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Abstract

Let R be a real closed field. Given a closed and bounded semialgebraic set 𝐴 ⊂ R𝑛 and semialgebraic continuous
functions 𝑓 , 𝑔 : 𝐴 → R such that 𝑓 −1 (0) ⊂ 𝑔−1 (0), there exist an integer 𝑁 > 0 and 𝑐 ∈ R such that the inequality
(Łojasiewicz inequality) |𝑔(𝑥) |𝑁 ≤ 𝑐· | 𝑓 (𝑥) | holds for all 𝑥 ∈ 𝐴. In this paper, we consider the case when A is defined
by a quantifier-free formula with atoms of the form 𝑃 = 0, 𝑃 > 0, 𝑃 ∈ P for some finite subset of polynomials
P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 , and the graphs of 𝑓 , 𝑔 are also defined by quantifier-free formulas with atoms of the form
𝑄 = 0, 𝑄 > 0, 𝑄 ∈ Q, for some finite set Q ⊂ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ]≤𝑑 . We prove that the Łojasiewicz exponent in this
case is bounded by (8𝑑)2(𝑛+7) . Our bound depends on d and n but is independent of the combinatorial parameters,
namely the cardinalities ofP andQ. The previous best-known upper bound in this generality appeared in P. Solernó,

Effective Łojasiewicz Inequalities in Semi-Algebraic Geometry, Applicable Algebra in Engineering, Communication

and Computing (1991) and depended on the sum of degrees of the polynomials defining 𝐴, 𝑓 , 𝑔 and thus implicitly
on the cardinalities of P and Q. As a consequence, we improve the current best error bounds for polynomial
systems under some conditions. Finally, we prove a version of Łojasiewicz inequality in polynomially bounded
o-minimal structures. We prove the existence of a common upper bound on the Łojasiewicz exponent for certain
combinatorially defined infinite (but not necessarily definable) families of pairs of functions. This improves a prior
result of Chris Miller (C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic (1994)).
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1. Introduction

L. Schwartz conjectured that if f is a real analytic function and T a distribution in some open subset
Ω ⊂ R𝑛, then there exists a distribution S satisfying 𝑓 𝑆 = 𝑇 . As a main tool in proving this conjecture,
Łojasiewicz [33] proved that if V is the set of real zeros of f, and x in a sufficiently small neighborhood
of a point 𝑥0 in V, there exists a constant d such that

| 𝑓 (𝑥) | ≥ 𝑑 · dist(𝑥,𝑉)𝑑 ,

where dist(𝑥,𝑉) denotes the distance of x from V. In case f is a polynomial, the result was obtained by
Hörmander [20].

Several variants of Łojasiewicz inequality have appeared in the literature both in the semialgebraic
and analytic categories. In the semialgebraic category, the following slightly more general version of
the above inequality appears in [11, Corollary 2.6.7].

Unless otherwise specified, R is a fixed real closed field for the rest of the paper.

Theorem 1.1. Let 𝐴 ⊂ R𝑛 be a closed and bounded semialgebraic set, and let 𝑓 , 𝑔 : 𝐴 → R be

continuous semialgebraic functions. Furthermore, suppose that 𝑓 −1(0) ⊂ 𝑔−1(0). Then there exist

𝑐 ∈ R and an integer 𝜌 > 0 depending on A, f and g such that

|𝑔(𝑥) |𝜌 ≤ 𝑐 · | 𝑓 (𝑥) |, ∀𝑥 ∈ 𝐴. (1.1)

We denote the infimum of 𝜌 by L( 𝑓 , 𝑔 | 𝐴) which is called the Łojasiewicz exponent.
The inequality (1.1) is usually called the Łojasiewicz inequality and has found many applications

(independent of the division problem of L. Schwartz) – for example, in singularity theory, partial
differential equations and optimization. We survey some of these applications later in the paper and
improve some of these results using the version of Łojasiewicz inequality proved in the current paper.

Driven by the applications mentioned above there has been a lot of interest in obtaining effective
bounds on L( 𝑓 , 𝑔 | 𝐴).

2. Main results

In this paper, we prove new quantitative versions of the inequality (1.1) in the semialgebraic (and more
generally in the o-minimal context). Before stating our results, we introduce a few necessary definitions.

Definition 2.1 (P-formulas and semialgebraic sets). Let P ⊂ R[𝑋1, . . . , 𝑋𝑛], Q ⊂ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ]
be finite sets of polynomials. We will call a quantifier-free first-order formula (in the theory of the reals)
with atoms 𝑃 = 0, 𝑃 > 0, 𝑃 < 0, 𝑃 ∈ P to be a P-formula. Given any first-order formula Φ(𝑋1, . . . , 𝑋𝑛)
in the theory of the reals (possibly with quantifiers), we will denote by R(Φ,R𝑛) the set of points of
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R𝑛 satisfying Φ, and call R(Φ,R𝑛) the realization of Φ. We will call the realization of a P-formula a
P-semialgebraic set. A Q-semialgebraic function is a function whose graph is a Q-semialgebraic set.

We denote by R[𝑋1, . . . , 𝑋𝑛]≤𝑑 the subset of polynomials in R[𝑋1, . . . , 𝑋𝑛] with degrees ≤ 𝑑.

2.1. Semialgebraic case

We prove the following theorem in the semialgebraic setting which improves the currently best-known
upper bound [46] in a significant way (see Section 4 below).

Theorem 2.2. Let 𝑑 ≥ 2, P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 ,Q ⊂ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ]≤𝑑 , 𝐴 ⊂ R𝑛 a closed and

bounded P-semialgebraic set and 𝑓 , 𝑔 : 𝐴 → R continuous Q-semialgebraic functions, satisfying

𝑓 −1(0) ⊂ 𝑔−1(0).
Then there exist 𝑐 = 𝑐(𝐴, 𝑓 , 𝑔) ∈ R and 𝑁 ≤ (8𝑑)2(𝑛+7) such that for all 𝑥 ∈ 𝐴,

|𝑔(𝑥) |𝑁 ≤ 𝑐 · | 𝑓 (𝑥) |. (2.1)

In other words,

L( 𝑓 , 𝑔 | 𝐴) ≤ (8𝑑)2(𝑛+7)
= 𝑑𝑂 (𝑛) . (2.2)

In the special case where R = R and

P ⊂ Z[𝑋1, . . . , 𝑋𝑛]≤𝑑 , Q ⊂ Z[𝑋1, . . . , 𝑋𝑛, 𝑌 ]≤𝑑

and the bit-sizes of the coefficients of the polynomials in P ,Q are bounded by 𝜏, there exists

𝑐 ≤ min{2𝜏𝑑𝑂 (𝑛2 )
, 2𝜏𝑑

𝑂 (𝑛 log 𝑑) } (2.3)

such that the inequality (2.1) holds with 𝑁 = (8𝑑)2(𝑛+7) .

Remark 2.3 (Sharpness.) The inequality (2.2) is nearly tight. The following slight modification of
examples given in [46, Page 2] or [21, Example 15] shows that right-hand side of inequality (2.2) cannot
be made smaller than 𝑑𝑛. The constants (8 in the base and 14 in the exponent) in our bound can possibly
be improved (for example, by using a better estimation in the inequality (5.1) in Proposition 5.5 and using
a slightly more accurate degree bound). However, this would lead to a much more unwieldy statement
which we prefer to avoid. The coefficient 2 of n in the exponent, however, seems inherent to our method.

Example 2.4. Let 𝐴 := {𝑥 ∈ R𝑛 | 𝑥2
1 + · · · + 𝑥2

𝑛 ≤ 1} be the compact semialgebraic set, and consider the
semialgebraic functions 𝑓 , 𝑔 : 𝐴 → R defined by

𝑓 := |𝑋2 − 𝑋
𝑑1
1 | + · · · + |𝑋𝑛 − 𝑋

𝑑𝑛−1
𝑛−1 | + |𝑋𝑑𝑛

𝑛 |,

𝑔 :=
√
𝑋2

1 + · · · + 𝑋2
𝑛,

where 𝑑1, . . . , 𝑑𝑛 ∈ Z>0. It is easy to see that 𝑓 −1(0) = 𝑔−1(0) = {0}. Then for sufficiently small |𝑡 | the
vector 𝑥(𝑡) := (𝑡, 𝑡𝑑1 , . . . , 𝑡𝑑1 · · ·𝑑𝑛−1 ) belongs to A, and we have

𝑓 (𝑥(𝑡)) = |𝑡 |𝑑1 · · ·𝑑𝑛 , 𝑔(𝑥(𝑡)) =
√
𝑡2 + · · · + 𝑡2𝑑1 · · ·𝑑𝑛−1 ,

which implies |𝑔(𝑥(𝑡)) |𝑑1 · · ·𝑑𝑛 ≤ 𝑐 · | 𝑓 (𝑥(𝑡)) | for some positive constant c. Letting 𝑑1 = · · · = 𝑑𝑛 = 𝑑,
then it follows that L( 𝑓 , 𝑔 | 𝐴) ≥ 𝑑𝑛.

Remark 2.5 (Independence from the combinatorial parameter). An important feature of the bound in
Theorem 2.2 is that the right-hand side of inequality (2.2) depends only on the maximum degree of the
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polynomials in P ∪Q and is independent of the cardinalities of the sets P ,Q. This is not the case for
the previous best-known general bound due to Solernó [46] which depended on the sum of the degrees
of the polynomials appearing in the descriptions of A, f and g and thus implicitly on the number of
polynomials involved in these descriptions. This fact, that our bound is independent of the number of
polynomials, plays an important role in the applications that we discuss later in the paper. For example,
it is exploited crucially in the proof of Theorem 2.11 (see below). Also, note that the feature of being
independent of combinatorial parameters is also present in some prior work that we discuss in detail in
Section 3.1. But these results (notably that of Kollár [22] and also [43]) come with certain important
restrictions and/or with a worse bound. In contrast, our result is completely general and nearly optimal.

Remark 2.6 (Separation of combinatorial and algebraic parts). Separating the roles of combinatorial
and algebraic parameters has a long history in quantitative real algebraic geometry. We include (see
Section 4 below) a discussion and several prior examples of such results. The Łojasiewicz inequality
is clearly a foundational result in real algebraic geometry. Hence, asking for a similar distinction in
quantitative bounds on the Łojasiewicz exponent is a very natural question. Finally, the underlying idea
behind making this distinction allows us to formulate and prove a version of the Łojasiewicz inequality
valid over polynomially bounded o-minimal structures (see Theorem 2.20) which is stronger than the
one known before.

Remark 2.7. It is not possible to obtain a uniform bound (i.e., a bound only in terms of d, n and possibly
the combinatorial parameters) on the constant c in Theorem 2.2.

As mentioned earlier, Theorem 2.2 leads to improvements in several applications where Łojasiewicz
inequality plays an important role. We discuss some of these applications in depth in Section 6 but
mention an important one right away.

2.2. Application to error bounds

Study of error bounds (defined next) is a very important topic in optimization theory and computational
optimization (see, for example, [44] and the references cited therein).

Definition 2.8 (Error bounds and residual function). Let 𝑀, 𝐸 ⊂ R𝑛. An error bound on E with respect

to M is an inequality

dist(𝑥, 𝑀)𝜌 ≤ 𝜅 · 𝜓(𝑥), ∀𝑥 ∈ 𝐸, (2.4)

where 𝜌, 𝜅 > 0, 𝜓 : 𝑀 ∪ 𝐸 → R≥0 is some function (called a residual function) such that 𝜓(𝑥) = 0 iff
𝑥 ∈ 𝑀 , and

dist(𝑥, 𝑀) := inf
𝑦
{‖𝑥 − 𝑦‖ | 𝑦 ∈ 𝑀}. (2.5)

The study of error bounds was motivated by the implementation of iterative numerical optimization
algorithms and the proximity of solutions to the feasible or optimal set. Thus, from the optimization
point of view, the set M in (2.4) can be the feasible set (polyhedron, a slice of the positive semidefinite
cone, a basic semialgebraic set, etc.) or the optimal set of an optimization problem (see (6.4)), E is a
set of interest (e.g., iterates of an iterative algorithm or central solutions [6]), and a residual function 𝜓

measures the amount of violation of the equations and inequalities defining M at a given solution of E.
See [44] for other applications of error bounds in optimization.

Theorem 2.9. If M is nonempty and semialgebraic, 𝜓 is semialgebraic and E is a closed and bounded

semialgebraic set, then the error bound (2.4) exists with an integer 𝜌 ≥ 1 and for some 𝜅 > 0.

