose a risk for invasion, possibly leading to loss of
244 natural microbial diversity. As such, the development and deployment of SynComs outside of the
245 laboratory should adhere to the four principles of ethics (do good, don’t harm, respect, and act justly)
246 and the eleven guiding principles for microbiome research⁵⁷. Practically, studies should be undertaken
247 to assess the associated risks under the conditions that these SynComs might be applied. Further, while

248 biocontainment has been a long-standing focus for engineered microbial organisms⁵⁸, it has received
249 far less attention for Syncoms and probiotics more generally. As use of Syncoms in medical,
250 agricultural, and environmental settings becomes more prominent, this will need more thorough
251 assessment.

252 Beyond SynCom release, there are also ethical considerations around their use in research.
253 These include embracing FAIR data principles to ensure that all data underlying published findings are
254 findable, accessible, interoperable and reusable⁵⁹. There are numerous data and strain repositories that
255 can be used to achieve this goal, but true reusability requires useful metadata⁵⁹⁻⁶¹ (Box 1). The National
256 Microbiome Data Collaborative (<https://microbiomedata.org/>) offers many examples of how this can be
257 done and is itself an exemplary effort of how to bring these issues to the attention of the research
258 community.

259 **Future Perspectives**

260 In summary, while SynComs represent an important resource for increasing our fundamental
261 knowledge of microbial systems, as well as a valuable applied tool, there are critical considerations
262 when designing and implementing them. While this piece provides a high-level overview of those
263 considerations, more system-specific reading will certainly be useful as the reader begins to construct
264 or evaluate a SynCom. We suggest the following reviews as excellent next steps depending on the
265 specific system in question; plant^{5,17} (including the review by Northen et al., in this issue⁶²) animal⁶³,
266 agriculture^{1,64}, human^{4,16,65}.

267 Despite the progress made in developing the SynCom approach, the field is still in its infancy
268 and researchers must continue to collaboratively establish and share best practices. As research
269 becomes more collaborative and more standardized, the field may move towards “model” Syncoms for
270 use across research groups. However, it is essential to first identify the most effective systems and
271 communities, and in doing so we will likely need to expand our efforts to include less culturable
272 organisms, as well as increasing diversity across kingdoms and trophic levels. Additionally, as more
273 research groups begin working with Syncoms, it is imperative to explore methods for integrating
274 findings across different models to uncover common principles and patterns, including standardizing
275 the reporting of metadata associated with these studies. Likewise, the field should develop best
276 practices for calibrating and testing the effectiveness of communities as models for specific research
277 questions. Looking ahead, the potential role of artificial intelligence⁶⁶ in advancing the development

278 and study of SynComs should also be considered, as tools to accomplish this are beginning to be
279 implemented.

280 **Author Contributions**

281 EM and BK developed the framework for the manuscript, with inputs from all authors. EM lead the
282 writing of the manuscript, with contributions by GA, BJ, LPM, KP, MS and BK. Authors GA, BJ,
283 LPM, KP contributed equally to the manuscript, these authors are presented in alphabetical order by
284 surname.

285

286 **Acknowledgements**

287 This manuscript was inspired by an ASM Microbe panel discussion involving many of the authors and
288 organized by the ASM EEB track in 2023, we would like to specifically thank Benjamin Callahan for
289 early discussions on this topic. EM would like to acknowledge funding from the NSF EAGER award #
290 1838299 as well as support from the NSF Postdoctoral Research Fellowships in Biology award #
291 2209151. BK is a Chan Zuckerberg San Francisco Biohub investigator. BJ and KP would like to
292 acknowledge funding from the National Institutes of Health award # U19 AI157981. GA and MS were
293 supported by the 3rd Programme for Future Investments (France 2030) and operated by the SUCSEED
294 project (ANR- 20- PCPA-0009) funded by the 'Growing and Protecting crops Differently' French
295 Priority Research Program (PPR-CPA), part of the national investment plan operated by the French
296 National Research Agency (ANR). LPM would like to acknowledge funding from Conahcyt (Consejo
297 Nacional de Humanidades, Ciencias y Tecnologías) with award #'s A1-S-9889 and CBF2023-2024-
298 2642.

