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Social structure can emerge from hierarchically embedded scales of movement,
where movement at one scale is constrained within a larger scale (e.g. among
branches, trees, forests). In most studies of animal social networks, some
scales of movement are not observed, and the relative importance of the
observed scales of movement is unclear. Here, we asked: how does individual
variation inmovement, atmultiple nested spatial scales, influence each individ-
ual’s social connectedness? Using existing data from common vampire bats
(Desmodus rotundus), we created an agent-based model of how three nested
scales of movement—among roosts, clusters and grooming partners—each
influence a bat’s grooming network centrality. In each of 10 simulations, virtual
bats lacking social and spatial preferences moved at each scale at empirically
derived rates that were either fixed or individually variable and either indepen-
dent or correlated across scales. We found that numbers of partners groomed
per bat were driven more by within-roost movements than by roost switching,
highlighting that co-roosting networks do not fully capture bat social structure.
Simulations revealed how individual variation in movement at nested spatial
scales can cause false discovery and misidentification of preferred social
relationships. Our model provides several insights into how nonsocial factors
shape social networks.
1. Introduction
Social networks are a useful tool with applications across many ecological and
evolutionary contexts, including pathogen transmission, information trans-
mission, dominance, social integration, and many more [1–6]. To properly
interpret social networks, it is important to study the underlying mechanisms
that shape the observed network structure. In most animal social networks, con-
nections are defined by associations (co-occurrences in space and time), and
these networks are therefore directly shaped by how individuals move relative
to each other. However, the motivations for these movements cannot be directly
measured using observational data.

Movements of individuals and their resulting associations are influenced
both by social preferences (e.g. attraction or repulsion) and by multiple nonso-
cial factors such as spatial preferences and constraints on movement from
health, energetics, or habitat structure [7,8].

Individual variation in movement can therefore cause individual variation in
social connectedness—even in the absence of variation in social preferences. All
else being equal, an individual that has a larger home range, or one that moves
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Figure 1. Three spatial scales of movement of vampire bats. Bats move between roosts from day to day (red arrow 1). Additionally, inside each roost, bats aggregate
into clusters of touching bats and can move between those clusters (blue arrow 2) multiple times as the day progresses. Inside each cluster, bats move towards a
partner (green arrow 3) to groom them or share food.
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more frequently within the same area, is expected to have more social encounters than a stationary individual. In studies with house

mice (Mus musculus) and common vampire bats (Desmodus rotundus), experimentally induced lethargy reduced the social connected-
ness of random individuals relative to control individuals [9–11]. A causal relationship between movement rate and social
connectedness can exist independently of variation in social traits or preferences.

Movement rates vary across individuals, but they are also explained by external nonsocial factors such as food distribution, habitat
structure or roost architecture [12–14]. Consequently, social structure often emerges from hierarchically embedded scales of movement. For
example, long-tailed tits (Aegithalos caudatus) can switch between flocks [15], within each flock they can switch their roosting site [16],
and within each roosting site they can switch their interactions among different flock mates. At each single scale, such movement
patterns are called ‘fission–fusion dynamics’, because groups of individuals repeatedly divide into smaller subgroups that vary in com-
position and size over time, and then re-aggregate into larger groups [17]. However, when fission–fusion dynamics occur on multiple
spatial scales simultaneously, each scale of social dynamics is influenced by other larger scales.

These hierarchically embedded scales ofmovement occur inmany kinds of animal societies. Inmore ‘fluid’ fission–fusion societies,
individuals move between temporary groups [17] and switch interaction partners within each group. In more structured ‘multi-level
societies’, individuals form relatively stable, core sub-groups that fuse with other groups [18], and individuals can move among inter-
action partners within and among sub-groups. Even highly stable societies can be shaped in subtle ways by hierarchically embedded
scales of movement. For example, the social organization of eusocial paper wasps (Polistes canadensis) can be described by three spatial
scales: nests, aggregations and communities [19].Workers move among cells at their home nest to feed different larvae, but as the need
for additional feeding decreases, theywill sometimesmove to neighbouring nests (inter-nest drifting) to feed larvae that are less related
but more in need [20]. Such hierarchically embedded scales of movement create social dynamics that can be modelled as hierarchically
embedded networks [21], where connections at one scale constrain and affect connections at different scales, or asmulti-layer networks [22],
where different layers represent associations at different scales.

Common vampire bats are a clear example of a species where hierarchically embedded movements shape social behaviour. In
this species, social grooming networks are a useful measure of preferred social relationships because they are directed investments
of time and energy, and juveniles and adult females use grooming to build food-sharing relationships [23–26]. However, the
grooming partners available to a vampire bat at any point in time are determined by at least three hierarchically embedded
scales of movement: (1) roost switching, (2) cluster switching within roosts, and (3) partner switching within clusters (figure 1).

Roost switching has been studied in Costa Rica, where vampire bats roosted in hollow trees each day but switched among a set
of multiple trees from day to day [27], similar to many other forest-dwelling bat species [28–31]. These roost-switching movements
determine co-roosting associations. The resulting co-roosting networks based on visual observations or passive integrated transpon-
der (PIT) tags are the most common way to describe the social network structure of bats [32–35]. Within each roost, cluster
switching occurs when vampire bats move between discrete clusters of bats in close contact. The resulting clustering networks
can be created from visual observations or proximity loggers [36,37]. Within a cluster, partner switching occurs when bats
switch their partner by directing their grooming to different bats in their cluster. Each scale of association from roost to cluster
to partner constrains the possible partners at smaller embedded scales. The duration of these constraints also varies at each
scale. For example, each roosting cluster constrains the partners that a bat can groom at that moment, but the choice of roost
tree at sunrise constrains the set of available roost mates until the next sunset, about 12 h later [38].

There are several aspects of this nested social structure that remain unclear. First, it is unclear how individual variation in
movement rates at these different scales influences overall social connectedness. Second, the relationships between these three
movement types (roost, cluster and partner switching) are also unclear. They may be positively correlated if a behavioural syn-
drome affects movement across all scales. Additionally, they may be independent if there are different reasons for each type of
movement. Finally, it is unclear to what extent individual variation in movement at hierarchically embedded scales complicates
the identification and measurement of preferred social relationships.

Here,we ask: towhat extent does an individual vampire bat’smovement rate at three hierarchically embedded spatial scales predict
the number of partners groomed (i.e. grooming outdegree centrality)? To answer this question, we first used existing empirical data to
test (1) if observed grooming outdegree is predicted by roost switching in wild vampire bats [27,39] and (2) if grooming outdegree is
predicted by rates of cluster switching or partner switching in captive vampire bats [40]. However, these two empirical analyses cannot
disentangle how a bat’s social connectedness is influenced by its general propensity to move versus its attraction to certain partners or



royalsocietypub

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 D

ec
em

be
r 2

02
4 
spaces. Therefore, to understand the causal relationships between movement and grooming network centrality in the absence of social
and spatial preferences, we created an agent-based model.

