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Abstract—3D printing is a revolutionary technology that enables
the creation of physical objects from digital models. However, the
quality and accuracy of 3D printing depend on the correctness
and efficiency of the numerical control programming language
(specifically, G-code) that instructs 3D printers on moving and
extruding material. Debugging G-code, a low-level programming
language for 3D printing, is a challenging task that requires
manual tuning and geometric reasoning. In this paper, we
present the first extensive evaluation of numerous large language
models (LLMs) for debugging G-code files for 3-axis 3D printing.
We design effective prompts to enable pre-trained LLMs to
understand and manipulate G-code and test their performance on
various aspects of G-code debugging and manipulation, including
detection and correction of common errors and the ability to
perform geometric transformations. We compare different state-
of-the-art LLMs and analyze their strengths and weaknesses. We
also discuss the implications and limitations of using LLMs for
G-code comprehension and suggest directions for future research.

Index Terms—G-code, Large language models, Debugging, Geo-
metric comprehension, Manufacturing 4.0.

I. INTRODUCTION

The 3D printing revolution has democratized the easy, scalable,
and efficient creation of physical objects from digital models.
It has impacted applications in various domains, such as
manufacturing, healthcare, construction, and the arts. However,
the quality and accuracy of 3D printing depend on the
correctness and efficiency of G-code, a low-level numerical
control programming language that instructs 3D printers how
to move and extrude material. Dedicated software can generate
the G-code for a particular part from the computer-aided design
(CAD) model. Still, the efficacy of the generated G-code to
correctly 3D print parts depends on extensive manual tuning
of the G-code generation software. Consequently, generating
high-quality G-code requires considerable expertise and is
often an iterative process with manual debugging of the G-
code itself. Debugging and modifying G-code for 3D printing
involves complex syntactic, semantic, and geometric challenges,
with errors potentially leading to equipment damage or human
harm. G-code errors, categorized into syntax, configuration,
and geometry issues, necessitate precise debugging solutions.
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Recent research has shown that natural language descriptions
can be used for various tasks related to 3D printing, such
as generating novel shapes [1]-[4], editing scenes [5], and
reasoning about geometry in the volume space [6]. We present
the first comprehensive evaluation of the state-of-the-art pre-
trained LLMs for debugging and modifying G-code files for
extrusion-based additive manufacturing (AM) without requiring
fine-tuning or domain adaptation; our main technical challenge
is demonstrating their generalization abilities by framing (a
suitable chain of) prompts for G-code manipulation. The main
contributions of the paper are the following:

(i) We show how careful prompt engineering can enable pre-
trained large language models (LLMs) to understand G-codes
for AM. We develop effective strategies for feeding large G-
code files to context-length-limited LLMs.

(i) We systematically evaluate different state-of-the-art LLMs
on a suite of comprehension tasks, including G-code debugging,
capturing geometric transformations, and suggesting corrections.
We compare the performance of different LLMs and analyze
their strengths and weaknesses.

(iii) Best practices for using LLMs for dealing with such
low-level (assembly-like) languages. We also discuss the impli-
cations and limitations of using LLMs for G-code debugging
and comprehension, and finally, directions for future research.

II. RELATED WORK

Large Language Models. Interest in the use of Large Language
Models (LLMs), particularly in the research community, has
increased exponentially in the last several months (as of
summer 2023). The generative capabilities of these LLMs
have yielded promising applications spanning a wide range
of domains. Prominent LLMs include proprietary models like
OpenAl’s GPT series [7], [8] as well as LLMs which have
been open-sourced for use by the general public such as
Llama [9] and Starcoder [10]. Further work has extended
LLM’s applicability through the use of Reinforcement Learning
from Human Feedback [11], which fine-tunes language models
on reward signals provided by human evaluators. This has
spawned interactive versions of the aforementioned base models
as well as some chat-specific competitors such as Google’s
Bard/Gemini [12] and Anthropic’s Claude [13]. These chatbots
allow users to interface with an LLM’s knowledge base and
obtain useful answers that align with their preferences rather
than simply receiving a prediction of the most likely text.
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TABLE I: Overview of capabilities we evaluate on for various LLMs'. Color coding represents the average of performance across the shapes.

depicts success, depicts partial success, and

shows failure. Note: Debugging was only evaluated for the S-shape.