Proof. Notice that (2.4) with a nonempty semialgebraic set M (see [11, Proposition 2.2.8] or the proof
of Lemma 5.9), a semialgebraic function 𝜓, and a closed and bounded semialgebraic set E is a special
case of (1.1). Thus, the existence of an integer 𝜌 ≥ 1 follows from Theorem 1.1. �
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Remark 2.10. Notice that if 𝑀 ⊃ 𝑦 → ∞, then ‖𝑥 − 𝑦‖ → ∞ as well. Thus, if M is closed and
semialgebraic, then inf𝑦 in (2.5) can be replaced by min𝑦 [11, Theorem 2.5.8].

Now, we prove the following quantitative version of Theorem 2.9.

Theorem 2.11. Let M be a basic closed semialgebraic set defined by

𝑀 := {𝑥 ∈ R𝑛 | 𝑔𝑖 (𝑥) ≤ 0, ℎ 𝑗 (𝑥) = 0, 𝑖 = 1, . . . , 𝑟, 𝑗 = 1, . . . , 𝑠}, (2.6)

where 𝑔𝑖 , ℎ 𝑗 ∈ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 , and let E be a closed and bounded P-semialgebraic subset of R𝑛 with

P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 . Let 𝜓 : 𝑀 ∪ 𝐸 → R≥0 be the semialgebraic function defined by

𝜓(𝑥) =
𝑠∑
𝑗=1

|ℎ 𝑗 (𝑥) | +
𝑟∑
𝑖=1

max{𝑔𝑖 (𝑥), 0}. (2.7)

If M is nonempty, then there exist a positive constant 𝜅 and an integer 𝜌 ≥ 1 such that (2.4) holds, with

𝜌 = 𝑑𝑂 (𝑛2) .
Moreover, if dim 𝑀 = 0 (i.e., M is a finite subset of R𝑛), then (2.4) holds with

𝜌 ≤ (8𝑑)2(𝑛+7) = 𝑑𝑂 (𝑛) .

Remark 2.12. Example 2.4 indicates that the upper bound on 𝜌 cannot be better than 𝑑𝑛.

Remark 2.13. The error bounds of Theorem 2.11 have been stated, for the purpose of applications
to optimization, only in reference to the basic semialgebraic set (2.6) and the residual function (2.7).
However, the results of Theorem 2.11 are still valid if we replace (2.6) by any nonemptyQ-semialgebraic
set M and (2.7) by any Q′-semialgebraic residual function, where

Q ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 and Q′ ⊂ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ]≤𝑑𝑂 (𝑛) ;

see Corollary 2.14.

Theorem 2.11 significantly improves the bound 𝐷𝑛𝑐1 in [46, Theorem 7] derived for a slight variation
of (2.4), in which the residual function is replaced by a function measuring the violations only with
respect to the inequalities 𝑔𝑖 (𝑥) ≤ 0 in the description (2.6) of M. In this upper bound, D is the sum
of degrees of polynomials and 𝑐1 is universal positive integer. Furthermore, the upper bound on 𝜌 in
Theorem 2.11 is independent of r and s (the number of polynomial equations and inequalities in (2.6)),
which is particularly important for optimization purposes. Thus, if 𝑟, 𝑠 = 𝜔(𝑛2), the first part of Theorem
2.11 improves the best current error bound result [30, Corollary 3.8] with explicit exponent

𝜌 = min
{
(𝑑 + 1) (3𝑑)𝑛+𝑟+𝑠−1, 𝑑 (6𝑑 − 3)𝑛+𝑟−1

}
. (2.8)

Furthermore, when M is a finite subset of R𝑛 and 𝑟 = 𝜔(𝑛), the second part of Theorem 2.11 improves
the result in [30, Theorem 4.1] with explicit exponent

𝜌 =
(2𝑑 − 1)𝑛+𝑟 + 1

2
. (2.9)

The improvements mentioned above are particularly relevant to nonlinear semidefinite systems,
nonlinear semidefinite optimization and semidefinite complementarity problems; see, for example,
[29, 18], where r might depend exponentially on n. In that case, the application of (2.8) and (2.9) would
result in a doubly exponential bound. The problem of estimation of the exponent 𝜌 in the error bounds
of positive semidefinite systems failing the Slater condition [16, Page 23] is posed in [29, Page 106]
where it is stated ‘Presently, we have no idea of what this exponent ought to be except in trivial cases’.
Corollary 2.14 quantifies the error bound exponent in [29, Proposition 6] and gives an answer to this
question in the special case of polynomial mappings.
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Corollary 2.14. Let S
𝑝
+ be the cone of symmetric 𝑝× 𝑝 positive semidefinite matrices (with entries in R),

let M be defined as

𝑀 := {𝑋 ∈ S𝑝 | 𝑔𝑖 (𝑋) ≤ 0, 𝑖 = 1, . . . , 𝑟},

where 𝑔𝑖 : S𝑝 → R is a polynomial function of degree d, and let E be a closed and bounded

P-semialgebraic subset of R𝑝2
with P ⊂ R[𝑋1, . . . , 𝑋𝑝2 ]≤𝑑 . If 𝑀 ∩ S𝑝+ ≠ ∅, then there exist 𝜅 ∈ R and

𝜌 = max{𝑑, 𝑝}𝑂 (𝑝4) such that

dist(𝑥, 𝑀 ∩ S𝑝+ )𝜌 ≤ 𝜅 · max
{
dist(𝑥, 𝑀),max{−𝜆min(𝑥), 0}

}
, for all 𝑥 ∈ 𝐸.

2.3. O-minimal case

Many finiteness results of semialgebraic geometry generalize to arbitrary o-minimal expansions of R
(we refer the reader to [48] and [14] for the definition of o-minimal structures and the corresponding
finiteness results).

However, Miller proved the following theorem for polynomially bounded o-minimal expansion of R.
An o-minimal expansion of R is polynomially bounded if for every definable function 𝑓 : R→ R, there
exist 𝑁 ∈ N, 𝑐 ∈ R such that | 𝑓 (𝑥) | < 𝑥𝑁 for all 𝑥 > 𝑐. Examples of polynomially bounded o-minimal
expansions of R include the structure of semialgebraic sets, and also that of globally sub-analytic sets.

Theorem 2.15 [40, Theorem 5.4, Page 94]. Let 𝐴 ⊂ R𝑛 be a compact set definable in a polynomially

bounded o-minimal expansion of R, and let 𝑓 , 𝑔 : 𝐴 → R be definable continuous functions such that

𝑓 −1(0) ⊂ 𝑔−1(0). Then there exist 𝑁 ∈ N and 𝑐 > 0, 𝑐 ∈ R such that |𝑔(𝑎) |𝑁 ≤ 𝑐 · 𝑓 (𝑎) for all 𝑎 ∈ 𝐴.

Remark 2.16. Theorem 2.15 clearly does not extend to arbitrary o-minimal expansions of R (for
example, o-minimal expansions in which the exponential function is definable). However, there exists a
more nuanced version that is true for arbitrary o-minimal expansions of R [32, Theorem 1].

It does not seem possible to give a meaningful quantitative version of Theorem 2.15 in such a general
context. However, we formulate below a more uniform version of Theorem 2.15 (see Theorem 2.20).

2.3.1. Extension of the notion of combinatorial complexity to arbitrary o-minimal structures

Although the notion of algebraic complexity in the context of general o-minimal structure does not make
sense in general, one can still talk of combinatorial complexity [4]. The following result is illustrative
(see also Proposition 5.12 for another example) and can be obtained by combining [4, Theorem 2.3] and
the approximation theorem proved in [17].

Fix an o-minimal expansion of R, and suppose that A is a definable family of closed subsets of R𝑛.
Then there exists a constant𝐶 = 𝐶 (A) > 0 having the following property. Suppose that S ⊂ A is a finite
subset and S a subset of R𝑛 belonging to the Boolean algebra of subsets of R𝑛 generated by S such that∑

𝑖

𝑏𝑖 (𝑆) ≤ 𝐶 · 𝑠𝑛, (2.10)

where 𝑠 = card(S) and 𝑏𝑖 (·) denotes the i-th Betti number [3]. Notice that this bound does depend on
the combinatorial parameter s. Note also that it follows from Hardt’s triviality theorem for o-minimal
structures [14] that the Betti numbers of the sets appearing in any definable family are bounded by a
constant (depending on the family). However, the family of sets S to which the inequality (2.10) applies
is not necessarily a definable family.

In view of the inequality (2.10), it is an interesting question whether one can prove a quantitative
version of Miller’s result with a uniform bound on the Łojasiewicz exponent in the same setting as above
– so that the bound applies to a family (not necessarily definable) of definable sets S and functions 𝑓 , 𝑔

simultaneously – as in inequality (2.10).
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2.3.2. Łojasiewicz inequality in polynomially bounded o-minimal structures

For the rest of this section, we fix a polynomially bounded o-minimal expansion of R. Before stating
our theorem, we need to use a notation and a definition.

Notation 2.17. A definable family of subsets of R𝑛 parametrized by a definable set A is a definable
subset A ⊂ 𝐴 × R𝑛. For 𝑎 ∈ 𝐴, we will denote by A𝑎 = 𝜋2 (𝜋−1

1 (𝑎) ∩ A), where 𝜋1 : 𝐴 × R𝑛 → 𝐴,
𝜋2 : 𝐴 × R𝑛 → R𝑛 are the two projection maps. We will often abuse notation and refer to the definable
family by A.

Definition 2.18. Given a definable family A of subsets of R𝑛 parametrized by a definable set A and a
finite subset 𝐴′ ⊂ 𝐴, we call a subset 𝑆 ⊂ R𝑛 to be a (A, 𝐴′)-set if it belongs to the Boolean algebra of
subsets of R𝑛 generated by the tuple (A𝑎)𝑎∈𝐴′ . We will call a subset 𝑆 ⊂ R𝑛, a A-set if S is a (A, 𝐴′)-set
for some finite set 𝐴′ ⊂ 𝐴. If the graph of a definable function f is a A-set, we will call f a A-function.
(Note that the family of A-sets is in general not a definable family of subsets of R𝑛.)

Example 2.19. If we take the o-minimal structure Rsa of semialgebraic sets, then for each fixed d, the
family of semialgebraic sets which are P-semialgebraic sets where P varies over all finite subsets of
R[𝑋1, . . . , 𝑋𝑛]≤𝑑 is an example of a family of A-sets for an appropriately chosen A. Note that this
family is not a semialgebraic family.

Example 2.19 suggests a way to obtain a quantitative Łojasiewicz inequality valid over any polyno-
mially bounded o-minimal structure.

Theorem 2.20 (Łojasiewicz inequality for A-sets and B-functions for any pair of definable families A
and B). Let A be a definable family of subsets of R𝑛 parametrized by the definable set A, and let B be a

definable family of subsets of R𝑛+1 parametrized by the definable set B.

Then there exists 𝑁 = 𝑁 (A,B) > 0 having the following property. For any triple of finite sets

(𝐴′, 𝐵′, 𝐵′′) with 𝐴′ ⊂ 𝐴, 𝐵′, 𝐵′′ ⊂ 𝐵, there exists 𝑐 = 𝑐(𝐴′, 𝐵′, 𝐵′′) ∈ R such that for each closed

and bounded (A, 𝐴′)-set S, a (B, 𝐵′)-set F and a (B, 𝐵′′)-set G such that 𝐹, 𝐺 are graphs of definable

functions 𝑓 , 𝑔 : R𝑛 → R continuous on S with 𝑓 |−1
𝑆
(0) ⊂ 𝑔 |−1

𝑆
(0), and for all 𝑥 ∈ 𝑆,

|𝑔(𝑥) |𝑁 ≤ 𝑐 · | 𝑓 (𝑥) |.

Remark 2.21 (Theorem 2.20 generalizes Theorem 2.15). Notice that as in Theorem 2.2, the combina-
torial parameter (namely, card(𝐴′∪𝐵′∪𝐵′′)) plays no role. It is also more general than the Łojasiewicz
inequality in Theorem 2.15 as the inequality holds with the same value of N for a large, potentially infi-
nite family (not necessarily definable) of triples (𝑆, 𝑓 , 𝑔) and not just for one triple as in Theorem 2.15.

2.4. Outline of the proofs of the main theorems

We now outline the key ideas behind the proofs of the theorems stated in the previous section.
Our proof of Theorem 2.2 follows closely the proof of the similar qualitative statement in [11] with

certain important modifications. One main tool that we use to obtain our quantitative bound is a careful
analysis of the degrees of certain polynomials appearing in the output of an algorithm (Algorithm 14.6
(block elimination)) described in the book [3].1 This algorithm is an intermediate algorithm for the
effective quantifier elimination algorithm described in [3] and takes as input a finite set of polynomials
P ⊂ R[𝑌, 𝑋] and produces as output a finite set BElim𝑋 (P) ⊂ R[𝑌 ] having the property that for each
connected component C of the realization of each realizable sign condition (see Notation 5.2) the set of
sign conditions realized by P (𝑦, 𝑋) is constant as y varies over C. The precise mathematical statement
describing the above property of the output of the block elimination algorithm (including a bound on
the degrees of the polynomials output) is summarized in Proposition 5.5. The proof of the bound on
degrees borrows heavily from the complexity analysis of the algorithm that already appears in [3] but

1We refer to the posted online version of the book because it contains certain degree estimates which are more precise than in
the printed version.
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with an added part corresponding to the last step of the algorithm. This last step uses another algorithm
(namely, Algorithm 11.54 (restricted elimination) in [3]), and we use the complexity analysis of this
algorithm as well.

