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It is well-known that the central path of semi-definite 
optimization, unlike linear optimization, has no analytic 
extension to μ = 0 in the absence of the strict complementarity 
condition. In this paper, we consider a reparametrization 
μ �→ μρ, with ρ being a positive integer, that recovers the 
analyticity of the central path at μ = 0. We investigate the 
complexity of computing ρ using algorithmic real algebraic 
geometry and the theory of complex algebraic curves. We 
prove that the optimal ρ is bounded by 2O(m2+n2m+n4), where 
n is the matrix size and m is the number of affine constraints. 
Our approach leads to a symbolic algorithm, based on the 
Newton-Puiseux algorithm, which computes a feasible ρ using 
2O(m+n2) arithmetic operations.
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1. Introduction

1.1. Semi-definite optimization

We denote by Sn the inner product space of n × n symmetric matrices with entries 
in R and with the inner product 〈C, X〉 = Tr(CX). A pair of primal-dual semi-definite 
optimization (SDO) problems is defined as

(P) v∗p := inf
X∈Sn

{
〈C,X〉 | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0

}
,

(D) v∗d := sup
(y,S)∈Rm×Sn

{
bT y |

m∑
i=1

yiA
i + S = C, S � 0, y ∈ Rm

}
,

where Ai ∈ Sn for i = 1, . . . , m, C ∈ Sn, b ∈ Rm, and � 0 means positive semi-definite. 
A primal-dual vector (X, y, S) is called a solution if (X, y, S) ∈ Sol(P) × Sol(D), where

Sol(P) :=
{
X | 〈Ai, X〉 = bi, i = 1, . . . ,m, X � 0, 〈C,X〉 = v∗p

}
,
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Sol(D) :=
{

(y, S) |
m∑
i=1

yiA
i + S = C, S � 0, bT y = v∗d

}
.

Notation 1. We adopt the notation (·, ·, · · · , ·) to represent vectors or side by side ar-
rangement of matrices. We sometimes identify a symmetric matrix X = (Xij)n×n with 
a column vector x by stacking the columns of the matrix on the top of each other, i.e., 
we use the vector isomorphism

vec : Sn → Rn2

X �→
(
X11, . . . , X1n, X21, . . . , X2n, . . . , Xn1, . . . , Xnn

)T
.

(1.1)

Following this notation, we also define A :=
(
vec(A1), . . . , vec(Am)

)T .

1.2. Central path

SDO problems can be solved “efficiently” using path-following interior point methods 
(IPMs) [35], where the central path plays a prominent role. The central path is an analytic 
semi-algebraic function ξ(μ) : (0, ∞) → Sn ×Rm × Sn whose graph (μ, ξ(μ)) satisfies

{
A vec(X) = b, AT y + vec(S − C) = 0, vec(XS − μIn) = 0, X, S 	 0

}
, (1.2)

where In is the identity matrix of size n, and 	 0 means positive definite. For every 
fixed positive μ, following Notation 1, there exists a unique (X(μ), y(μ), S(μ)), so-called 
a central solution, satisfying (1.2) [14, Theorem 3.1]. The analyticity of the central path 
is immediate from the application of the analytic implicit function theorem to the non-
singular Jacobian at a central solution [14, Theorem 3.3]. Due to its semi-algebraicity 
and the boundedness of ξ |(0,1] [14, Lemma 3.2], the central path converges1 as μ ↓ 0 [23, 
Theorem A.3] to a solution (X∗∗, y∗∗, S∗∗) in the relative interior of the solution set [18, 
Lemma 4.2], see also [4, Page 301] for an alternative proof.

Definition 1.1. A solution (X, y, S) is called strictly complementary if X + S 	 0. The 
strict complementarity condition is said to hold if there exists a strictly complementary 
solution for (P) − (D).

The following assumption is made throughout to guarantee the existence of the cen-
tral path. This also guarantees that Sol(P) × Sol(D) is non-empty and compact [46, 
Corollary 4.2].

Assumption 1. The matrices Ai for i = 1, . . . , m are linearly independent, and there 
exists a feasible (X, y, S) such that X, S 	 0.

1 The first proof of convergence was given in [23, Theorem A.3] based on the curve selection lemma [30, 
Lemma 3.1].
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The central path in case of SDO is analytic at μ = 0 if and only if the limit point of the 
central path is strictly complementary [18,22]. Unfortunately, the failure of analyticity 
impairs the convergence rate of path-following IPMs, see e.g., [50]. This problem has 
been extensively studied for linear optimization, linear complementarity problems, and 
also SDO in the presence of the strict complementarity condition. We will survey some 
of these results in Section 3. Our paper addresses the case for SDO regardless of the 
strict complementarity condition.