Capability GPT-3.5 GPT-4

Claude-2 Llama-2-70b Starcoder

Debugging

Simple Transformations

Complex Transformations

Comprehension

Large Language Models for Additive Manufacturing. Just
as humans have evolved with language being the primary mode
of information exchange, most AM techniques require a way
to understand the model geometry, and this usually comes in
the form of Geometric code (G-code). The use of LLMs in
manufacturing is nascent and largely unexplored as of early-
2024. The closest work to our approach is a recent preprint by
Makatura [14], which makes a deep dive into how a specific
LLM (ChatGPT) can be used in design and manufacturing
applications. Another recent work by Badini [15] has looked
into utilizing a specific LLM — ChatGPT — for AM process
parameter optimization. They address printing-related issues for
extrusion-based additive manufacturing and assess the utility of
ChatGPT to modify the process parameters to reduce common
errors such as warping, bed detachment, and stringing. However,
it should be noted that they do not use the entire G-code file
as input for modifying these parameters; these parameters are
stored in the G-code header.

Prompt Engineering Given the nuanced complexities of
human language, where words can take on context-specific
meanings, effective prompting is essential to guide LLMs’
outputs in a more reliable and predictable manner. “Prompt
engineering” involves designing task-specific language prompts
to condition the LLM during inference and techniques range
from automated methods [16], [17] to manual approaches [18].
However, the scalability of gradient-based prompt-tuning
techniques remains an open issue [19]-[21]. Research has
explored the utility of fundamental contextual statements as
reusable prompt patterns [22], generating multiple prompts
for a single task and aggregating the responses, employing
weak supervision techniques for final predictions [23], and
decomposed prompting for more refined outputs [24]. Addi-
tionally, the sensitivity of LLMs to the phrasing and structure
of prompts has been analyzed to develop more effective single-
prompt strategies [25], [26]. In our evaluations below, we
leverage the technique of “chain-of-thought” [27] reasoning, a
form of in-context learning used to precondition an LLM for
G-code-related tasks.

Our contributions are distinct and complementary to these
existing works. We focus on assessing the capabilities of a
diverse set of currently available LLMs for performing error
correction, manipulating geometric shapes, and comprehending
entire G-code files. Along the way, we address a key technical
(and novel) challenge: dealing with limited context window
lengths. We discuss details in the next section.

@ Use these definitions for in-context learning. For context, I have
provided example commands for a 3D printer.
M104 S205 sets nozzle temperature to 205 degrees Celsius
G28 homes all axes
G1 Z5 F5000 moves the Z axis up Smm at a speed of 5000mm/min
M109 S200 sets bed temperature to 200 degrees Celsius
G21 sets all units to millimeters
G90 uses absolute coordinates
MB82 uses absolute distance for extrusion
G92 EO sets extrusion to 0
M107 turns off the fan
M106 S255 turns on the fan at full speed. S128 would turn it on
at half speed
G1 X90 Y90 F7800 moves the print head in X and Y to 90mm
at a speed of 7800mm/min
G1 E2 F2400 extrudes 2mm of filament at a speed of 2400mm/min
G1 F1800 sets the feedrate to 1800mm/min

Fig. 1: Initial prompt to each LLM

III. METHODS

Our work aims to study the ability of LLMs to perform a range
of operations — simple debugging, geometric transformations
(such as translation, scaling, shearing, and rotation), and
finally, geometry comprehension. Basic debugging evaluates
the ability of the LLM to easily locate syntax errors. Geometric
transformations change an object’s position, orientation, and
size in a predefined coordinate system. An LLM’s ability to
perform such transformations is a precursor to its ability to
spatially understand, reason about, and manipulate an input
geometry represented as G-code. Finally, we also use the LLM
to reason about the geometry from the G-code alone. We utilize
three canonical shapes for experimentation: a cube, a cylinder,
and an S-shape. Each of the shapes was generated using
Solidworks [28], sliced using PrusaSlicer [29], and visualized
in Ultimaker’s Cura [30].

