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Abstract 

Habitat loss due to changes in land cover is one of the main causes of biodiversity decline worldwide. Habitat loss occurs dispropor
tionately in areas of high biodiversity because these same areas are particularly suitable for development. We assessed the effect of 
development risk on the biodiversity of breeding birds in the United States. We compared the effect of two predictors of habitat loss 
on the richness, abundance, and rarity of woodland, open-habitat, and urban birds at the local and regional levels. We used the 
House Price Index—as a measure of development risk—and primary productivity as predictors in simulations of habitat loss. For lo
cal scale analysis, we used generalized regression models. For regional-scale habitat loss simulations, we statistically compared the 
results obtained from each predictor. Locally, development risk and primary productivity interacted in their effect on the richness, 
abundance, and rarity index of all birds. At the regional level, development risk predicted larger declines in richness and abundance 
and increases in the rarity of open-habitat birds following habitat loss than primary productivity. For woodland birds, both risk of de
velopment- and primary productivity-ordered habitat loss affected richness and rarity levels, while primary productivity had a larger 
effect on their abundance. The diversity of urban birds was less affected by habitat loss than the other groups of birds. Our study is 
the first to investigate the usefulness of the House Price Index as a measure of development risk and as a predictor of biodiversity. 
Proactively recognizing high-development risk areas affords more time for targeted conservation plans in those areas.
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Introduction
Habitat loss is one of the leading causes of biodiversity decline 
worldwide (Newbold et al. 2015, 2016), and by 2100, close to half 
of the world’s ecoregions will be impacted by interactions be
tween habitat loss and climate change (Segan et al. 2016). 
Habitat loss often impacts regions of high biodiversity or conser
vation value since these habitats are usually attractive for devel
opment or agriculture (Haines-Young 2009, Wintle et al. 2019). 
The degradation and destruction of natural areas affect species 
richness, occupancy, and abundance and threaten the popula
tion persistence of plants, invertebrates, and vertebrate groups 
such as amphibians, mammals, and birds (Cushman 2006, De 
Camargo and Currie 2015, Crooks et al. 2017, Otto et al. 2017, 
Rossetti et al. 2017). Thus, with the ongoing conversion of natural 
habitats to urban areas and the threat of urban areas tripling 
those existing in 2000 in this decade (Seto et al. 2012), there is a 
need for early indicators of development risk to biodiversity.

Biodiversity assessments combining socioeconomic and envi
ronmental factors have demonstrated the importance of both as 
drivers of biodiversity (Holland et al. 2009, Fidino et al. 2024). For 
example, increases in economic inequality and higher endemism 
levels are associated with larger biodiversity loss (Holland et al. 
2009); while increasing gentrification and low impervious cover 
are associated with increases in species richness (Fidino et al. 

2024). In this paper, we investigated the usefulness of a socioeco
nomic variable, the House Price Index (HPI; Federal Housing 
Finance Agency 2019), as an early indicator of development risk 
when predicting the effect of non-random habitat loss on biodi
versity. In the USA, high HPI values are not always associated 
with high levels of urbanization or human population size. 
However, the HPI values can also inform about the lack of supply 
for increasing housing demands (Deutsch 2015). Thus, HPI is 
treated here as an indicator that informs about an increase in hu
man interest in an area and the risk of future development to 
biodiversity in that area. We compared the HPI to the Normalized 
Difference Vegetation Index (NDVI), used as a measure of pri
mary productivity. Primary productivity is considered one of the 
major drivers of biodiversity (Gaston 2000), influencing animal 
distributions and community composition (Pettorelli et al. 
2005, 2011).

Theoretical predictions resulting from habitat loss simula
tions have focused on species richness as a biological index to as
sess biodiversity change (Rompr�e et al. 2009, Seabloom et al. 
2002). In this paper, we complemented the analysis of changes in 
species richness following habitat loss with the analysis of 
changes in two additional biodiversity indices: rarity index and 
abundance. We used birds as a study group because they have 
experienced a significant decline in abundance within the last 
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five decades in North America and Europe (Rosenberg et al. 2019, 
Burns et al. 2021) and it is possible that similar trends would be 
found in less studied areas. We focused on birds of the USA be
cause data sets recording the abundance and occupancy of this 
taxonomic group are publicly available for this country (Pardieck 
et al. 2020).

We used random and non-random simulations (i.e. HPI- 
ordered and NDVI-ordered simulations) to estimate changes in 
the three aforementioned community indices following habitat 
loss and then compared results among the different simulation 
sets. We based our simulations of habitat loss on one of the most 
robust and general patterns in macroecology, the species-area re
lationship, which posits that larger areas support higher species 
richness and abundance (Gaston and Blackburn 2000, Wilson 
and MacArthur 2016). Large areas experience a heterogeneity of 
climatic conditions and habitats, making it likely that the geo
graphic distributions of the most common and abundant species 
overlap with those of the rarest and less abundant species. This 
overlap increases the communities' overall richness and abun
dance (Gaston and Blackburn 2000). Therefore, the loss of areas 
with suitable habitats reduces both the size and the overlap of in
dividual species’ geographic distributions, which will be reflected 
in declines in species richness and increases in species rarity. 
Abundance may also be affected because, even if the species can 
disperse to the remaining suitable area, the stability of popula
tion size will depend on the quantity and quality of the resources 
available in the remaining habitat. If resources become limited, 
this could ultimately lead to declines in population sizes. We can 
expect these changes in communities’ composition regardless of 
whether the habitat loss is random.

