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Abstract

Across biomes, soil biodiversity promotes ecosystem functions. However, whether this
relationship will be maintained within ecosystems under climate change is uncertain.
Here, using two long-term soil warming experiments, we investigated how warming
affects the relationship between ecosystem functions and bacterial diversity across
seasons, soil horizons, and warming duration. Soils were sampled from these warming
experiments located at the Harvard Forest Long-Term Ecological Research (LTER) site,
where soils had been heated +5 °C above ambient for 13 or 28 years at the time of
sampling. We assessed seven measurements representative of different ecosystem
functions and nutrient pools. We also surveyed bacterial community diversity. We found
that ecosystem function was significantly affected by season, with autumn samples
having a higher intercept than summer samples in our model, suggesting a higher
overall baseline of ecosystem function in the fall. The effect of warming on bacterial
diversity was similarly affected by season, where warming in the summer was associated
with decreased bacterial evenness in the organic horizon. Despite the decreased
bacterial evenness in the warmed plots, we found that the relationship between
ecosystem function and bacterial diversity was unaffected by warming or warming
duration. Our findings highlight that season is a consistent driver of ecosystem function
as well as a modulator of climate change effects on bacterial community evenness.

Introduction 1

Climate change is driving losses in biodiversity, and these losses threaten both 2

ecosystem productivity [1] and stability [2, 3]. While there is evidence that bacterial 3

diversity promotes ecosystem function, not enough is known about how increased 4

temperatures associated with climate change will affect this relationship. Studies 5

examining the effects of warming on microbial diversity and ecosystem function have 6
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revealed decreases in both microbial diversity and ecosystem function [4], a weaker 7

relationship between microbial diversity and ecosystem function [5], or even abiotic 8

modulators of the microbial diversity-ecosystem function relationship [6]. Increased 9

temperatures also alter interactions between taxa in microbial communities [7, 8], which 10

might explain why at higher temperatures decreases in diversity have disproportionate 11

effects on ecosystem function [9]. Much of the basis for the current understanding of 12

how warming affects the relationship between biodiversity and ecosystem function 13

(BEF) has been gleaned from laboratory incubations or manipulated communities, 14

which has limited our ability to accurately predict future ecosystem productivity. 15

Clarifying whether the dual stresses of increased temperature and biodiversity loss affect 16

ecosystem function in natural soils in the field is therefore critical to gaining a clearer 17

understanding of the potential impacts of climate change. 18

Long-term global change experiments, like those at Harvard Forest Long-Term 19

Ecological Research (LTER) site, provide a unique opportunity to examine long-term 20

soil warming in a field setting. Given that the effects of warming on ecosystem function 21

can change or compound over time [5, 10], maintaining and studying long-term climate 22

change experiments is critical to the ability to predict ecosystem function. Additionally, 23

microbial community compositional shifts resulting from climate change can take over a 24

decade to manifest [11,12]. How microbial communities respond to climate change is 25

influenced by the duration of stress, with acclimation theorized to occur in the 26

short-term and adaptation theorized to occur in the long-term [13]. Two soil warming 27

experiments were established in 1991 and 2006 at the Harvard Forest, where soils have 28

been continuously heated +5 °C above ambient along with control soils that have not 29

been heated. Both the soil carbon quantity and quality has declined in response to 30

heating [10], resulting in an increase in lipid concentration in the heated mineral 31

soils [14]. The effects of warming on soil respiration at these sites has been nonlinear 32

over decadal time scales at Harvard Forest [10], where there are years when there is a 33

large treatment effect of heating compared to controls and years where there are no 34

differences between heated and control plots. These changes in ecosystem function and 35

nutrient pools have occurred in conjunction with changes to the microbial community. 36

The abundance of Alphaproteobacteria as well as Acidobacteria have increased in the 37

heated plots [11], and the overall diversity of the fungal community has decreased in the 38

heated plots [7]. Altogether, these changes call into question how the relationship 39

between ecosystem function and bacterial diversity will be altered by global warming. 40

Climate change alters both abiotic and biotic drivers of ecosystem function, which 41

complicates predicting the response of ecosystem function to climate stresses, such as 42

warming. One approach to addressing and condensing the dissimilar responses of 43

individual ecosystem functions to climate change is the use of ecosystem 44

multifunctionality (EMF) indices, which aggregate individual ecosystem functions into a 45

single index. Compared to single function approaches, which examine ecosystem 46

functions separately, EMF indices are more sensitive to biodiversity changes [15] and 47

can better represent inherent trade-offs between ecosystem functions [16]. For instance 48

in plant trait simulation study, ecosystem nitrogen use efficiency and litter quality had a 49

negative relationship, indicating a trade-off between these two functions [17]. An EMF 50

meta-analysis that incorporated results from 68 different warming studies observed that 51

warming tends to have positive effects on EMF [18]. While kinetic effects are partially 52

driving the positive effect of warming on EMF [19], warming-related changes in abiotic 53

conditions, such as more limited substrate availability, also can increase certain 54

ecosystem functions, like enzyme activity [14]. However, warming does not always have 55

a positive effect on EMF, and when climate change alters abiotic conditions, warming 56

can have a negative effect on EMF. For instance, warming decreases EMF under 57

nitrogen limitation [20] or precipitation declines [21]. Warming can also shift biotic 58
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drivers of EMF, like plant community functional traits, which in turn will have negative 59

effects on EMF [22]. Microbial diversity and community composition, two of the most 60

studied biotic drivers of EMF, also are influenced by warming, where decreases in 61

dominant taxa due to warming can result in decreases in EMF [23]. The complex 62

interactions between biotic and abiotic drivers of EMF have limited the integration of 63

climate change into the existing framework of BEF relationships. 64

Temperate deciduous forests experience marked seasonal differences, and further 65

complicating predictions, the effects of warming on ecosystem function and microbial 66

diversity are also season-dependent. Long-term warming increases soil CO2 efflux [10], 67

and results in faster upticks in soil respiration after the spring thaw [24]. Additionally, 68

warmed soils exhibit higher temperature sensitivity of respiration in the spring and 69

winter [25], suggesting that with increasing temperatures, soil CO2 efflux will increase 70

non-linearly. Microbial biomass similarly has a seasonal cycle that tends to peak in 71

fall [26, 27], although decreases in microbial biomass due to warming might alter this 72

cycle [14]. Extracellular enzyme activity is likewise responsive to the seasonal shifts in 73

the availability of carbon. Following or coinciding with leaf fall, the activity of 74

peroxidase, phenol oxidase, and other oxidative enzymes involved in the decomposition 75

of lignin tends to increase [27,28]. Microbial diversity likewise exhibits seasonal shifts; 76

however, the season with highest diversity varies from study to study. Summer, with its 77

higher soil temperatures and higher availability of photosynthates as root exudates, has 78

been observed as the season with the highest microbial diversity [29,30]. Conversely 79

winter has been noted as having the highest microbial diversity, due to the availability 80

of products from the decomposition of fresh leaf litter in the fall [31]. Moreover, season 81

is consistently identified as a driver of microbial community composition in forest 82

soils [26, 32], where the community composition shifts along with leaf fall. While during 83

the spring and summer, the community is dominated by organisms that can utilize root 84

exudates, such as Proteobacteria, the fresh influx of leaf litter that occurs during the 85

fall selects for organisms that can decompose lignin, such as Actinobacteria and 86