Agent-based models are an excellent way to study emergent properties resulting from simple, individual-level decision rules
or traits. In the past, these models have often been used to study movement personality [41], as well as movement at multiple
scales [42–44]. However, to our knowledge, no agent-based model has been used to quantify the relationship between social
connectedness and individual variation in movement rates at hierarchically embedded scales.
lishing.org/journal/rspb
Proc.R.Soc.B

291:20232880
2. Methods
(a) Empirical analyses
We analysed existing published data to estimate how often common vampire bats switched roosts, clusters and partners. To estimate indi-
vidual rates of roost switching, we used 1336 observations of 81 free-ranging bats of both sexes (38 males and 43 females) that were
observed more than 25 times across 11 tree roosts along the Rio Corobici in Guanacaste, Costa Rica [27,39]. We also made grooming net-
works using 1761 grooming interactions among 27 of these bats [23]. To estimate individual rates of cluster switching and partner
switching, we used 4092 observations of clusters (defined as bats roosting in the same corner of a flight cage) and 22 836 observations
of grooming from 31 vampire bats of both sexes (5 males and 26 females) at a captive colony in Panama [40]. Individuals in both studies
were identified visually using unique combinations of distinctive wing bands.

To estimate roost-switching rates, we only used observations of the same bat or roost on consecutive days, because roost switching
would be underestimated when a bat moved away and then returned to the same roost between observations (see electronic supplemen-
tary material for details). To calculate cluster-switching and partner-switching rates, we counted consecutive observations of the same bat
where a switch occurred, then divided that count by the total time elapsed between those observations (see the electronic supplementary
material for details). We only considered consecutive cluster-switching and partner-switching observations that occurred within a
sampled hour. To calculate within-cluster partner-switching rates, we did not count partner switches and the associated time lapse that
occurred owing to partner switches between clusters.

To create co-roosting and co-clustering networks, we defined edgeweights in the co-roosting and co-clustering networks as the ‘simple ratio
index’ of association [45–47]. To create grooming networks, we defined edge weights as total minutes of grooming. To assess within-bat
correlations between movement types, we used a linearmodel to test if cluster-switching rates predicted within-cluster partner-switching rates.

To determine how well roost-, cluster- and partner-switching rates predict the overdispersed counts of the number of bats groomed (out-
degree centrality), we fitted a quasi-Poisson generalized linear mixed-effects model with each of the three rates as single predictors, and bat as
random intercept. We used nonparametric bootstrapping to create a 95% confidence interval (CI) around the standardized coefficient (b).

(b) Agent-based model
We created a model using NetLogo 6.2.0 and used it to simulate movements of virtual vampire bats that lacked preferences for roosts,
clusters or partners. Each of 11 roosts contained four locations for potential clusters. We randomly assigned each virtual bat to a starting
roost and cluster location. For each spatial scale, each bat had a switching propensity randomly sampled with replacement from empirical
estimates of the probabilities of movement. Switching probabilities at every scale were conditional on the time since the last switch (see
electronic supplementary material).

We initially ran all the simulations with populations of 200 virtual bats, the approximate number of bats encountered and banded by
Wilkinson along the Rio Corobici between 1978 and 1983 [27,39]. To explore how our results would change with fewer bats and limited
partner choice, we later ran the simulation with 100 virtual bats to explore how our results would change with fewer bats, leading to
smaller group sizes and limited partner choice (2.3 bats per cluster, or an average of 1.3 partners per cluster).

To isolate the effects of movement, we fixed the probability of grooming per minute for all virtual bats at 1.8% (the mean probability
that a captive vampire bat groomed another bat during the sampled hours from empirical observations of captive vampire bats [40]).
We included a synchronous 200 min foraging period when bats left all roosts to forage outside the roosts. The simulations recorded
observations of behaviours every minute for 15 days.

When in a roost, virtual bats randomly decided every minute whether to groom a partner and whether they would switch partners
based on an increasing probability related to the time since last switch at that scale. The decision was solely determined by the groomer
initiating the exchange; the receiver did not decide whether to accept grooming. Each bat could only groom one partner in any particular
minute, but multiple bats could groom the same bat during that minute. Virtual bats decided whether to switch clusters within their roost
once every hour. Additionally, they decided whether to switch roosts once per day after returning from foraging.

If a bat changed its partner as a result of cluster or roost switching, we did not count this event as partner switching. Similarly, if a
bat changed clusters owing to roost switching, we did not count this event as cluster switching. We took this approach to test the effects of
a bat’s decisions at each scale rather than the effect of what it experiences. Although we measured within-roost cluster switching and
within-cluster partner switching, for brevity these are simply referred to as ‘cluster switching’ and ‘partner switching’.

(c) Simulations using agent-based model
We ran five types of simulation, each 100 times, and we ran those five simulation types across two different population sizes, once for 100
bats and again for 200 bats. Each of the five simulation types had switching propensities that were either fixed or individually variable and
either correlated or uncorrelated. In simulation 1, virtual bats were assigned a random propensity of roost, cluster and partner switching;
these propensities were uncorrelated within each individual bat because they were drawn independently from empirical distributions.
The resulting standardized coefficients of the switching rates from this simulation measured how well each movement type predicted
grooming outdegree when controlling for the other movement types.

In simulations 2–4, one type of movement varied among bats while the two others were fixed (to the mean observed from the empiri-
cal data). In simulation 2, only roost-switching propensity varied across individuals. In simulation 3, only cluster-switching propensity
varied across individuals. In simulation 4, only partner-switching propensity varied across individuals.
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Using simulations 2–4, we estimated the reference effects, defined as the median standardized coefficients of the switching rate when
switching propensity was not variable between bats. The reference effects measure how well one movement type predicts grooming out-
degree when it lacks individual variation in switching propensity. We estimated the isolated effects of individual variation in each
switching propensity, defined as the difference between the standardized coefficient of the switching rate when only it was variable
between bats and the reference effect. The isolated effect measures how well individual variation in only one movement propensity predicts
grooming outdegree while accounting for the reference effect.

Simulation 5 was similar to simulation 1 except that the three switching propensities were positively correlated, such that virtual bats
that moved most frequently at one scale also moved most frequently at other scales (see electronic supplementary material). By comparing
the results of simulations 1 and 5, we could therefore assess the effect of switching propensities being correlated (simulation 5) or
uncorrelated (simulation 1).

In sum, our model allowed us to ‘switch on and off’ the existence of realistic individual variation in movement at each spatial scale to
isolate the social consequences for the individuals, while eliminating the confounding effects of social and spatial preferences found in real
vampire bats. By adding or removing individual variation in movement at each scale or across all scales, and by making these movements
correlated or not across scales, these simulations allowed us to isolate the causal effects of individually variable movement on grooming
network centrality.

Note that a bat’s assigned probability of switching (its switching propensity) is not the same as the number of times it actually switched
during the simulation (its switching rate). When switching propensity was fixed, all bats with the same time since last switch also had the
same probability of switching at that time step. However, as the model was randomized, the realized number of switching events differed,
even when bats had the same switching propensity. This can be seen in equations (2.1) and (2.2), where o is the odds of a switch at that
time step, p is the probability of a switch, a is the intercept of a logistic mixed effects model (which could be set to be variable or equal for
all bats), b is the slope of the logistic mixed effects model (which was always the same across bats), and t is the number of time steps since
last switch. When a particular switching propensity was fixed, a was the same for all bats (and, consequently, p if t was also the same).
However, every time step, the virtual bats generated an independent value, r, that, if less than p, signalled the bat should try to switch
partners. Because each bat generated a different r every time step, the realized partner switching rate was different by bat:

ln o ¼ aþ bt ð2:1Þ
and

p ¼ o
1þ o

: ð2:2Þ

The goal of these simulations was to manipulate the switching propensity (which cannot be measured from the empirical data) and
then assess the relative effect of the resulting individual differences in observed switching rate. For a more detailed description of the
agent-based model, see Overview, design concepts, details (ODD) in the electronic supplementary material.
(d) Analysis of simulated data
Over the course of 15 simulated days, we counted cases of roost, cluster and partner switching. We used grooming rates to create the
grooming network. We assessed two measures of grooming network centrality: outdegree, the number of grooming recipients groomed
by the focal bat, and pagerank, which estimates connectedness using both direct ties (grooming receivers) and indirect ties (grooming recei-
vers of those receivers). To estimate pagerank based on grooming given rather than grooming received, we calculated it from the
transposed grooming matrix. To assess how each movement type predicted grooming network centrality, we fit a Poisson generalized
linear model with outdegree (count of partners groomed) as the response, and the scaled counts of roost-, cluster- and partner-switching
events as predictors. We did not detect evidence for over-dispersion. Effects on outdegree and pagerank centrality were almost identical
(see electronic supplementary material for results), so we focus our discussion on outdegree.
(e) Effect of individual variation in movement and habitat structure on tests for preferred relationships
Individually variable movements and hierarchically embedded habitat structures create highly nonrandom association rates that could be
taken as false evidence of social differentiation (preferred social relationships) if these features are not properly controlled for in the analy-
sis [8]. Type 1 error means that social preferences might be falsely detected, exaggerated or inaccurate when inferences ignore the role of
habitat structure and individual variation in movement. To explore this, we used permutation tests to test the significance of social differ-
entiation, the coefficient of variation of edge weights, which is a standard method to test for social preference [45,48]. We did
50 permutation tests for detecting social differentiation using 5 randomly selected grooming networks for each of the 10 simulations.
To calculate the p-value, permutation tests were repeated 100 times, each with 10 000 permutations.

To illustrate the importance of constraining permutations to account for habitat structure, we first used unconstrained permutation tests,
which permuted the partners across all observed events from randomly selected simulations. Next, to investigate the effects of spatial and
temporal constraints on permutations, we used two types of constrained permutation tests on the same simulation. In the semi-constrained
permutation test, we created the null model by only permuting groomed partners observed on the same day and in the same roost. In the
highly constrained permutation test, we created the null model by only permuting partners observed in the same hour and cluster. Because
virtual bats had no social preferences, any inferences of preferred relationships constituted type 1 error. We ran each of the demonstrative
permutation tests 100 times, each with 100 000 permutations to the partner groomed.

Next, we tested which factors contributed to false appearance of preferred relationships. To do this, we used unconstrained permu-
tation tests to check for social differentiation in data generated by four additional ‘control simulations’, each with less complexity. The first
control simulation lacked hierarchically embedded scales of movement, because all virtual bats were in a single cluster. The second control
simulation lacked both hierarchically embedded scales of movement and individual differences in partner-switching propensity. Although
partner-switching propensity was constant across all bats, each bat still had a greater probability of grooming the same partner in series
rather than grooming a new partner, which we call ‘byproduct partner fidelity’. The third control simulation was the same as the second
but it removed byproduct partner fidelity: instead of a bat deciding whether or not to switch partners, it selected a random available
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partner. Finally, the fourth control simulation was identical to the third except all bats groomed simultaneously. We used these control
simulations to establish which created the false appearance of social differentiation. Again, we ran these latter demonstrative permutation
tests 100 times, each with 100 000 permutations.
3. Results
(a) Empirical results
We estimated that the 81 wild vampire bats switched roosts on average once every 1.25 days, or 0.81 (range: 0.65, 0.97) switches per
day, and that the 31 captive vampire bats switched clusters (cage corners) 4.46 (range: 0.00, 12.88) times per day. Partner switching
in the same group of captive vampire bats occurred on average 14.46 (range: 0.00, 59.96) times per day (figure 2). Captive bats that
more frequently switched clusters did not more frequently switch grooming recipients, i.e. cluster-switching rate did not predict
within-cluster partner-switching rate (R2 = 0.004, b = 0.06, 95% CI: −0.22–0.35, n = 29, p = 0.74; electronic supplementary material,
figure S1).

We did not detect a clear relationship between the number of partners groomed (outdegree centrality) and roost-switching
rates (b = 0.02, 95% CI: −0.09–0.16, n = 15, p = 0.80, figure 3a). However, outdegree was predicted by rates of within-roost
cluster switching (b = 0.23, 95% CI: 0.07–0.49, n = 29, p < 0.001, figure 3b), and within-cluster partner switching (b = 0.30, 95% CI:
0.18–0.43, n = 29, p < 0.0001, figure 3c).
(b) Agent-based simulation results
In simulation 1, when the switching propensities at all three scales varied among bats simultaneously and independently, cluster-
switching rate was on average the strongest predictor of grooming outdegree, both with 200 virtual bats (figure 4; electronic
supplementary material, figure S2a) and with 100 virtual bats in the simulation (electronic supplementary material, figure S3a).
Decreasing the population of virtual bats (and the density of bats to 2.3 bats per cluster) in the simulation increased the effect
of partner switching on the number of partners groomed. However, there was no significant difference between population
sizes in the effect of roost switching or cluster switching on grooming outdegree (compare electronic supplementary material,
figure S2a with figure S3a). Results were similar when switching rates across scales were correlated (electronic supplementary
material, figures S2 and S3e), but the effect of cluster switching was reduced.

We expected when virtual bats had consistent individual variation in movement propensity at only one scale, that scale of
movement would be the strongest predictor of grooming network centrality (outdegree and pagerank). This prediction was con-
firmed in four cases, but it was surprisingly not met in two cases. First, when only roost-switching propensity varied among 100
virtual bats, it was partner switching that was the best predictor of centrality (electronic supplementary material, figure S3b).
Second, when only partner-switching propensity varied among 200 virtual bats, roost switching was the best predictor of central-
ity (figure 5c; electronic supplementary material, figure S2d ). We explain this unintuitive result in the Discussion under ‘Insight 1’.

The reference effect on grooming centrality measures the effect of each movement typewhen bats did not vary in their propensity to
move at that scale (marked by the dashed lines in figure 5). Note that reference effects were consistently above zero even though there
was no individual variation in switching propensity at that scale (figure 5; electronic supplementary material, figure S3b–d), because
movement events were probabilistic and grooming outdegree was predicted by random variation in movement within the spatial and
temporal constraints. One could consider the reference effect to be the effect of hierarchically embedded scales ofmovement determined
by the habitat structure and time constraints. With 200 bats, roost switching had the strongest reference effect, followed by partner and
cluster switching (figure 5; electronic supplementary material, figure S2). With 100 bats, the roost-switching and cluster-switching
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reference effects were similar towhen there were 200 bats, but the partner-switching reference effect was greater than the roost-switch-
ing reference effect (electronic supplementary material, figure S3).

The isolated effect on grooming centrality is the effect of individual variation in movement propensity (marked by the horizontal
bars in figure 5), and it is defined as the positive distance between the reference effect (in the absence of individual variation) and
the median standardized effect of that switching rate on centrality in the presence of individual variation. The isolated effects
describe the impact of adding individual variation in movement propensity, or personality, at each scale. The isolated effect of clus-
ter switching was much greater than the isolated effect of roost switching, and individual variation in partner-switching
propensity did not appear to significantly increase the effect of partner switching on centrality (figure 5c; electronic supplementary
material, figures S3d and S4d ).

