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Abstract—3D printing is a revolutionary technology that enables
the creation of physical objects from digital models. However, the
quality and accuracy of 3D printing depend on the correctness
and efficiency of the numerical control programming language
(specifically, G-code) that instructs 3D printers on moving and
extruding material. Debugging G-code, a low-level programming
language for 3D printing, is a challenging task that requires
manual tuning and geometric reasoning. In this paper, we
present the first extensive evaluation of numerous large language
models (LLMs) for debugging G-code files for 3-axis 3D printing.
We design effective prompts to enable pre-trained LLMs to
understand and manipulate G-code and test their performance on
various aspects of G-code debugging and manipulation, including
detection and correction of common errors and the ability to
perform geometric transformations. We compare different state-
of-the-art LLMs and analyze their strengths and weaknesses. We
also discuss the implications and limitations of using LLMs for
G-code comprehension and suggest directions for future research.

Index Terms—G-code, Large language models, Debugging, Geo-
metric comprehension, Manufacturing 4.0.

I. INTRODUCTION

The 3D printing revolution has democratized the easy, scalable,

and efficient creation of physical objects from digital models.

It has impacted applications in various domains, such as

manufacturing, healthcare, construction, and the arts. However,

the quality and accuracy of 3D printing depend on the

correctness and efficiency of G-code, a low-level numerical

control programming language that instructs 3D printers how

to move and extrude material. Dedicated software can generate

the G-code for a particular part from the computer-aided design

(CAD) model. Still, the efficacy of the generated G-code to

correctly 3D print parts depends on extensive manual tuning

of the G-code generation software. Consequently, generating

high-quality G-code requires considerable expertise and is

often an iterative process with manual debugging of the G-

code itself. Debugging and modifying G-code for 3D printing

involves complex syntactic, semantic, and geometric challenges,

with errors potentially leading to equipment damage or human

harm. G-code errors, categorized into syntax, configuration,

and geometry issues, necessitate precise debugging solutions.
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Recent research has shown that natural language descriptions

can be used for various tasks related to 3D printing, such

as generating novel shapes [1]–[4], editing scenes [5], and

reasoning about geometry in the volume space [6]. We present

the first comprehensive evaluation of the state-of-the-art pre-

trained LLMs for debugging and modifying G-code files for

extrusion-based additive manufacturing (AM) without requiring

fine-tuning or domain adaptation; our main technical challenge

is demonstrating their generalization abilities by framing (a

suitable chain of) prompts for G-code manipulation. The main

contributions of the paper are the following:

(i) We show how careful prompt engineering can enable pre-

trained large language models (LLMs) to understand G-codes

for AM. We develop effective strategies for feeding large G-

code files to context-length-limited LLMs.

(ii) We systematically evaluate different state-of-the-art LLMs

on a suite of comprehension tasks, including G-code debugging,

capturing geometric transformations, and suggesting corrections.

We compare the performance of different LLMs and analyze

their strengths and weaknesses.

(iii) Best practices for using LLMs for dealing with such

low-level (assembly-like) languages. We also discuss the impli-

cations and limitations of using LLMs for G-code debugging

and comprehension, and finally, directions for future research.

II. RELATED WORK

Large Language Models. Interest in the use of Large Language

Models (LLMs), particularly in the research community, has

increased exponentially in the last several months (as of

summer 2023). The generative capabilities of these LLMs

have yielded promising applications spanning a wide range

of domains. Prominent LLMs include proprietary models like

OpenAI’s GPT series [7], [8] as well as LLMs which have

been open-sourced for use by the general public such as

Llama [9] and Starcoder [10]. Further work has extended

LLM’s applicability through the use of Reinforcement Learning

from Human Feedback [11], which fine-tunes language models

on reward signals provided by human evaluators. This has

spawned interactive versions of the aforementioned base models

as well as some chat-specific competitors such as Google’s

Bard/Gemini [12] and Anthropic’s Claude [13]. These chatbots

allow users to interface with an LLM’s knowledge base and

obtain useful answers that align with their preferences rather

than simply receiving a prediction of the most likely text.

grant CMMI-AM-2347623/2347624. We would like to thank the NVIDIA
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TABLE I: Overview of capabilities we evaluate on for various LLMs1. Color coding represents the average of performance across the shapes.
depicts success, depicts partial success, and shows failure. Note: Debugging was only evaluated for the S-shape.