Mucilaginibacter [30,31,33]. Despite variability in microbial communities and ecosystem 87

functions across seasons, most studies that examine the relationship between ecosystem 88

multifunctionality and microbial diversity utilize a single snapshot of the community 89

and ecosystem at the time of sampling. 90

Here, we examined how 13 or 28 years of long-term soil warming affected ecosystem 91

multifunctionality and bacterial diversity (Shannon’s H), richness (Chao1), and evenness 92

(Pielou’s J) in two different seasons. We utilized previously published ecosystem 93

function data [27], as well as additional ecosystem function data (soil total organic 94

carbon and nitrogen) paired with bacterial 16S rRNA gene amplicon sequencing to test 95

the hypothesis that warmed soils would have a stronger relationship between bacterial 96

diversity and ecosystem multifunctionality than the control soils. 97

Materials and methods 98

Site description and sample collection 99

Soil samples were collected from two long-term warming soil experiments located at the 100

Harvard Forest in Petersham, MA (42◦30′30′′N, 72◦12′28′′W), as described in [27]. The 101

Prospect Hill Soil Warming Study was established in 1991 [34], and the Soil Warming x 102

Nitrogen Addition (SWaN) Study was established in 2006 [24]. Warmed plots are 103

heated continuously +5 °C above ambient using buried resistance cables placed 10 cm 104

below the soil surface and spaced 20 cm apart. Soil samples were collected in 2019 on 105

July 15th and October 19th, from Prospect Hill and SWaN, which had been warmed for 106

28 and 13 years, respectively, at the time of sampling. The experiments are located 107
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adjacent to one another and have the same dominant plant overstory (Acer rubrum, 108

Betula lenta, Betula papyrifera, Fagus grandifolia, Quercus velutina, Quercus rubra) and 109

soil type (coarse-loamy incepitsols). The temperature ranges from a mean low of 3.3 °C 110

to mean high of 13.1 °C [35]. The mean annual precipitation, including snow, is 1107 111

mm distributed evenly across seasons [35]. Both Prospect Hill and SWaN organic and 112

mineral soils are acidic, with the organic horizon having pHs between 3.8 and 4.2 and 113

the mineral soils having pHs between 3.9 and 4.4 [14, 36, 37]. The organic horizon in the 114

control, unheated plots has a depth of approximately 5 cm, and the organic horizon in 115

the heated +5 °C plots has a depth of approximately 2-3 cm [14]. Duplicate cores were 116

taken from each plot to 10 cm depth using a 5.7 cm diameter tulip bulb corer. Cores 117

were separated into the organic and mineral horizons, duplicate soil cores were pooled 118

by depth increment, roots and rocks were removed, and then the soil was sieved <2 mm. 119

After sieving, samples were kept at ambient temperature, and within 4 hours of 120

collection, samples were taken back to the lab for further analyses. The full sampling 121

design was two sites (Prospect Hill, SWaN) x two treatments (control, heated) x two 122

seasons (summer, fall) x two soil layers (organic horizon, mineral soil) x five replicate 123

plots for a total of 78 samples (one sample from the SWaN experiment had a mineral 124

horizon that was beyond the reach of the corer for the July sampling and this same plot 125

was subsequently not sampled in October). 126

Ecosystem functionality measurements 127

To assess ecosystem functionality, we utilized five soil properties or functions that were 128

measured as a part of Domeignoz-Horta et al. (2023), including microbial biomass 129

carbon, respiration, and the potential activities of four enzymes: phenol oxidase and 130

peroxidase, β-glucosidase (BG), and N-acetyl-glucosaminidase (NAG). Additionally, we 131

measured total soil organic carbon and total nitrogen. Altogether, there were seven 132

different soil functions or properties measured for this study. 133

To measure total soil organic C and N and soil water content, soils were weighed into 134

pre-weighed aluminum tins and dried in a 65 °C oven until they reached a constant 135

mass the same day the samples were brought back to the lab. Constant mass was 136

verified by weighing the soils multiple times throughout the drying process. The drying 137

temperature was selected so soils could be utilized for a separate analysis that was 138

performed in Domeignoz-Horta et al. (2023) but not included in this study. After the 139

soils achieved a constant mass, the tins were weighed again. The dry soil weight was 140

subtracted from the wet soil weight, then divided by the dry soil weight to calculate 141

water content. For total C and N, the dried soils were ground to a fine powder using a 142

mortar and pestle. The soil was then weighed and packaged in duplicate into tins, 143

which were run on a Perkin Elmer 2400 Series II CHN Elemental Analyzer with 144

acetanilide as a standard at the University of New Hampshire Water Quality Analysis 145

Lab. Total C and total N or duplicates were averaged. 146

Within three days of soil sampling, microbial biomass carbon was measured. Soils 147

were stored at 15 °C in the intervening time between sample collection and MBC 148

measurement. The three day storage was to allow for similar treatment as samples used 149

in carbon use efficiency calculations for Domeignoz-Horta et al. (2023). Four replicate 150

soil samples were each split into two subsamples, with one group serving as a control 151

and one group which was fumigated with chloroform vapors under vacuum pressure for 152

24 hours. Dissolved organic carbon (DOC) was then extracted from both the 153

unfumigated and fumigated samples using 15mls of 0.05 M K2SO4 and quantified on a 154

Shimadzu TOC analyzer. Microbial biomass carbon was determined by subtracting the 155

DOC concentration in the unfumigated subsample from the fumigated subsample. 156

Soils were stored at room temperature (20 °C) overnight before being aliquoted for 157

soil respiration measurements. Soil respiration was measured on triplicate subsamples 158
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(0.15 or 0.3 g for the organic horizon or mineral soil, respectively) that were placed into 159

Hungate tubes. Tubes were then sealed and incubated at 15 °C for 24 hours. A 30ml 160

headspace sample was then taken and injected into an infrared gas analyzer (Quantek 161

906) to measure CO2 concentrations. 162

Prior to extracellular enzyme activity assays, soils were stored for no more than 4 163

days at 15 °C after soil sample collection. Potential extracellular enzyme activity was 164

measured using fluorescent substrates. Soil slurries were prepared with 1.25 g wet 165

weight soil and 175mls of 50mM pH 4.7 sodium acetate in a Waring blender. For the 166

BG and NAG assays, 200 µls of soil slurry was pipetted into black 96 well plates, and for 167

the oxidative enzyme assay, 500 µls of soil slurry was pipetted into deep well plates. 168

Plates were then placed in a 15 °C incubator for 25 minutes to allow for temperature 169

acclimation. This temperature reflects the average air temperature between the summer 170

sampling and the fall sampling. After temperature acclimation, either 50 µls of 4000 µM 171

4-methylumbelliferyl β-D-glucopyranoside, or 50 µls of 2000 µM 4-methylumbelliferyl 172