Notation 2. Using the identification (1.1), the limit point (X∗∗, y∗∗, S∗∗) and a cen-
tral solution (X(μ), y(μ), S(μ)) are identified by vectors v∗∗ := (x∗∗; y∗∗; s∗∗) and 
v(μ) := (x(μ); y(μ); s(μ)), respectively. Furthermore, the coordinates of the central path 
are denoted by vi(μ) for i = 1, . . . , ̄n, where

n̄ := m + 2n2.

Notation 3. The indeterminates of the polynomials defining the semi-algebraic set (1.2)
are denoted by V1, . . . , Vn̄.

2. Main results

In this paper, we explore the issue of analyticity in the absence of the strict comple-
mentarity condition. Our main motivation behind studying the analyticity of the central 
path is the following key question, as originally stated in [37, Page 519]. This is the analog 
of the problem on the central path in the case of linear complementarity problems [43,44].

Problem 1. Does there exist an integer ρ > 0 such that ξ(μρ) is analytic at μ = 0?

We should indicate that an affirmative answer to Problem 1 has been already provided 
in [24, Section 2.2], where ρ is the cycle number of the central path. It is also stated 
in [24] that the cycle number of the central path can be determined using the endgame 
technique in [33,34], see also [7, Chapter 3]. In this paper, we adopt a symbolic approach 
to explicitly derive ρ from the Puiseux expansions of the polynomials in a semi-algebraic 
description of the central path. Furthermore, we investigate the complexity of computing 
a feasible ρ and prove an upper bound on the optimal value of ρ.

2.1. Upper bound on the ramification index

For the purpose of complexity analysis, we assume the integrality of the data in 
(P) − (D).

Assumption 2. The entries in Ai for i = 1, . . . , m, b, and C are all integers.

Notation 4. A bound on the bitsizes of the entries of Ai, C, b is denoted by τ .



S. Basu, A. Mohammad-Nezhad / Advances in Applied Mathematics 156 (2024) 102670 5
In Section 5.2, we show that ρ attains its optimal value at the least common multiple 
of the ramification indices of the Puiseux expansions of vi(μ), which we denote by q, 
see Notation 2. As a consequence, we show that ρ ∈ Z+q, i.e., any positive integer 
multiple (≥ 1) of the ramification index would be also a feasible solution to Problem 1. 
In particular, we prove an upper bound on the optimal ρ.

Theorem 1. The optimal ρ is the least common multiple of the ramification indices of 
the Puiseux expansions of vi(μ) for i = 1, . . . , ̄n. Furthermore, the optimal ρ is bounded 
by 2O(m2+n2m+n4).

Remark 1. If we also take into account m = O(n2) from Assumption 1 (because 
A1, . . . , Am are assumed to be linearly independent), then the optimal ρ is 2O(n4).

Remark 2 (Designing higher-order IPMs). Our analytic reparametrization has the ad-
vantage that it is independent of the strict complementarity condition. In the words of 
the author in [22], this approach might be helpful in designing higher-order IPMs for 
SDO, and second-order conic optimization, with better local convergence than regular 
primal-dual IPMs.

2.2. A symbolic procedure for computing ρ

Our main contribution is a symbolic procedure, see Algorithm 2, for computing a 
feasible ρ in Problem 1. Using algorithmic real algebraic geometry and the theory of com-
plex algebraic curves, we propose a symbolic algorithm, based on the Newton-Puiseux 
algorithm, which computes a feasible ρ using 2O(m+n2) arithmetic operations, see Algo-
rithm 2. In the sequel, we prove that ρ from Algorithm 2 is bounded by 22O(m+n2) . The 
following theorem summarizes one of the main results of this paper.

Theorem 2. Given the central path equations in (1.2) with coefficients in Z, Algorithm 2
computes a feasible ρ using 2O(m+n2) arithmetic operations, where ρ is bounded by 

22O(m+n2) .

2.3. Outlines of the procedures and proofs

We now briefly state the ideas behind our symbolic algorithm and the proof of our 
main results.

In order to prove Theorem 1, we use degree bounds from the parameterized bounded 
algebraic sampling [5, Algorithm 12.18] and the quantifier elimination (see Theorem 3), 
and then we apply the result of the Newton-Puiseux theorem (see Proposition 4.3).