We also need a quantitative statement on the growth of a semialgebraic function of one variable at
infinity whose graph is defined by polynomials of a given degree. It is important for us that the growth
is bounded only by the upper bound on the degree and not on the size of the formula describing the
graph. This is proved in Lemma 5.3.

Note that the technique of utilizing complexity estimates of algorithms to prove quantitative bounds
in real algebraic geometry is not altogether new. For example, similar ideas have been used to prove a
quantitative curve selection lemma [9] and bounds on the radius of a ball guaranteed to intersect every
connected component of a given semialgebraic set [8], amongst other such results.

Theorem 2.11 is an application of Theorem 2.2 with one key extra ingredient. We prove (see
Lemma 5.9) that if M is aP-semialgebraic set withP ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 , then the graph of the distance
function, dist(·, 𝑀), can be described by a quantifier-free formula involving polynomials having degrees
at most 𝑑𝑂 (𝑛) . A more naive approach (for example that in [46]) involving quantifier elimination would
involve elimination of two blocks of quantified variables with a quantifier alternation and would lead
to a degree bound of 𝑑𝑂 (𝑛2) . The formula describing the graph of dist(·, 𝑀) that we obtain is very
large from the point of view of combinatorial complexity (compared to the more naive approach) but
with a better degree bound. We leverage now the fact that our bound on the Łojasiewicz exponent is
independent of the combinatorial parameter and apply Theorem 2.2 to obtain the stated result.

The proof of Theorem 2.20 is similar to that of proof Theorem 2.2 with the following important
difference. Proposition 5.5 which plays a key role in the proof of Theorem 2.2 is replaced by a quantitative
version of the existence theorem for cylindrical definable decomposition adapted to finite subfamilies of
a family F of definable subsets of R𝑛 in any o-minimal structure. The important quantitative property
that we need is not the size of the decomposition but the fact that each cell of the decomposition is
determined in a certain fixed definable way from a certain finite number, 𝑁 (𝑛), of the sets of the given
finite subfamily of F (the key point being that the number 𝑁 (𝑛) is independent of the cardinality of the
finite subfamily). The existence of such decompositions in o-minimal structures was first observed in
[4, Theorem 2.5] (see Proposition 5.13 below), and it is closely related (in fact equivalent) to the fact
that o-minimal structures are distal in the sense of model theory (see [47]).

The rest of the paper is organized as follows. In Section 3, we survey prior work on proving bounds
on the Łojasiewicz exponent at various levels of generality and also survey prior work on proving error
bounds. In Section 4, in order to put the current paper in context, we include a discussion of the role
that the separation of combinatorial and algebraic complexity has played in quantitative real algebraic
geometry. In Section 5, we prove the main theorems after introducing the necessary definitions and
preliminary results. In Section 6, we discuss some further applications of our main theorem. Finally, in
Section 7 we end with some open problems.

3. Prior and related work

3.1. Prior results on Łojasiewicz inequality

Solernó [46, Theorem 3 (ii)] proved that (1.1) holds with 𝜌 = 𝐷𝑐1𝑛, in which 𝑐1 is a universal constant
and D is an upper bound on the sum of the degrees of polynomials inP andQ. Since D is an upper bound
on the sum of the degrees of polynomials inP andQ, the bound in [46, Theorem 3] depends implicitly on
the cardinalities of P and Q (unlike Theorem 2.2). In the case of polynomials with integer coefficients,

Solernó [46, Theorem 3 (ii)] also proves an upper bound of 2𝜏𝐷
𝑐2 ·𝑛2

on the constant c (following
the same notation as in (1.1)) where D is an upper bound on the sum of the degrees of polynomials
in P and Q and 𝑐2 is a universal constant. This bound should be compared with inequality (2.3) in
Theorem 2.2.
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In a series of papers [23, 25, 26], Kurdyka, Spodzieja and Szlachcińska proved several quantitative
results on Łojasiewicz inequality. We summarize them as follows. Let 𝑆 ⊂ R𝑛 be a closed semialgebraic
set, and let

𝑆 = 𝑆1 ∪ · · · ∪ 𝑆𝑘

be a decomposition [11] of S into k closed basic P𝑖-semialgebraic subsets 𝑆𝑖 with P𝑖 ⊂
R[𝑋1, . . . , 𝑋𝑛]≤𝑑𝑖 , each involving 𝑟𝑖 polynomial inequalities. Let 𝑟 (𝑆) be the minimum of
max{𝑟1, . . . , 𝑟𝑘 } over all possible decompositions of S, and let deg(𝑆) denote the minimum of
max{𝑑1, . . . , 𝑑𝑘 } over all decompositions for which 𝑟𝑖 ≤ 𝑟 (𝑆). Further, let 𝐹 : 𝑆 → R

𝑠 be a con-
tinuous semialgebraic mapping, and suppose that 0 ∈ 𝑆 and 𝐹 (0) = 0. Then there exists [25, Corollary
2.2] (see also [26]) an upper bound

𝑑 (6𝑑 − 3)𝑛+𝑠+𝑟−1 (3.1)

on the Łojasiewicz exponent of

‖𝐹 (𝑥)‖ ≥ 𝑐 · dist
(
𝑥, 𝐹−1 (0) ∩ 𝑆

)𝜌
, ∀𝑥 ∈ 𝑆, ‖𝑥‖ < 𝜀, (3.2)

where

𝑑 = max
{

deg(𝑆), deg(graph(𝐹))
}
,

𝑟 = 𝑟 (𝑆) + 𝑟 (graph(𝐹)).

If 𝑥 = 0 is an isolated zero of F, then the upper bound is ((2𝑑 − 1)𝑛+𝑠+𝑟 + 1)/2.
Note that the above bounds do depend on the number of polynomials. Also, notice that 𝑑 and 𝑟 in

the upper bound (3.1) are both different from d and the number of inequalities in the semialgebraic
description of f, g and A in Theorem 2.2. In fact, 𝑟 and 𝑑 are the number of inequalities and the maximum
degree of polynomials in the minimal semialgebraic description of graph(𝐹) and S. It was proved in [13]
that 𝑟 is bounded by 𝑛(𝑛+1)/2, but it is not clear how d blows up for a minimal decomposition. Because
of this, we cannot directly compare the bound in (3.1) to that of Theorem 2.2 proved in the current paper.

Let 𝑓 : 𝑆 → R be a Nash function [11, Definition 2.9.3], where S is a compact semialgebraic subset
of R𝑛. Osińska-Ulrych et al. [42] showed that

| 𝑓 (𝑥) | ≥ 𝑐 · dist
(
𝑥, 𝑓 −1(0)

)2(2𝑑−1)3𝑛+1

, ∀𝑥 ∈ 𝑆,

in which 𝑑 = deg𝑆 ( 𝑓 ) := max{deg𝑎 ( 𝑓 ) | 𝑎 ∈ 𝑆}, and deg𝑎 ( 𝑓 ) is the degree of the unique irreducible
𝑃 ∈ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ] such that 𝑃(𝑥, 𝑓 (𝑥)) = 0 for all x in a connected neighborhood of a.

Kollár [22] considered the problem of improving Solernó’s results [46]. He obtained significant
improvements but under certain restrictions. More precisely, given a semialgebraic set M as in (2.6),
with max𝑖{ 𝑓𝑖 (𝑥)} > 0 for all 𝑥 ∈ 𝑀 for 0 < ‖𝑥‖ � 1, and max𝑖{ 𝑓𝑖 (0)} = 0, he proved that ([22,
Theorem 4]) there exist constants 𝑐, 𝜀 > 0 such that

max
𝑖

{ 𝑓𝑖 (𝑥)} ≥ 𝑐 · ‖𝑥‖𝐵 (𝑛−1)𝑑𝑛

for all 𝑥 ∈ 𝑀 with ‖𝑥‖ < 𝜀, (3.3)

where 𝐵(𝑛) :=
( 𝑛
� (𝑛/2) �

)
. Notice that the exponent 𝐵(𝑛 − 1)𝑑𝑛 ≤ (2𝑑)𝑛 in (3.3) is a little better than the

bound in Theorem 2.2. It is also the case that similar to our result, Kollár’s bound is independent of the
combinatorial parameters (i.e., number of polynomials occurring in the definition of M and the number
of 𝑓𝑖’s). However, unlike Theorem 2.2, the pair of functions max𝑖{ 𝑓𝑖 (𝑥)}, | | · | | in Kollár’s theorem
is quite restrictive, and so inequality (3.3) is difficult to apply directly – for instance, in applications
to error bounds considered in this paper (Theorem 2.11). Moreover, the restriction that 0 has to be
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an isolated zero of max𝑖{ 𝑓𝑖 (𝑥)} may not be satisfied in many applications, restricting the utility of
(3.3).

More recently, Osińska-Ulrych et al. [43] proved that L( 𝑓 , 𝑔 | B𝑛) ≤ 𝑑4𝑛+1 in which 𝑑 is the
degree of polynomials describing f and g, B𝑛 is the unit ball in R𝑛, and 𝑑 is a bound on the degrees of
polynomials defining the graphs of 𝑓 , 𝑔 as well as on certain polynomials giving a suitable semialgebraic
decomposition of B𝑛 adapted to 𝑓 , 𝑔. Note that 𝑑 could be larger than the degrees of the polynomials
defining 𝑓 , 𝑔. This bound is also independent of the combinatorial parameters but asymptotically weaker
than the one in Theorem 2.2, and the setting is more restrictive (since the bound is not directly in terms
of the degrees of the polynomials appearing in the definition of 𝑓 , 𝑔).

3.2. Other forms of Łojasiewicz inequality

Several other forms of Łojasiewicz inequality have appeared in the literature. Let 𝑓 : 𝑈 → R be a real
analytic function, where 𝑈 ⊂ R𝑛 is neighborhood of 0 ∈ R𝑛. If 𝑓 (0) = 0 and ∇ 𝑓 (0) = 0, then there
exist a neighborhood 𝑈 ′ of 0 and 𝜚 < 1, 𝑐 > 0 such that

|∇ 𝑓 (𝑥) | ≥ 𝑐 · | 𝑓 (𝑥) | 𝜚 , ∀𝑥 ∈ 𝑈 ′, (3.4)

which is known as Łojasiewicz gradient inequality. The infimum of 𝜚 satisfying (3.4) is called the
Łojasiewicz exponent of f, and it is denoted by 𝜚( 𝑓 ). If 𝑓 ∈ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 and has an isolated
singularity at zero, then there exists an upper bound [19]

𝜚( 𝑓 ) ≤ 1 − 1

(𝑑 − 1)𝑛 + 1
.

Under a weaker condition of having nonisolated singularity at the origin, D’Acunto and Kurdyka showed
[15] that

𝜚( 𝑓 ) ≤ 1 − 1

max{𝑑 (3𝑑 − 4)𝑛−1, 2𝑑 (3𝑑 − 3)𝑛−2}
. (3.5)

A more general result is given by [42] for a Nash function 𝑓 : 𝑈 → R, where U is a connected
neighborhood of 0 ∈ R𝑛. If 𝑓 (0) = 0 and ∇ 𝑓 (0) = 0, then (3.4) holds with

𝜚( 𝑓 ) ≤ 1 − 1

2(2𝑑 − 1)3𝑛+1
,

where 𝑑 is the degree of the unique irreducible 𝑃 ∈ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ] such that 𝑃(𝑥, 𝑓 (𝑥)) = 0 for all
𝑥 ∈ 𝑈. If, in addition to the latter condition, 𝜕𝑃

𝜕𝑦
(𝑥, 𝑓 (𝑥)) ≠ 0 for all 𝑥 ∈ 𝑈, then there exists a stronger

upper bound

𝜚( 𝑓 ) ≤ 1 − 1

max{2𝑑 (2𝑑 − 1), 𝑑 (3𝑑 − 2)𝑛} + 1
.