N-acetyl-glucosaminidase were added to each well. For assessing phenol oxidase and 173

peroxidase activity, 500 µls of 25mM L-DOPA + 0.03% H2O2 were added to each well. 174

Each plate contained a standard curve as well as a slurry-only control. All plates were 175

read on a SpectraMax M2 plate reader. BG and NAG plates were measured at 360/450 176

nm excitation/emission wavelengths after substrate addition. Oxidative enzyme plates 177

were incubated for 4 hours after substrate addition, and then 100 µls were removed, 178

transferred to a clear 96 well plate, and read at 460 nm. Since phenol oxidase and 179

peroxidase both act on L-DOPA and 0.03% H2O2, any enzyme activity measured using 180

these substrates was called oxidative enzyme activity. All enzyme activity was 181

normalized for each sample by the sample’s microbial biomass carbon. 182

Ecosystem multifunctionality calculation 183

Multifunctionality was calculated for the organic horizons and mineral soil in R [38] 184

using the multifunc package [39]. We included microbial biomass carbon, soil respiration, 185

total carbon, total nitrogen, N-acetyl glucosaminidase activity, β-glucosidase activity, 186

and oxidative enzyme activity in the ecosystem multifunctionality index. These 187

functions represent both process rates (respiration, potential enzyme activity) and 188

nutrient pools (total C, total N, microbial biomass) [40]. The organic horizon and 189

mineral soil layers were analyzed separately due to documented differences in soil 190

parameters [14] and microbiome properties [11,41]. A multifunctionality index was 191

calculated for each sample by taking the average of the z-score transformed ecosystem 192

functions. While there are different ways of assessing diversity-multifunctionality 193

relationships, we selected the averaging approach for ease of interpretation. Individual 194

ecosystem functions’ relationship with diversity was also investigated. For this approach, 195

the raw untransformed function measurements were used. 196

DNA extraction and library preparation 197

Bacterial diversity was measured using 16S ribosomal RNA (rRNA) gene amplicon 198

sequencing. After sampling, soils were stored for three days at 15 °C to keep treatments 199

consistent for an analysis in Domeignoz-Horta et al. (2023) that was not included in 200

this study. After this three day storage period, soils were stored at -80 °C until 201

extraction. DNA was extracted from soils using the Qiagen Powersoil kit following the 202

manufacturer’s protocol, and DNA concentration was measured using the Picogreen 203

dsDNA kit (ThermoFisher Scientific). 204

We sequenced the 16S rRNA gene V4 region using the primers 515F (5’ - GTG YCA 205

GCM GCC GCG GTA A- 3’) and 806R (5’ - GGA CTA CNV GGG TWT CTA AT - 206

3’) following the Earth Microbiome Project protocol [42], with minimal modifications. 207
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Forward primers contained the 5’ Illumina adapter, 12 basepair unique Golay barcode, 208

forward primer pad and linker, and 515F. Reverse primers contained the 3’ reverse 209

complement Illumina adapter, reverse primer pad and linker, and 806R. Templates were 210

amplified in duplicate prior to sequencing using a 25 µl reaction containing 10 µl 2X 211

Invitrogen Platinum Hot Start master mix, 0.5 µl 10 µM forward primer, 0.5 µl 10 µM 212

reverse primer, 13 µl molecular grade H2O, and 1 µl template. Samples were amplified in 213

an Eppendorf Mastercycler Pro thermocycler with the program parameters of 94 °C for 214

3 min, 35 cycles of 94 °C for 45 s, 50 °C for 60 s, 72 °C for 90 s, and a final extension at 215

72 °C for 10 min. Technical replicate amplicons were combined and visualized on a 1% 216

agarose gel. We quantified the amplicons with the PicoGreen Assay for dsDNA 217

(ThermoScientific) and pooled 300 ng of each sample. We used AMPure XP magnetic 218

beads (Beckman Coulter) to clean the pooled library. Prior to sequencing, the quality of 219

the amplicon library was checked using Qubit Fluorometer (Thermo Fisher Scientific 220

Inc) and 2100 Bioanalyzer DNA 7500 assay (Agilent Technologies, Inc). The library 221

quantification was done using NEBNext Library Quant Kit for Illumina (New England 222

Biolabs). The amplicon library was spiked with Illumina PhiX and sequenced on 223

Illumina MiSeq platform using the v2-300 cycle kit with 156 bp paired end chemistry 224

(Illumina Inc). Custom Read1, Read2, and Index Sequencing primers were used for 225

sequencing. Negative controls with no template were PCR amplified and sequenced as 226

well. Amplicon library quality assessment and sequencing was performed at the 227

Genomics Resource Laboratory (RRID:SCR 017907), Institute for Applied Life Sciences, 228

University of Massachusetts Amherst, MA, USA. 229

We were also interested in measuring fungal community diversity using ITS amplicon 230

sequencing. However, we were unable to successfully PCR amplify enough samples to 231

have triplicates for each combination of season, soil layer, warming treatment, and 232

warming duration. Thus, the focus of this study considered only on the bacterial 233

community. 234

Sequencing processing and analysis 235

Raw FastQ files were demultiplexed and primers trimmed using cutadapt [43]. Bacterial 236

16S rRNA gene sequences were processed with the DADA2 pipeline (v.1.18.0) [44], 237

which generates amplicon sequence variants (ASV), in R. Forward reads were trimmed 238

to 150 bp, and reverse reads were trimmed to 140 bp. Any reads with expected error 239

higher than 2 or with any ambiguous nucleotides were discarded, and all PhiX 240

sequences were also removed. Error rates for the forward and reverse reads were 241

estimated separately using the function ‘learnErrors’. ASVs were called for the forward 242

and reverse reads using their respective error models. Denoised forward and reverse 243

ASVs were merged using the function ‘mergePairs‘ with default parameters. Prior to 244

assigning taxonomy, any chimera sequences were identified de novo and removed. 245

Taxonomy was assigned using SILVA (v 138.1) [45]. All sequences that were classified at 246

the family level as “mitochondria” or at the order level as “chloroplast” were filtered 247

out from the final ASV table. To account for differences in sequencing depth between 248

samples, raw ASV counts were normalized with library size estimation factors 249

calculated in DESeq2 [46,47]. Any ASVs that had 1 or 0 reads total across all samples 250

after normalization were discarded. 251

Our final data set comprised 69 out of 79 possible samples due to difficulty with 252

successfully PCR amplifying samples during library preparation. In the final data set, 253

each combination of season, soil layer, warming treatment, and warming duration had 254

at least three replicates out of the original five replicates, except the October organic 255

horizon control treatment from the 13-year experiment, which had only two out of five 256

replicates. At the end of sequence processing, the data set had 4,345,430 reads, with an 257

average depth of 62,977 reads per sample, and 8,754 total ASVs. The no template 258
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negative controls had fewer than 500 reads. After correcting with a sample specific 259

library size estimate calculated in DESeq2 [46], the total read count was 4,159,442, with 260

an average read count of 60,281 per sample. Rarefaction curve analyses indicated that 261

for the samples that were successfully sequenced, the sequencing efforts were adequate. 262