We selected a diverse subset of the best available closed- and
open-source LLMs as of late 2023 for evaluation. GPT-3.5 and
GPT-4 from OpenAl [8], Anthropic’s Claude-2 [13], Meta’s
open-source Llama-2-70b [9] fine-tuned for chat (Llama-2-
70b-chat-hf) by Huggingface, and the BigCode community’s
open-source Starcoder-Starchat-Beta [10] fine-tuned for chat
and hosted on Huggingface. We adhere to default settings for
all LLMs except for Starcoder’s Starchat, where we set the
maximum new tokens to 1024 to allow us to generate G-code

I'We also evaluated Bard [12], but the results are not included here since
its incorporation into Gemini.
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TABLE II: Overview of geometric transformation capabilities of the LLMs® on different shapes. Color coding represents the performance.

depicts success,

depicts partial success, and

shows failure.

Shape

Capability

GPT-3.5

GPT-4

Claude-2

Llama-2-70b

Starcoder

Translation

Cube Scale

Shear

Rotation

Translation

Scale

Cylinder
Shear

Rotation

Translation

Scale

S-shape
Shear

Rotation

sequences without token length limits. Furthermore, we make
a concerted effort to use the same prompts for evaluation
across all LLMs. However, owing to inherently different model
architectures, attention mechanisms, different training datasets,
and varying token lengths of the LLMs, such variance inherently
affects the LLM’s response to identical prompts, necessitating
the occasional use of different prompts to achieve the same
task across different models.

All our dialogues are performed with atleast one of the
following traits: (i) We begin each conversation with the same
prompt (Fig. 1). (ii) We provide chunks of G-code, owing to
the varying token lengths. Empirically, we have found that
a chunk length of 500 lines works for GPT-3.5 and GPT-4.
For Claude-2, Llama-2-70b, and Starcoder, we were able to
provide the entire G-code as input. (iii) Depending on the
evaluation metric, we provide G-code for the first layer on a
conditional basis. (iv) We provide user feedback to solutions
that are incomplete or omit key parts of the g-code. This is
necessary to observe the support for iteration noted in [14]. For
these prompts, we maintain as much uniformity as possible
between tasks and models.

Translation transformation moves the object by a fixed distance
(10mm in X and 20mm in Y) without changing its orientation
or size. The process involved specific prompts asking the LLM
to adjust the G-code for these movements. For Scaling, we
applied a uniform scaling factor of 2 and ask the LLM to scale
the coordinates accordingly. Shearing transformations were
aimed at skewing the object by a factor of 0.5, and Rotation
involved turning the objects 45 degrees (counter-clockwise)
with respect to the Z axis.

2We also evaluated Bard [12], but the results are not included here since
its incorporation into Gemini.

The second aspect of our work focuses on the LLMs’ com-
prehension abilities. We define basic comprehension as the
ability of the LLM to understand the underlying geometry
from the G-code and consequently identify the 3D model
being manufactured. We begin by providing G-code chunks
of varying lengths, depending on the LLMs token limits, and
asking them to combine all chunks and deduce the shape and
dimensions of the manufactured object. We used a range of
prompts to test the LLMs, ensuring a thorough evaluation
of their comprehension abilities. Furthermore, we extend our
evaluation of manufacturing-specific comprehension abilities
by providing a configuration file containing various parameter
values used by slicing software (in this case, PrusaSlicer [29]).

IV. RESULTS AND DISCUSSION

Our results for the LLMs capabilities are summarized in
Table 1. Simple Transformations include translation and scaling,
Complex Transformations include shearing and rotation, and
Comprehension is about the LLM’s ability to understand the
underlying geometry. We summarize results in Table II.

A. Simple Debugging

We test various LLM chatbots on a simple 2D S-Shape (204
lines; suitable for all context lengths) for line-by-line debugging
and replace the “G1” command in one line with “G13”, an
invalid G-code command. For each model, we first give it only
the G-code file and ask it to look for an error. If the model
understands the task but is unable to determine the cause of
the error, we then provide an additional prompt saying that
we are looking for an invalid command. GPT-4 performs the
best out of all the models, finding the error immediately and
pointing it out. Claude-2 also performs well, getting the correct
answer after receiving the additional hint. GPT-3.5 is unable
to solve the problem. Neither Starcoder nor Llama-2-70b are
able to process the input and recognize that it is a G-Code file.
An example transcript with GPT-4 is shown in Fig. 2.
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Hey I think there’s an erroneous line in this G-Code file, could
you help me find it?