Capability GPT-3.5 GPT-4 Claude-2 Llama-2-70b Starcoder

Debugging

Simple Transformations

Complex Transformations

Comprehension

Large Language Models for Additive Manufacturing. Just

as humans have evolved with language being the primary mode

of information exchange, most AM techniques require a way

to understand the model geometry, and this usually comes in

the form of Geometric code (G-code). The use of LLMs in

manufacturing is nascent and largely unexplored as of early-

2024. The closest work to our approach is a recent preprint by

Makatura [14], which makes a deep dive into how a specific

LLM (ChatGPT) can be used in design and manufacturing

applications. Another recent work by Badini [15] has looked

into utilizing a specific LLM — ChatGPT — for AM process

parameter optimization. They address printing-related issues for

extrusion-based additive manufacturing and assess the utility of

ChatGPT to modify the process parameters to reduce common

errors such as warping, bed detachment, and stringing. However,

it should be noted that they do not use the entire G-code file

as input for modifying these parameters; these parameters are

stored in the G-code header.

Prompt Engineering Given the nuanced complexities of

human language, where words can take on context-specific

meanings, effective prompting is essential to guide LLMs’

outputs in a more reliable and predictable manner. “Prompt

engineering” involves designing task-specific language prompts

to condition the LLM during inference and techniques range

from automated methods [16], [17] to manual approaches [18].

However, the scalability of gradient-based prompt-tuning

techniques remains an open issue [19]–[21]. Research has

explored the utility of fundamental contextual statements as

reusable prompt patterns [22], generating multiple prompts

for a single task and aggregating the responses, employing

weak supervision techniques for final predictions [23], and

decomposed prompting for more refined outputs [24]. Addi-

tionally, the sensitivity of LLMs to the phrasing and structure

of prompts has been analyzed to develop more effective single-

prompt strategies [25], [26]. In our evaluations below, we

leverage the technique of “chain-of-thought” [27] reasoning, a

form of in-context learning used to precondition an LLM for

G-code-related tasks.

Our contributions are distinct and complementary to these

existing works. We focus on assessing the capabilities of a

diverse set of currently available LLMs for performing error

correction, manipulating geometric shapes, and comprehending

entire G-code files. Along the way, we address a key technical

(and novel) challenge: dealing with limited context window

lengths. We discuss details in the next section.

Use these definitions for in-context learning. For context, I have
provided example commands for a 3D printer.
M104 S205 sets nozzle temperature to 205 degrees Celsius
G28 homes all axes
G1 Z5 F5000 moves the Z axis up 5mm at a speed of 5000mm/min
M109 S200 sets bed temperature to 200 degrees Celsius
G21 sets all units to millimeters
G90 uses absolute coordinates
M82 uses absolute distance for extrusion
G92 E0 sets extrusion to 0
M107 turns off the fan
M106 S255 turns on the fan at full speed. S128 would turn it on
at half speed
G1 X90 Y90 F7800 moves the print head in X and Y to 90mm
at a speed of 7800mm/min
G1 E2 F2400 extrudes 2mm of filament at a speed of 2400mm/min
G1 F1800 sets the feedrate to 1800mm/min

Fig. 1: Initial prompt to each LLM

III. METHODS

Our work aims to study the ability of LLMs to perform a range

of operations — simple debugging, geometric transformations

(such as translation, scaling, shearing, and rotation), and

finally, geometry comprehension. Basic debugging evaluates

the ability of the LLM to easily locate syntax errors. Geometric

transformations change an object’s position, orientation, and

size in a predefined coordinate system. An LLM’s ability to

perform such transformations is a precursor to its ability to

spatially understand, reason about, and manipulate an input

geometry represented as G-code. Finally, we also use the LLM

to reason about the geometry from the G-code alone. We utilize

three canonical shapes for experimentation: a cube, a cylinder,

and an S-shape. Each of the shapes was generated using

Solidworks [28], sliced using PrusaSlicer [29], and visualized

in Ultimaker’s Cura [30].