3.3. Prior work on error bounds

Error bounds were generalized to analytic systems and basic semialgebraic sets in [39, Theorem 2.2]
and [37, Theorem 2.2] based on the analytic form of Łojasiewicz inequality and Hörmander’s results
[20] but without explicit information about the exponent. Recently, an explicit error bound with respect
to M, defined in (2.6), was given in [30], where the exponent depends exponentially on the dimension
and the number of polynomial equations and inequalities; see (2.8). The exponent (2.8) follows from
(3.5) and the generalized differentiation in variational analysis.
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In case that M is defined by a single convex polynomial inequality, that is, 𝑟 = 1, 𝑠 = 0, then (2.4)
holds with 𝜌 = (𝑑−1)𝑛 +1 [31, Theorem 4.2]. Additionally, if there exists an 𝑥 ∈ 𝑀 such that 𝑔(𝑥) < 0,
then 𝜌 = 1 with 𝐸 = R𝑛 [31, Theorem 4.1]. More generally, there exists [12, Corollary 3.4]

𝜌 = min

{
(2𝑑 − 1)𝑛 + 1

2
,

(
𝑛 − 1

�(𝑛 − 1)/2�

)
𝑑𝑛

}
(3.6)

such that the error bound (2.4) holds, where

𝜓(𝑥) = max
𝑖∈{1,...,𝑟 }

(max{𝑔𝑖 (𝑥), 0}).

A complete survey of error bounds in optimization and their applications to algorithms and sensitivity
analysis can be found in [29, 44].

4. Combinatorial and algebraic complexity

A key feature of the bound in Theorem 2.2 is that it is independent of the cardinality of P and Q and
depends only on the bound on the maximum degree of the polynomials in P ∪ Q and n. In fact, in
many quantitative results (upper bounds on various quantities) in real algebraic geometry involving a
P-semialgebraic set, a fruitful distinction can be made between the dependence of the bound on the
cardinality of the set P and on the maximum degrees (or some other measure of the complexity) of the
polynomials in P . The former is referred to as the combinatorial part and the latter as the algebraic

part of the bound (see [5]). This distinction is important in many applications (such as in discrete and
computational geometry), where the algebraic part of the bounds are treated as bounded by a fixed
constant and only the combinatorial part is considered interesting.

The following examples illustrate the different nature of the dependencies on the combinatorial and
the algebraic parameters in quantitative bounds appearing in real algebraic geometry and put in context
the key property of Theorem 2.2 stated in the beginning of this subsection.

1. (Bound on Betti numbers.) Suppose that 𝑆 ⊂ R𝑛 is a P- semialgebraic set and 𝑉 = Z(𝑄,R𝑛) a real
algebraic set. Suppose that dimR 𝑉 = 𝑝, and the degrees of Q and the polynomials in P are bounded
by d. Then, ∑

𝑖

𝑏𝑖 (𝑆 ∩𝑉) ≤ 𝑠𝑝 (𝑂 (𝑑))𝑛, (4.1)

where 𝑠 = card(P) and 𝑏𝑖 (·) denotes the i-th Betti number [3]. Notice the different dependence of
the bound on s and d.

2. (Quantitative curve selection lemma.) The curve selection lemma [35, 36] (see also [41]) is a
fundamental result in semialgebraic geometry. The following quantitative version of this lemma was
proved in [9].

Theorem (Quantitative curve selection lemma). Let P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 be a finite set, S a

P-semialgebraic set and 𝑥 ∈ 𝑆. Then there exist 𝑡0 ∈ R, 𝑡0 > 0, and a semialgebraic path

𝜑 : [0, 𝑡0) → R𝑛 with

𝜑(0) = 𝑥, 𝜑((0, 𝑡0)) ⊂ 𝑆

such that the degree of the Zariski closure of the image of 𝜑 is bounded by

(𝑂 (𝑑))4𝑛+3.
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Notice that the bound on the degree of the image of the curve 𝜑 in the above theorem has no
combinatorial part, that is, there is no dependence on the cardinality of P (unlike the bound in (4.1)).

3. (Effective quantifier elimination) Quantifier elimination is a key property of the theory of the reals
and has been studied widely from the complexity viewpoint. The following quantitative version
appears in [7].

Theorem 4.1 (Quantifier elimination). Let P ⊂ R[𝑋[1] , . . . , 𝑋[𝜔 ] , 𝑌 ]≤𝑑 be a finite set of s

polynomials, where 𝑋[𝑖 ] is a block of 𝑘𝑖 variables, and Y a block of ℓ variables. Let

Φ(𝑌 ) = (𝑄1𝑋[1]) · · · (𝑄𝜔𝑋[𝜔 ])Ψ(𝑋[1] , . . . , 𝑋[𝜔 ] , 𝑌 )

be a quantified-formula, with 𝑄𝑖 ∈ {∃,∀} and Ψ a P-formula. Then there exists a quantifier-free

formula

Ψ(𝑌 ) =
𝐼∨
𝑖=1

𝐽𝑖∧
𝑗=1

( 𝑁𝑖 𝑗∨
𝑛=1

sign(𝑃𝑖 𝑗𝑛 (𝑌 )) = 𝜎𝑖 𝑗𝑛

)
,

where 𝑃𝑖 𝑗𝑛 (𝑌 ) are polynomials in the variables Y, 𝜎𝑖 𝑗𝑛 ∈ {0, 1,−1},

𝐼 ≤ 𝑠 (𝑘𝜔+1) ·· · (𝑘1+1) (ℓ+1)𝑑𝑂 (𝑘𝜔) ·· ·𝑂 (𝑘1)𝑂 (ℓ) ,

𝐽𝑖 ≤ 𝑠 (𝑘𝜔+1) ·· · (𝑘1+1)𝑑𝑂 (𝑘𝜔) ·· ·𝑂 (𝑘1) ,

𝑁𝑖 𝑗 ≤ 𝑑𝑂 (𝑘𝜔) ·· ·𝑂 (𝑘1) ,

equivalent to Φ, and the degrees of the polynomials 𝑃𝑖 𝑗𝑘 are bounded by 𝑑𝑂 (𝑘𝜔) ·· ·𝑂 (𝑘1) .
Moreover, if the polynomials in P have coefficients in Z with bit-sizes bounded by 𝜏, the

polynomials 𝑃𝑖 𝑗𝑘 also have integer coefficients with bit-sizes bounded by 𝜏𝑑𝑂 (𝑘𝜔) ·· ·𝑂 (𝑘1)𝑂 (ℓ) .

Notice that the bound on the degrees of the polynomials appearing in the quantifier-free formula
is independent of the combinatorial parameter 𝑠 = card(P). This fact will play a key role in the proof
of the main theorem (Theorem 2.2) below.

5. Proofs of the main results

5.1. Proof of Theorem 2.2

Before proving Theorem 2.2, we need some preliminary results.

5.1.1. Cylindrical definable decomposition

The notion of cylindrical definable decomposition (introduced by Łojasiewicz [34, 35]) plays a very
important role in semialgebraic and more generally o-minimal geometry [14]. We include its definition
below for the sake of completeness and also for fixing notation that will be needed later.

Definition 5.1 (Cylindrical definable decomposition). Fixing the standard basis of R𝑛, we identify for
each 𝑖, 1 ≤ 𝑖 ≤ 𝑛, R𝑖 with the span of the first i basis vectors. Fixing an o-minimal expansion of R,
a cylindrical definable decomposition of R is an 1-tuple (D1), where D1 is a finite set of subsets of
R, each element being a point or an open interval, which together gives a partition of R. A cylindrical
definable decomposition of R𝑛 is an n-tuple (D1, . . . ,D𝑛), where each D𝑖 is a decomposition of R𝑖 ,
(D1, . . . ,D𝑛−1) is a cylindrical decomposition of R𝑛−1 and D𝑛 is a finite set of definable subsets of R𝑛

(called the cells of D𝑛) giving a partition of R𝑛 consisting of the following: For each 𝐶 ∈ D𝑛−1, there
is a finite set of definable continuous functions 𝑓𝐶,1, . . . , 𝑓𝐶,𝑁𝐶

: 𝐶 → R such that 𝑓𝐶1 < · · · < 𝑓𝐶,𝑁𝐶
,

and each element of D𝑛 is either the graph of a function 𝑓𝐶,𝑖 or of the form
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(a) {(𝑥, 𝑡) | 𝑥 ∈ 𝐶, 𝑡 < 𝑓𝐶,1(𝑥)},
(b) {(𝑥, 𝑡) | 𝑥 ∈ 𝐶, 𝑓𝐶,𝑖 (𝑥) < 𝑡 < 𝑓𝐶,𝑖+1(𝑥)},
(c) {(𝑥, 𝑡) | 𝑥 ∈ 𝐶, 𝑓𝐶,𝑁𝐶

(𝑥) < 𝑡},
(d) {(𝑥, 𝑡) | 𝑥 ∈ 𝐶}

(the last case arising is if the set of functions { 𝑓𝐶,𝑖 |1 ≤ 𝑖 ≤ 𝑁𝐶 } is empty).
We will say that the cylindrical definable decomposition (D1, . . . ,D𝑛) is adapted to a definable

subset S of R𝑛, if for each 𝐶 ∈ D𝑛, 𝐶 ∩ 𝑆 is either equal to C or empty.
In the semialgebraic case, we will refer to a cylindrical definable decomposition by cylindrical

algebraic decomposition.

In the semialgebraic case, we will use the following extra notion.

5.1.2. Sign conditions

Notation 5.2 (Sign conditions and their realizations). Let P be a finite subset of R[𝑋1, . . . , 𝑋𝑛]. For
𝜎 ∈ {0, 1,−1}P , we call the formula

∧
𝑃∈P (sign(𝑃) = 𝜎(𝑃)) to be a sign condition on P and call

its realization the realization of the sign condition 𝜎. We say that a sign condition is realizable if its
realization is not empty.

We denote by Cc(P) the set of semialgebraically connected components of the realizations of each
realizable sign condition on P .

We say that a cylindrical algebraic decomposition D = (D1, . . . ,D𝑛) of R𝑛 is adapted to P if for
each cell C of D𝑛, and each 𝑃 ∈ P , sign(𝑃(𝑥)) is constant for 𝑥 ∈ 𝐶. (This implies in particular that
each element of Cc(P) is a union of cells of D𝑛.)

Lemma 5.3. Let F ⊂ R[𝑋1, 𝑋2]≤𝑝 be a finite set of nonzero polynomials. Let 𝑓 : R → R be a

semialgebraic map such that

graph( 𝑓 ) = {(𝑥, 𝑓 (𝑥)) | 𝑥 ∈ R} =
⋃
𝐶∈C

𝐶

for some subset C ⊂ Cc(F).
Then, there exist 𝑎, 𝑐 ∈ R such that for all 𝑥 ≥ 𝑎,

| 𝑓 (𝑥) | ≤ 𝑐 · 𝑥𝑝 .

Proof. Consider a cylindrical algebraic decomposition D = (D1,D2) of R2 (with coordinates 𝑋1, 𝑋2)
adapted to the set F .

This implies that each 𝐶 ∈ Cc(F) is a union of cells of D2. Let 𝑎0 < 𝑎1 < · · · < 𝑎𝑛 = 𝑎 be
the end points of the intervals giving the partition of R (corresponding to the 𝑋1 coordinate) in the
decomposition D1.

Since the cylindrical decomposition D is adapted to F , and graph( 𝑓 ) =
⋃
𝐶∈C 𝐶 for some subset

C ⊂ Cc(F), dim(𝐶) ≤ 1 for each 𝐶 ∈ C since

dim(𝐶) ≤ dim(graph( 𝑓 )) = 1.

Hence, there exists for each 𝐶 ∈ C a polynomial 𝐹 ∈ F such that 𝐹 (𝑥) = 0 for all 𝑥 ∈ 𝐶.
Also, since graph( 𝑓 ) = ⋃𝐶∈C 𝐶 and each 𝐶 ∈ C is a union of cells of D, there exists a continuous

semialgebraic function 𝛾 : (𝑎,∞) → R such that graph(𝛾) ⊂ graph( 𝑓 ), and graph(𝛾) is a cell of D2.
Let 𝐶 ∈ Cc(C) be the unique element of C which contains graph(𝛾), and 𝐹 ∈ F such that 𝐹 (𝑥) = 0

for all 𝑥 ∈ 𝐶.
The lemma now follows from [11, Proposition 2.6.1] noting that

deg(𝐹) ≤ 𝑝. �
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Notation 5.4 (Realizable sign conditions). For any finite set of polynomials P ⊂ R[𝑋1, . . . , 𝑋𝑘 ] we
denote by

SIGN(P) ⊂ {0, 1,−1}P

the set of all realizable sign conditions for P over R𝑘 , that is,

SIGN(P) = {𝜎 ∈ {0, 1,−1}P | R(𝜎,R𝑛) ≠ ∅}.