However, when the loss of habitat is not random, and the most 
suitable areas are lost first, the effects on natural communities are 
predicted to be stronger than with random loss (Seabloom et al. 
2002, Rompr�e et al. 2009). Thus, we posited that habitat loss or
dered by decreasing development risk or vegetation productivity 
will have an impact higher than random loss on avian community 
composition, producing steeper losses of species richness and 
abundance and increases in rarity. Additionally, development risk- 
and primary productivity-ordered habitat loss will impact wood
land, open-habitat, and urban birds differentially. At the local 
level, we expected that: (i) primary productivity will be positively 
correlated with the richness, abundance, and rarity of woodland 
birds and negatively or not correlated to these community indices 
for open habitat and urban species, and (ii) The development risk 
of an area will be positively correlated with the local richness, 
abundance, and rarity of urban and open habitat birds and nega
tively or not correlated to these community indices for woodland 
birds. At the regional level, we expect that: (i) the loss of highly 
productive areas will decrease the richness and abundance and 
increase the rarity more than what is expected by the loss of areas 
with high development risk for woodland birds but not for 
open-habitat and urban birds, and (ii) the loss of areas with high 
development risk will decrease the richness and abundance and 
increase the rarity more than what is expected by the loss of high 
primary productivity areas for urban and open-habitat birds but 
not for woodland birds.

Methods
Data
Bird survey
We used data on bird occurrence and abundance for the conter
minous United States in 2017 from the North American Breeding 

Bird Survey (i.e. BBS; Pardieck et al. 2020). The BBS is a point 
count transect survey that has been conducted annually between 
May and June across the United States since 1966. It has routes 
measuring 39.2 km. A unique pair of geographic coordinates for 
each BBS route is assigned at the route start point (Pardieck et al. 
2020). Each route is divided into 50 stops placed at �800-m inter
vals. At each stop, a participant conducts a 3-min point count, re
cording every bird seen or heard within a radius of 400 m. The 
count begins 30 min before local sunrise and is completed in ap
proximately 5 h. We extracted the county corresponding to each 
BBS route from the United States County Boundaries map (U.S. 
Bureau of the Census 2000).

House Price Index (HPI)
As an index of development risk, and thus as a predictor of biodi
versity following habitat loss, we used the annual HPI per county 
for 2017 (Federal Housing Finance Agency 2019). This index is 
computed using values of the same physical units on repeat 
transactions, considering only individual single-family residen
tial properties (Calhoun 1996, Bogin et al. 2019). We used the in
dex value for 2017 with a base of 100 in 2000. Thus, changes in 
house prices since 2000 will be reflected in the 2017 HPI value as 
percentage increments or reductions from 100. For example, a 
county with an HPI value of 95 (120) for the year 2017 indicates 
that house prices have decreased five % (increased 20%) since the 
year 2000, respectively. Expressing the cumulative change in HPI 
with the same start year for all areas makes interpreting the 
changes in the index more straightforward. The 2017 HPI values 
were very weakly associated with the counties’ population size 
reported in the 2020 census (U.S. Census Bureau 2023) (Pearson’s 
correlation r ¼ 0.20, P-value < 0.001). Thus, we interpreted the HPI 
as an indicator of the risk of development (not as a measure of 
urbanization). Our rationale was as follows: the more interested 
people are in living in an area, the more the house price values 
increase between purchases in that county, and the higher that 
county’s HPI becomes, which can, in turn, inform about the risk 
of future development for biodiversity.

Selection of BBS routes
For our analysis, we first standardized the county names be
tween the BBS and the HPI data. To each BBS route, we assigned 
the HPI value of the county containing the route’s starting point. 
While a BBS route might cross from one county into another, we 
assigned a single HPI value to each route (since adjacent counties 
tend to have similar HPIs, Fig. 1). Not all USA counties have an 
HPI value assigned for 2017; thus, we filtered out routes that oc
curred in counties lacking an HPI value. After applying these fil
ters, we included 2208 routes in our study (Fig. 1).

Species selection and classification
From the total number of species recorded across the 2208 BBS 
routes, we filtered out unidentified species, hybrids, water birds 
or seabirds, and species with most of their geographic distribu
tion outside of the USA and Canada. Based on this selection crite
rion, we included 303 bird species in the study. We then 
classified each species as a woodland, open-habitat, or urban 
bird. For the classification of woodland and open-habitat birds, 
we utilized the species guild list available on the BBS website 
(https://www.mbr-pwrc.usgs.gov/bbs/guild/guildlst.html) and 
the species’ habitat descriptions provided by the Cornell 
Ornithology Laboratory (Billerman et al. 2022). Based on these 
two sources, we considered birds with forests as primary habitat 
as woodland birds, and birds with grassland, desert, successional 
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or scrubland, and cliffs as primary habitat were considered as 
open-habitat species. Birds that reach high abundances and/or 
nest in urbanized areas were considered urban birds (Blair 1996, 
Kark et al. 2007), but see Evans et al. (2011) for an alternate 
framework. Of the 303 species included in the study, 131 were 
woodland birds, 135 were open-habitat birds, and 37 species 
were urban. A list of the species names and their classification is 
shown in Supplementary Table S1. Woodland birds were 
recorded in 2154 of the BBS routes included in the study, while 
open-habitat were recorded in 2208 routes, and urban birds were 
recorded in 2205 routes.

Normalized Difference Vegetation Index (NDVI)
The NDVI is a spectral reflectance measurement that correlates 
closely with photosynthetic capacity and is commonly used as a 
proxy for net primary productivity (Kerr and Ostrovsky 2003). We 
used the NDVI band from the MODIS Terra Vegetation Indices 
16-Day Global 1 km dataset v.6 (Didan and Huete 2015) for the 
months of May to August 2017. We extracted the mean biweekly 
NDVI value in a 25 km radius buffer around each BBS route coor
dinate (i.e. the route’s starting point). We then estimated the 
mean NDVI value for each BBS route as the average of the bi
weekly observations (May–August). The NDVI values reported in 
the bands were scaled by a factor of 10 000; thus, we rescaled the 
computed values to the traditional 0–1 scale (Fig. 1). To assess 
whether the buffer size used to obtain mean NDVI values influ
enced our results, we additionally extracted NDVI data using 
buffer radii of 12.5 and 50 km. Results for 12.5 and 50 km buffers 
did not differ from the 25 km buffer results but are presented in 
the Supplementary Material.