Since a variety of diversity metrics have been correlated with EMF, we calculated 263

Simpson diversity, Shannon’s H, Chao1 estimated richness, community structure (PCoA 264

axes), and evenness (Pielou’s J). Diversity metrics were calculated using the packages 265

vegan [48] and phyloseq [49]. The distance matrix for the principal coordinate analysis 266

was calculated using Bray-Curtis dissimilarity using the function ‘vegdist’ in the 267

package vegan. 268

Statistical analysis 269

All statistical analyses were done in R [38]. Prior to any statistical analysis, we 270

evaluated whether warming treatment and warming duration could be combined into 271

one variable, where a single “control” treatment (or “0 year warmed”) would derive 272

from combined Prospect Hill and SWaN plot control samples, Prospect Hill warmed 273

samples would be “28 year warmed”, and SWaN warmed samples would be “13 year 274

warmed”. Both EMF and bacterial diversity metrics were tested for normality using a 275

Shapiro-Wilk test. After checking for normality, we tested for significant differences 276

between the control plot samples from Prospect Hill and SWaN using either a Wilcoxon 277

rank sum test if the data were not normally distributed (as was the case for both the 278

organic horizon and mineral soils’ EMF), or a t-test if the data were normally 279

distributed (as was the case for the organic horizon and mineral soils’ bacterial diversity 280

metrics). We found no significant differences between the control plots’ EMF in 281

Prospect Hill and SWaN. However, we did find significant differences in bacterial 282

diversity between the control plots from the two experiments (p = 0.0260). As a result, 283

warming treatment and warming duration were combined into a single variable when 284

EMF was the response variable, but not when bacterial diversity was the response 285

variable. 286

We also investigated whether percent water content correlated with ecosystem 287

multifunctionality or any of the bacterial diversity metrics in the organic horizon or 288

mineral soils. Prior to correlation testing, ecosystem multifunctionality, Shannon H, 289

Chao1 estimated richness, and Pielou J were tested for normality using a Shapiro-Wilk 290

test. Of these four variables, the organic horizon bacterial diversity metrics and mineral 291

soil Shannon’s H were normally distributed. All other variables were not normally 292

distributed. For variables that were normally distributed, we used a Pearson correlation 293

test. For variables that were not normally distributed, we used a Spearman correlation 294

test. 295

We built a set of general linear models using raw or log-transformed data to 296

investigate the effects of warming, soil layer, season, and/or site on four response 297

variables: individual ecosystem functions, nutrient pools, EMF, or bacterial diversity. 298

When normality of model residuals was not satisfied or the response variable was not 299

normally distributed, we constructed generalized linear models with non-Gaussian 300

distributions. We considered both additive and interactive effects between warming, soil 301

layer, season, and/or site. 302

A set of candidate generalized linear models were constructed with either EMF or 303

bacterial diversity as the response variable. First, models were built using a Gaussian 304

distribution and model residuals were tested for normality, except for models where 305

Chao1 estimated richness was the response variable. When Chao1 estimated richness 306

was the response variable, models utilized a Poisson or negative binomial distribution, 307

which are both appropriate for count data. Poisson models for Chao1 estimated richness 308

were checked for overdispersion by looking at the ratio between residual deviance and 309
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degrees of freedom, and if overdispersion was observed (ratio > 1.1), a negative binomial 310

distribution was used with the R package MASS [50]. For the mineral soils, any model 311

where EMF was the response variable had a log-transformation applied to EMF to 312

make the residuals normally distributed. The results from the log-transformed models 313

are reported without back-transformation. We found that the different diversity metrics 314

all performed similarly based on their ∆AICc, so we elected to utilized Shannon’s H, 315

Pielou’s J, and Chao1 estimated richness as predictors since taxon richness and 316

community evenness have both been found to be drivers of ecosystem function [51,52]. 317

We also tested whether warming treatment, warming duration, soil layer, and/or 318

season affected the relationship between the individual ecosystem functions or nutrient 319

pools and bacterial diversity by constructing linear models. Model residuals were tested 320

for normality using a Shapiro-Wilk test. If residuals were not normally distributed, a 321

log-transformation was applied. If the model residuals were still not normally 322

distributed after a log-transformation, we constructed a set of generalized linear models 323

using a gamma or inverse Gaussian distribution. Residuals for these models were 324

validated using the DHARMa package [53]. Results for models where a 325

log-transformation was applied or for models that did not use a normal distribution are 326

reported without back-transformation. 327

Finally, we then investigated how warming treatment, warming duration, soil layer, 328

and/or season affected the relationship between EMF and bacterial diversity. For all of 329

these analyses, we constructed a set of candidate linear models. In these sets of 330

candidate models, we considered all predictors and possible interactions between 331

warming treatment and diversity, warming treatment and horizon, warming treatment 332

and season, or warming treatment and warming duration. All model residuals were 333

checked for normality, and if necessary a log-transformation was applied to the response 334

variable. Estimates and errors from the log-transformed models are reported without 335

back-transformation. 336

For all of the candidate sets of models, model fit was assessed using AICc in the 337

package [54]. If models were within 2 ∆AICc units, we considered the models equally 338

supported, and used a likelihood ratio test for the nested models to select a model. If 339

the models with similar ∆AICc were not nested, we selected the model that explained 340

more variance in the data. Model residual deviance was also compared to model null 341

deviance to examine model fit. When significant interactions were found between 342

warming treatment, warming duration, and/or season, a Tukey’s HSD test was utilized 343

to further investigate the interaction. Otherwise, p-values had a Benjamini-Hochberg 344

correction applied to them to account for multiple comparisons. We utilized a p-value 345

cutoff of 0.05 for statistical significance. If the p-values were between 0.05 and 0.1, we 346

report it as a trend. All estimates are reported with a 95% confidence interval. 347

After analyzing the bacterial diversity and finding a significant difference in bacterial 348

evenness between the warmed and control treatments in the summer organic horizon 349

samples, we conducted a post-hoc analysis to see whether any of the dominant ASVs 350

were differentially abundant between control and heated plots. We used three different 351

methods: Analysis of Community Microbiomes with Bias Correction in the R package 352

ANCOM-BC (v.2.0.3) [55], log2 fold change using the package DESeq2 [46], and a χ2
353

test between ASV counts in the heated and control plots. Dominance was determined 354

based on a relative abundance threshold of ≥ 0.001 within each sample. Of the 8,629 355

ASVs in the organic horizon summer dataset, 256 ASVs were identified as dominant, 356

which accounted for 2.967% of the total ASVs. For all three differential abundance 357

methods, p-values were adjusted for multiple comparisons using a Benjamini-Hochberg 358

correction. 359
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Results 360

Bacterial diversity 361

The effect of warming on bacterial evenness varied by season in the organic horizon, 362

where the best fitting model based on ∆AICc was the interaction model with warming 363

and season (Table 1). Warming had a negative impact on Pielou’s J in the summer but 364

no effect in the fall (Tukey HSD summer: -0.024 ± 0.011, p = 0.026; Tukey HSD fall: p 365