Proposition 5.5. Let P ⊂ R[𝑌, 𝑋], with 𝑌 = (𝑌1, . . . , 𝑌ℓ ), 𝑋 = (𝑋1, . . . , 𝑋𝑘 ) be a finite set of polyno-

mials. Then there exists a finite subset BElim𝑋 (P) ⊂ R[𝑌 ] such that for each 𝐶 ∈ Cc(BElim𝑋 (P)),
SIGN(P (𝑦, 𝑋)) is fixed as y varies over C.

If the degrees of the polynomials in P are bounded by 𝑑 ≥ 2, then the degrees of the polynomials in

BElim𝑋 (P) is bounded by

8𝑑2 (2𝑘 (2𝑑 + 2) + 2) (2𝑑 + 3) (2𝑑 + 6)2(2𝑑 + 5)2𝑘−2 < (8𝑑)2𝑘+4. (5.1)

Proof. Let BElim𝑋 (P) be the set of polynomials denoted by the same formula in the output of Algorithm
14.6 (block elimination) in [3]. The fact that for each 𝐶 ∈ Cc(BElim𝑋 (P)), SIGN(P (𝑦, 𝑋)) is fixed as
y varies over C is a consequence of Proposition 14.10 in [3].

To obtain the upper bound on the degrees of the polynomials in BElim𝑋 (P), we follow the complexity
analysis of Algorithm 14.6 (block elimination) in [3] using the same notation as in the algorithm. The
algorithm first computes a set UR𝑋 (P) whose elements are tuples 𝑣 = ( 𝑓 , 𝑔0, . . . , 𝑔𝑘 ) of polynomials in
𝑇,𝑌, 𝜀, 𝛿 (here, 𝜀 and 𝛿 are infinitesimals and T is one variable). It is proved in the complexity analysis
of the algorithm that the degrees of the polynomials in T appearing in the various tuples 𝑣 ∈ UR𝑋 (P)
are bounded by

𝐷 = (2𝑑 + 6) (2𝑑 + 5)𝑘−2,

and their degrees in Y (as well as in 𝜀, 𝛿) are bounded by

𝐷 ′
= (2𝑘 (2𝑑 + 2) + 2) (2𝑑 + 3) (2𝑑 + 6) (2𝑑 + 5)𝑘−2.

It follows that for each 𝑃 ∈ P , and 𝑣 = ( 𝑓 , 𝑔0, . . . , 𝑔𝑘 ) ∈ UR𝑋 (P), the degree in T of the polynomial

𝑃𝑣 = 𝑔𝑒0𝑃
(𝑔1

𝑔0
, . . . ,

𝑔𝑘

𝑔0

)
,

where e is the least even integer greater than deg(𝑃) ≤ 𝑑, is bounded by (𝑑 + 1)𝐷 ≤ 2𝑑𝐷, and similarly
the degree in Y of 𝑃𝑣 is bounded by 2𝑑𝐷 ′. The same bounds apply to all polynomials in the set F𝑣

introduced in the algorithm, where F𝑣 consists of f, the derivatives of f with respect to T, and 𝑃𝑣
(defined above) for each 𝑃 ∈ P .

It now follows from the complexity analysis of Algorithm 11.54 (restricted elimination) in [3] that
the degrees in Y of the polynomials in RElim𝑇 ( 𝑓 ,F𝑣 ) are bounded by

2(2𝑑𝐷) (2𝑑𝐷 ′) = 8𝑑2𝐷𝐷 ′

= 8𝑑2 (2𝑘 (2𝑑 + 2) + 2) (2𝑑 + 3) (2𝑑 + 6)2(2𝑑 + 5)2𝑘−2

≤ (8𝑑2) · (6𝑘𝑑) · (4𝑑) · (5𝑑)2 · (4𝑑)2𝑘−2

= 8 · 6 · 4 · 52 · 𝑘 · 𝑑6 · (4𝑑)2𝑘−2

=
3 · 52

43
· 𝑘 · (4𝑑)2𝑘+4

< (8𝑑)2𝑘+4.
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Denoting B𝑣 ⊂ R[𝑌 ] the set of coefficients of the various polynomials in RElim𝑇 ( 𝑓 ,F𝑣 ) written as
polynomials in 𝜀, 𝛿, we immediately obtain that the degrees in Y of polynomials in B𝑣 are bounded by

8𝑑2 (2𝑘 (2𝑑 + 2) + 2) (2𝑑 + 3) (2𝑑 + 6)2(2𝑑 + 5)2𝑘−2 < (8𝑑)2𝑘+4.

The proposition follows since according to the algorithm

BElim𝑋 (P) =
⋃

𝑣 ∈UR𝑋 (P)
B𝑣 . �

Lemma 5.6. Suppose that P ⊂ R[𝑌, 𝑋] with 𝑌 = (𝑌1, . . . , 𝑌ℓ ), 𝑋 = (𝑋1, . . . , 𝑋𝑘 ) and Φ is P-formula.

Then there exist subsets C∃, C∀ ⊂ Cc(BElim𝑋 (P)) such that

R((∃𝑋)Φ,Rℓ) =
⋃
𝐶∈C∃

𝐶,

R((∀𝑋)Φ,Rℓ) =
⋃
𝐶∈C∀

𝐶.

Proof. The lemma follows from the fact that for each 𝐶 ∈ Cc(BElim𝑋 (P)), the set SIGN(P (𝑦, 𝑋)) is
fixed as y varies over C (Proposition 5.5) and the observation that for each 𝑦 ∈ Rℓ , the truth or falsity
of each of the formulas

(∃𝑋)Φ(𝑦, 𝑋), (∀𝑋)Φ(𝑦, 𝑋)

is determined by the set SIGN(P (𝑦, 𝑋)). �

The following proposition is the key ingredient in the proof of Theorem 2.2. It can be viewed as a
quantitative version of Proposition 2.6.4 in [11] (which is not quantitative). Our proof is similar in spirit
to the proof of Proposition 2.6.4 in [11] but differs at certain important points making it possible to
achieve the quantitative bound claimed in the proposition.

Proposition 5.7. Let 𝑑 ≥ 2, P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 and

P 𝑓 ,P𝑔 ⊂ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ]≤𝑑

be finite sets of polynomials. Let 𝐴 ⊂ R𝑛 be a closed P-semialgebraic set, 𝑓 : 𝐴 → R a continuous

semialgebraic function whose graph is a P 𝑓 -semialgebraic set, and 𝑔 : {𝑥 ∈ 𝐴 | 𝑓 (𝑥) ≠ 0} → R
a continuous semialgebraic function whose graph is a P𝑔-semialgebraic set. Then there exists

𝑁 ≤ (8𝑑)2𝑛+10 such that the function 𝑓 𝑁 𝑔 extended by 0 on {𝑥 ∈ 𝐴 | 𝑓 (𝑥) = 0} is semialgebraic and

continuous on A.

Proof. Suppose that 𝐴 = R(Φ,R𝑛), graph( 𝑓 ) = R(Φ 𝑓 ,R𝑛+1) and graph(𝑔) = R(Φ𝑔,R𝑛+1), where Φ
is a P-formula, Φ 𝑓 is a P 𝑓 -formula and Φ𝑔 is a P𝑔-formula.

For each 𝑥 ∈ 𝐴, 𝑢 ∈ R, we define

𝐴𝑥,𝑢 = {𝑦 ∈ 𝐴 | | |𝑦 − 𝑥 | | ≤ 1, 𝑢 | 𝑓 (𝑦) | = 1}.

We define Θ(𝑋,𝑈,𝑌,𝑉) to be the quantifier-free formula

Φ(𝑌 ) ∧ (| |𝑌 − 𝑋 | |2 − 1 ≤ 0)
∧(

((𝑉 > 0) ∧ (𝑈𝑉 − 1 = 0)) ∨ ((𝑉 < 0) ∧ (𝑈𝑉 + 1 = 0))
)

∧
Φ 𝑓 (𝑌,𝑉).
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Observe that for each 𝑥 ∈ 𝐴 and 𝑢 ∈ R,

R(Θ(𝑥, 𝑢, ·, ·),R𝑛+1) = graph( 𝑓 |𝐴𝑥,𝑢
).

The semialgebraic set 𝐴𝑥,𝑢 is closed and bounded, and we define the semialgebraic function

𝑣(𝑥, 𝑢) =
{

0 if 𝐴𝑥,𝑢 = ∅,
sup{|𝑔(𝑦) | | 𝑦 ∈ 𝐴𝑥,𝑢} otherwise.

Let Λ0 (𝑋,𝑈,𝑊) denote the following first-order (quantified) formula:

(∀(𝑌,𝑉, 𝑍)) (𝑊 ≥ 0) ∧
(
(Θ(𝑋,𝑈,𝑌,𝑉) ∧ Φ𝑔 (𝑌, 𝑍)) =⇒

((𝑍 ≥ 0) ∧ (𝑊 ≥ 𝑍)) ∨ ((𝑍 ≤ 0) ∧ (𝑊 ≥ −𝑍))
)
.

Finally, let Λ(𝑋,𝑈,𝑊) denote the formula

(∀𝑊 ′) Λ0(𝑋,𝑈,𝑊 ′) =⇒ (0 ≤ 𝑊 ≤ 𝑊 ′).

Notice that Λ(𝑥, 𝑢, 𝑤) is true if and only if 𝑤 = 𝑣(𝑥, 𝑢). Also, notice that for each 𝑥 ∈ 𝐴, Λ(𝑥,𝑈,𝑊)
is equivalent to a formula

(∀(𝑌,𝑉,𝑊 ′, 𝑍)) Ψ𝑥 (𝑌,𝑉, 𝑍,𝑈,𝑊,𝑊 ′),

where Ψ𝑥 is an (𝑛 + 5)-ary P𝑥-formula with some finite set P𝑥 ⊂ R[𝑌,𝑉, 𝑍,𝑈,𝑊,𝑊 ′]≤𝑑 (since we
assume 𝑑 ≥ 2).

Let

Q𝑥 = BElim𝑌 ,𝑉 ,𝑊 ′,𝑍 (P𝑥) ⊂ R[𝑈,𝑊]

(see Proposition 5.5).
Then, using the degree bound in Proposition 5.5 we have that for each 𝑄 ∈ Q𝑥 , deg(𝑄) <

(8𝑑)2(𝑛+3)+4 = (8𝑑)2𝑛+10.
It now follows from Lemma 5.3 that there exists 𝑐 = 𝑐(𝑥) such that for all 𝑢 ≥ 𝑐(𝑥),

|𝑣(𝑥, 𝑢) | ≤ 𝑐 · 𝑢𝑝 ,

with 𝑝 < (8𝑑)2𝑛+10.
This means that

| 𝑓 (𝑦) |𝑝 |𝑔(𝑦) | ≤ 𝑐(𝑥)

on {𝑦 ∈ 𝐴 | 𝑓 (𝑦) ≠ 0 and | |𝑦−𝑥 | | ≤ 1} for | 𝑓 (𝑦) | sufficiently small. The function 𝑓 𝑁 𝑔 extended by 0
is then semialgebraic and continuous at x, where 𝑁 = 𝑝 + 1 ≤ (8𝑑)2𝑛+10. This completes the proof. �

Theorem 5.8. Let 𝑑 ≥ 2, and

P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 , P 𝑓 ,P𝑔 ⊂ R[𝑋1, . . . , 𝑋𝑛, 𝑌 ]≤𝑑 .

Let 𝐴 ⊂ R𝑛 be a closedP-semialgebraic set, 𝑓 , 𝑔 : 𝐴 → R be continuous semialgebraic functions whose

graphs are P 𝑓 -semialgebraic, respectively, P𝑔-semialgebraic set, and such that 𝑓 −1(0) ⊂ 𝑔−1 (0). Then

there exist 𝑁 ≤ (8𝑑)2(𝑛+7) and a continuous semialgebraic function ℎ : 𝐴 → R such that 𝑔𝑁 = ℎ 𝑓 on A.

Proof. Suppose that 𝐴 = R(Φ,R𝑛), graph( 𝑓 ) = R(Φ 𝑓 ,R𝑛+1) and graph(𝑔) = R(Φ𝑔,R𝑛+1), where Φ
is a P-formula, Φ 𝑓 is a P 𝑓 -formula and Φ𝑔 is a P𝑔-formula.
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Let 𝐴 = {(𝑥, 𝑓 (𝑥), 𝑔(𝑥)) | 𝑥 ∈ 𝐴} ⊂ R𝑛+2. The function 1/ 𝑓 is continuous semialgebraic on
{(𝑥, 𝑢, 𝑣) ∈ 𝐴 | 𝑔(𝑥) ≠ 0}, and its graph is defined by the formula

Φ𝑔 (𝑋,𝑉) ∧ (𝑉 ≠ 0) ∧Φ 𝑓 (𝑋,𝑈) ∧ (𝑈𝑊 − 1 = 0).