Distance to the nearest coast and elevation
Non-random habitat loss from coast to inland and from low to 
high elevation are scenarios previously associated with higher- 
than-expected species richness loss (Seabloom et al. 2002); thus, 
we considered them in the analysis. We obtained elevation data 
from the North America Elevation 1-Kilometer Resolution data 
set (Commission for Environmental Cooperation (CEC) 2007). 
However, elevation was strongly correlated to NDVI values 

(r ≥ 0.6) and not included in further analyses. We used the 
Distance to the Nearest Coast Map (1 km resolution) from the 
National Aeronautics and Space Administration (NASA Ocean 
Biology Processing Group and Stumpf 2012) to obtain the distance 
between the starting point of each BBS route and the nearest 
coast (in km). In this data set, zero represents the coastline, and 
the distance from the coastline to locations over land is repre
sented with negative numbers. Since all the BBS routes were ei
ther inland or on the coast, we multiplied the map by −1 to 
obtain positive distance values. Distance to the nearest coast was 
not correlated with other predictors considered in the study 
(r < 0.6); thus, we included it in our models as a control for its im
pact on biodiversity metrics (see below).

Land cover
We determined the habitat type of each BBS route using the 
2015 Land Cover Map of North America at 30 m resolution 
(Commission for Environmental Cooperation et al. 2020). This 
map contains 19 land cover categories: six forest types, three 
grassland types, three shrubland types, two barren land types, 
wetlands, water, snow and ice, cropland, and urban. We included 
the proportion of urban and agricultural land cover in areas 
around each BBS route as control variables in the models (see be
low). We computed these proportions using buffers with radii of 
12.5, 25, and 50 km. We utilized different radius sizes to account 
for the possible effect of the buffer resolution on the calculation 
of the proportions. The proportion of BBS routes showing each 
land cover type as its mode was positively correlated with the 
proportion of each land cover type in the conterminous USA at 
9.6 km resolution (Pearson correlation r ¼ 0.86, P-value ¼ 0.0002). 
Thus, we considered our BBS sample to be representative of the 
land cover types across the USA.

Community parameter estimates
We characterized local bird assemblages by estimating the per- 
route richness, abundance, and rarity index for woodland, open- 
habitat, and urban birds separately. For each of these groups of 
birds, the species richness per route was estimated as the num
ber of species recorded in the route. The abundance of each bird 

Figure 1. Geographic location of the 2208 Breeding Bird Survey routes in 2017. The color key shows the color of all possible House Price Index and 
Normalized Difference Vegetation Index (NDVI) combinations. The NDVI values used in this map were extracted using a 25 km radius buffer.
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group per assemblage was estimated by summing the number of 
individuals of each group recorded at each route. Given the stan
dardized nature of the BBS (Pardieck et al. 2020), we did not cor
rect the abundance estimates to account for the sampling effort. 
The rarity index per route for each bird group was computed 
as the sum of the rarity of all species of the group present in 
the route divided by the group’s species richness (i.e. 
rarity indexk ¼

Pnk
1

species rarityi

nk
). In the formula, k was the group of 

species (woodland, open-habitat, or urban) and nk was the spe
cies richness in bird group k. We defined species rarityi as the re
ciprocal of the species occupancy, and we estimated it as the 
reciprocal of the number of routes the species i occupied. Thus, a 
species found in only one route would have a rarity value of one 
(maximum possible value), and the less rare the species, the 
closer to zero its rarity value. We included the species richness of 
the group (nk) in the denominator of the rarity index formula to 
account for possible bias in the rarity index due to differences in 
the number of species between groups. The value of the rarity in
dex depends on the proportion of rare and unique species in the 
area, organisms that are frequently more threatened by habitat 
loss than those common and widespread (Manne and Pimm 
2001, Matthews et al. 2014, Pimm et al. 2014).

Local analyses: relationship of biodiversity with 
HPI and NDVI
We used Generalized Linear regression Models (GLMs) to assess 
the relationship between local species richness and abundance 
and HPI and NDVI (both response and predictor variables were 
not normally distributed). To analyze the influence of group 
membership (urban/woodland/open-habitat birds), HPI, and 
NDVI on community metrics, we included an interaction among 
these variables in the regressions. In addition, we included lati
tude, distance to the nearest coast, and proportion of urban and 
crop land cover as control variables in our regressions to account 
for possible gradients in our community metrics associated with 
them. We tested for a significant correlation among predictor 
variables and retained only variables with a correlation coeffi
cient below 0.6. We standardized all numerical predictor varia
bles by subtracting their mean and dividing by their standard 
deviation. Since the response variables (i.e. richness and abun
dance) were over-dispersed count data, we used a negative bino
mial distribution of errors and the log link function to fit the 
GLMs. We used a significance level of α ¼ 0.05 to determine the 
significance of predictor variables. We performed model diagnos
tics through visual inspection of residual plots (R package 
‘DHARMa’). The Q-Q plots of the residuals showed small devia
tions at the extremes, while the residual versus predicted plots 
did not show any pattern. The test for outliers was significant for 
the richness GLM; however, <2.5% of the data points were out
liers (outliers: n¼ 100, data points: n¼ 6543). The test for outliers 
for the abundance GLM was not significant. Given the large num
ber of data points for which the assumptions of the GLMs were 
met, we chose to continue with them.