= 0.801). This pattern was not observed in the mineral soil, where warming did not 366

affect bacterial evenness. None of the bacterial diversity metrics in the organic horizon 367

had a significant correlation with soil water content (S1 Table). There was also a 368

season-dependent warming trend on Shannon diversity, although this effect was not 369

significant (p = 0.072). Since in the organic horizon in the summer warming decreased 370

bacterial evenness but did not affect Chao1 richness, we carried out a post-hoc 371

differential abundance analysis on dominant ASVs to determine if changes in the 372

abundance of dominant ASVs could explain the decrease in evenness. None of the 373

dominant ASVs were differentially abundant between the warmed and control plots. 374

Table 1. The effects of warming treatment, season, or site on diversity metrics in the organic horizon and
mineral soil.

soil layer diversity metric predictor estimate error p value

Organic
horizon

Shannon diversity

season (15) -0.076 0.157 n.s.

warming (16) -0.134 0.151 n.s.

warming:season (9) 0.247 0.220 0.072

Chao1 estimated
richness

site (16) -0.110 0.086 0.019 *

warming (16) 0.038 0.0.86 n.s.

Pielou evenness

season (15) -0.011 0.016 n.s.

warming (16) -0.024 0.016 0.011 *

warming:season (9) 0.031 0.024 0.015 *

Mineral soil

Shannon diversity
season (19) 0.011 0.151 n.s.

warming (19) 0.001 0.015 n.s.

Chao1 estimated
richness

site (19) -0.047 0.122 n.s.

warming (19) 0.017 0.122 n.s.

Pielou evenness
site (19) -0.006 0.022 n.s.

warming (19) 0.002 0.022 n.s.

Shannon diversity models and organic horizon Pielou evenness models used a Gaussian distribution, Chao1 estimated richness
models used a negative binomial distribution, and mineral soil Pielou evenness models used a gamma distribution. Chao1
estimated richness and mineral soil Pielou evenness estimates are reported in the table without back-transformation.
Estimates are reported where the reference for warming treatment is control non-heated plots, the reference for season is
summer, and the reference for site is the 13 year experiment. Number of samples for the contrasts are reported in parentheses.
Errors are reported for a 95% confidence interval. Any significant interactions were further investigated using a Tukey HSD
test. Benjamini-Hochberg adjusted p-values are reported, and any adjusted p-values that were greater than 0.05 are reported
as not significant (n.s.).
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Chao1 estimated richness significantly differed between the two different sites, 375

Prospect Hill (28 year warmed) and SWaN (13 year warmed) in the organic horizon. 376

The older experimental site had around 90% of the number of taxa compared to the 377

younger site (Table 1). Soil water content did not have a significant correlation with any 378

of the bacterial diversity metrics in the mineral soils (S1 Table). Unheated control plots 379

from the 13-year warmed and 28-year warmed experiments had significantly different 380

bacterial diversity metrics and so were not combined when bacterial diversity was the 381

response variable. 382

Ecosystem multifunctionality 383

Ecosystem multifunctionality was affected only by season and not warming treatment or 384

warming duration. In the organic horizon, EMF was significantly higher in fall 385

compared to summer (0.089 ± 0.064, p = 0.022, Figure 1A). Similarly, in the mineral 386

soil, EMF trended higher in fall compared to summer, although this difference was not 387

statistically significant (p = 0.090, Figure 1B). Neither EMF in the organic horizon nor 388

EMF in the mineral soils had a significant correlation with soil water content (S1 Table). 389

Due to known differences between the organic horizon and mineral soil [14], ecosystem 390

multifunctionality was calculated for the soils separately. 391

Fig 1. Ecosystem multifunctionality across warming treatment and season.
Ecosystem multifunctionality (EMF) was calculated by averaging z-score standardized
ecosystem function measurements for each sample, and EMF was calculated separately
for the organic horizon (A) and mineral soils (B). In the mineral soils (B), EMF was
log-transformed for general linear model construction, but original non-log-transformed
values are displayed.

For both the organic horizon and mineral soils, neither 13 years nor 28 years of 392

warming significantly altered EMF. In mineral soils, EMF tended to increase as 393

warming duration increased, but these differences were not significant. In the organic 394

horizon soils, we did not observe any trend in EMF with longer duration of heating. 395

Ecosystem multifunctionality-bacterial diversity relationship 396

In the organic horizon, season had a significant effect on the relationship between EMF 397

and bacterial Chao1 estimated richness, where fall had significantly higher intercept for 398

EMF than summer, irrespective of warming treatment or duration (Fig 2A, 0.108 ± 399

0.074, p = 0.020). We observed a similar, seasonal trend in the relationship between 400

EMF and Shannon’s diversity (S2 FigA, 0.105 ± 0.075, p = 0.052) and Pielou’s 401

evenness (S2 FigC, 0.104 ± 0.074, p = 0.055). In the organic horizon soils, ecosystem 402

multifunctionality did not correlate with bacterial Chao1 estimated richness, Shannon 403

diversity, or Pielou evenness. The relationship between EMF and Chao1 estimated 404

richness had a progressively lower intercept as warming duration increased. However, 405

neither the 13-year warmed nor the 28-year warmed plots showed a relationship between 406

EMF and Chao1 estimated richness that was significantly different from the control 407

plots. 408

Fig 2. The relationship between ecosystem multifunctionality and bacterial
Chao1 estimated richness. Ecosystem multifunctionality (EMF) was calculated by
averaging z-score standardized function measurements for each sample. Shaded regions
represent a 95% confidence interval. Mineral soil EMF was log-transformed and is
displayed without back-transformation.
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In the mineral horizon, Shannon diversity (S2 FigB), Chao1 estimated richness 409

(Fig 2B), or Pielou evenness (S2 FigD) were not correlated with EMF, and the intercept 410

for the relationship between EMF and Chao1 estimated richness did not change as 411

warming duration increased. There also was no effect of season on the intercept for 412

EMF for all three of the diversity metrics in the mineral soil. 413

Individual ecosystem functions-bacterial diversity relationship 414

In the organic horizon, no individual ecosystem function or nutrient pool had a 415

significant relationship with any diversity metric. MBC and oxidative enzyme activity 416

both varied significantly by season, with MBC higher in fall compared to summer and 417

oxidative enzyme activity higher in fall compared to summer for both the Shannon 418

diversity and Chao1 estimated richness models (Table 2 and S2 Table). 419

Table 2. Single ecosystem function-diversity relationships in the organic horizon.

ecosystem
function

diversity
metric

predictor estimate error p value

MBC

Shannon
diversity

season (15) 2149.600 537.432 9.942e-08 ***

13 years heating (9) -230.400 622.104 n.s.

28 years heating (7) -470.800 675.612 n.s.

Shannon (32) 341.100 1654.436 n.s.

Chao1
estimated
richness

season 2165.129 533.296 7.456e-08 ***

13 years heating (9) -246.062 636.418 n.s.

28 years heating (7) -477.112 678.174 n.s.

Chao1 (32) 0.1276 2.248 n.s.

OX activity

Shannon
diversity

season -11573.7 1724.212 1.468e-12 ***

13 years heating (9) 122.400 231.476 n.s.