Moreover, using Proposition 5.7 there exists 𝑁 ≤ (8𝑑)2(𝑛+2)+10 = (8𝑑)2(𝑛+7) such that the function
ℎ̃ : 𝐴 → R defined by

ℎ̃(𝑥, 𝑢, 𝑣) =
{

0 if 𝑓 (𝑥) = 0,

𝑔𝑁 (𝑥)/ 𝑓 (𝑥) if 𝑓 (𝑥) ≠ 0

is continuous. Since ℎ̃ does not depend on 𝑢, 𝑣, we get a continuous and semialgebraic function
ℎ(𝑥) = ℎ̃(𝑥, 𝑓 (𝑥), 𝑔(𝑥)) on A, and 𝑔𝑁 = ℎ 𝑓 . �

Proof of Theorem 2.2. In order to prove inequality (2.2), use Theorem 5.8 with 𝑐 = sup𝑥∈𝐴 |ℎ(𝑥) |,
noticing that c exists since A is assumed to be closed and bounded.

We now prove inequality (2.3). The set of 𝑐 ⊂ R, 𝑐 > 0 for which inequality (2.1) holds for all 𝑥 ∈ 𝐴

is defined by

Θ(𝐶) := (𝐶 > 0) ∧
(
(∀(𝑋,𝑈,𝑉))

(
Φ(𝑋) ∧Φ 𝑓 (𝑋,𝑈) ∧Φ𝑔 (𝑋,𝑉)

)
=⇒ (𝑉2𝑁 ≤ 𝐶2 ·𝑈2)

)
,

where Φ is a P-formula describing A, and Φ 𝑓 ,Φ𝑔 are Q-formulas describing the graphs of f and g, and
𝑁 ≤ (8𝑑)2(𝑛+7) .

Using Theorem 4.1, we obtain that Θ(𝐶) is equivalent to a quantifier-free formula Θ̃(𝐶) such that
the bit-sizes of the coefficients of the polynomials appearing in Θ̃(𝐶) is bounded by 𝜏𝑑𝑂 (𝑛2) , and their
degrees are bounded by 𝑑𝑂 (𝑛2) . Now, using Cauchy’s bound ([3, Lemma 10.2]), the largest real root

amongst the real roots of the polynomials appearing in Θ̃(𝐶) is bounded by 2𝜏𝑑
𝑂 (𝑛2 )

. It follows that

there exists 𝑐 = 2𝜏𝑑
𝑂 (𝑛2 )

for which the inequality (2.1) holds.
Using the repeated squaring technique (see below) at the cost of introducing𝑂 (𝑛 log 𝑑) new variables,

it is possible to write another universally quantified formula, namely

Θ
′(𝐶) := (𝐶 > 0)∧

(
(∀(𝑇1, . . . , 𝑇𝑀 , 𝑋,𝑈,𝑉)) (Φ(𝑋) ∧Φ 𝑓 (𝑋,𝑈) ∧Φ𝑔 (𝑋,𝑉)∧
(𝑇1 = 𝑉) ∧ (𝑇2 = 𝑇2

1 ) ∧ · · · ∧ (𝑇𝑀 = 𝑇2
𝑀−1)) =⇒ (𝑇2

𝑀 ≤ 𝐶2 ·𝑈2)
)
,

equivalent to Θ(𝐶) in which all the polynomials appearing have degrees bounded by d (instead of 𝑑𝑂 (𝑛)

as in the formula Θ). The number of quantified variables in the formula Θ′ equals 𝑀 + 𝑛 + 2, where
𝑀 = 𝑂 (log 𝑁) = 𝑂 (𝑛 log 𝑑).

Now, using Theorem 4.1 and Cauchy’s bound as before we obtain a bound of 2𝜏𝑑
𝑂 (𝑛 log 𝑑)

on c. �

5.2. Proof of Theorem 2.11

First, we need the following lemma.

Lemma 5.9. Let P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 and 𝑆 ⊂ R𝑛 a nonempty P-semialgebraic set. Then there exists

Q ⊂ R[𝑋1, . . . , 𝑋𝑛,𝑈] such that the graph of the function dist(·, 𝑆) : R𝑛 → R is a Q-semialgebraic set

and max𝑄∈Q deg(𝑄) = 𝑑𝑂 (𝑛) .

Before proving Lemma 5.9, we need a new notion (that of Thom encoding of real roots of a
polynomial) that will be needed in the proof. The following proposition appears in [3, Proposition 2.36].
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Proposition 5.10 (Thom’s lemma). [3, Proposition 2.36] Let 𝑃 ⊂ R[𝑋] be a univariate polynomial,

Der(𝑃) the set of derivatives of P and 𝜎 ∈ {−1, 0, 1}Der(𝑃) . Then R(𝜎,R) is either empty, a point or

an open interval.

Note that it follows immediately from Proposition 5.10, that for any 𝑃 ∈ R[𝑋] and 𝑥 ∈ R such that
𝑃(𝑥) = 0, the sign condition 𝜎 realized by Der(𝑃) at x characterizes the root x. We call 𝜎 the Thom

encoding of the root x of P.

Proof of Lemma 5.9. Let Φ be a P-formula such that R(Φ,R𝑛) = 𝑆. Let

𝑊 = {(𝑥, 𝑡) | ∃𝑦 ∈ 𝑆 with 𝑡 = | |𝑥 − 𝑦 | |}.

Then for each 𝑥 ∈ R𝑛,

dist(𝑥, 𝑆) = inf𝑊𝑥 ,

where 𝑊𝑥 denotes the one-dimensional fiber of W over x with respect to the projection along the t

coordinate.
It is also clear from the definition that W is the image under projection along the y coordinates of the

semialgebraic set 𝑉 ⊂ R𝑛 × R𝑛 × R defined by

𝑉 = {(𝑥, 𝑦, 𝑡) | 𝑦 ∈ 𝑆 and 𝑡 = | |𝑥 − 𝑦 | |}.

Let Θ(𝑋,𝑌, 𝑇) be the formula

Φ(𝑌 ) ∧ (𝑇2
= | |𝑋 − 𝑌 | |2) ∧ (𝑇 ≥ 0).

Then, it is clear that Θ is a P ′-formula for some finite subset P ′ ⊂ R[𝑋,𝑌, 𝑇]≤𝑑 (assuming 𝑑 ≥ 2), and
moreover R(Θ,R2𝑛+1) = 𝑉 .

Now, apply Theorem 4.1 to the quantified formula (∃𝑌 )Θ(𝑋,𝑌, 𝑇) and obtain a quantifier-free F-
formula, Θ̃ equivalent to Θ, where F is some finite subset of R[𝑋,𝑇] and

𝐷 = max
𝐹 ∈F

deg(𝐹) = 𝑑𝑂 (𝑛) .

Notice that R(Θ̃,R𝑛+1) = 𝑊 , and for each 𝑥 ∈ R𝑛,

inf𝑊𝑥 = dist(𝑥, 𝑆)

is a real root of some polynomial in F .
Let F = {𝐹1, . . . , 𝐹𝑁 }. We denote

Der𝑇 (𝐹𝑖) = {𝐹𝑖 , 𝐹 ′
𝑖 , . . . , 𝐹

(𝐷)
𝑖

}

the set of derivatives of 𝐹𝑖 with respect to T.
For 1 ≤ 𝑖 ≤ 𝑁 , and 𝜎 ∈ {−1, 0, 1}Der𝑇 (𝐹𝑖) , denote by Ψ𝑖,𝜎 the quantifier-free formula,

(∀𝑇)���
∧

0≤ 𝑗≤𝐷
(sign(𝐹 ( 𝑗)

𝑖
) = 𝜎(𝐹 ( 𝑗)

𝑖
))���

=⇒
(
(∀𝑇 ′)Θ̃(𝑋,𝑇 ′) =⇒ (𝑇 ≤ 𝑇 ′)

)
.

Using Theorem 4.1 one more time, let Ψ̃𝑖,𝜎 be a quantifier-free formula equivalent to Ψ𝑖,𝜎 and let
the set of polynomials appearing in Ψ̃𝑖,𝜎 be denoted by Q𝑖,𝜎 .
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The semialgebraic set R(Ψ̃𝑖,𝜎 ,R𝑛) is the set consisting of points 𝑥 ∈ R𝑛 such that dist(𝑥, 𝑆) equals
the (at most one) real root of the polynomial 𝐹𝑖 (𝑥, 𝑇) with Thom encoding 𝜎. Notice that the maximum
degree of polynomials in Q𝑖,𝜎 is bounded by 𝐷𝑂 (1) = 𝑑𝑂 (𝑛) .

Finally, let

Ψ =

∧
𝑖,𝜎

���
Ψ̃𝑖,𝜎 =⇒ ���

∧
0≤ 𝑗≤𝐷

(sign(𝐹 ( 𝑗)
𝑖

) = 𝜎(𝐹 ( 𝑗)
𝑖

))���
���
,

and

Q =

⋃
1≤𝑖≤𝑁

���
Der𝑇 (𝐹𝑖) ∪

⋃
𝜎∈{−1,0,1}Der𝑇 (𝐹𝑖 )

Q𝑖,𝜎
���
.

It is clear from the above construction that,Ψ is aQ-formula, andR(Ψ,R𝑛+1) is the graph of the function
dist(·, 𝑆), and the degrees of the polynomials in Q are bounded by 𝑑𝑂 (𝑛) . This proves the lemma. �

Remark 5.11. In [46, Theorem 7], the graph of the semialgebraic function dist(𝑥, 𝑆) (with S being
closed) is described by the following quantified formula with two blocks of quantifiers

(∃𝑌 ) (∀𝑌 ′) ¬Φ(𝑌 ′) ∨
(
Φ(𝑌 ) ∧ (| |𝑋 − 𝑌 | |2 = 𝑇2) ∧ (𝑇 ≥ 0) ∧ (| |𝑋 − 𝑌 ′ | |2 ≥ 𝑇2)

)
, (5.2)

where R(Φ,R𝑛) = 𝑆 and (∃𝑌 ) and (∀𝑌 ′) are two blocks of variables each of size n with different
quantifiers; see also [11, Proposition 2.2.8]. The effective quantifier elimination (Theorem 4.1) applied
to (5.2) yields a quantifier-free formula with polynomials having degrees bounded by 𝑑𝑂 (𝑛2) , where d is
an upper bound on the degrees of the polynomials in Φ. The formula given in Lemma 5.9 describing the
graph of the same function involves polynomials of degrees at most 𝑑𝑂 (𝑛) (though it may involve many
more polynomials than the one in (5.2)) which is an improvement over the bound of 𝑑𝑂 (𝑛2) obtained by
the above argument. Note that for our purposes, the degrees of the polynomials appearing in the formula
is the important quantity – the number of polynomials appearing is not relevant.

Proof of Theorem 2.11. It is easy to see that the residual function 𝜓(𝑥) defined in (2.7) satisfies

dist(𝑥, 𝑀) = 0 ⇐⇒ 𝜓(𝑥) =
𝑠∑
𝑗=1

|ℎ 𝑗 (𝑥) | +
𝑟∑
𝑖=1

max{𝑔𝑖 (𝑥), 0} = 0.

The graph of 𝜓(𝑥) can be described using a quantifier-free P-formula with P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑
as follows (note that we do not care about the cardinality of P).

To see this, first observe that for all 𝑥 ∈ R𝑛, and 𝜎 ∈ {0, 1,−1} [1,𝑠] if sign(ℎ 𝑗 (𝑥)) = 𝜎( 𝑗), 𝑗 ∈ [1, 𝑠],
then

𝑠∑
𝑗=1

|ℎ 𝑗 (𝑥) | =
𝑠∑
𝑗=1

𝜎( 𝑗)ℎ 𝑗 (𝑥).

Similarly, for all 𝑥 ∈ R𝑛, and 𝜏 ∈ {0, 1,−1} [1,𝑟 ] if sign(𝑔𝑖 (𝑥)) = 𝜏(𝑖), 𝑖 ∈ [1, 𝑟], then

𝑟∑
𝑖=1

max{𝑔𝑖 (𝑥), 0} =
1

2

𝑟∑
𝑖=1

𝜏(𝑖) (1 + 𝜏(𝑖))𝑔𝑖 (𝑥).
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It is now easy to verify that the following quantifier-free formula in 𝑛 + 1 variables:

∨
𝜎∈{0,1,−1} [1,𝑠]
𝜏∈{0,1,−1} [1,𝑟 ]

���
𝑠∧
𝑗=1

(sign(ℎ 𝑗 ) = 𝜎( 𝑗)) ∧
𝑟∧
𝑖=1

(sign(𝑔𝑖) = 𝜏(𝑖))���
=⇒

���
𝑇 −

𝑠∑
𝑗=1

𝜎( 𝑗)ℎ 𝑗 −
1

2

𝑟∑
𝑖=1

𝜏(𝑖) (1 + 𝜏(𝑖))𝑔𝑖 = 0
���

describes the graph of 𝜓 and all polynomials occurring in it have degrees at most d.
Moreover, it follows from Lemma 5.9 that the graph of dist(·, 𝑀) can be defined by a quantifier-free

formula involving polynomials in 𝑛 + 1 variables having degrees bounded by 𝑑𝑂 (𝑛) . The first part of the
theorem now follows from Theorem 2.2 after setting 𝑓 (𝑥) = 𝜓(𝑥), and 𝑔(𝑥) = dist(𝑥, 𝑀).