We selected a diverse subset of the best available closed- and

open-source LLMs as of late 2023 for evaluation. GPT-3.5 and

GPT-4 from OpenAI [8], Anthropic’s Claude-2 [13], Meta’s

open-source Llama-2-70b [9] fine-tuned for chat (Llama-2-

70b-chat-hf) by Huggingface, and the BigCode community’s

open-source Starcoder-Starchat-Beta [10] fine-tuned for chat

and hosted on Huggingface. We adhere to default settings for

all LLMs except for Starcoder’s Starchat, where we set the

maximum new tokens to 1024 to allow us to generate G-code

1We also evaluated Bard [12], but the results are not included here since
its incorporation into Gemini.
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TABLE II: Overview of geometric transformation capabilities of the LLMs2 on different shapes. Color coding represents the performance.
depicts success, depicts partial success, and shows failure.

Shape Capability GPT-3.5 GPT-4 Claude-2 Llama-2-70b Starcoder

Cube

Translation

Scale

Shear

Rotation

Cylinder

Translation

Scale

Shear

Rotation

S-shape

Translation

Scale

Shear

Rotation

sequences without token length limits. Furthermore, we make

a concerted effort to use the same prompts for evaluation

across all LLMs. However, owing to inherently different model

architectures, attention mechanisms, different training datasets,

and varying token lengths of the LLMs, such variance inherently

affects the LLM’s response to identical prompts, necessitating

the occasional use of different prompts to achieve the same

task across different models.

All our dialogues are performed with atleast one of the

following traits: (i) We begin each conversation with the same

prompt (Fig. 1). (ii) We provide chunks of G-code, owing to

the varying token lengths. Empirically, we have found that

a chunk length of 500 lines works for GPT-3.5 and GPT-4.

For Claude-2, Llama-2-70b, and Starcoder, we were able to

provide the entire G-code as input. (iii) Depending on the

evaluation metric, we provide G-code for the first layer on a

conditional basis. (iv) We provide user feedback to solutions

that are incomplete or omit key parts of the g-code. This is

necessary to observe the support for iteration noted in [14]. For

these prompts, we maintain as much uniformity as possible

between tasks and models.

Translation transformation moves the object by a fixed distance

(10mm in X and 20mm in Y) without changing its orientation

or size. The process involved specific prompts asking the LLM

to adjust the G-code for these movements. For Scaling, we

applied a uniform scaling factor of 2 and ask the LLM to scale

the coordinates accordingly. Shearing transformations were

aimed at skewing the object by a factor of 0.5, and Rotation
involved turning the objects 45 degrees (counter-clockwise)

with respect to the Z axis.

2We also evaluated Bard [12], but the results are not included here since
its incorporation into Gemini.

The second aspect of our work focuses on the LLMs’ com-

prehension abilities. We define basic comprehension as the

ability of the LLM to understand the underlying geometry

from the G-code and consequently identify the 3D model

being manufactured. We begin by providing G-code chunks

of varying lengths, depending on the LLMs token limits, and

asking them to combine all chunks and deduce the shape and

dimensions of the manufactured object. We used a range of

prompts to test the LLMs, ensuring a thorough evaluation

of their comprehension abilities. Furthermore, we extend our

evaluation of manufacturing-specific comprehension abilities

by providing a configuration file containing various parameter

values used by slicing software (in this case, PrusaSlicer [29]).

IV. RESULTS AND DISCUSSION

Our results for the LLMs capabilities are summarized in

Table I. Simple Transformations include translation and scaling,

Complex Transformations include shearing and rotation, and

Comprehension is about the LLM’s ability to understand the

underlying geometry. We summarize results in Table II.

A. Simple Debugging

We test various LLM chatbots on a simple 2D S-Shape (204

lines; suitable for all context lengths) for line-by-line debugging

and replace the “G1” command in one line with “G13”, an

invalid G-code command. For each model, we first give it only

the G-code file and ask it to look for an error. If the model

understands the task but is unable to determine the cause of

the error, we then provide an additional prompt saying that

we are looking for an invalid command. GPT-4 performs the

best out of all the models, finding the error immediately and

pointing it out. Claude-2 also performs well, getting the correct

answer after receiving the additional hint. GPT-3.5 is unable

to solve the problem. Neither Starcoder nor Llama-2-70b are

able to process the input and recognize that it is a G-Code file.