In the next step, we elaborate on the proof technique of Theorem 1 to develop a 
symbolic algorithm (Algorithm 2) for computing ρ. Our symbolic algorithm consists of 
the following basis elements in order:
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• Computing a real univariate representation of the central path (Algorithm 1);
• Developing a formula which describes the graph of the ith coordinate of the central 

path based on the real univariate representation;
• Applying quantifier elimination to the preceding formula to develop a quantifier-free 

Pi-formula;
• Applying the univariate sign determination to identify Pi ∈ Pi whose zero set con-

tains the graph of the ith coordinate of the central path;
• Applying the Newton-Puiseux algorithm (Algorithm 2) to Pi to compute a feasible ρ.

Algorithm 1 invokes the parameterized bounded algebraic sampling [5, Algo-
rithm 12.18] and the quantifier elimination algorithm [5, Algorithm 14.5] to compute the 
real univariate representation of the central path for sufficiently small μ, see Lemma 5.2. 
The output is an (n̄ + 3)-tuple of polynomials in Z[μ, T ] along with a Thom encod-
ing σ which describes the tail end of the central path, see Section 4.1. By applying 
the quantifier elimination algorithm to a quantified formula derived from the output 
of Algorithm 1 (i.e., real univariate representations, see (5.6)), and then applying the 
univariate sign determination algorithm [5, Algorithm 10.13], Algorithm 2 identifies a 
polynomial Pi ∈ Z[μ, Vi], for i = 1, . . . , ̄n, whose zero set contains the graph of the ith

coordinate of the central path. Algorithm 2 invokes a symbolic Newton-Puiseux algo-
rithm from [49, Algorithm 1] (see Proposition 4.2) to compute ramification indices of 
all Puiseux expansions of Pi = 0 near μ = 0, for every i = 1, . . . , ̄n, which converge to 
the ith coordinate of the limit point of the central path. Here, we also utilize the real 
univariate representation of the limit point of the central path from [4, Algorithm 3.2]. 
As a consequence, Algorithm 2 outputs a feasible ρ by computing the least common mul-
tiple, over i = 1, . . . , ̄n, of the product of all distinct ramification indices corresponding 
to the above Puiseux expansions of Pi = 0. The reason for taking the “product” of all 
ramification indices in Algorithm 2 will be made clear in Section 6.3.

The proof of Theorem 2 is determined based on the complexity of the parameter-
ized bounded algebraic sampling, the quantifier elimination, and the symbolic Newton-
Puiseux algorithm in [49, Algorithm 1]. Although Theorem 1 gives a singly exponential 
upper bound on ρ, in Algorithm 2 we can only guarantee a doubly exponential upper 
bound on a feasible ρ, because we take the product of all ramification indices.

Remark 3. Notice that a feasible ρ can be immediately derived using the degree of Pi

with respect to Vi, and without the use of Newton-Puiseux algorithm in Algorithm 2. 
However, our goal here is to compute the best feasible ρ, if not optimal. This is also 
important for computational optimization purposes, because higher values of ρ will result 
in ill-conditioning of the Jacobian matrix of the central path equations, see also [24, 
Remark 2].

Remark 4. We should indicate that Algorithm 2 will return the optimal ρ when the 
branch containing the graph of the ith coordinate of the central path is isolated from the 
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other branches for every i = 1, . . . , ̄n. In particular, Algorithm 2 returns the optimal ρ if 
Pi for all i = 1, . . . , ̄n are irreducible over C{μ}.

The rest of this paper is organized as follows. In Section 3, we review prior results 
on the complexity of SDO, convergence, and analyticity of the central path in cases of 
linear optimization, linear complementarity problems, and SDO. In Section 4, we provide 
the preliminaries to real algebraic geometry, the theory of complex algebraic curves, and 
the central path. Our main results are presented in Sections 5 and 6. In Section 5.1, we 
present the basis of Algorithm 1 for the real univariate representation of the central path, 
when μ is sufficiently small. In Section 5.2, we explain our theoretical approach and prove 
Theorem 1. In Section 6, we present Algorithm 2 and then prove its complexity stated 
in Theorem 2. Finally, we end with concluding remarks and topics for future research in 
Section 7.