299

300 **Competing Interests**

301 The authors declare no competing interests.

302

303

304 **Box 1. Resources and Best Practices for SynCom Design**

305 **Resources**

- 306 1. Computational resources for processing and preparing amplicon sequencing data (short or long
307 reads): dada2⁴³, Mothur⁶⁷, UNOISE3⁶⁸, UCHIME3⁶⁹, Decontam⁷⁰, LULU⁷¹
- 308 2. Resources for tracking and characterizing SynCom/resident microbiota: vegan⁷², Phyloseq⁷³,
309 MicroViz⁷⁴, Microbiome R Package⁷⁵.
- 310 3. Sequencing pipelines for assembling and annotating strain genomes: SPADES⁷⁶ or Unicycler⁷⁷
311 are considered best practices for assembly, while BAKTA⁷⁸ is the defacto option for annotation.
- 312 4. Methods for identifying keystone species, core or key functional taxa: Abundance Occupancy
313 curves⁷⁹, LIMITS⁸⁰, the DKI machine learning framework⁸¹, SPIEC-EASI⁸²
- 314 5. Resources for the automated design and predictive effects of synthetic communities: used by
315 Karkaria et al.⁸³, Toju et al.⁸⁴ and Paredes et al.⁸⁵

316 **Best Practices**

- 317 1. Methods used to select strains should be documented and published in work referencing the
318 SynCom.
- 319 2. Strains should undergo whole-genome sequencing and these data should be made publicly
320 available.
- 321 3. Strains within SynComs should be made available to other researchers via deposition in a public
322 collection such as ATCC, DSM, CBS, CIRM etc.
- 323 4. Within fields, methods for strain preparation and inoculation should be standardized (i.e.
324 growth conditions prior to experimentation, strain inoculation density, sampling methods during
325 experiment).
- 326 5. Integrity of strain freezer stocks should be maintained, and best practices followed, as it is vital
327 to prevent these strains from becoming lab adapted. Freeze thaw cycles and the number of
328 passages of a strain in non-native conditions should be minimized and documented. Strains
329 should periodically be validated for identity and redundant copies of the library should be stored
330 in separate locations.

332 **References**

333 1. de Souza, R. S. C., Armanhi, J. S. L. & Arruda, P. From Microbiome to Traits: Designing
334 Synthetic Microbial Communities for Improved Crop Resiliency. *Frontiers in Plant Science* **11**, (2020).

335 2. Schaedler, R. W., Dubs, R. & Costello, R. ASSOCIATION OF GERMFREE MICE WITH
336 BACTERIA ISOLATED FROM NORMAL MICE. *J Exp Med* **122**, 77–82 (1965).

337 3. Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial structure stabilizes a
338 synthetic multispecies bacterial community. *Proceedings of the National Academy of Sciences* **105**,
339 18188–18193 (2008).

340 4. van Leeuwen, P. T., Brul, S., Zhang, J. & Wortel, M. T. Synthetic microbial communities
341 (SynComs) of the human gut: design, assembly, and applications. *FEMS Microbiol Rev* **47**, fuad012
342 (2023).

343 5. Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing Causality: Opportunities
344 of Synthetic Communities for Plant Microbiome Research. *Cell Host & Microbe* **22**, 142–155 (2017).

345 6. Lebeis, S. L. *et al.* Salicylic acid modulates colonization of the root microbiome by specific
346 bacterial taxa. *Science* **349**, 860–864 (2015).

347 7. Thonar, C., Frossard, E., Šmilauer, P. & Jansa, J. Competition and facilitation in synthetic
348 communities of arbuscular mycorrhizal fungi. *Molecular Ecology* **23**, 733–746 (2014).

349 8. Durán, P. *et al.* Microbial Interkingdom Interactions in Roots Promote Arabidopsis Survival.
350 *Cell* **175**, 973–983.e14 (2018).

351 9. Mehlferber, E. C. *et al.* Phyllosphere microbial associations improve plant reproductive success.
352 *Front Plant Sci* **14**, 1273330 (2023).

353 10. Flores-Núñez, V. M. *et al.* Synthetic Communities Increase Microbial Diversity and
354 Productivity of Agave tequilana Plants in the Field. *Phytobiomes Journal* **7**, 435–448 (2023).

355 11. Johns, N. I., Blazejewski, T., Gomes, A. L. & Wang, H. H. Principles for designing synthetic
356 microbial communities. *Current Opinion in Microbiology* **31**, 146–153 (2016).