When cluster-switching propensity varied across bats, cluster-switching rate had a greater effect on outdegree than did its
reference effect in 99–100% of cases (electronic supplementary material, table S1). Similarly, when roost-switching propensity
varied across bats, roost-switching rate had a greater effect on outdegree than did its reference effect in 65–92% of cases. However,
when partner-switching rate varied across bats, it did not usually have a greater effect on outdegree than did its reference effect;
the observed effect was greater than the reference effect in only 36–65% of cases (mean = 45.5%). As previously mentioned, these
results for the effects of switching on outdegree were almost identical for pagerank, varying by 0–4% (for effects of movement on
pagerank, see electronic supplementary material, figures S4 and S5).
(c) Effect of individual variation in movement and habitat structure on tests for preferred relationships
Unconstrained permutation tests incorrectly detected social differentiation (preferred social relationships) in all grooming simulated
networks ( p < 0.01 in all 50 tests run). When we removed hierarchically embedded scales of movement and individual variation in
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Figure 5. Observed effects versus reference effects with 200 bats. Plots show predictors of grooming outdegree centrality when one type of movement rate is
individually variable while the other two types of movement lack individual variation in movement propensity. Plots show results when only probabilities of
roost switching varied (a), when only probabilities of cluster switching varied (b), and when only probabilities of partner switching varied (c). Coloured
dashed lines show the greater of the two median reference effects, or the effects when there is no variation in movement at that scale. For example, the red
reference effect line passes through the median effect in plot (c). Coloured bars show the isolated effect when applicable, or the positive distance from the reference
effect, resulting from individual variation in movement.
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partner-switching propensity, type 1 error persisted but the gap between expected and observed social differentiation decreased
(electronic supplementary material, figure S6). Unconstrained permutation tests correctly failed to detect social differentiation only
in simulations where we removed both hierarchically embedded scales of movement and the byproduct partner fidelity resulting
from a propensity to stay with the last groomed bat (electronic supplementary material, figure S6).

Permutation tests for evidence of preferred relationships could not control for hierarchically embedded scales of movement
and byproduct partner fidelity, even when using the most constrained data permutations (electronic supplementary material,
figure S7). The difference between the observed and expected social differentiation was reduced in semi-constrained permutation
tests that permuted data within day and roost, but this test still incorrectly detected social differentiation in all simulated networks
(electronic supplementary material, figure S7b). Even in the highly constrained permutation tests, we incorrectly detected social
differentiation, despite further reduction in the difference between observed and expected (electronic supplementary material,
figure S7c). We explain these results in the Discussion under ‘Insight 5’.
4. Discussion
Our goal was to understand the causal effects of individual variation in movement at multiple nested spatial scales on network
connectedness. To do this, we used agent-based simulations, parameterized with empirical data from vampire bats. We first esti-
mated roost-switching rates from field observations and estimated cluster-switching and partner-switching rates from captive
observations. We then used the distributions of these movement rates to make an agent-based model that simulated virtual
bats moving at all three scales simultaneously, without social and spatial preferences. By eliminating social and spatial preferences,
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we isolated and tested the network consequences of hierarchically embedded scales of movement. By adding and removing indi-
vidual variation in switching propensity at each scale of movement, we tested the effect of movement propensity (or movement
‘personality’) on a bat’s social connectedness. By adding and removing within-bat correlations between movement types, we tested
the effect of a movement-based behavioural syndrome. Through these manipulations, we generated five key insights.

(a) Insight 1. Individual variation in movement propensity at multiple spatial scales influences social connectedness in
complex nonintuitive ways

Analyses of empirical data were consistent with the expectation that movement rates predict social connectedness. Although we
failed to detect a clear relationship between grooming outdegree (number of partners groomed) and roost-switching rates in 15
wild vampire bats, we did find that grooming outdegree was predicted by both cluster switching and within-cluster partner
switching in 29 captive vampire bats. A statistical relationship between movement and outdegree centrality is consistent with
two non-mutually exclusive causal effects: (1) social motivations causing more movement and (2) movement causing more
social interactions. To study the latter causal effect, we used agent-based simulations with virtual bats, which lacked social and
spatial preferences.

The simulations show how variation in network centrality is impacted both by individual variation in movement propensity
and by hierarchically embedded scales of movement. Although the exact effects of movement at any scale cannot be extrapolated
to real vampire bats, which do have social preferences, one can interpret the relative importance of each scale of nonsocial move-
ment on network centrality. Overall, we found that a greater propensity for roost switching and cluster switching increased a bat’s
grooming centrality. In contrast to real vampire bats, however, individual variation in within-cluster partner-switching propensity
was not a clear predictor of grooming outdegree.

The simulations allowed us to disentangle the effects of individual movement from the effects of the fixed habitat structure. For
instance, we found that in the absence of consistent individual variation in each switching propensity, grooming outdegree was influ-
enced more by random variation in roost-switching rates than by random variation in cluster-switching rates. However, adding
individual variation in cluster switching had a greater impact onnetwork centrality than adding individual variation in roost switching.
Put differently,within-roostmovement ‘personality’ influenced social connectednessmore than between-roostmovement ‘personality’.

Some results were highly nonintuitive. For example, we predicted that adding consistent individual variation to only one type
of movement would cause it to be the best predictor of centrality, but this prediction was not met in two of six cases. In one case,
adding individual variation to roost switching increased its effect beyond its reference effect, but not beyond the reference effect of
partner switching (electronic supplementary material, figure S3b). Such patterns can occur because the observed switching rate is
constrained by other factors besides the individual’s actual switching propensity. In another case, after adding consistent among-
individual variation in partner switching, the observed effect did not even increase above its reference effect (figure 5c; electronic
supplementary material, figure S2d ). One reason that adding individual variation to partner switching had no effect was that the
observed partner-switching rates were restricted by whether there was a new partner available to groom in the same cluster.
Another reason is that partner switching was the only movement type that required grooming. If grooming was more frequent,
the effect of individual variation in partner switching propensity would likely be greater.

Taken together, these findings highlight the emergent complexity of social systems with hierarchically embedded scales
of movement. They also emphasize the advantage of identifying non-zero reference (null) effects through simulation [8,49].
To model a hypothesized data-generating process, it is useful to simulate the effect sizes expected from random behaviours to
identify other causes of network structure beyond the effect of interest.

(b) Insight 2. Co-roosting networks in bats might not fully capture social structure
When hierarchically embedded scales of movement exist, variation in movement at larger scales dictates the availability of poten-
tial partners at smaller scales, but movement at smaller scales determines what proportion of those potential connections are
realized. Based on our simulations, which found that cluster-switching rate was more important for influencing outdegree central-
ity than roost-switching rate (figure 3; electronic supplementary material, figure S4a), we suggest that social network dynamics
will be shaped more by movements at smaller scales when individuals (1) vary in movement at the smaller scale, (2) have
many possible interaction partners at the smaller scale, and (3) can move at the smaller scale more often than at a larger scale.
These conditions are met for vampire bats, many other bat species, and several other species with fission–fusion dynamics.

In bats, most social networks are based on co-roosting networks shaped by movements between roosts [27,32–35,39,50–52].
Both empirical analyses and data-driven simulations suggest that within-roost movements are also important, and probably
more important than between-roost movements, for determining a vampire bat’s grooming network centrality. The greater
effect of within-roost movements over between-roost movements is caused by greater individual variation in within-roost
movements and by more opportunities to move within roosts than between roosts. Although frequent roost switching provided
access to more potential partners, within-roost movements determined the proportion of those potential new partners that were
groomed. The importance of within-roost movement will also depend on roost architecture. Some roosts (e.g. crevices in bridges)
permit little movement, whereas others (e.g. large caves) allow many possible configurations of roosting bats. It would therefore be
interesting to study how roost architecture impacts social structure in bats.