28 years heating (7) 101.300 233.828 n.s.

Shannon (32) 245.900 545.664 n.s.

Chao1
estimated
richness

season -1.157e+04 1765.960 2.579e-12 ***

13 years heating (9) 1.419e+02 229.712 n.s.

28 years heating (7) 1.225e+02 229.908 n.s.

Chao1 (32) 0.186 0.706 n.s.

Microbial biomass (MBC) models used a Gaussian distribution and oxidative enzyme (OX) models used an inverse Gaussian
distribution. Oxidative enzyme model estimates are reported without back-transformation. All model estimates are reported
where the reference for warming treatment is control non-heated plots and the reference for season is summer. Number of
samples are reported in parentheses. Errors are reported for a 95% confidence interval. Benjamini-Hochberg adjusted p-values
are reported. Any adjusted p-values greater than 0.05 are reported as not significant (n.s.).

In the mineral soil, β-glucosidase activity was the only ecosystem function that had 420

a relationship with any bacterial diversity metric, where Shannon’s H had a negative 421

relationship with β-glucosidase activity (Table 3 andS3 Table). Similar to the organic 422

December 30, 2024 11/25



horizon, significant seasonal differences were observed for MBC, oxidative enzyme 423

activity, and β-glucosidase activity. Both MBC and oxidative enzyme activity were 424

higher in fall compared to summer, whereas the opposite was observed for β-glucosidase 425

activity, irrespective of the diversity metric (Table 3). 426

Table 3. Single ecosystem function-diversity relationships in the mineral soil.

ecosystem
function

diversity
metric

predictor estimate error p value

MBC

Shannon
diversity

season (19) 0.944 0.278 8.355e-07 ***

13 years heating (10) -0.294 0.333 n.s.

28 years heating (9) -0.318 0.345 n.s.

Shannon (37) 0.004 0.623 n.s.

Chao1
estimated
richness

season (19) 0.942 0.276 3.833e-07 ***

13 years heating (10) -0.309 0.333 n.s.

28 years heating (9) -0.313 0.343 n.s.

Chao1 (37) 0.0002 0.0008 n.s.

OX activity

Shannon
diversity

season (19) 1.927 0.247 1.479e-15 ***

13 years heating (10) -0.329 0.296 n.s.

28 years heating (9) -0.320 0.308 n.s.

Shannon (37) -0.024 0.555 n.s.

Chao1
estimated
richness

season (19) 1.926 0.247 7.401e-16 ***

13 years heating (10) -0.334 0.298 0.058

28 years heating (9) -0.318 0..298 0.063

Chao1 (37) 8.007e-05 7.207e-04 n.s.

BG activity

Shannon
diversity

season (19) -744.41 216.306 6.389e-07 ***

13 years heating (10) -96.970 258.720 n.s.

28 years heating (9) -157.880 268.598 n.s.

Shannon (37) -623.500 482.866 0.028 *

Chao1
estimated
richness

season (19) -747.101 232.613 2.316e-06 ***

13 years heating (10) -91.320 280.160 n.s.

28 years heating (9) -150.038 288.798 n.s.

Chao1 (37) -0.375 0.678 n.s.

A log-transformation was applied to microbial biomass carbon (MBC) and oxidative enzyme (OX) activity. MBC models, OX
models, and β-glucosidase (BG) models all used a Gaussian distribution. MBC model estimates and OX model estimates are
reported without back-transformation. All model estimates are reported where the reference for warming treatment is control
non-heated plots and the reference for season is summer. Number of samples for contrasts/predictor are reported in
parentheses. Errors are reported for a 95% confidence interval. Benjamini-Hochberg adjusted p-values are reported. Any
adjusted p-values greater than 0.05 are reported as not significant (n.s.).
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Discussion 427

Season is a critical driver of ecosystem function, especially in deciduous forests. We 428

observed that ecosystem multifunctionality was significantly higher in fall compared to 429

summer. Indeed, season had a larger effect on EMF than warming treatment, which 430

had no effect on EMF. The seasonal input of fresh litter could explain the difference in 431

EMF between fall and summer. With leaf-fall, a priming effect could be initiated, 432

resulting in higher microbial activity [27,56,57]. This priming could be substantial 433

enough to mitigate the negative impact of warming on EMF. Further supporting a 434

priming effect, we observed a significant increase in microbial biomass in fall, and an 435

increased microbial biomass has also been noted following the addition of fresh carbon 436

in priming experiments [58–60]. In the heated plots at Harvard Forest, soil organic 437

matter is more depleted in simple sugars and is lower in quantity compared to soil 438

organic matter in the control plots [61], and the influx of litter in the fall might help 439

alleviate this resource limitation [27]. Accordingly, seasonal influx of nutrients cancels 440

out the warming-induced substrate limitation which can be observed by the response of 441

the microbial biomass carbon [27]. This could subsequently increase enzyme production 442

and activity and microbial biomass, both of which were included in our EMF index. 443

While we only examined two seasons, summer and fall, our results highlight the 444

importance of accounting for seasonal differences when measuring ecosystem function. 445

An additional contributor to the higher EMF observed in fall could be a two-day 446

rainfall event that occurred two days prior to the fall sampling [35]. This rainfall could 447

have initiated a Birch effect, which is an increase in respiration that occurs after 448

rewetting a dried soil [62]. Furthermore, the rainfall could have resulted in a flush of 449

dissolved organic matter, which was found in Domeignoz-Horta et al. (2023). 450

Drying-rewetting cycles can increase microbial biomass [63, 64], which is in line with the 451

significantly higher microbial biomass that we observed in fall (Table 2 and Table 3). 452

Warmed soils have significantly lower soil moisture in the spring and fall compared to 453

the control plots in the [24], and the combination of warming and lower moisture can 454

further increase CO2 efflux after rewetting [65]. Yet, we did not observe a significant 455

increase in respiration in fall [27], as would be expected with a Birch effect. This could 456

be due to the fact that respiration was measured after the soil was taken back to the 457

lab, up to six days after the rainfall. This falls outside of the 1.5 days when the 458

respiration spike that is characteristic of the Birch effect is typically observed [66]. 459

Enzyme activity can also increase after rewetting [67]. While we did observe increased 460

phenol oxidase activity in the fall, we did not observe similar increases in activity for 461