357 12. McCarty, N. S. & Ledesma-Amaro, R. Synthetic Biology Tools to Engineer Microbial
358 Communities for Biotechnology. *Trends Biotechnol* **37**, 181–197 (2019).

359 13. Sasse, J. *et al.* Multilab EcoFAB study shows highly reproducible physiology and depletion of
360 soil metabolites by a model grass. *New Phytologist* **222**, 1149–1160 (2019).

361 14. Theriot, C. M. & Young, V. B. Interactions Between the Gastrointestinal Microbiome and
362 Clostridium difficile. *Annual Review of Microbiology* **69**, 445–461 (2015).

363 15. Singer-Englar, T., Barlow, G. & Mathur, R. Obesity, diabetes, and the gut microbiome: an
364 updated review. *Expert Review of Gastroenterology & Hepatology* **13**, 3–15 (2019).

365 16. Vázquez-Castellanos, J. F., Biclot, A., Vrancken, G., Huys, G. R. & Raes, J. Design of synthetic
366 microbial consortia for gut microbiota modulation. *Current Opinion in Pharmacology* **49**, 52–59
367 (2019).

368 17. Marín, O., González, B. & Poupin, M. J. From Microbial Dynamics to Functionality in the
369 Rhizosphere: A Systematic Review of the Opportunities With Synthetic Microbial Communities. *Front.*
370 *Plant Sci.* **12**, (2021).

371 18. Peterson, S. B., Bertolli, S. K. & Mougous, J. D. Interbacterial antagonism: at the center of
372 bacterial life. *Curr Biol* **30**, R1203–R1214 (2020).

373 19. D’Souza, G. *et al.* Ecology and evolution of metabolic cross-feeding interactions in bacteria.
374 *Natural Product Reports* **35**, 455–488 (2018).

375 20. Pérez Escrivá, P., Fuhrer, T. & Sauer, U. Distinct N and C Cross-Feeding Networks in a
376 Synthetic Mouse Gut Consortium. *mSystems* **7**, e01484-21 (2022).

377 21. Chang, C.-Y., Bajic, D., Vila, J. C. C., Estrela, S. & Sanchez, A. Emergent coexistence in
378 multispecies microbial communities. *Science* **381**, 343–348 (2023).

379 22. Finkel, O. M. *et al.* A single bacterial genus maintains root growth in a complex microbiome.
380 *Nature* **587**, 103–108 (2020).

381 23. Anand, G., Goel, V., Dubey, S. & Sharma, S. Tailoring the rhizospheric microbiome of *Vigna*
382 *radiata* by adaptation to salt stress. *Plant Growth Regul* **93**, 79–88 (2021).

383 24. Auchtung, J. M., Preisner, E. C., Collins, J., Lerma, A. I. & Britton, R. A. Identification of
384 Simplified Microbial Communities That Inhibit *Clostridioides difficile* Infection through
385 Dilution/Extinction. *mSphere* **5**, e00387-20 (2020).

386 25. Kumar, N., Hitch, T. C. A., Haller, D., Lagkouvardos, I. & Clavel, T. MiMiC: a bioinformatic
387 approach for generation of synthetic communities from metagenomes. *Microbial Biotechnology* **14**,
388 1757–1770 (2021).

389 26. Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance:
390 mechanisms and regulation. *Nat Rev Microbiol* **21**, 347–360 (2023).

391 27. Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of
392 microbiome structure and functioning. *Nat Rev Microbiol* **16**, 567–576 (2018).

393 28. Emmenegger, B. *et al.* Identifying microbiota community patterns important for plant protection
394 using synthetic communities and machine learning. *Nat Commun* **14**, 7983 (2023).

395 29. Gerna, D., Clara, D., Allwardt, D., Mitter, B. & Roach, T. Tailored Media Are Key to Unlocking
396 the Diversity of Endophytic Bacteria in Distinct Compartments of Germinating Seeds. *Microbiology*
397 *Spectrum* **10**, e00172-22 (2022).

398 30. Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A. & Chandler, J. R. Bacterial Quorum
399 Sensing and Microbial Community Interactions. *mBio* **9**, 10.1128/mbio.02331-17 (2018).

400 31. Rocca, J. D., Muscarella, M. E., Peralta, A. L., Izabel-Shen, D. & Simonin, M. Guided by
401 Microbes: Applying Community Coalescence Principles for Predictive Microbiome Engineering.
402 *mSystems* **6**, 10.1128/msystems.00538-21 (2021).