We modeled the relationship between this rarity index per 
route (log-transformed) and the environmental predictors using 
Generalized Additive Models (GAMs; gam function of the ‘mgcv’ R 
package). GAMs are used for modeling non-monotonic relation
ships between variables frequently used in ecology (Wood 2017). 
GAMs were fitted with a Gaussian distribution of errors and the 
identity link. All numerical predictor variables were standardized 
as described above and included in the models as smooth terms. 
As for the GLMs, we included interactions between HPI, NDVI, 
and group membership (urban/woodland/open-habitat birds). To 

determine the significance of predictor variables, we used a sig
nificance level of α ¼ 0.05. The Q-Q plot of the residuals showed a 
deviation at the upper extreme, and there was an absence of 
points for the smaller values in the residual versus predicted 
plot. The test for outliers was significant; however, <2.5% of the 
data points were outliers (outliers: n¼ 138, data points: n ¼ 6543). 
To investigate these patterns, we fitted separate GAMs for each 
bird group. These GAMs included all standardized numerical pre
dictor variables as smooth terms, as well as an interaction term 
between HPI and NDVI. The patterns in the Q-Q plots and resid
ual versus predicted plots of the GAM containing bird group 
membership as a variable described above were associated with 
the open-habitat and urban birds since the GAM for these groups 
showed the strongest deviations from expectations. These diag
nostics indicate that some residual smooth variation is not being 
captured in the models. Given the large number of data points 
for which the assumptions of the GAMs were met, we chose to 
continue with the GAM that included group membership as 
a variable.

To explore the nature of interaction among HPI, NDVI, and 
bird group membership in the GLMs and GAM, we utilized three- 
way interaction plots with HPI as the predictor and NDVI and 
bird group membership as moderator variables. We divided the 
NDVI values into three equally sized groups, and the point at the 
median of each of those groups was chosen for plotting (function 
interact_plot of the ‘interactions’ R package).

To assess whether the buffer size used to extract mean NDVI 
values influenced our results, we conducted the regression anal
yses with NDVI values calculated at different buffer radii (12.5, 
25, and 50 km). Only results from the 25 km buffer are presented 
here; we present results using other buffer sizes in the 
Supplementary Material.

Regional analyses: habitat loss simulations
At zero percent habitat loss, we estimated the regional richness, 
abundance, and rarity index of each bird group separately. Thus, 
these values indicate the regional biodiversity of each bird group 
before the habitat loss simulations.

Sets of simulations
We ran five sets of simulations for woodland, open-habitat, and 
urban species separately: (1) random habitat loss, (2) HPI simula
tion: habitat loss eliminating routes by declining HPI value (i.e. 
from highest to the lowest development sprawling risk), and (3–5) 
NDVI simulations: habitat loss eliminating routes by declining 
NDVI value (i.e. from the most productive to the less productive 
areas). We performed simulations (3, 4, and 5) using NDVI values 
extracted with a 25/12.5/50 km buffer, respectively. We ran simu
lations (4) and (5) to assess the effect that different sizes of the 
buffer used to obtain mean NDVI values could have on 
our results.

Sampling of habitat (BBS routes)
We considered as total habitat the number of BBS routes in 
which each group of birds was present before habitat loss. Thus, 
we worked with a pool of 2154 routes for woodland birds, 2008 
routes for open-habitat, and 2205 routes for urban birds as the 
initial amount of habitat for each group. For the random simula
tion set, we simulated habitat loss by randomly selecting (with
out replacement or ties) a sample size equal to 5% of the total 
habitat (n ¼ 108 routes for woodland birds and n ¼ 110 for open- 
habitat and urban birds). Once a route was selected, it was elimi
nated from the pool of routes and not included in the subsequent 
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sampling. Thus, at each iteration of the simulation, the size of 
the pool of routes decreased by five percent of the total habitat 
(i.e. we conducted habitat loss simulation at 5% increments). We 
continued this process until 95% of all routes were selected and 
eliminated from the pool. Note that the sample size for the ran
dom selection of routes was always n ¼ 108 routes for woodland 
birds and n ¼ 110 for open-habitat and urban birds, indepen
dently of the number of routes remaining in the pool at each iter
ation. We repeated the simulation process 100 times. For the four 
sets of non-random habitat loss simulations (i.e. one HPI-ordered 
and three NDVI-ordered simulations), we started with a pool of 
2154 routes for woodland birds, 2208 routes for open-habitat, and 
2205 routes for urban birds (i.e. the total habitat for each group), 
and the route selection process consisted of two steps. First, we 
ordered the routes by the decreasing values of the variable (HPI 
or NDVI). We selected a pre-sample containing the routes with 
the highest unique 216 (220) values for woodland (open-habitat 
and urban birds), including ties (slice_max function, R ‘dplyr’ pack
age). The sample size of the pre-sample for woodland birds 
(n1 ¼ 216) and for open-habitat and urban birds (n1 ¼ 220) corre
sponds to 10% of the total habitat for each group. Second, from 
the pre-sample, we simulated habitat loss by randomly selecting 
(without replacement or ties) a sample size equal to five percent 
of the total habitat (n2 ¼ 108 routes for woodland birds and 
n2 ¼ 110 for open-habitat and urban birds). The routes selected in 
this second step were eliminated from the pool of routes and not 
included in the subsequent sampling. The routes not selected in 
this second step were returned to the initial pool of routes. Thus, 
at each iteration of the simulation, the size of the pool of routes 
decreased by five percent of the total habitat and steps one and 
two were repeated using the updated pool of routes (i.e. we con
ducted habitat loss simulation at 5% increments). As mentioned 
above, we conducted the habitat loss simulation until 95% of all 
routes were selected and eliminated from the pool. The sample 
sizes for the pre-sample in step one and the random sample in 
step two were always the same (pre-sample: n1 ¼ 216 or 220 and 
sample: n2 ¼ 108 or 110), independently of the number of routes 
remaining in the pool of routes at each iteration. We iterated this 
simulation process 100 times for each simulation set.

Simulating local extinction following habitat loss
Independently of the group of birds or simulation set, once a 
group of routes was selected, we simulated the local extinction of 
species following habitat loss by eliminating the selected routes 
from the pool of routes, which is equivalent to setting to zero the 
occurrence and abundance of the species present in these routes. 
Then, we re-estimated the regional species richness, abundance, 
and rarity index across the remaining routes. We re-calculated 
the abundance and rarity index based on individuals of all spe
cies present in the remaining habitat. In this instance, we com
puted the rarity index by adding the re-calculated rarity value of 
each species present in the remaining habitat and dividing this 
sum by the species richness re-calculated for the remaining area.