The general principle that either between-roost or within-roost dynamics do not fully capture social structure is applicable to
many other species that use multiple roosting sites or foraging sites whose composition can change day to day. This is true for any
study where observation occurs at a spatial or temporal scale that is too coarse to capture important social interactions, such as
when observation of movements at smaller scales is limited. Outside bats, other examples of cases where small-scale interactions
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may be hidden include field studies that track animals that aggregate in large groups using low-resolution GPS, animals that have
small-scale interactions underwater, or burrowing animals that interact belowground [53].

(c) Insight 3. Partner switching is shaped by interactions between habitat structure and population size
The effect of partner switching on grooming outdegree differed between simulations with 200 (mean network density = 0.48,
range: 0.47, 0.49) versus 100 bats (mean network density = 0.55, range: 0.53, 0.57), because population size determined the
number of possible partners in each roost and cluster. In simulations with 100 bats, partner switching was often not possible,
because each cluster had on average only 2.3 bats. As such, when a new potential partner did enter a cluster, that partner
would likely be groomed, resulting in a greater proportion of roost mates being groomed. With 200 bats, the average cluster
size was 4.5 bats, meaning that each bat is more likely to groom the same set of bats, with no greater likelihood to interact
with new partners than bats that were already sharing a cluster. As partner switching had a greater effect on the number of part-
ners groomed in smaller populations, these simulations had greater network density. Although movement rates influence social
dynamics, so too do the number of individuals and the number of roosts and clusters. Differing numbers of roosts or clusters
would change the relative effects of roost and cluster switching by providing more or fewer opportunities to interact with different
proportions of the population. This model illustrates how habitat structure can impact possibilities for partner choice and
switching, which can also have a major influence on cooperative behaviour [54].

(d) Insight 4. Behavioural syndromes might have subtle impacts on the relative importance of different hierarchically
embedded scales of movement

Behavioural syndromes are correlations among repeatable behaviours, including individual variation in movement [55]. For instance,
individual that we might label as ‘high-movement bats’ might be more likely to switch roosts, clusters and partners. Simulation 5
(correlated movement among variable switching propensities) showed that effects of movement types on centrality were similar
whether correlated or uncorrelated; however, correlated movement rates did seem to reduce the effect of cluster switching (electronic
supplementarymaterial, figure S4aversus S4e and S5a versus S5e), suggesting that correlations betweenmovement types (a behaviour-
al syndrome) could impact which movement type has the largest effect on network centrality. In real vampire bats, we did not detect
evidence for a behavioural syndrome linking rates of cluster switching and within-cluster partner switching, but we had limited stat-
istical power and we could not compare within-roost with between-roost movement variation. A more accurate assessment of these
correlations would require tracking movement and interactions at all scales with higher sampling effort.

(e) Insight 5. Hierarchically embedded scales of movement distort identification and measurement of social
preferences
A common analysis in animal social network analysis is testing for preferred relationships, or social differentiation. The null
hypothesis is that the standardized variation in association rates (network edge weights) matches what one expects from random-
ized associations. One challenge of these tests is that their proper use requires controlling for nonsocial drivers of network
structure such as sampling biases, habitat structure and temporal effects through the use of constrained data permutations [8].
We used our agent-based model to explore this challenge because the virtual bats lacked social preferences, but their association
rates were influenced by hierarchically embedded scales of movement. We tested the effectiveness of several permutation-based
null models when ignoring or accounting for hierarchically embedded scales of movement. To do this, we first generated datasets
from the agent-based simulation. We then tested for social differentiation using three permutation tests with null models of
increasing complexity: unconstrained, semi-constrained and highly constrained (electronic supplementary material, figure S7).
The unconstrained and semi-constrained permutation tests incorrectly reported social differentiation because they did not fully
account for the hierarchically embedded scales of movement. The highly constrained permutation test which permuted possible
events within each hour and cluster also incorrectly detected preferred relationships (electronic supplementary material, figure
S7c), which we attribute to a tendency to continuously interact with the same individual (byproduct partner fidelity), which
was lacking in our null model.

To understand why hierarchically embedded scales of movement created biased estimates of social preference, we again
applied the unconstrained permutation test to our simulated data, but then reduced the complexity of the generative agent-
based model until false evidence for social differentiation disappeared (electronic supplementary material, figure S6). This
procedure demonstrated that false social differentiation resulted from two processes: hierarchically embedded scales of movement
and byproduct partner fidelity that emerges when bats are more likely to stay with the same partner for extended periods of
time. Although real vampire bats do have social preferences [56,57], these results show that habitat structure and nonsocial aspects
of personality that create individually variable movement rates might create, reverse or distort the evidence for these social
preferences.

The importance of byproduct partner fidelity in creating nonrandom social structure (electronic supplementary material,
figure S6d ) and the failure to correctly identify a lack of social preference, even in constrained permutation tests (electronic
supplementary material, figure S7c), illustrate how permutation tests may be incapable of correctly identifying social differen-
tiation if individuals tend to associate with the same partner repeatedly for nonsocial reasons. Byproduct partner fidelity might
be a realistic feature of animal behaviour, because an animal surrounded by four individuals will find it slightly easier to
groom the partner it is currently facing rather than grooming the individual behind it. In permutation approaches that permute
events to different individuals, the animal is assumed to be equally likely to groom any of the four individuals regardless of what
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happened in the previous time step. To account for this, permutations must control for the switching rate, by only swapping reci-
pients of partner switching rather than swapping recipients of partner grooming. Generative models, such as agent-based
simulations, can be used to test permutation approaches and discover their limitations [8].

These results illustrate the difficulties of disentangling social preferences fromnonsocial drivers of nonrandom social network struc-
ture, and suggest that agent-based simulations can provide a useful tool, not only for understanding empirical data [49], but also for
testing different methods of hypothesis-testingwith network data [8,49]. For example, a promising future direction in network analysis
is using Bayesian inference to model social networks [58,59], including in ways that maintain uncertainty in edge weights for sub-
sequent statistical inferences [58], and we suggest that agent-based simulations can be used to generate highly structured and even
observationally biased datasets that allow testing and comparison of these and other network analysis methods.

( f ) Model assumptions
There are several assumptions and caveats to consider when interpreting our results. First, switching rates vary with many factors
beyond the individual, including season, location, and roost type. Second, empirical estimates of roost switching were likely influ-
enced by some sampling biases. For instance, roost switching was estimated to be more common among upriver than downriver
sites where not all roosts were found [27,39]. Third, when calculating cluster-switching rates and propensities, we assumed that
movement between corners of a flight cage was a proxy for movements between locations within a hollow tree or cave. Although
this dataset is the best estimate of movement within roosts available, it may differ across roost types. Fourth, there was a higher
proportion of males in the empirical roost-switching dataset (wild bats) than in the within-roost datasets (captive bats). If sex was
not a key driver of movement rate, then our results remain valid. If, on the other hand, females were less variable in roost switch-
ing than males, as might be expected from some empirical observations [27], then these sex ratio differences would cause us to
underestimate the extent to which individual variation in between-roost switching is less than in within-roost switching, and
this would mean that the effects we detected (the greater impact of within-roost movement) would be greater than what we
reported. Researchers should therefore be cautious when generalizing specific findings to new locations or species.
5. Conclusion
Social network structure is shaped by social behaviours, but also by nonsocial factors that influence movement, with important
implications for relationship formation, pathogen transmission, and information flow [12,60–62]. Real animal movements are
caused by multiple factors (e.g. social preferences, spatial preferences, environmental factors and individual traits) that cannot
be disentangled in observational studies. For example, an individual might move around and encounter more individuals because
it lives in a particular habitat type, has a greater desire for social encounters, has a greater territory size, has more energy or ability
to move, is more exploratory, has a greater need to forage, or some combination of these factors. Our agent-based reference
model allows us to understand the complexity of the social system by adding or removing effects of interest in a stepwise fashion,
revealing insights not possible from observational data.