403 32. Debray, R. *et al.* Priority effects in microbiome assembly. *Nat Rev Microbiol* **20**, 109–121
404 (2022).

405 33. Mutlu, A., Kaspar, C., Becker, N. & Bischofs, I. B. A spore quality-quantity tradeoff favors
406 diverse sporulation strategies in *Bacillus subtilis*. *ISME J* **14**, 2703–2714 (2020).

407 34. Parnell, J. J., Vintila, S., Tang, C., Wagner, M. R. & Kleiner, M. Evaluation of ready-to-use
408 freezer stocks of a synthetic microbial community for maize root colonization. *Microbiology Spectrum*
409 **12**, e02401-23 (2023).

410 35. Yang, T. *et al.* Resource availability modulates biodiversity-invasion relationships by altering
411 competitive interactions: Resource availability modulates biodiversity. *Environmental Microbiology* **19**,
412 2984–2991 (2017).

413 36. Maier, B. A. *et al.* A general non-self response as part of plant immunity. *Nat. Plants* **7**, 696–705
414 (2021).

415 37. Ordon, J. *et al.* Chromosomal barcodes for simultaneous tracking of near-isogenic bacterial
416 strains in plant microbiota. *Nat Microbiol* **9**, 1117–1129 (2024).

417 38. Jian, C., Luukkonen, P., Yki-Järvinen, H., Salonen, A. & Korpela, K. Quantitative PCR provides
418 a simple and accessible method for quantitative microbiota profiling. *PLOS ONE* **15**, e0227285 (2020).

419 39. Zemb, O. *et al.* Absolute quantitation of microbes using 16S rRNA gene metabarcoding: A rapid
420 normalization of relative abundances by quantitative PCR targeting a 16S rRNA gene spike-in
421 standard. *Microbiologyopen* **9**, e977 (2020).

422 40. Morella, N. M., Yang, S. C., Hernandez, C. A. & Koskella, B. Rapid quantification of
423 bacteriophages and their bacterial hosts in vitro and in vivo using droplet digital PCR. *Journal of*
424 *Virological Methods* **259**, 18–24 (2018).

425 41. Kembel, S. W., Wu, M., Eisen, J. A. & Green, J. L. Incorporating 16S Gene Copy Number
426 Information Improves Estimates of Microbial Diversity and Abundance. *PLOS Computational Biology*
427 **8**, e1002743 (2012).

428 42. Brooks, J. P. *et al.* The truth about metagenomics: quantifying and counteracting bias in 16S
429 rRNA studies. *BMC Microbiology* **15**, 66 (2015).

430 43. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data.
431 *Nat Methods* **13**, 581–583 (2016).

432 44. Callahan, B. J. *et al.* High-throughput amplicon sequencing of the full-length 16S rRNA gene
433 with single-nucleotide resolution. *Nucleic Acids Research* **47**, e103 (2019).

434 45. Carini, P. *et al.* Effects of Spatial Variability and Relic DNA Removal on the Detection of
435 Temporal Dynamics in Soil Microbial Communities. *mBio* **11**, (2020).

436 46. de Souza, R. S. C., Armanhi, J. S. L., Damasceno, N. de B., Imperial, J. & Arruda, P. Genome
437 Sequences of a Plant Beneficial Synthetic Bacterial Community Reveal Genetic Features for Successful
438 Plant Colonization. *Frontiers in Microbiology* **10**, (2019).

439 47. Giannoukos, G. *et al.* Efficient and robust RNA-seq process for cultured bacteria and complex
440 community transcriptomes. *Genome Biol* **13**, r23 (2012).

441 48. Westermann, A. J., Gorski, S. A. & Vogel, J. Dual RNA-seq of pathogen and host. *Nat Rev
442 Microbiol* **10**, 618–630 (2012).

443 49. Lewin, G. R. *et al.* Application of a quantitative framework to improve the accuracy of a
444 bacterial infection model. *Proceedings of the National Academy of Sciences* **120**, e2221542120 (2023).

445 50. Mohajeri, M. H. *et al.* The role of the microbiome for human health: from basic science to
446 clinical applications. *Eur J Nutr* **57**, 1–14 (2018).

447 51. Mallott, E. K. *et al.* Human microbiome variation associated with race and ethnicity emerges as
448 early as 3 months of age. *PLoS Biol* **21**, e3002230 (2023).