Statistical analysis
For each group of birds and community metric, we compared the 
regional estimates resulting from the random, HPI-ordered, and 
NDVI-ordered simulations at each percentage of habitat lost (i.e. 
we conducted habitat loss simulation at 5% increments) using an 
analysis of variance (ANOVA). We considered ANOVA an appro
priate choice since the sample sizes were large and equal for the 
three simulation groups compared (n ¼ 100 for random, HPI- 
ordered, and NDVI-ordered simulations, respectively), which 

makes the ANOVA test robust to violations of the assumptions 
of normality and homogeneity of variance among groups. 
We performed the ANOVA for each NDVI buffer size simulation 
set. We followed significant ANOVAs with a post hoc Tukey- 
Kramer analysis.

Results
Relationship between development risk, primary 
productivity, and local bird biodiversity before 
the habitat loss simulations
The local richness of woodland birds was predicted to be lower 
than that of open-habitat birds but higher than that of urban 
birds; however, these differences were small (Table 1). The local 
abundance of woodland birds was predicted to be lower than for 
open-habitat and urban birds; the difference being more marked 
between woodland and urban birds (Table 1). Increases in both 
development risk (HPI) and primary productivity (NDVI) were as
sociated with increases in the richness and abundance of local 
bird assemblages; however, the main effect of development risk 
on these metrics was smaller than that of primary productivity 
(Table 1). The main effects of development risk, primary produc
tivity, and the group of birds on local bird richness and abun
dance were modulated by interactions among these predictors. 
Areas with high development risk (high HPI values) and interme
diate to high primary productivity were associated with high lo
cal woodland bird richness and abundance (Table 1, Fig. 2A and 
D). The local richness and abundance of open-habitat (Fig. 2B 
and E) and urban species (Fig. 2C and F) per bird assemblage de
clined with development risk (increases in HPI) at all levels of pri
mary productivity.

The rarity index per bird assemblage was predicted to be 
higher for woodland birds than for open-habitat and urban birds; 
the difference being more marked between woodland and urban 
birds (Table 1). Although the main effects of development risk 
and primary productivity on the local rarity index were non- 
significant, these predictors interacted with group membership, 
affecting the rarity index. For woodland birds, the local rarity in
dex showed a pattern similar to their richness and abundance 
(Fig. 2G). For open-habitat birds, the local rarity index tended to 
increase with the risk of development at low and high values of 
primary productivity (Fig. 2H). Comparatively, the local rarity in
dex did not vary considerably at intermediate values of primary 
productivity (Fig. 2H). In the case of urban birds, the local rarity 
index did not vary with increased development risk in high pri
mary productivity areas (Fig. 2I). At intermediate primary pro
ductivity levels, the local rarity index of urban birds slightly 
declined with increases in development risk. In areas with low 
levels of primary productivity, the local rarity index of urban 
birds slightly increased at intermediate risk of develop
ment (Fig. 2I).

Our models predicted local biodiversity changes associated 
with the control variables (Table 1). Local species richness in
creased northward and declined with increases in the proportion 
of croplands. Local bird abundance increased with increases in 
the proportion of cropland areas and declined farther from the 
coasts. The trends that the GAM predicted for the local rarity in
dex were less marked. In general, the rarity index tended to 
slightly increase with latitude and the proportion of urban land, 
and slightly decline with the proportion of cropland and distance 
to the coast.

The effects of the two-way interactions between the bird 
group, the attractiveness of an area for development, and 
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primary productivity on local richness, abundance, or rarity in
dex, were included in Supplementary Materials (Supplementary 
Figs S1 and S2). Sensitivity analyses showed that increasing the 
resolution of the buffer to extract NDVI, did not drastically 
change the effect of most predictors on the local community 
metrics (Supplementary Table S2, Supplementary Fig. S3). For 
exceptions in this general pattern, see Supplementary Materials.

Development risk predicting the effects of habitat 
loss on regional breeding birds’ biodiversity
Habitat loss from high to low development risk produced shallow 
species-area relationship (SAR) curves at the regional scale 
(Fig. 3A–C). On average, more than 50% of the woodland species, 
39% of the open-habitat species, and 80% of the urban species 
were still present in the sample when only 5% of the habi
tat remained.

For woodland birds, losing the top 25% of the development 
risk areas produced larger regional richness declines than losing 
the top 25% of the primary productivity areas or random habitat 
loss (Fig. 3A, Supplementary Table S6). Lower regional woodland 
bird richness estimates than those predicted by primary produc
tivity or random habitat loss were also predicted between 55% to 
70% of habitat loss by development risk (Fig. 3A, Supplementary 
Table S6). For open-habitat birds, the development risk consis
tently predicted larger regional richness declines than primary 
productivity-ordered or random habitat loss after 15% of habitat 
loss (Fig. 3B, Supplementary Table S6). For urban birds, develop
ment risk predicted regional richness lower than primary pro
ductivity or random habitat loss after 35% of habitat loss (Fig. 3C, 
Supplementary Table S6).

As a predictor of regional abundance following habitat loss, 
development risk predicted larger declines than primary produc
tivity or random habitat loss only for open-habitat birds (Fig. 3E, 
Supplementary Table S7). For woodland birds, the loss of high to 
low primary productivity areas predicted larger regional abun
dance declines than the loss of high to low development risk 

areas and random habitat loss (Fig. 3D, Supplementary Table S7). 
In the case of urban birds, primary productivity better predicted 
regional abundance declines than development risk, particularly 
after 25% of habitat loss (Fig. 3F, Supplementary Table S7).

Habitat loss from high to low development risk areas always 
produced regional rarity indices higher than those predicted by 
loss of high to low primary productivity areas or random habitat 
loss for open-habitat and urban birds (Figs 3H and I, 
Supplementary Table S8). For woodland birds, regional rarity in
dices higher than those predicted by primary productivity- 
ordered habitat loss were obtained with the loss of areas with in
termediate development risk values (Figs 3G, Supplementary 
Table S8).