This study on vampire bat social dynamics illustrates one case of how social network centrality can be impacted in complex
and perhaps surprising ways by hierarchically embedded scales of movement, even in the absence of social preferences. Hierarchi-
cally embedded scales of movement complicate the causal relationship between movement propensity and social connectedness
and create a need to identify the proper scale of observation when creating social networks.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Data are accessible via Dryad [63]. NetLogo and R code is accessible via Zenodo [64].

Supplementary material is available online [65].
Declaration of AI use. We have used AI-assisted technologies in creating this article.

Authors’ contributions. C.RA.H.: conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, soft-
ware, supervision, validation, visualization, writing—original draft, writing—review and editing; G.S.W.: data curation, writing—review and
editing; I.R.: data curation, writing—review and editing; I.M.H.: funding acquisition, writing—review and editing; E.A.H.: funding acquisition,
writing—review and editing; G.G.C.: conceptualization, formal analysis, funding acquisition, investigation, methodology, project administration,
resources, software, supervision, visualization, writing—original draft, writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed herein.

Conflict of interest declaration. We declare we have no competing interests.
Funding. This publication is based upon work supported by the National Science Foundation under grants IOS-2015928 and IOS-2015932, as well as
by the National Institutes of Health under grant R61AG078474.
References
1. Hobaiter C, Poisot T, Zuberbühler K, Hoppitt W, Gruber T. 2014 Social network analysis shows direct evidence for social transmission of tool Use in wild chimpanzees. PLoS Biol.

12, e1001960. (doi:10.1371/journal.pbio.1001960)
2. Allen J, Weinrich M, Hoppitt W, Rendell L. 2013 Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science 340, 485–488.

(doi:10.1126/science.1231976)
3. Craft ME. 2015 Infectious disease transmission and contact networks in wildlife and livestock. Phil. Trans. R. Soc. B 370, 20140107. (doi:10.1098/rstb.2014.0107)
4. Kurvers RHJM, Krause J, Croft DP, Wilson ADM, Wolf M. 2014 The evolutionary and ecological consequences of animal social networks: emerging issues. Trends Ecol. Evol. 29,

326–335. (doi:10.1016/j.tree.2014.04.002)

https://doi.org/10.1371/journal.pbio.1001960
https://doi.org/10.1126/science.1231976
http://dx.doi.org/10.1098/rstb.2014.0107
http://dx.doi.org/10.1016/j.tree.2014.04.002


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

291:20232880

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 D

ec
em

be
r 2

02
4 
5. Wooddell LJ, Kaburu SSK, Dettmer AM. 2020 Dominance rank predicts social network position across developmental stages in rhesus monkeys. Am. J. Primatol. 82, e23024.
(doi:10.1002/ajp.23024)

6. Bonnell TR, Vilette C, Young C, Henzi SP, Barrett L. 2021 Formidable females redux: male social integration into female networks and the value of dynamic multilayer networks.
Curr. Zool. 67, 49–57. (doi:10.1093/cz/zoaa041)

7. Pinter-Wollman N et al. 2014 The dynamics of animal social networks: analytical, conceptual, and theoretical advances. Behav. Ecol. 25, 242–255. (doi:10.1093/beheco/art047)
8. Farine DR, Carter GG. 2022 Permutation tests for hypothesis testing with animal social network data: problems and potential solutions. Methods Ecol. Evol. 13, 144–156. (doi:10.

1111/2041-210X.13741)
9. Lopes PC, Block P, König B. 2016 Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Scient. Rep. 6,

31790. (doi:10.1038/srep31790)
10. Ripperger SP, Stockmaier S, Carter GG. 2020 Tracking sickness effects on social encounters via continuous proximity sensing in wild vampire bats. Behav. Ecol. 31, 1296–1302.

(doi:10.1093/beheco/araa111)
11. Stockmaier S, Bolnick DI, Page RA, Carter GG. 2020 Sickness effects on social interactions depend on the type of behaviour and relationship. J. Anim. Ecol. 89, 1387–1394. (doi:10.

1111/1365-2656.13193)
12. He P, Maldonado-Chaparro AA, Farine DR. 2019 The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav. Ecol. Sociobiol.

73, 9. (doi:10.1007/s00265-018-2602-7)
13. Albery GF, Kirkpatrick L, Firth JA, Bansal S. 2021 Unifying spatial and social network analysis in disease ecology. J. Anim. Ecol. 90, 45–61. (doi:10.1111/1365-2656.13356)
14. Pinter-Wollman N, Jelić A, Wells NM. 2018 The impact of the built environment on health behaviours and disease transmission in social systems. Phil. Trans. R. Soc. B 373,

20170245. (doi:10.1098/rstb.2017.0245)
15. Napper CJ, Hatchwell BJ. 2016 Social dynamics in nonbreeding flocks of a cooperatively breeding bird: causes and consequences of kin associations. Anim. Behav. 122, 23–35.

(doi:10.1016/j.anbehav.2016.09.008)
16. Hatchwell BJ, Sharp SP, Simeoni M, McGowan A. 2009 Factors influencing overnight loss of body mass in the communal roosts of a social bird. Funct. Ecol. 23, 367–372. (doi:10.

1111/j.1365-2435.2008.01511.x)
17. Aureli F et al. 2008 Fission-fusion dynamics: new research frameworks. Curr. Anthropol. 49, 627–654. (doi:10.1086/586708)
18. Grueter CC, Qi X, Li B, Li M. 2017 Multilevel societies. Curr. Biol. 27, R984–R986. (doi:10.1016/j.cub.2017.06.063)
19. Lengronne T, Mlynski D, Patalano S, James R, Keller L, Sumner S. 2021 Multi-level social organization and nest-drifting behaviour in a eusocial insect. Proc. R. Soc. B 288,

20210275. (doi:10.1098/rspb.2021.0275)
20. Kennedy P, Sumner S, Botha P, Welton NJ, Higginson AD, Radford AN. 2021 Diminishing returns drive altruists to help extended family. Nat. Ecol. Evol. 5, 468–479. (doi:10.1038/

s41559-020-01382-z)
21. Montiglio PO, Gotanda KM, Kratochwil CF, Laskowski KL, Farine DR. 2020 Hierarchically embedded interaction networks represent a missing link in the study of behavioral and

community ecology. Behav. Ecol. 31, 279–286. (doi:10.1093/beheco/arz168)
22. Finn KR, Silk MJ, Porter MA, Pinter-Wollman N. 2019 The use of multilayer network analysis in animal behaviour. Anim. Behav. 149, 7–22. (doi:10.1016/j.anbehav.2018.12.016)
23. Wilkinson GS. 1986 Social grooming in the common vampire bat, Desmodus rotundus. Anim. Behav. 34, 1880–1889. (doi:10.1016/S0003-3472(86)80274-3)
24. Narizano H, Carter GG. 2020 Do vampire bats groom others based on need? Behav. Ecol. 31, 107–113. (doi:10.1093/beheco/arz165)
25. Carter GG, Farine DR, Crisp RJ, Vrtilek JK, Ripperger SP, Page RA. 2020 Development of new food-sharing relationships in vampire bats. Curr. Biol. 30, 1275–1279. (doi:10.1016/j.

cub.2020.01.055)
26. Razik I, Brown BKG, Carter GG. 2022 Forced proximity promotes the formation of enduring cooperative relationships in vampire bats. Biol. Lett. 18, 20220056. (doi:10.1098/rsbl.