449 52. Gupta, V. K., Paul, S. & Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in
450 Human Microbiome Composition and Diversity. *Front. Microbiol.* **8**, (2017).

451 53. DeFilipp, Z. *et al.* Drug-Resistant *E. coli* Bacteremia Transmitted by Fecal Microbiota
452 Transplant. *N Engl J Med* **381**, 2043–2050 (2019).

453 54. Varga, J. J. *et al.* Antibiotics Drive Expansion of Rare Pathogens in a Chronic Infection
454 Microbiome Model. *mSphere* **7**, e00318-22 (2022).

455 55. Bogaert, D. *et al.* Mother-to-infant microbiota transmission and infant microbiota development
456 across multiple body sites. *Cell Host Microbe* **31**, 447-460.e6 (2023).

457 56. Ladau, J. *et al.* Microbial invasions and inoculants: a call to action. (2023).

458 57. Lange, L. *et al.* Microbiome ethics, guiding principles for microbiome research, use and
459 knowledge management. *Environmental Microbiome* **17**, 50 (2022).

460 58. Pantoja Angles, A., Valle-Pérez, A. U., Hauser, C. & Mahfouz, M. M. Microbial
461 Biocontainment Systems for Clinical, Agricultural, and Industrial Applications. *Frontiers in
462 Bioengineering and Biotechnology* **10**, (2022).

463 59. Huttenhower, C., Finn, R. D. & McHardy, A. C. Challenges and opportunities in sharing
464 microbiome data and analyses. *Nat Microbiol* **8**, 1960–1970 (2023).

465 60. Yilmaz, P. *et al.* Minimum information about a marker gene sequence (MIMARKS) and
466 minimum information about any (x) sequence (MIXS) specifications. *Nat Biotechnol* **29**, 415–420
467 (2011).

468 61. Mirzayi, C. *et al.* Reporting guidelines for human microbiome research: the STORMS checklist.
469 *Nat Med* **27**, 1885–1892 (2021).

470 62. Northen, T. PLACEHOLDER.

471 63. Jennings, S. A. V. & Clavel, T. Synthetic Communities of Gut Microbes for Basic Research and
472 Translational Approaches in Animal Health and Nutrition. *Annual Review of Animal Biosciences* **12**,
473 283–300 (2024).

474 64. Shayanthan, A., Ordoñez, P. A. C. & Oresnik, I. J. The Role of Synthetic Microbial
475 Communities (SynCom) in Sustainable Agriculture. *Front. Agron.* **4**, (2022).

476 65. Cheng, A. G. *et al.* Design, construction, and in vivo augmentation of a complex gut
477 microbiome. *Cell* **185**, 3617–3636.e19 (2022).

478 66. Emmenegger, B. *et al.* Identifying microbiota community patterns important for plant protection
479 using synthetic communities and machine learning. *Nat Commun* **14**, 7983 (2023).

480 67. Schloss, P. D. *et al.* Introducing mothur: Open-Source, Platform-Independent, Community-
481 Supported Software for Describing and Comparing Microbial Communities. *Applied and*
482 *Environmental Microbiology* **75**, 7537–7541 (2009).

483 68. Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon
484 sequencing. Preprint at <https://doi.org/10.1101/081257> (2016).

485 69. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves
486 sensitivity and speed of chimeric detection. *Bioinformatics* **27**, 2194–2200 (2011).

487 70. Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical
488 identification and removal of contaminant sequences in marker-gene and metagenomics data.
489 *Microbiome* **6**, 226 (2018).

490 71. Frøslev, T. G. *et al.* Algorithm for post-clustering curation of DNA amplicon data yields reliable
491 biodiversity estimates. *Nat Commun* **8**, 1188 (2017).

492 72. Dixon, P. VEGAN, a package of R functions for community ecology. *Journal of Vegetation*
493 *Science* **14**, 927–930 (2003).

494 73. McMurdie, P. J. & Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis
495 and Graphics of Microbiome Census Data. *PLOS ONE* **8**, e61217 (2013).

496 74. Barnett, D. J. m, Arts, I. C. w & Penders, J. microViz: an R package for microbiome data
497 visualization and statistics. *Journal of Open Source Software* **6**, 3201 (2021).

498 75. Lahti, L. & Shetty, S. microbiome R package. (2017) doi:10.18129/B9.bioc.microbiome.