In case that M is finite, it is possible to derive a sharper estimate of the error bound exponent. Suppose
𝑀 = {𝑝1, . . . , 𝑝𝑁 } ⊂ R𝑛. In this case, the graph of the distance function, dist(𝑥, 𝑀), is described by
the following formula:

Θ(𝑋,𝑇) := (𝑇 ≥ 0) ∧
(
𝑁∧
𝑖=1

(𝑇2 ≥ ||𝑋 − 𝑝𝑖 | |2)
)
∧
(
𝑁∨
𝑖=1

(𝑇2
= | |𝑋 − 𝑝𝑖 | |2)

)
.

Notice that the degrees of the polynomials appearing in the quantifier-free formula Θ are bounded
by 2. Furthermore, the graph of the residual function 𝜓 is defined by a quantifier-free formula involv-
ing polynomials of degrees bounded by d. The second part of the theorem is now immediate from
Theorem 2.2. �

Proof of Corollary 2.14. Notice that 𝑀 ∩ S𝑝+ can be redefined as a basic Q-semialgebraic set with
Q ⊂ R[𝑋1, . . . , 𝑋𝑝2 ]≤max{𝑑,𝑝} and card(Q) = 2𝑝 + 𝑟 − 12 as follows:

{
𝑋 ∈ S𝑝 | 𝑔𝑖 (𝑋) ≤ 0, 𝑖 = 1, . . . , 𝑟, det(𝑋𝐼 ) ≥ 0, ∀𝐼 ⊆ {1, . . . , 𝑝}, 𝐼 ≠ ∅

}
, (5.3)

where 𝑋𝐼 is a principal submatrix of X indexed by I. We also define the residual function

𝜓(𝑥) := max
{
dist(𝑥, 𝑀), max

𝐼 ⊆{1,..., 𝑝},𝐼≠∅

(
max{− det(𝑋𝐼 ), 0}

)}
,

which is a Q′-semialgebraic function with Q′ ⊂ R[𝑋1, . . . , 𝑋𝑝2 , 𝑌 ]≤𝑑𝑂 (𝑝2 ) ; see Lemma 5.9 and the

proof of Theorem 2.11. Then by applying Theorem 2.11, Lemma 5.9 and Remark 2.13 to 𝑀 ∩ S𝑝+ , E

and 𝜓(𝑥) we get

dist(𝑥, 𝑀 ∩ S𝑝+ )𝜌 ≤ 𝜅′ · max
{
dist(𝑥, 𝑀), max

𝐼 ⊆{1,..., 𝑝},𝐼≠∅

(
max{− det(𝑋𝐼 ), 0}

)}
,

for all 𝑥 ∈ 𝐸,

for some 𝜅′ > 0 and 𝜌 = max{𝑑, 𝑝}𝑂 (𝑝4) . The rest of the proof follows from the arguments in [29]. Let
𝜆𝑖 (𝑋𝐼 ) be the i-th smallest eigenvalue of 𝑋𝐼 . By the boundedness of E, there exists some positive r such
that |𝜆𝑖 (𝑋𝐼 ) | ≤ 𝑟 for all 𝑖 = 1, . . . , card(𝐼). Furthermore, by the interlacing property of eigenvalues of
X, we have

𝜆min(𝑋𝐼 ) := 𝜆1(𝑋𝐼 ) ≥ 𝜆min(𝑋).

2It is possible to describeS𝑝+ using polynomially many inequalities, see [10, Proposition A1(5)]. However, the choice of
description is irrelevant here, since the bound of Theorem 2.11 does not depend on the number of inequalities in (5.3).

https://doi.org/10.1017/fms.2024.66 Published online by Cambridge University Press



Forum of Mathematics, Sigma 21

If we assume, without loss of generality, that det(𝑋𝐼 ) < 0, then we have

det(𝑋𝐼 ) =
card(𝐼 )∏
𝑖=1

𝜆𝑖 (𝑋𝐼 ) ≥ 𝑟card(𝐼 )−1𝜆min(𝑋𝐼 ) ≥ 𝑟card(𝐼 )−1𝜆min(𝑋).

Consequently,

max{− det(𝑋𝐼 ), 0} ≤ 𝑟card(𝐼 )−1 · max{−𝜆min(𝑋), 0}

for every nonempty 𝐼 ⊆ {1, . . . , 𝑝}, which completes the proof. �

5.3. Proof of Theorem 2.20

In the proof of Theorem 2.20, we need the following ingredient which is proved in [4, Theorem 2.5].

Proposition 5.12 (Quantitative cylindrical definable cell decomposition). Fix an o-minimal expansion

of the real closed field R. Let A be a definable family of subsets of R𝑛 parametrized by the definable set

A. Then there exist a finite set J and definable families (C 𝑗 ) 𝑗∈𝐽 of subsets of R𝑛 each parametrized by

𝐴𝑁 (𝑛) , where 𝑁 (𝑛) = 2(2𝑛 − 1) having the following property. Suppose, 𝐴′ ⊂ 𝐴 is a finite subset. Then

there exists a cylindrical decomposition D = (D1, . . . ,D𝑛) of R𝑛 such that for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛, the set

of cells of the cylindrical decomposition (D1, . . . ,D𝑖) of R𝑖 is a subset of the set of definable sets

{(C 𝑗 )𝑎 | 𝑎 ∈ 𝐴′𝑁 (𝑛) }.

For the rest of this section, we fix a polynomially bounded o-minimal expansion of R.

Proposition 5.13 (o-minimal quantitative version of Proposition 2.6.4 in [11]). Let A be a definable

family of subsets of R𝑛 parametrized by the definable set A, and let B be a definable subset of R𝑛+1

parametrized by the definable set B.

Then there exists 𝑁 = 𝑁 (A,B) > 0 having the following property. For any triple of finite sets

(𝐴′, 𝐵′, 𝐵′′) with 𝐴′ ⊂ 𝐴, 𝐵′, 𝐵′′ ⊂ 𝐵, a closed (A, 𝐴′)-set S, a (B, 𝐵′)-set F, (B, 𝐵′′)-set G such

that 𝐹, 𝐺 are graphs of definable functions 𝑓 : R𝑛 → R, 𝑔 : R𝑛 → R such that 𝑓 |𝑆 and 𝑔 |𝑆 𝑓 ≠0

(where 𝑆 𝑓 ≠0 = {𝑥 ∈ 𝑆 | 𝑓 (𝑥) ≠ 0}) are continuous, the function 𝑓 𝑁 𝑔 |𝑆 𝑓 ≠0 extended by 0 on

{𝑥 ∈ 𝑆 | 𝑓 (𝑥) = 0} is continuous on S.

Proof. We follow closely the proof of the corresponding proposition (Proposition 5.7) in the semialge-
braic case.

For each 𝑥 ∈ 𝑆, 𝑢 ∈ R, we define

𝑆𝑥,𝑢 = {𝑦 ∈ 𝑆 | | |𝑦 − 𝑥 | | ≤ 1, 𝑢 | 𝑓 (𝑦) | = 1}.

The set 𝑆𝑥,𝑢 is definable, closed and bounded, and we define the function

𝑣(𝑥, 𝑢) =
{

0 if 𝐴𝑥,𝑢 = ∅,
sup{|𝑔(𝑦) | | 𝑦 ∈ 𝐴𝑥,𝑢} otherwise.

Clearly, 𝑣 : 𝑆 × R→ R is a definable function.
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We define

𝑇 = {(𝑥, 𝑢, 𝑦, 𝑣) | 𝑦 ∈𝑆 ∧ (||𝑦 − 𝑥 | |2 − 1 ≤ 0)
∧(

((𝑣 > 0) ∧ (𝑢𝑣 − 1 = 0)) ∨ ((𝑣 < 0) ∧ (𝑢𝑣 + 1 = 0))
)

∧
(𝑦, 𝑣) ∈ 𝐹}.

Notice that T is definable and for each fixed x, 𝑇𝑥 ⊂ R𝑛+2 is a (C, 𝐴′ × 𝐵′)-set, where C is a definable
family of subsets of R𝑛+2 parametrized by (𝐴 × 𝐵), and C depends only on the definable families A,B.

Observe also that for each 𝑥 ∈ 𝐴 and 𝑢 ∈ R,

𝑇𝑥,𝑢 = graph( 𝑓 |𝑆𝑥,𝑢 ).

We also define the set 𝐿0 by

𝐿0 = {(𝑥,𝑢, 𝑤) | ∀(𝑦, 𝑣, 𝑧)
(𝑤 ≥ 0)

∧(
((𝑥, 𝑢, 𝑦, 𝑣) ∈ 𝑇 ∧ (𝑦, 𝑧) ∈ 𝐺) =⇒

((𝑧 ≥ 0) ∧ (𝑤 ≥ 𝑧)) ∨ ((𝑧 ≤ 0) ∧ (𝑤 ≥ −𝑧))
)
}.

Finally, let

𝐿 = {(𝑥, 𝑢, 𝑤) | (∀𝑤′) (𝑥, 𝑢, 𝑤′) ∈ 𝐿0 =⇒ (0 ≤ 𝑤 ≤ 𝑤′)}.

Notice that for 𝑥 ∈ 𝑆, (𝑥, 𝑢, 𝑤) ∈ 𝐿 if and only if 𝑤 = 𝑣(𝑥, 𝑢).
Also, notice that the set 𝐿 ⊂ 𝑆 × R2 is a definable set which is the complement of a projection of

an (D, 𝐷 ′)-set 𝑃 ⊂ R2𝑛+5, where D is a definable family of sets parametrized by 𝐴 × 𝐴 × 𝐵 × 𝐵 and
𝐷 ′ = 𝐴′ × 𝐴′ × 𝐵′ × 𝐵′′, and D depends only on the definable families A,B.

We now apply Proposition 5.12 to the definable family D. There exist a set of definable families
(C 𝑗 ) 𝑗∈𝐽 and a cylindrical decomposition (D1, . . . ,D2𝑛+5) of R2𝑛+5 adapted to the set P whose cells are
of the form (C 𝑗 )𝑤 with 𝑗 ∈ 𝐽, 𝑤 ∈ (𝐷 ′)𝑁 (2𝑛+5) .

For 𝑥 ∈ 𝑆, there exists a unique cell, 𝐶 = (C 𝑗 )𝑤 , 𝑗 ∈ 𝐽, 𝑤 ∈ (𝐷 ′)𝑁 (2𝑛+5) , of the decomposition R𝑛

containing x.
The definable functions 𝑣(𝑥, ·) as x varies over (C 𝑗 )𝑤 and w varies over (𝐴 × 𝐴 × 𝐵 × 𝐵)𝑁 (2𝑛+5) and

𝑗 ∈ 𝐽 form a definable family, and using Proposition 5.2 in [40] there exists 𝑝 = 𝑝(A,B) such that

|𝑣(𝑥, 𝑢) | ≤ 𝑐(𝑥) · 𝑢𝑝 ,

for all u large enough.
Now, for each 𝑥 ∈ 𝑆, there exists a cell, 𝐶 = (C 𝑗 )𝑤 , 𝑗 ∈ 𝐽, 𝑤 ∈ (𝐷 ′)𝑁 (2𝑛+5) , of the decomposition

R
𝑛 containing x.
This proves the proposition taking 𝑁 = 𝑝 + 1. �

Theorem 5.14. Let A be a definable family of subsets of R𝑛 parametrized by the definable set A, and let

B be a definable subset of R𝑛+1 parametrized by the definable set B. Then there exists 𝑁 = 𝑁 (A,B) > 0
having the following property. For any triple of finite sets (𝐴′, 𝐵′, 𝐵′′) with 𝐴′ ⊂ 𝐴, 𝐵′, 𝐵′′ ⊂ 𝐵, a

closed (A, 𝐴′)-set S, a (B, 𝐵′)-set F, (B, 𝐵′′)-set G such that 𝐹, 𝐺 are graphs of definable functions

𝑓 : R𝑛 → R, 𝑔 : R𝑛 → R continuous on S such that 𝑓 |−1
𝑆
(0) ⊂ 𝑔 |−1

𝑆
(0). Then there exists a continuous

definable function ℎ : 𝑆 → R such that 𝑔 |𝑁
𝑆

= ℎ 𝑓 |𝑆 on S.
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Proof. Similar to the proof of Theorem 5.8, replace semialgebraic by definable. �

Proof of Theorem 2.20. Use Theorem 5.14 with 𝑐 = sup𝑥∈𝑆 |ℎ(𝑥) |. �

6. Applications to optimization

As an illustration of the improvement one obtains by applying the improved bound on the Łojasiewicz
exponent proved in Theorem 2.2 and the error bound in Theorem 2.11, we consider the following
application in the theory of optimization. Clearly, Theorem 2.11 can be applied to other situations as
well, where error bounds are important, for example, in the study of Hölderian continuity of the set-
valued map defined by (2.6) as stated in [39, Theorem 3.1].