β-glucosidase and N-acetyl glucosaminidase [27]. Finally, we did not observe any 462

significant correlation between soil water content and EMF (S1 Table). Even though we 463

noted higher EMF in the fall, the ecosystem function responses we observed are not 464

entirely consistent with a rewetting response. 465

Bacterial community evenness tends to be more sensitive to warming compared to 466

bacterial community richness. We observed that bacterial community evenness was 467

negatively affected by soil warming and that this effect was specific to the organic 468

horizon in the summer (Table 1). This contrasts with previous work at our site, where 469

warming increased bacterial community evenness in the organic horizon as a result of 470

decreases in dominant taxa abundance [11]. Warming often drives shifts in community 471

evenness, whether through increased dominance of a single taxon, decreases in dominant 472

taxa, or losses of rare taxa [7, 68,69]. We did not observe any significant effects of 473

warming on bacterial community richness (Table 1), which is in alignment with other 474

experimental warming studies or meta-analyses [18,70–72]. Changes in abundance of 475

dominant taxa were not the drivers of this decrease in evenness either. 476

Changes in substrate quality and quantity due to warming might also explain the 477

observed changes in evenness. At the Harvard Forest, warming has negatively affected 478
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both substrate quality and quantity [27], and lower substrate availability likewise has 479

negative effects on microbial community evenness [73]. Given that ecosystem function 480

tends to be more resilient to stress in more even communities [52], the negative effects 481

of warming on evenness ultimately could make ecosystem function less stable. Yet these 482

negative effects might be masked or compensated for by changes to microbial 483

community function as a result of heating, such as increased abundance of carbohydrate 484

activated enzymes (i.e. CAZymes) involved in degrading complex carbohydrates [41] or 485

an expanded number of bacteria able to degrade lignin [74]. 486

In this study, we observed no significant relationship between bacterial diversity, 487

richness, or evenness and EMF, irrespective of season, soil horizon, warming treatment, 488

or warming duration. Typically, ecosystem multifunctionality positively correlates with 489

bacterial diversity [75–77], but neutral, or marginally positive relationships are not 490

uncommon [78,79]. In fact, abiotic or environmental factors, such as soil moisture or 491

pH, are consistently identified as stronger drivers of EMF than diversity 492

itself [51, 79–81]. Even the spatial scale of sampling can affect the relationship between 493

EMF and diversity, where at larger scales, like continental or global scales, diversity and 494

ecosystem function tend to be positively correlated, but at smaller scales, like plot level 495

or regional scales, diversity and ecosystem function tend to be neutrally or negatively 496

correlated [82]. Additionally, active microbial diversity [83] or functional trait 497

diversity [84–86] may be a better predictor of ecosystem multifunctionality than total or 498

taxonomic microbial diversity. This may explain why we did not see a relationship 499

between bacterial diversity and EMF. Our DNA-based sequencing approach captured 500

total taxonomic diversity, which comprises both the active and inactive community, and 501

did not provide any functional trait information. Moreover, in soils many bacteria are 502

dormant, with minimal metabolic activity [87], and these dormant cells are not likely 503

contributing to EMF. Altogether, this suggests that when microbial diversity positively 504

correlates with ecosystem function, this correlation tends to be weak, mainly driven by 505

active members of the community or specific functional groups, and ultimately can be 506

better explained by abiotic variables. 507

Functional redundancy within the bacterial community can also account for the lack 508

of relationship between EMF and bacterial diversity. In theory, if an ecosystem function 509

is functionally redundant within a community, the addition of more taxa that carry out 510

that specific function will have negligible effects on the performance of that function at 511

any given time. Forest soils are known to contain high levels of functional 512

redundancy [88], therefore changes in diversity might not result in changes in function. 513

Additionally, the functions included in the ecosystem multifunctionality index we 514

calculated are known to be widespread within soil microbial communities. For instance, 515

aerobic respiration is widespread throughout the phylogenetic tree, and the genes for 516

β-glucosidase or N-acetyl glucosaminidase production are found or predicted in 517

Proteobacteria, Chloroflexi, and Actinobacteria [89,90], all of which were abundant in 518

our samples. Conversely, ecosystem functions that are performed by a narrower group of 519

taxa and therefore exhibit less functional redundancy, such as xenobiotic degradation or 520

nitrogen fixation, are more sensitive to changes in diversity [80,91]. Although, even 521

within functions that are considered to be less widespread throughout the phylogenetic 522

tree, such as nitrite oxidation, there does seem to be some level of functional 523

redundancy or resilience in response to changes in diversity [92]. The lack of a 524

relationship between bacterial diversity, richness, or evenness and EMF could partially 525

be attributed to the functional redundancy of the ecosystem functions in this study. 526

In these temperate terrestrial forest soils, fungi could have a large role in ecosystem 527

function, which would explain why we did not observe a relationship between any 528

bacterial diversity metric and ecosystem multifunctionality. Both bacterial and fungal 529

diversity are known drivers of ecosystem function [51,77], and ecosystem 530
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multifunctionality-microbial diversity studies rely on the assumption that bacteria and 531

fungi are equally involved in promoting ecosystem functions. While we selected our 532

seven ecosystem functions as representatives of processes such as carbon cycling rates 533

(β-glucosidase activity, respiration, oxidative enzyme activity), nitrogen cycling rates 534

(N-acetyl glucosaminidase activity), or nutrient pools (total carbon, total nitrogen, 535

microbial biomass), some of these functions might be more dependent on fungi. For 536

instance, fungal biomass typically outnumbers bacterial biomass in temperate 537

forests [93], although previous work at the sites in this study found that bacteria 538

outnumbered fungi, based on 16S rRNA or ITS gene copy numbers [11]. Enzyme 539

production and activity could also be skewed towards fungi since fungi are the main 540

producers of oxidative enzymes, like phenol oxidase, in soils [94]. N-acetyl 541

glucosaminidase targets chitin, which is a part of the fungal cell wall, and NAG activity 542

is correlated with fungal biomass as well [95]. While we did initially set out to examine 543

both the bacterial and fungal communities, we were unable to successfully PCR amplify 544

the fungal community during sequencing library preparation. As a result, we could not 545

assess the role of the fungal community in driving ecosystem multifunctionality. Even 546

though bacteria play a role in ecosystem function, fungi are still major contributors to 547

EMF, possibly explaining why we did not observe a relationship between EMF and any 548

bacterial diversity metric. 549

While we did not observe a relationship between EMF and bacterial diversity, 550

richness, or evenness, we did observe that β-glucosidase activity had a significant 551

relationship with bacterial Shannon diversity in the mineral soils. Unexpectedly, this 552

relationship was negative (Table 3), meaning that soils with higher diversity tended to 553

have lower β-glucosidase activity potential. We only observed this negative relationship 554

for bacterial Shannon diversity and not bacterial Chao1 richness, suggesting that more 555

even bacterial communities have lower BG activity. This could be explained by negative 556

selection effects, which arise when the most abundant or dominant taxa do not perform 557

or add to a specific ecosystem function, making the diversity-ecosystem function 558

relationship negative or neutral [96]. In fact, β-glucosidase activity can be driven by 559

individual taxa that are not the most abundant within a community [97], and the 560

energetic costs of extracellular enzyme production might negatively impact growth of 561

extracellular enzyme producers [98]. As a result, the presence or absence of individual 562

taxa that are associated with high BG activity might not be reflected in diversity 563

metrics that assess total community diversity. Further, metabolic overlap, which occurs 564

when different taxa within a community can utilize the same substrate or compound, 565

might also account for the negative relationship between diversity and function, since 566

more diverse communities tend to have less metabolic overlap and more diverse 567

metabolic pathways [99]. As it relates to β-glucosidase activity, higher diversity 568

communities might have more diverse metabolisms that can utilize other substrates 569