499 76. Bankevich, A. *et al.* SPAdes: A New Genome Assembly Algorithm and Its Applications to
500 Single-Cell Sequencing. *Journal of Computational Biology* **19**, 455–477 (2012).

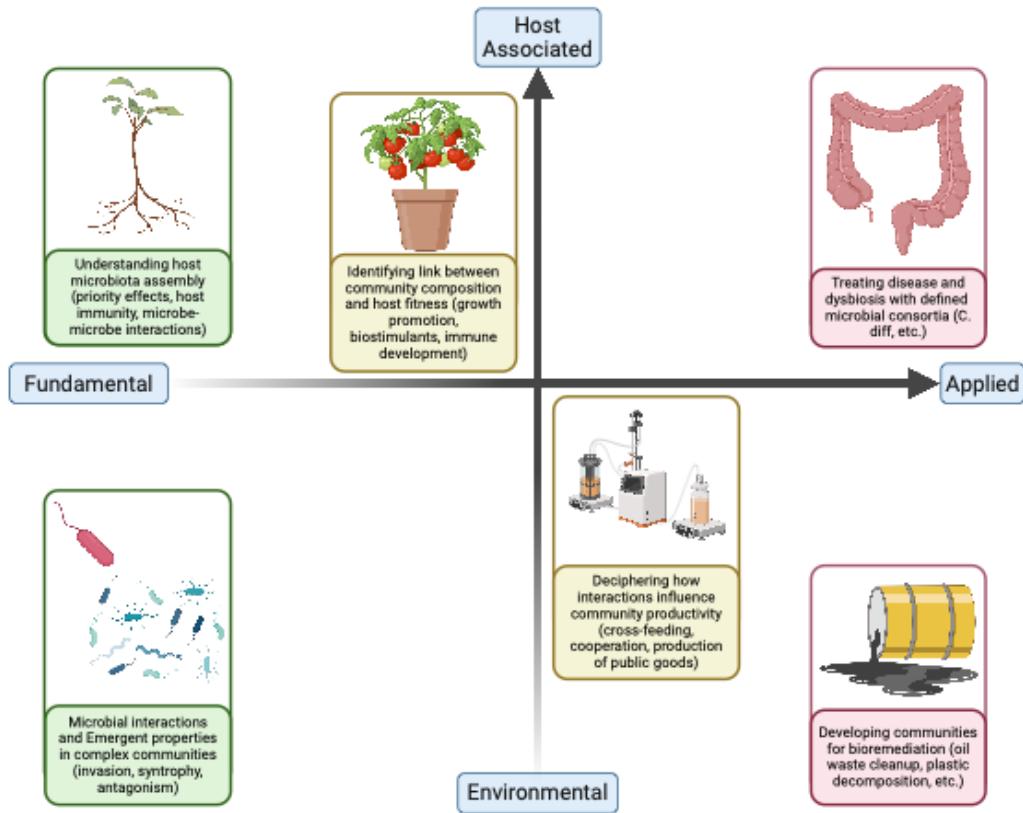
501 77. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome
502 assemblies from short and long sequencing reads. *PLOS Computational Biology* **13**, e1005595 (2017).

503 78. Schwengers, O. *et al.* Bakta: rapid and standardized annotation of bacterial genomes via
504 alignment-free sequence identification. *Microb Genom* **7**, 000685 (2021).

505 79. Shade, A. & Stropnisek, N. Abundance-occupancy distributions to prioritize plant core
506 microbiome membership. *Current Opinion in Microbiology* **49**, 50–58 (2019).