6.1. Binary feasibility problems

We can use Theorem 2.11 and its independence from the number of constraints to derive an error bound
for a binary feasibility problem, where the feasible set is defined by

𝑀 = {𝑥 ∈ R𝑛 | 𝑔𝑖 (𝑥) ≤ 0, ℎ 𝑗 (𝑥) = 0, 𝑖 = 1, . . . , 𝑟, 𝑗 = 1, . . . , 𝑠, (6.1)

𝑥𝑘 ∈ {0, 1}, 𝑘 = 1, . . . , 𝑛},

where 𝑔𝑖 , ℎ 𝑗 ∈ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 . The following result is a quantified version of [39, Theorem 5.6]
specialized for polynomials.

Corollary 6.1. Let M be defined in (6.1), and let E be a closed and bounded P-semialgebraic subset of

R𝑛 with P ⊂ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 and 𝑑 ≥ 2. If 𝑀 ≠ ∅, then there exist 𝜅 > 0 and 𝜌 = (𝑂 (𝑑))2𝑛+14 such

that

dist(𝑥, 𝑀)𝜌 ≤ 𝜅 · 𝜓(𝑥), for all 𝑥 ∈ 𝐸,

where

𝜓(𝑥) =

√√√ 𝑠∑
𝑗=1

(ℎ 𝑗 (𝑥))2 +

√√
𝑟∑
𝑖=1

(max{𝑔𝑖 (𝑥), 0})2 +
𝑛∑
𝑘=1

|𝑥𝑘 (1 − 𝑥𝑘 ) |.

Proof. Note that for every 𝑘 = 1, . . . , 𝑛, the binary constraint on 𝑥𝑘 can be enforced by

𝑥𝑘 (1 − 𝑥𝑘 ) = 0, 𝑥𝑘 ∈ R.

Then M can be redefined as

𝑀 :=
{
𝑥 ∈ R𝑛 | 𝑔𝑖 (𝑥) ≤ 0, ℎ 𝑗 (𝑥) = 0, 𝑖 = 1, . . . , 𝑟, 𝑗 = 1, . . . , 𝑠, (6.2)

𝑥𝑘 (1 − 𝑥𝑘 ) = 0, 𝑘 = 1, . . . , 𝑛
}
,

which is a finite subset of R𝑛.
Also, observe that defining

𝜓(𝑥) =
𝑠∑
𝑗=1

|ℎ 𝑗 (𝑥) | +
𝑟∑
𝑖=1

max{𝑔𝑖 (𝑥), 0} +
𝑛∑
𝑘=1

|𝑥𝑘 (1 − 𝑥𝑘 ) |,

it follows from the Cauchy–Schwarz inequality that

𝜓(𝑥) ≤ 𝑐 · 𝜓(𝑥),

with 𝑐 = max{1,
√
𝑟,
√
𝑠} > 0.
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Now, the result follows by applying the second part of Theorem 2.11 and Remark 2.13 to (6.2) and
the residual function 𝜓(𝑥). �

6.2. Convergence rate of feasible descent schemes

Error bounds are important to estimate the convergence rate of iterative algorithms in nonlinear
optimization. Here, we present the convergence analysis in [38, Theorem 5], which is relevant to
Theorem 2.2.

Let R = R and 𝑔𝑖 , ℎ 𝑗 defined in (2.6) be convex polynomials. Then the goal of a feasible descent
scheme is to find stationary solutions of a polynomial 𝑓 ∈ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 over a nonempty closed
convex set M (assuming that inf𝑥∈𝑀 𝑓 > −∞), where a stationary solution is an 𝑥 ∈ R𝑛 such that

𝑥 − Proj𝑀
(
𝑥 − ∇ 𝑓 (𝑥)

)
= 0,

in which Proj𝑀 (·) denotes the projection onto the convex set M. The idea of a feasible descent scheme
is to generate a sequence {𝑥𝑘 }∞𝑘=1 of solutions by

𝑥𝑘+1 = Proj𝑀
(
𝑥𝑘 − 𝛼𝑘∇ 𝑓 (𝑥𝑘 ) + 𝑒𝑘

)
, (6.3)

where 𝛼𝑘 > 0 is the so-called step length and 𝑒𝑘 is an error vector depending on 𝑥𝑘 . If we define the set
of stationary solutions as

𝑆 :=
{
𝑥 ∈ R𝑛 | 𝑥 − Proj𝑀

(
𝑥 − ∇ 𝑓 (𝑥)

)
= 0
}
,

then the following result is well known for the convergence rate of a feasible descent scheme which we
specialize for the polynomial f.

Proposition 6.2 (Theorem 5 in [38]). Suppose that S is nonempty, the gradient of f is Lipschitz continuous

on M and there exists 𝜀 > 0 such that

𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆, 𝑓 (𝑥) ≠ 𝑓 (𝑦) =⇒ ‖𝑥 − 𝑦‖ ≥ 𝜀.

If lim inf 𝛼𝑘 > 0 and the sequences {𝑒𝑘 }∞𝑘=1 and {𝑥𝑘 }∞𝑘=1 generated by (6.3) satisfy

‖𝑒𝑘 ‖ ≤ 𝜅1‖𝑥𝑘 − 𝑥𝑘+1‖, for some 𝜅1 > 0,

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘 ) ≤ −𝜅2‖𝑥𝑘 − 𝑥𝑘+1‖2, for some 𝜅2 > 0,

then the sequence { 𝑓 (𝑥𝑘 )}∞𝑘=1 converges at least Q-linearly or at least sublinearly at the rate 𝑘1−𝜌,

where 𝜌 > 1 is an integer satisfying

dist(𝑥, 𝑆)𝜌 ≤ 𝜅 ·
##𝑥 − Proj𝑀

(
𝑥 − ∇ 𝑓 (𝑥)

)##
for some 𝜅 > 0 and for all x in a compact semialgebraic subset of M.

Notice that S and
##𝑥−Proj𝑀

(
𝑥−∇ 𝑓 (𝑥)

)## are both semialgebraic, and the latter is a residual function.
Therefore, Remark 2.13 and Lemma 5.9 can be applied to quantify the convergence rate 𝑘1−𝜌 in terms
of d and n only.

Remark 6.3. The exponent (3.6) was used to quantify the convergence rate of the cyclic projection
algorithm applied to finite intersections of convex semialgebraic subsets of R𝑛 [12, Theorem 4.4].
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6.3. Sums of squares relaxation

A polynomial optimization problem is formally defined as the following: Given a polynomial
𝑓 ∈ R[𝑋1, . . . , 𝑋𝑛]≤𝑑 , compute

𝑓 ∗min := inf
{
𝑓 (𝑥) | 𝑥 ∈ 𝑀

}
, (6.4)

where M is defined in (2.6) with R = R. We assume, without loss of generality, here that 𝑠 = 0 in (2.6).
Unlike semidefinite optimization (see, e.g., [6]), there is no efficient interior point method for

polynomial optimization. Nevertheless, tools in real algebra have laid the groundwork for developing
an efficient numerical approach, where semidefinite relaxation plays a central role. Using this approach,
(6.4) is approximated by a hierarchy of semidefinite relaxations, so-called sums of squares (SOS)

relaxations [27, 45]; see also [28]. A SOS relaxation of order t is defined as

𝑓 ∗𝑡sos = sup{𝛽 | 𝑓 − 𝛽 ∈ M2𝑡 (𝑔1, . . . , 𝑔𝑟 )}, (6.5)

where

M2𝑡 (𝑔1, . . . , 𝑔𝑟 ) =
{
𝑢0 −

𝑟∑
𝑗=1

𝑢 𝑗𝑔 𝑗 | 𝑢0, 𝑢 𝑗 ∈ Σ, deg(𝑢0), deg(𝑢 𝑗𝑔 𝑗 ) ≤ 2𝑡, 𝑗 = 1, . . . , 𝑟

}

is called the truncated quadratic module generated by 𝑔1, . . . , 𝑔𝑟 and Σ is the convex cone of SOS
polynomials. It is worth noting that (6.5) is a semidefinite optimization problem of size 𝑂 (𝑛𝑡 ). Under
some conditions on M (see, for example, [28, Proposition 6.2 and Theorem 6.8]), (6.5) is feasible for
sufficiently large t, and 𝑓 ∗𝑡sos → 𝑓 ∗min as 𝑡 → ∞.

Recently, Baldi and Mourrain [1] provided a convergence rate for 𝑓 ∗𝑡sos in terms of t, in which the
Łojasiewicz inequality plays a central role. The authors proved [1, Theorem 4.3], under some conditions,
that there exists 𝑐 > 1 such that

0 < 𝑓 ∗min − 𝑓 ∗𝑡sos ≤ 𝑐 · ‖ 𝑓 ‖ deg( 𝑓 ) 7
5 𝑡

− 1
2.5𝑛𝜌 ,

where c depends on n, 𝜌 and 𝑔1, . . . , 𝑔𝑟 , ‖ 𝑓 ‖ := max𝑥∈[−1,1]𝑛 | 𝑓 (𝑥) | and 𝜌 is the error bound exponent
for the inequality

dist(𝑥, 𝑀)𝜌 ≤ 𝜅 · | min{𝑔1(𝑥), . . . , 𝑔𝑟 (𝑥), 0}|, for all 𝑥 ∈ [−1, 1]𝑛

for some 𝜅 > 0. Then the application of Theorem 2.11 and Remark 2.13 yields an upper bound 𝑑𝑂 (𝑛2)

on 𝜌 and thus proves a lower bound on the convergence rate 𝑡−
1

2.5𝑛𝜌 of the SOS relaxation in terms of n

and d only.

Remark 6.4. There are other applications of the Łojasiewicz inequality to polynomial optimization in
the literature. For instance, it was shown in [24] that the Łojasiewicz inequality (3.2) can be used to
reduce (6.4) to minimization over a ball.

7. Conclusion

In this paper, we proved a nearly tight upper bound on the Łojasiewicz exponent for semialgebraic
functions over a real closed field R in a very general setting. Unlike the previous best-known bound in this
setting due to Solernó [46], our bound is independent of the cardinalities of the semialgebraic descriptions
of f, g and A. We exploited this fact to improve the best-known error bounds for polynomial and nonlinear
semidefinite systems. As an abstraction of the notion of independence from the combinatorial parameters,
we proved a version of Łojasiewicz inequality in polynomially bounded o-minimal structures. We proved
existence of a common upper bound on the Łojasiewicz exponent for certain combinatorially defined
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infinite (but not necessarily definable) families of pairs of functions, which improves a prior result due
to Chris Miller.

We end with a few open problems. We proved in Theorem 2.11 that the exponent 𝜌 = 𝑑𝑂 (𝑛) in the
error bound with respect to a zero-dimensional semialgebraic set M, and Example 2.4 indicates that
this bound is indeed tight. Without the assumption on the dimension on M, the general bound on the
exponent 𝜌 in Theorem 2.11 is 𝑑𝑂 (𝑛2) . There are some indications in [22] for generating examples
whose Łojasiewicz exponent is worse than Example 2.4. However, we have not been able to find any
example with 𝜌 = 𝑑𝑂 (𝑛2) , so we do not know if this bound is tight as well. It would be interesting to
resolve this gap.

Another interesting question is to prove an upper bound that depends on dim 𝑀 which interpolates
between the zero-dimensional and the general case. More precisely, is it possible to improve the upper
bound in Theorem 2.11 to 𝑑𝑂 (𝑛 ·dim 𝑀 ) ?

While the emphasis in the current paper has been on proving a bound on the Łojasiewicz exponent
which is independent of the combinatorial parameter, there is a special case that merits attention and in
which the combinatorial parameter may play a role. It is well known [2] that the topological complexity
(say measured in terms of the Betti numbers) of a real algebraic set in R𝑛 defined by s quadratic equations
is bounded by 𝑛𝑂 (𝑠) . This bound (unlike the bounds discussed in the current paper) is polynomial in n

for fixed s. One could ask if a similar bound also holds in this setting for the Łojasiewicz exponent.
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