Sensitivity analyses showed that, for all groups of birds, 
changing the size of the buffer to extract NDVI did not affect the 
general regional patterns of richness, abundance, and rarity in
dex obtained from the NDVI-ordered simulations of habitat loss 
(Supplementary Fig. S3, Supplementary Tables S3–S11). Results 
of the comparisons between random habitat loss and develop
ment risk-ordered habitat loss or between random habitat loss 
and primary productivity-ordered habitat loss are included in 
Supplementary materials.

Discussion
Sprawling urban development (horizontal, cross-landscape ex
pansion) is more harmful to biodiversity than compact urban de
velopment (e.g. vertical expansion or infilling) (Sushinsky et al. 
2013), particularly for the species that depend on natural habitat 
(Geschke et al. 2018). Previous studies have simulated the loss of 
habitat due to sprawling or compact urban growth and then esti
mated subsequent biodiversity change (Gagn�e and Fahrig 2010, 
Sushinsky et al. 2013, 2017). The simulation approach we used is 
different in that it illustrates a habitat loss scenario that can in
clude sprawling development and/or placement of compact and 
dense buildings or infilling. In any case, the selected areas were 

Table 1. Standardized coefficients table for models relating environmental predictors and the species richness, abundance, or rarity 
index of bird assemblages in the USA, for the year 2017.a

Predictor Richness (GLM) Abundance (GLM) Rarity index (GAM)^

Open-habitat birds 0.17��� 0.63��� −0.14���

Urban birds −0.11��� 0.75��� −0.91���

HPI 0.03��� 0.15��� —
NDVI 0.50��� 0.58��� —
HPI: NDVI 0.05��� 0.12��� ���

HPI: Woodland birds (baseline) (baseline) ��

HPI: Open-habitat birds −0.10��� −0.19��� �

HPI: Urban birds −0.14��� −0.28��� —
NDVI: Woodland birds (baseline) (baseline) ���

NDVI: Open-habitat birds −0.59��� −0.82��� ���

NDVI: Urban birds −0.31��� −0.36��� ���

HPI: NDVI: Woodland birds (baseline) (baseline) ���

HPI: NDVI: Open-habitat birds −0.08��� −0.16��� ���

HPI: NDVI: Urban birds −0.07��� −0.14��� ���

Latitude 0.02��� — ���

Proportion of urban land — — ���

Proportion of cropland −0.01� 0.07��� ���

Distance to coast — −0.03�� ���

Deviance explained 39.94% 28.23% 65.36%

a 

HPI: House Price Index; NDVI: Normalized Difference Vegetation Index; GLM: Generalized Linear Model, GAM: Generalized Additive Model. For the GLMs and 
the parametric coefficients of the GAM, open-habitat and urban birds’ results are in comparison to the woodland birds (treated as baseline). Significant P-values 
are represented as follows: ���P < 0.001, ��P < 0.01, �P < 0.05. Non-significant predictors are denoted with a dash. We also present the proportion of the variability 
explained by the model (Deviance Explained). NDVI and the proportion of urban and crop land cover were calculated using a 25 km buffer around the BBS route.
^Coefficients for the GAM are shown for the parametric terms when significant. For the smooth terms, only their significance is shown.
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assumed to be completely modified into a human-made 
landscape and thus totally unsuitable for the bird species once 
found there.

The HPI was not a direct measure of urbanization, and not all 
high-HPI values were in cities or suburbs. Further, we did not cor
rect the HPI by state or region. Thus, areas that had high growth 
in HPI values were not necessarily areas with high absolute dollar 
values or human population values (see Table 2, most of the top 
15 HPI values in our analysis are in areas with lower human pop
ulations). However, high HPI areas could be areas with high value 
for species, as demonstrated by our results. Conserving these 
areas could incur minimal costs yet yield a high biodiversity 
value. High HPI values can be associated with exurban growth 
and risk of development and, thus, a risk of not acting for conser
vation (because human interest in the areas is increasing).

Development risk interacts with primary 
productivity in predicting local bird biodiversity
Because of interactions between primary productivity and devel
opment risk, there were different responses of local richness and 
abundance to these two predictors among the three bird groups. 
Woodland bird richness, abundance, and rarity index increased 
with higher development risk for high and intermediate primary 
productivity values. This makes sense because urban areas with 
large green spaces provide heterogeneous environmental condi
tions that support higher levels of avian richness than cities with 
small or no green spaces (Callaghan et al. 2018, Leveau 2021). A 
similar effect of primary productivity could explain the higher 
estimates of the richness, abundance, and rarity index of wood
land birds in high-development risk areas. However, the sites 
with the highest risk of development were areas that were not in 
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cities (see Table 2). Therefore, we cannot directly compare these 
results to the literature because we did not assess the impact of 
urbanization directly. The use of indices of potential future de
velopment as predictors of biodiversity is an area that requires 
more study.

For open-habitat birds, local richness and abundance declined 
with higher development risk across all primary productivity val
ues. However, at the lowest levels of primary productivity, the 
richness and abundance values were the highest, and their de
cline with the increase in development risk was less marked than 
for intermediate/high primary productivity areas. Open-habitat 
birds were less dependent on primary productivity at the level of 
the sampling unit, which was expected since open-habitat 
ecosystems like grasslands and shrublands are among the less 
productive ecosystems of temperate terrestrial biomes (Melillo 
et al. 1993, Rafique et al. 2016). The rarity index of these birds 
increased with the risk of development at both high and low 
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Figure 3. Effect of habitat loss on regional biodiversity. (A–C) Species Richness, (D–F) Abundance, and (G–I) Rarity Index of three groups of birds: 
woodland (left), open-habitat (center), and urban birds (right) during 2017. Habitat loss was simulated at 5% increments. Solid lines indicate the mean 
value of the biodiversity indices across 100 random simulations. Dashed lines indicate the mean value of the biodiversity indices across 100 HPI- 
ordered simulations (HPI: House Price Index). Dotted lines indicate the mean value of the biodiversity indices across 100 NDVI-ordered simulations 
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Table 2. The top 15 2017 House Price Index values included in the 
analyses and the county population density as of 2020.