besides glucosyl, the substrate of BG, and therefore might have lower overall BG 570

activity. Negative selection effects and metabolic overlap can both account for the 571

negative relationship between bacterial diversity and β-glucosidase activity, which has 572

also been observed in other studies [23,100]. 573

Controlled manipulative laboratory incubations and observational field studies are 574

complementary methods to understand the drivers of the BEF relationship, and both of 575

these methods have validated the relationship between ecosystem function and microbial 576

diversity. Mycorrhizal and saprotrophic fungal diversity and bacterial diversity were all 577

noted as having positive correlations with ecosystem multifunctionality in a study that 578

sampled from 80 different sites across the globe [51]. Manipulative laboratory 579

experiments, where diversity is altered via serial dilutions, have also observed a similar 580

positive trend [101,102]. However, the strength of the positive correlation tends to 581

decrease when comparing manipulative studies to observational studies, due to factors 582
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such as lack of immigration and dispersal, reduced environmental complexity, or short 583

experimental duration [84]. Additional variability in the strength of the relationship 584

between microbial diversity and ecosystem function arises from abiotic factors, like 585

season or soil type [79]. Indeed, we observed no relationship between bacterial diversity 586

and ecosystem function in this observational field study. However, the removal of 587

abiotic variables can affect how diversity confers benefits to ecosystem function. The 588

benefits of diversity arise from mechanisms such as niche partitioning [5] or maintaining 589

a pool of taxa that can thrive under different environmental conditions [52,103,104]. 590

Niche partitioning, in particular, is dependent on the presence of environmental 591

heterogeneity in order for organisms to colonize the niche they are best adapted to [105]. 592

Further emphasizing the importance of abiotic variables, we found that season had the 593

largest impact on ecosystem function. Thus, while controlled laboratory experiments 594

have helped to elucidate the mechanisms driving the BEF relationship, observational 595

field studies are still necessary to fully understand the role that abiotic factors, such as 596

season, have on this relationship under more natural conditions. 597

Conclusion 598

This study investigated if long-term soil warming influenced the relationship between 599

ecosystem multifunctionality and bacterial diversity. We observed a strong seasonal 600

effect on ecosystem function, where ecosystem multifunctionality was significantly 601

higher in the fall than in the summer. The effects of soil warming on bacterial evenness 602

were also dependent on season in the organic horizon, where in the summer warming 603

negatively affected bacterial evenness, but in the fall warming did not affect bacterial 604

evenness. However, we found that warming treatment or warming duration ultimately 605

had no effect on the relationship between EMF and bacterial diversity. Indeed, we 606

found that EMF had no relationship with bacterial diversity, which is not uncommon in 607

natural or non-laboratory systems. The younger experimental site also had increased 608

bacterial richness in the organic horizon. Overall, we found that season exerts a strong 609

influence on ecosystem functionality, and season modulates the effects of warming in 610

temperate deciduous forests. We emphasize that cross-season sampling is needed to best 611

assess an ecosystem’s total function and that diversity metrics other than taxonomic 612

diversity may be better suited to capturing the role of diversity on ecosystem function. 613
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Supporting information

S1 Fig. Relative abundance of the phyla of dominant bacteria based on 16S
rRNA gene amplicon sequencing. Taxonomy was assigned using SILVA (v 138.1).
Sample amplicon sequence variant (ASV) counts were normalized using a sample-specific
DESeq2 library size estimation correction factor. Dominant ASVs were determined as
ASVs with a relative abundance of 0.001 or higher within a sample. Organic horizon
samples are presented in panel A, mineral soil samples are presented in panel B.

S2 Fig. Ecosystem multifunctionality bacterial diversity (Shannon H and
Pielou J) relationship. Ecosystem multifunctionality (EMF) was calculated by
averaging a set of z-score transformed ecosystem functions or nutrient pools. Mineral
soil EMF was log-transformed and is displayed without back-transformation. Bacterial
diversity was measured using 16S rRNA gene amplicon sequencing. Shaded regions
represent a 95% confidence interval. The reported p-values are Benjamini-Hochberg
corrected to account for multiple comparisons. In the organic horizon, fall had a slightly
higher intercept compared to summer for both Shannon H (A, p = 0.052) and Pielou J
(C, p = 0.055). There was no seasonal trend in the mineral soils (B, D). In the organic
horizon and the mineral soils, there was no significant relationship between EMF and
bacterial Shannon H or between EMF and bacterial Pielou J, as well as no significant
differences between the control, warmed for 13 years, and warmed for 28 years
treatments.

S1 Table. Correlation between soil water content and ecosystem
multifunctionality and bacterial diversity metrics. Ecosystem multifunctionality
(EMF) and all three bacterial diversity metrics (Shannon H, Chao1 estimated richness,
Pielou J) were tested for normality. Variables that were normally distributed (organic
horizon Shannon H, Chao1 estimated richness, and Pielou J and mineral soils Shannon
H) used a Pearson correlation test, and variables that were not normally distributed
(organic horizon EMF and mineral soils EMF, Chao1 estimated richness, and Pielou J)
used a Spearman correlation test.

S2 Table. Non-significant single ecosystem function-diversity relationships
in the organic horizon. All models using a Gaussian distribution and model residuals
were checked for normality. To meet normality of model residuals, β-glucosidase (BG)
activity, respiration, and total nitrogen in the Chao1 model were log-transformed. The
model estimates and errors for the ecosystem functions that were log-transformed are
reported without back-transformation. All model estimates are reported where the
reference for warming treatment is control non-heated plots and the reference for season
is summer. Number of samples are reported in parentheses. Errors are reported for a
95% confidence interval. Benjamini-Hochberg adjusted p-values are reported. Any
adjusted p-values greater than 0.05 are reported as not significant (n.s.).

S3 Table. Non-significant single ecosystem function-diversity relationships
in the mineral soils. All models used a Gaussian distribution, except total carbon
and total nitrogen models, which used an inverse Gaussian distribution with an inverse
link function and an inverse Gaussian distribution with an 1/µ2 link function,
respectively. Model residuals were examined, and if normality of residuals for the
Gaussian models was not met, a log-transformation was applied. Subsequently, N-acetyl
glucosaminidase (NAG) was log-transformed to satisfy normality of model residuals.
The model estimates and errors for the ecosystem functions that were log-transformed
or that used an inverse Gaussian distribution are reported without back-transformation.
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All model estimates are reported where the reference for warming treatment is control
non-heated plots and the reference for season is summer. Number of samples are
reported in parentheses. Errors are reported for a 95% confidence interval.
Benjamini-Hochberg adjusted p-values are reported. Any adjusted p-values greater than
0.05 are reported as not significant (n.s.).

S1 Metadata. Soil organic carbon, soil organic nitrogen, z-score
transformed ecosystem functions, and ecosystem multifunctionality indices
metadata. Metadata for the soil organic carbon, soil organic nitrogen, z-score
transformed ecosystem functions, and ecosystem multifunctionality CSV file.

S1 Dataset. Soil organic carbon, soil organic nitrogen, z-score transformed
ecosystem functions, and ecosystem multifunctionality indices dataset.
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