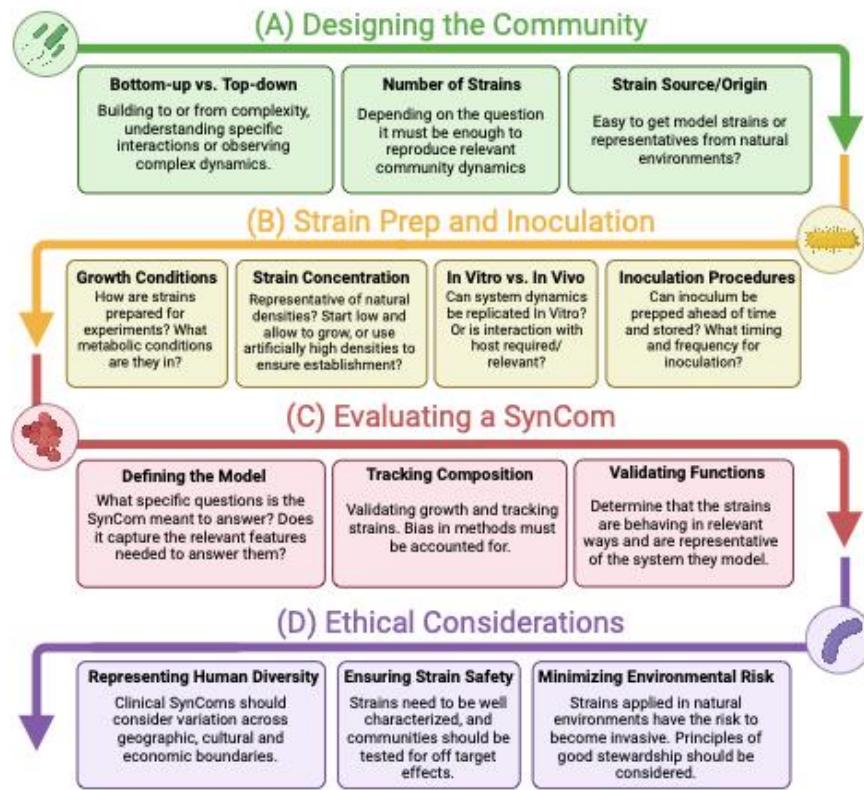
507 80. Fisher, C. K. & Mehta, P. Identifying Keystone Species in the Human Gut Microbiome from
508 Metagenomic Timeseries Using Sparse Linear Regression. *PLoS One* **9**, e102451 (2014).

509 81. Wang, X.-W. *et al.* Identifying keystone species in microbial communities using deep learning.
510 *Nat Ecol Evol* **8**, 22–31 (2024).


511 82. Kurtz, Z. D. *et al.* Sparse and Compositionally Robust Inference of Microbial Ecological
512 Networks. *PLOS Computational Biology* **11**, e1004226 (2015).

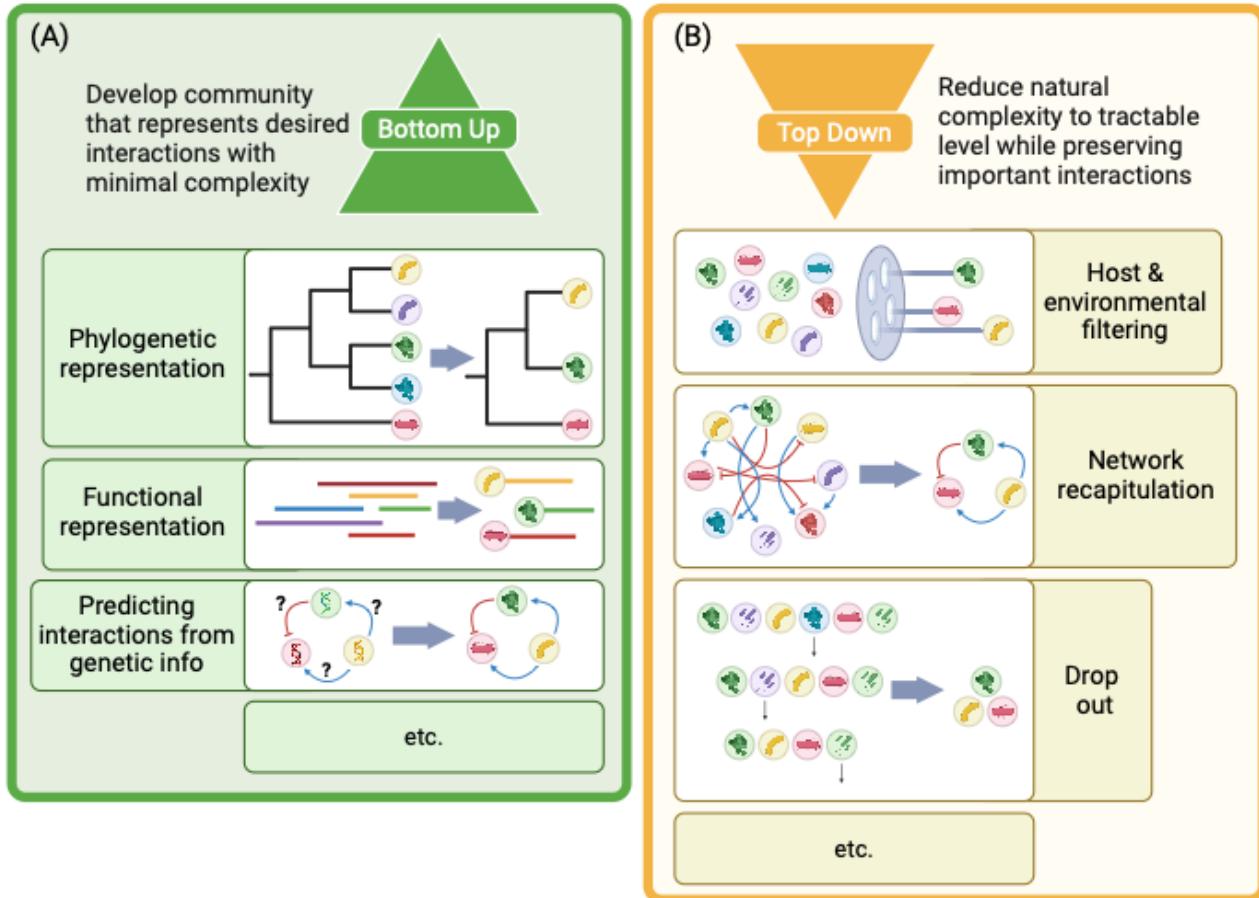
513 83. Karkaria, B. D., Fedorec, A. J. H. & Barnes, C. P. Automated design of synthetic microbial
514 communities. *Nat Commun* **12**, 672 (2021).