State County HPI Population density per mile2

Montana Richland 353.53 5.51
North Dakota Williams 347.80 19.71
Texas Yoakum 281.28 9.62
Texas Midland 272.46 188.80
North Dakota Stark 266.62 25.20
North Dakota Mercer 263.38 8.01
Nevada White Pine 246.96 1.02
California Los Angeles 245.10 2466.95
Montana Valley 237.99 1.54
Wyoming Teton 236.2 5.84
Texas Andrews 235.89 12.40
Oregon Hood River 234.93 45.93
North Dakota McLean 228.63 4.63
Montana Custer 228.56 3.14
North Dakota Ward 228.15 34.73
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productivity values. At the highest levels of risk of development, 
we would expect to find the rarest open-habitat species at loca
tions of low primary productivity but not of high primary produc
tivity. A potential explanation for this unexpected result is that if 
areas of high risk for development with high primary productivity 
values contain a heterogeneous landscape with sufficient open 
spaces, the rarest open-habitat species may be also found there. 
Nevertheless, there was some uncaptured variability in the 
model for the rarity index. Thus, there are almost certainly 
unmeasured variables affecting the relationship between risk for 
development and the rarity index at locations with high primary 
productivity.

In the case of urban birds, local richness and abundance also 
declined with higher development risk across all primary produc
tivity values, although less markedly at low primary productivity 
locations. This pattern is possible because the risk of develop
ment is not necessarily linked with existing urban centers, where 
this group may be present in higher numbers. Urban birds tended 
to be slightly more common in high-development risk areas with 
intermediate primary productivity and rarer in intermediate- 
development risk areas with low primary productivity, presum
ably due to this group’s tolerance of human activities (Samia 
et al. 2015). Further, the rarity regression models for the urban 
birds showed a larger amount of uncaptured variation than those 
for the woodland and open habitat birds. Clearly, in the locations 
that we studied, urban birds demonstrated a large amount of 
variability, not behaving as a unified group (Marzluff 2017).

Development risk as a predictor of regional 
biodiversity of breeding birds
At the regional level, losing the areas with the highest develop
ment risk values (i.e. the top 25% of values) did not drastically af
fect the richness and rarity index of breeding birds. This pattern 
was also observed when areas with higher primary productivity 
were lost, even though high development risk was not correlated 
with high primary productivity. Thus, the same species present 
in areas of the highest development risk or primary productivity 
could be found in areas of lower development risk or primary 
productivity, with a relatively high percentage of species remain
ing even in the last 5% of the habitat. This pattern arises when 
assemblages include many common, widespread species (Rybicki 
and Hanski 2013) since these species are generally less sensitive 
to habitat loss than more specialized species (Matthews et al. 
2014). Furthermore, USA biomes have experienced land use 
changes mostly since the European settlement (Steyaert and 
Knox 2008, Whitlock et al. 2018, Li et al. 2023), but the speed of 
these changes has declined or stabilized in the last century, par
ticularly the land conversion to cropland or pastures (Haines- 
Young 2009, Franco-Sol�ıs and Montan�ıa 2021, Li et al. 2023). 
Thus, it may be that regional bird assemblages in the USA are 
more robust to reduced habitat areas, perhaps being more 
vulnerable to other human disturbances such as introduced/ 
invasive species that compete for resources (Murphy and 
Romanuk 2014). The results from this study align with those 
reported by Desrochers et al. (2011) and De Camargo and Currie 
(2015) in northern temperate forests, where the authors estimate 
that almost 50% of the natural area can be turned into a human- 
modified landscape before there are adverse effects on total bird 
richness (i.e. 44% in Desrochers et al. 2011 and 47% in De 
Camargo and Currie 2015).

After the loss of areas with the highest values of primary pro
ductivity or development risk, further habitat loss differentially 

impacted the biodiversity of the three groups of birds. We treat 
each group separately below.

Woodland birds
At intermediate levels of habitat loss, the richness of woodland 
species declined, and their irreplaceability increased. The differ
ences in these indices between development risk and primary 
productivity simulations were significant but relatively small. 
Thus, areas of intermediate values (either development risk or 
primary productivity) became important for preventing regional 
richness loss (Marzluff 2017) and increases in the rarity index of 
woodland birds. It is possible that there was an interaction be
tween development risk and primary productivity for this group, 
similar to what we found at the local level. Interrelations be
tween environmental factors (such as low amounts of impervi
ous surfaces) and socioeconomic factors (such as increases in 
high-income residents) have also been associated with increased 
species richness (of mammals) across the USA (Fidino et al. 
2024). However, with a low quantity of habitat remaining (75% of 
habitat loss), areas of low development risk could support higher 
richness and lower rarity index values than areas of low primary 
productivity. In the case of woodland bird abundance, the rate of 
decline was always greatest when the loss was ordered by pri
mary productivity, having the steepest declines of the three 
groups. Thus, the more productive areas supported higher num
bers of individuals. Although areas of high to intermediate risk 
for development are important to maintain high richness levels 
and low rarity index of these birds, primary productivity appears 
to be more important for maintaining bird abundance. This re
sult underscores the importance of understanding the link be
tween development risk and primary productivity and how they 
relate to woodland bird biodiversity.