User provides edited S-Shape G-Code

Upon a quick scan of your provided G-code, the suspicious line
is:

G13 X104.506 Y100.205 E3.67803

The command G13 is not standard for most G-code interpreters
used in 3D printing or CNC machining. The likely intended
command is G1, which is a linear move.
You should probably change this line to:

G1 X104.506 Y100.205 E3.67803

Fig. 2: Prompting GPT-4 to find a bug in the G-Code.

o~
@ @ D)
Expected A
@ = 7
GPT-3.5 - -
///
@ @ &
GPT-4
>
Claude-2 . @

Llama—-2-70b

Starcoder

X

Fig. 3: G-code visualization for translation operation on all LLMs.
Expected G-code (top row). GPT-3.5 (second row), GPT-4 (third row),
Claude-2 (fourth row), Llama-2-70b (fifth row), Starcoder (last row).

B. Geometric Transformations

We conduct dialogues that ask LLMs in our test suite to perform
translation, scaling, shearing, and rotation on the provided G-
code. Due to the varying token lengths across all the LLMs
we test, the geometric transformations may or may not be
applied to the entire G-code. To assess the effect of this
potential bottleneck we also test their performance on G-code
for a single layer. This led to more engaging and positive
results than prompts asking for evaluation on the entire G-code.

@ (omitted by authors: See Fig. 1 for initial input prompt)
can you tell me what shape is being represented by this gcode?
User provides entire G-code for a cube

Based on analyzing the GCODE commands, it looks like this is
printing a square shape with some infill. Here are the key things I
noticed:

The first layer is at Z0.35 and prints a perimeter of a square from
X97.175 to X102.825 and Y97.175 to Y102.825.

The Z height reaches 6.35mm on the last layer, so with a first
layer height of 0.35mm, it’s printing a total of 18 layers.

So in summary, the shape is a square with solid infill, printing
18 layers to a height of 6.35mm. The square size starts at 5.65 x
5.65mm on the first layer and shrinks slightly on each layer. Let
me know if you need any other details explained!

Fig. 4: Prompting Claude-2 to translate G-Code for a cube.

Fig. 3 showcases G-code generated by various LLMs for the
translation operation. An example chat with Claude-2 for a
cube is shown in Fig. 4.

C. Comprehension

Our examination of the LLMs in this work reveals several
limitations attributed to differences in underlying architectures,
training data, tokenization schemes, and token length con-
straints. A pervasive issue across most of the LLMs we tested
is their inability to completely parse an entire G-code file in
a single-shot manner. Our empirical observations suggest that
this shortcoming adversely affects the models’ capability to
reason about the geometric intricacies represented in the G-
code. While the models showed some aptitude in understanding
two-dimensional counterparts, i.e., single layers of G-code, they
struggled with the three-dimensional portion, i.e., the entire
G-code. Our interaction with Claude-2 indicates that a longer
context length significantly enhances output quality. It would be
premature to definitively claim that context length limitations
impede an LLM’s spatial reasoning capability of the underlying
geometry; it is plausible that this is a contributing factor and
makes for an interesting direction for future research.

V. CONCLUSIONS

In this work, we rigorously assessed various large language
models (LLMs), both closed- and open-source, for their profi-
ciency with Gcode in debugging, manipulation, and geometric
reasoning tasks. The outcomes demonstrate notable variances
in performance for our pre-defined tasks. GPT-4 emerges
as the most proficient, closely followed by Claude-2, while
the open-source LLMs such as Llama-2-70b and Starcoder
showed poor performance, highlighting a critical research
gap. Furthermore, our study reveals a general deficiency in
the nuanced comprehension of complex geometries from G-
code data, often due to limited context windows influencing
parsing abilities. These limitations point the way toward future
directions for follow-up research. A full length version of our
paper is on ArXiv and our results can be found on GitHub.
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