515 84. Toju, H. *et al.* Scoring Species for Synthetic Community Design: Network Analyses of
516 Functional Core Microbiomes. *Front. Microbiol.* **11**, (2020).


517 85. Paredes, S. H. *et al.* Design of synthetic bacterial communities for predictable plant phenotypes.
518 *PLOS Biology* **16**, e2003962 (2018).

519

520


521 **Figure 1. Dual continuums of “question” and “system” for SynCom research.** Research questions
 522 using SynComs can range from fundamental questions or basic science, that is, trying to understand the
 523 rules and functioning underpinning different systems, to applied questions. Here communities are
 524 designed to fulfill certain purposes, for example, [AU: please complete this sentence using a brief
 525 example from the figure]. Likewise, the system being used can be placed on a continuum from
 526 environmental to free living and host-associated microbial communities.

527

528 **Figure 2. Flow diagram of approaches used when designing, evaluating and deploying a SynCom.**

529 (A) All studies begin by designing the community (green). SynCom design can proceed from either
 530 Bottom-up (increase complexity through iterations) or Top-down (reduce complexity through
 531 iterations) approaches. When designing communities it is important to consider the number of strains
 532 needed to be relevant, as well as the sourcing of those strains. (B) Strains are then prepared and used
 533 for inoculation (yellow). Important considerations include the strain growth conditions, applied
 534 concentration, experimental system and methods of inoculation. (C) After a SynCom has been
 535 implemented, it is critical to evaluate if it provides relevant information about the system being
 536 modeled. To do so, the questions must first be well defined, after which the relevant features can be
 537 assessed by tracking the composition and functioning of the community. (D) When designing and
 538 applying SynComs across both human and environmental systems, there are important ethical
 539 considerations to take into account. In human systems, these communities should be representative of
 540 diversity seen across geographic, cultural and economic boundaries, and communities applied to
 541 patients should be tested for off target effects. When applying a SynCom to a natural system, care must
 542 be taken to ensure that these species do not spread and become invasive.

543

544 **Figure 3. Examples of bottom-up and top-down design approaches for SynComs.** (A) Bottom-up
 545 approaches can include selecting strains that represent the phylogenetic diversity of the natural
 546 community at some level, identifying strains that perform some functions of interest in the natural
 547 community, or through the prediction of key interactions in the community that a researcher might want
 548 to model. (B) Top-down designs can employ host or environmental filtering. This is where a larger
 549 community is applied into the study environment and only those strains that pass some growth or
 550 persistence metrics are included. It can also be achieved through the recapitulation of key features in
 551 community interaction networks or through a sequential drop out, where strains are sequentially
 552 removed in order to select the minimal complexity required to model the interactions of interest. In
 553 practice these approaches are not mutually exclusive, and researchers can choose to employ a
 554 combination of bottom-up or top-down strain selection approaches to define their communities.