Open-habitat birds
The biodiversity of open-habitat birds was the most affected by 
the loss of areas with intermediate development risk. The 
declines in abundance and increases in the irreplaceability of 
species were always larger in development risk simulations than 
in primary productivity simulations. Once 15% of habitat had 
been lost; richness declined more rapidly when areas with higher 
development risk were lost, compared to loss of higher productiv
ity areas. Thus, species found in areas with high to intermediate 
development risk were not as reliably found within areas of lower 
development risk, and areas of high development risk were im
portant to maintaining the abundance of open-habitat birds. 
Because open habitat birds are mostly associated with low pri
mary productivity areas (Fetcher et al. 2023), it is not surprising 
that losing high productivity areas caused little effect on the rich
ness and rarity index of these birds. Most of the top 15 develop
ment risk values in the study were from Great Plains states (i.e. 
Montana, North Dakota, Wyoming, Texas), where grasslands pre
dominate. Future development in these areas could contribute to 
the degradation of an ecosystem already threatened globally by 
agricultural land conversion (Douglas et al. 2023). These results 
underscore the importance of areas of intermediate to high de
velopment risk for the conservation of open-habitat species at a 
regional level, particularly grassland birds.

Urban birds
Urban birds had the lowest rarity indices of the three bird groups, 
and roughly 80% of the species were still present after 95% of the 
habitat was lost. Thus, high values of regional richness and low 
values of rarity index for urban birds could be maintained in 
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areas of all values of development risk and primary productivity 
levels, as could be expected of generalist or phenotypically plas
tic species (Evans et al. 2011, Marzluff 2017). Further, abundance 
equal to or higher than the expected with random habitat loss 
could be supported in areas with intermediate to low primary 
productivity and across all levels of development risk. With con
tinuous habitat loss due to urban expansion, bird assemblages 
might experience a transition from woodland-dominated to 
open-habitat-dominated to urban-dominated assemblages and, 
ultimately, biotic homogenization since this last group of gener
alist species has a higher tolerance to human-altered environ
ments than more specialized groups (Callaghan et al. 2020).

General considerations
The land cover map utilized in the analysis only included crop
lands and urban land cover as a representation of human- 
modified land covers. Thus, the additional effect that other 
human-modified habitats (for example, mining areas or tree- 
logging zones) may have in the diversity of groups like woodlands 
and open-habitat birds (Desrochers et al. 2011) could not be 
reflected in the regression models.

The habitat loss simulations were snapshots of potential bio
diversity impacts under habitat loss ordered by development risk 
or primary productivity, and the number of species/individuals 
lost may have been underestimated. Even when species richness 
was predicted to be high at 95% of habitat loss, processes such as 
extinction debt (Tilman et al. 1994, Vellend et al. 2006, Savage 
and Vellend 2015) can exacerbate the results presented here. In 
the long term, the number of species supported by five percent of 
suitable habitat would be affected by competition (Buchmann 
et al. 2013) for extremely limited resources (see Askins et al. 2007
for an analysis of habitat loss in grassland birds), which could 
lead to lower total richness values than the ones the simulations 
in this study have predicted. Other sources of underestimation of 
richness loss may be that the simulations in this study addressed 
macroecological patterns that did not include the effects of 
habitat fragmentation (Rybicki and Hanski 2013) or complex en
vironmental processes such as climate change, species charac
teristics, or biological interactions present in real ecosystems 
(Manne et al. 2007, Swift and Hannon 2010, Buchmann et al. 
2013, Pimm et al. 2014). Likewise, the abundance values pre
dicted here may be overestimated and should not be extrapo
lated to viable populations. A reduced natural habitat will 
probably be insufficient to maintain the viability of populations 
of a large number of species (Desrochers et al. 2011, Rybicki and 
Hanski 2013) in the long term, because the abundance that a 
small amount of habitat can support will be limited (Bender et al. 
1998, Tilman et al. 1994, Swift and Hannon 2010, Halley and 
Iwasa 2011, He and Hubbell 2011). However, our simulation ap
proach was based on setting the occurrence and abundance of all 
species in the areas lost to zero. This was an extreme scenario, 
and as stated above, biodiversity declines may happen more 
slowly with gradual habitat loss (Devictor et al. 2008).

Another methodological consideration is that the HPI was not 
necessarily correlated to current levels of development. Thus, 
two counties with different levels of development and net house 
prices may have experienced similar proportional increases in 
the value of the houses since 2000 (i.e. have similar HPI values). 
For example, on the 99th percentile of HPI values in the sample, 
there were four BBS routes in North Dakota in counties contain
ing only 0.26% urban area, compared to four BBS routes in 
California, in a county containing 35.06% urban area (United 
States Census Bureau 2010). A high HPI value reflects local 

conditions and rapid growth relative to places nearby. For exam
ple, in the past two decades, North Dakota has experienced a 
rapid population increase resulting from the growth of the oil 
and natural gas industries and the associated increase in the job 
market (Archbold et al. 2014). Although the HPI cannot be inter
preted as a direct measure of current development risk,—be
cause it does not contain information about increases in 
commercial buildings or multi-family residences—it does inform 
about areas becoming increasingly attractive for humans. These 
areas will more likely undergo substantial anthropogenic distur
bances in the future if the increases in house prices lead to new 
housing developments and the urban growth that usually comes 
with it. Further, we have compared the performance of HPI as a 
predictor of biodiversity following habitat loss with an environ
mental predictor. A future step would be to compare the perfor
mance of HPI to other socioeconomic indices.

Conclusion
Conservation efforts in areas of high development risk may be an 
economically viable option to maintain regional bird biodiversity. 
Areas of intermediate to high development risk supported high 
regional richness and abundance and low rarity index of open- 
habitat birds. These areas may be particularly important for the 
conservation of specialized species like grassland birds, which 
are globally threatened. Increasing the primary productivity of 
high development risk areas by retaining or including green 
spaces of heterogeneous vegetation in development plans could 
contribute to the high richness and low rarity index of woodland 
species at the regional level. Our study is the first to investigate 
the usefulness of HPI as a measure of development risk, and as a 
predictor of indices of biodiversity. Our results support including 
socioeconomic and ecological variables in conservation assess
ments of the impact of anthropogenic change on local and re
gional diversity. Last, proactively recognizing high development 
risk areas affords more time for conservation practitioners and 
land managers to formulate targeted conservation plans for 
those areas.
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