2022.0056)
27. Wilkinson GS. 1985 The social organization of the common vampire bat: I. Pattern and cause of association. Behav. Ecol. Sociobiol. 17, 111–121. (doi:10.1007/BF00299243)
28. Willis CKR, Brigham RM. 2004 Roost switching, roost sharing and social cohesion: forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission–fusion model. Anim.

Behav. 68, 495–505. (doi:10.1016/j.anbehav.2003.08.028)
29. Russo D, Cistrone L, Jones G. 2005 Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography 28, 769–776. (doi:10.1111/j.

2005.0906-7590.04343.x)
30. Carter TC, Feldhamer GA. 2005 Roost tree use by maternity colonies of Indiana bats and northern long-eared bats in southern Illinois. For. Ecol. Manag. 219, 259–268. (doi:10.

1016/j.foreco.2005.08.049)
31. Lewis SE. 1995 Roost fidelity of bats: a review. J. Mammal. 76, 481–496. (doi:10.2307/1382357)
32. Webber QMR, Brigham RM, Park AD, Gillam EH, O’Shea TJ, Willis CKR. 2016 Social network characteristics and predicted pathogen transmission in summer colonies of female big

brown bats (Eptesicus fuscus). Behav. Ecol. Sociobiol. 70, 701–712. (doi:10.1007/s00265-016-2093-3)
33. Johnson JS, Kropczynski JN, Lacki MJ, Langlois GD. 2012 Social networks of Rafinesque’s big-eared bats (Corynorhinus rafinesquii) in bottomland hardwood forests. J. Mammal. 93,

1545–1558. (doi:10.1644/12-MAMM-A-097.1)
34. Silvis A, Kniowski AB, Gehrt SD, Ford WM. 2014 Roosting and foraging social structure of the endangered Indiana bat (Myotis sodalis). PLoS ONE 9, e96937. (doi:10.1371/journal.

pone.0096937)
35. Wilkinson GS et al. 2019 Kinship, association, and social complexity in bats. Behav. Ecol. Sociobiol. 73, 7. (doi:10.1007/s00265-018-2608-1)
36. Ripperger S, Günther L, Wieser H, Duda N, Hierold M, Cassens B, Kapitza R, Koelpin A, Mayer F. 2019 Proximity sensors on common noctule bats reveal evidence that mothers

guide juveniles to roosts but not food. Biol. Lett. 15, 20180884. (doi:10.1098/rsbl.2018.0884)
37. Yarlagadda K, Razik I, Malhi RS, Carter GG. 2021 Social convergence of gut microbiomes in vampire bats. Biol. Lett. 17, 20210389. (doi:10.1098/rsbl.2021.0389)
38. Ripperger SP, Carter GG. 2021 Social foraging in vampire bats is predicted by long-term cooperative relationships. PLoS Biol. 19, e3001366. (doi:10.1371/journal.pbio.3001366)
39. Wilkinson GS. 1984 Reciprocal food sharing in the vampire bat. Nature 308, 181–184. (doi:10.1038/308181a0)
40. Razik I, Brown BKG, Page RA, Carter GG. 2021 Non-kin adoption in the common vampire bat. R. Soc. Open Sci. 8, 201927. (doi:10.1098/rsos.201927)
41. Spiegel O, Leu ST, Bull CM, Sih A. 2017 What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18. (doi:10.

1111/ele.12708)
42. Tang W, Bennett DA. 2010 Agent-based modeling of animal movement: a review. Geogr. Compass 4, 682–700. (doi:10.1111/j.1749-8198.2010.00337.x)
43. Zubiria Perez A, Bone C, Stenhouse G. 2021 Simulating multi-scale movement decision-making and learning in a large carnivore using agent-based modelling. Ecol. Model. 452,

109568. (doi:10.1016/j.ecolmodel.2021.109568)

http://dx.doi.org/10.1002/ajp.23024
https://doi.org/10.1093/cz/zoaa041
http://dx.doi.org/10.1093/beheco/art047
https://doi.org/10.1111/2041-210X.13741
https://doi.org/10.1111/2041-210X.13741
https://doi.org/10.1038/srep31790
http://dx.doi.org/10.1093/beheco/araa111
http://dx.doi.org/10.1111/1365-2656.13193
http://dx.doi.org/10.1111/1365-2656.13193
https://doi.org/10.1007/s00265-018-2602-7
http://dx.doi.org/10.1111/1365-2656.13356
http://dx.doi.org/10.1098/rstb.2017.0245
http://dx.doi.org/10.1016/j.anbehav.2016.09.008
http://dx.doi.org/10.1111/j.1365-2435.2008.01511.x
http://dx.doi.org/10.1111/j.1365-2435.2008.01511.x
https://doi.org/10.1086/586708
http://dx.doi.org/10.1016/j.cub.2017.06.063
http://dx.doi.org/10.1098/rspb.2021.0275
http://dx.doi.org/10.1038/s41559-020-01382-z
http://dx.doi.org/10.1038/s41559-020-01382-z
http://dx.doi.org/10.1093/beheco/arz168
http://dx.doi.org/10.1016/j.anbehav.2018.12.016
http://dx.doi.org/10.1016/S0003-3472(86)80274-3
http://dx.doi.org/10.1093/beheco/arz165
https://doi.org/10.1016/j.cub.2020.01.055
https://doi.org/10.1016/j.cub.2020.01.055
http://dx.doi.org/10.1098/rsbl.2022.0056
http://dx.doi.org/10.1098/rsbl.2022.0056
https://doi.org/10.1007/BF00299243
http://dx.doi.org/10.1016/j.anbehav.2003.08.028
http://dx.doi.org/10.1111/j.2005.0906-7590.04343.x
http://dx.doi.org/10.1111/j.2005.0906-7590.04343.x
https://doi.org/10.1016/j.foreco.2005.08.049
https://doi.org/10.1016/j.foreco.2005.08.049
https://doi.org/10.2307/1382357
http://dx.doi.org/10.1007/s00265-016-2093-3
http://dx.doi.org/10.1644/12-MAMM-A-097.1
https://doi.org/10.1371/journal.pone.0096937
https://doi.org/10.1371/journal.pone.0096937
https://doi.org/10.1007/s00265-018-2608-1
http://dx.doi.org/10.1098/rsbl.2018.0884
http://dx.doi.org/10.1098/rsbl.2021.0389
http://dx.doi.org/10.1371/journal.pbio.3001366
http://dx.doi.org/10.1038/308181a0
http://dx.doi.org/10.1098/rsos.201927
http://dx.doi.org/10.1111/ele.12708
http://dx.doi.org/10.1111/ele.12708
https://doi.org/10.1111/j.1749-8198.2010.00337.x
http://dx.doi.org/10.1016/j.ecolmodel.2021.109568


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

291:20232880

12

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 D

ec
em

be
r 2

02
4 
44. Bennett DA, Tang W. 2006 Modelling adaptive, spatially aware, and mobile agents: elk migration in Yellowstone. Int. J. Geogr. Inform. Sci. 20, 1039–1066. (doi:10.1080/
13658810600830806)

45. Farine DR, Whitehead H. 2015 Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163. (doi:10.1111/1365-2656.12418)
46. Whitehead H, Dufault S. 1999 Techniques for analyzing vertebrate social structure using identified individuals. Adv. Stud. Behav. 28, 33–74. (doi:10.1016/S0065-3454(08)60215-6)
47. Hoppitt WJE, Farine DR. 2018 Association indices for quantifying social relationships: how to deal with missing observations of individuals or groups. Anim. Behav. 136, 227–238.