An example transcript with GPT-4 is shown in Fig. 2.
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Hey I think there’s an erroneous line in this G-Code file, could
you help me find it?

User provides edited S-Shape G-Code

Upon a quick scan of your provided G-code, the suspicious line
is:

G13 X104.506 Y100.205 E3.67803

The command G13 is not standard for most G-code interpreters
used in 3D printing or CNC machining. The likely intended
command is G1, which is a linear move.
You should probably change this line to:

G1 X104.506 Y100.205 E3.67803

...

Fig. 2: Prompting GPT-4 to find a bug in the G-Code.

Expected

GPT-3.5

GPT-4

Claude-2

Llama-2-70b

Starcoder

Fig. 3: G-code visualization for translation operation on all LLMs.
Expected G-code (top row). GPT-3.5 (second row), GPT-4 (third row),
Claude-2 (fourth row), Llama-2-70b (fifth row), Starcoder (last row).

B. Geometric Transformations

We conduct dialogues that ask LLMs in our test suite to perform

translation, scaling, shearing, and rotation on the provided G-

code. Due to the varying token lengths across all the LLMs

we test, the geometric transformations may or may not be

applied to the entire G-code. To assess the effect of this

potential bottleneck we also test their performance on G-code

for a single layer. This led to more engaging and positive

results than prompts asking for evaluation on the entire G-code.

(omitted by authors: See Fig. 1 for initial input prompt)
can you tell me what shape is being represented by this gcode?
User provides entire G-code for a cube

Based on analyzing the GCODE commands, it looks like this is
printing a square shape with some infill. Here are the key things I
noticed:

...
The first layer is at Z0.35 and prints a perimeter of a square from
X97.175 to X102.825 and Y97.175 to Y102.825.
...
The Z height reaches 6.35mm on the last layer, so with a first
layer height of 0.35mm, it’s printing a total of 18 layers.

So in summary, the shape is a square with solid infill, printing
18 layers to a height of 6.35mm. The square size starts at 5.65 x
5.65mm on the first layer and shrinks slightly on each layer. Let
me know if you need any other details explained!

Fig. 4: Prompting Claude-2 to translate G-Code for a cube.

Fig. 3 showcases G-code generated by various LLMs for the

translation operation. An example chat with Claude-2 for a

cube is shown in Fig. 4.

C. Comprehension

Our examination of the LLMs in this work reveals several

limitations attributed to differences in underlying architectures,

training data, tokenization schemes, and token length con-

straints. A pervasive issue across most of the LLMs we tested

is their inability to completely parse an entire G-code file in

a single-shot manner. Our empirical observations suggest that

this shortcoming adversely affects the models’ capability to

reason about the geometric intricacies represented in the G-

code. While the models showed some aptitude in understanding

two-dimensional counterparts, i.e., single layers of G-code, they

struggled with the three-dimensional portion, i.e., the entire

G-code. Our interaction with Claude-2 indicates that a longer

context length significantly enhances output quality. It would be

premature to definitively claim that context length limitations

impede an LLM’s spatial reasoning capability of the underlying

geometry; it is plausible that this is a contributing factor and

makes for an interesting direction for future research.

V. CONCLUSIONS

In this work, we rigorously assessed various large language

models (LLMs), both closed- and open-source, for their profi-

ciency with Gcode in debugging, manipulation, and geometric

reasoning tasks. The outcomes demonstrate notable variances

in performance for our pre-defined tasks. GPT-4 emerges

as the most proficient, closely followed by Claude-2, while

the open-source LLMs such as Llama-2-70b and Starcoder

showed poor performance, highlighting a critical research

gap. Furthermore, our study reveals a general deficiency in

the nuanced comprehension of complex geometries from G-

code data, often due to limited context windows influencing

parsing abilities. These limitations point the way toward future

directions for follow-up research. A full length version of our

paper is on ArXiv and our results can be found on GitHub.
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