(doi:10.1016/j.anbehav.2017.08.029)
48. Whitehead H. 2008 Analyzing animal societies: quantitative methods for vertebrate social analysis. Chicago, IL: University of Chicago Press.
49. Hobson EA, Silk MJ, Fefferman NH, Larremore DB, Rombach P, Shai S, Pinter-Wollman N. 2021 A guide to choosing and implementing reference models for social network

analysis. Biol. Rev. 96, 2716–2734. (doi:10.1111/brv.12775)
50. Chaverri G. 2010 Comparative social network analysis in a leaf-roosting bat. Behav. Ecol. Sociobiol. 64, 1619–1630. (doi:10.1007/s00265-010-0975-3)
51. Patriquin KJ, Leonard ML, Broders HG, Garroway CJ. 2010 Do social networks of female northern long-eared bats vary with reproductive period and age? Behav. Ecol. Sociobiol. 64,

899–913. (doi:10.1007/s00265-010-0905-4)
52. Zeus VM, Reusch C, Kerth G. 2018 Long-term roosting data reveal a unimodular social network in large fission-fusion society of the colony-living Natterer’s bat (Myotis nattereri).

Behav. Ecol. Sociobiol. 72, 99. (doi:10.1007/s00265-018-2516-4)
53. Smith JE, Gamboa DA, Spencer JM, Travenick SJ, Ortiz CA, Hunter RD, Sih A. 2018 Split between two worlds: automated sensing reveals links between above- and belowground

social networks in a free-living mammal. Phil. Trans. R. Soc. B 373, 20170249. (doi:10.1098/rstb.2017.0249)
54. Noë R, Hammerstein P. 1995 Biological markets. Trends Ecol. Evol. 10, 336–339. (doi:10.1016/S0169-5347(00)89123-5))
55. Sih A, Bell A, Johnson JC. 2004 Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378. (doi:10.1016/j.tree.2004.04.009)
56. Carter GG, Wilkinson GS, Page RA. 2017 Food-sharing vampire bats are more nepotistic under conditions of perceived risk. Behav. Ecol. 28, 565–569. (doi:10.1093/beheco/arx006)
57. Carter GG, Wilkinson GS. 2016 Common vampire bat contact calls attract past food-sharing partners. Anim. Behav. 116, 45–51. (doi:10.1016/j.anbehav.2016.03.005)
58. Hart J, Weiss MN, Franks D, Brent L. 2023 BISoN: a Bayesian framework for inference of social networks. Methods Ecol. Evol. 14, 2411–2420. (doi:10.1111/2041-210X.14171)
59. Ross C, McElreath R, Redhead D. 2024 Modelling animal network data using STRAND. J. Anim. Ecol. 93, 254–266. (doi:10.1111/1365-2656.14021)
60. Pinter-Wollman N, Penn A, Theraulaz G, Fiore SM. 2018 Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour. Phil. Trans. R. Soc. B 373,

20170232. (doi:10.1098/rstb.2017.0232)
61. Pinter-Wollman N, Fiore SM, Theraulaz G. 2017 The impact of architecture on collective behaviour. Nat. Ecol. Evol. 1, 0111. (doi:10.1038/s41559-017-0111)
62. Ireland T, Garnier S. 2018 Architecture, space and information in constructions built by humans and social insects: a conceptual review. Phil. Trans. R. Soc. B 373, 20170244.

(doi:10.1098/rstb.2017.0244)
63. Hartman CRA, Wilkinson GS, Razik I, Hamilton IM, Hobson EA, Carter GG. 2024 Data from: Hierarchically embedded scales of movement shape the social networks of vampire bats.

Dryad Digital Repository. (doi:10.5061/dryad.rfj6q57j2)
64. Hartman CRA, Wilkinson GS, Razik I, Hamilton IM, Hobson EA, Carter GG. 2024 Code for: Hierarchically embedded scales of movement shape the social networks of vampire bats.

Zenodo. (doi:10.5281/zenodo.10824133)
65. Hartman CRA, Wilkinson GS, Razik I, Hamilton IM, Hobson EA, Carter GG. 2024 Hierarchically embedded scales of movement shape the social networks of vampire bats. figshare.

(doi:10.6084/m9.figshare.c.7174194)

https://doi.org/10.1080/13658810600830806
https://doi.org/10.1080/13658810600830806
http://dx.doi.org/10.1111/1365-2656.12418
http://dx.doi.org/10.1016/S0065-3454(08)60215-6
http://dx.doi.org/10.1016/j.anbehav.2017.08.029
http://dx.doi.org/10.1111/brv.12775
http://dx.doi.org/10.1007/s00265-010-0975-3
http://dx.doi.org/10.1007/s00265-010-0905-4
https://doi.org/10.1007/s00265-018-2516-4
http://dx.doi.org/10.1098/rstb.2017.0249
http://dx.doi.org/10.1016/S0169-5347(00)89123-5
http://dx.doi.org/10.1016/j.tree.2004.04.009
http://dx.doi.org/10.1093/beheco/arx006
http://dx.doi.org/10.1016/j.anbehav.2016.03.005
https://doi.org/10.1111/2041-210X.14171
https://doi.org/10.1111/1365-2656.14021
http://dx.doi.org/10.1098/rstb.2017.0232
http://dx.doi.org/10.1038/s41559-017-0111
http://dx.doi.org/10.1098/rstb.2017.0244
http://dx.doi.org/10.5061/dryad.rfj6q57j2
http://dx.doi.org/10.5281/zenodo.10824133
http://dx.doi.org/10.6084/m9.figshare.c.7174194

	Hierarchically embedded scales of movement shape the social networks of vampire bats
	Introduction
	Methods
	Empirical analyses
	Agent-based model
	Simulations using agent-based model
	Analysis of simulated data
	Effect of individual variation in movement and habitat structure on tests for preferred relationships

	Results
	Empirical results
	Agent-based simulation results
	Effect of individual variation in movement and habitat structure on tests for preferred relationships

	Discussion
	Insight 1. Individual variation in movement propensity at multiple spatial scales influences social connectedness in complex nonintuitive ways
	Insight 2. Co-roosting networks in bats might not fully capture social structure
	Insight 3. Partner switching is shaped by interactions between habitat structure and population size
	Insight 4. Behavioural syndromes might have subtle impacts on the relative importance of different hierarchically embedded scales of movement
	(e) Insight 5. Hierarchically embedded scales of movement distort identification and measurement of social preferences
	Model assumptions

	Conclusion
	Ethics
	Data accessibility
	Declaration of AI use
	Authors' contributions
	Conflict of interest declaration
	Funding
	References