3. Prior and related work

3.1. Complexity

The convex nature of SDO by no means implies polynomial solvability, in contrast to 
linear optimization. In the bit/real number model of computation, the complexity of SDO 
and polynomial optimization is well-known: there is no polynomial-time algorithm yet for 
an exact solution of these classes of optimization problems, see [3, Section 4.2] or [38,39]. 
In the bit model of computation, a semi-definite feasibility problem either belongs to 
NP ∩ co − NP or it does not belong to NP ∪ co − NP [38]. In the real number model 
of computation [12], a semi-definite feasibility problem belongs to NP∩co − NP. Thus, 
the intrinsic non-linearity of SDO makes it no easier to solve than a general polynomial 
optimization problem. In terms of algorithmic real algebraic geometry, there exists an 
algorithm to describe a primal-dual solution of SDO using

max
{
(n + m)O(n2), nO(m)}

arithmetic operations, see [5, Algorithm 14.9] and [11, Proposition A1(5)]. Under As-
sumption 1, this bound improves to 2O(m+n2) [4, Theorem 3.9].

3.2. Convergence

On the computational optimization side, there exist efficient primal-dual IPM solvers 
to compute an approximate solution of SDO [14,35]. However, even for an approximate 
solution, one can find well-structured pathological instances which IPM solvers either 
fail to solve or solve at a very slow convergence rate, see e.g., [50]. By analogy with 
linear optimization, this poor performance can be linked to analytic or algebro-geometric 
properties of the central path [8,9,15,16,18,22,23,29]. To mention but a few, there is a 
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body of research efforts that deal with limiting behavior of the central path under the 
stronger condition of strict complementarity, see Definition 1.1. Among other outstanding 
results, it is well-known that the central path is analytic at μ = 0 [22, Theorem 1], and 
converges to the limit point 

(
X∗∗, y∗∗, S∗∗) at the rate of 1 [29, Theorem 3.5]:

‖X(μ) −X∗∗‖ = O(μ) and ‖S(μ) − S∗∗‖ = O(μ). (3.1)

This in turn accounts for the superlinear convergence of IPMs. On the other hand, both 
the analyticity at μ = 0 and the Lipschitzian bounds (3.1) fail to hold in the absence 
of the strict complementarity condition [18], see also Example 4. In [4], the authors 
investigated the degree and the convergence rate of the central path from the perspective 
of algorithmic real algebraic geometry [5]. The authors provided a lower bound on the 
convergence rate of the central path.

Proposition 3.1 (Theorem 1.1 in [4]). Let (X∗∗, y∗∗, S∗∗) be the limit point of the central 
path. Then for sufficiently small μ we have

‖X(μ) −X∗∗‖ = O(μ1/γ) and ‖S(μ) − S∗∗‖ = O(μ1/γ), (3.2)

where γ = 2O(m+n2).

3.3. Analyticity

Variants of Problem 1 have been also studied for linear optimization and linear com-
plementarity problems, see e.g., [20,32,43,44]. For linear complementarity problems with 
no strictly complementary solution, the central path with reparametrization μ �→ μ2 can 
be analytically extended to μ = 0 [43,44]. This is mainly due to the fact that variables 
along the central path have magnitudes O(1), O(μ), or O(√μ) [25]. However, such a 
classification does not necessarily hold for SDO, as shown in [31, Theorem 3.8]. In fact, 
the only studies of Problem 1 for SDO are either under the assumption that a strictly 
complementary solution exists [22,37] or under very restrictive conditions [36].

Very recently, Hauenstein et al. [24] adopted numerical algebraic geometry techniques 
(adaptive precision path tracking, endgames, projective spaces, see e.g., [7,42]) for an 
accurate solution of SDO (with or without Assumption 1). The central path in [24] is 
viewed as a bilinear homotopy parameterized by μ and an IPM as a path tracking for 
this bilinear homotopy. They applied an analytic reparametrization to the central path 
(using possibly a non-optimal ρ) to improve the performance of the endgame technique.

4. Background

We briefly review the concepts of semi-algebraic sets, power and Puiseux series, com-
plex algebraic curves, and the analyticity of the central path. Our notation for real closed 
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fields, Puiseux series, formal power series, algebraic curves, and semi-definite optimiza-
tion is consistent with those in [4,5,17,40,47]. For an exposition of algebraic curve theory 
and algebraic functions, the reader is referred to [10,17,19,26,47].

Definition of complexity By complexity of an algorithm we will mean the number of 
arithmetic operations in the ring Z including comparisons needed by the algorithm 
(see [5, Chapter 8]). The complexity will be bounded in terms of the number of variables, 
the number of polynomials in the input and the degrees of polynomials. More specifically, 
the input to Algorithms 1 and 2 is an integral polynomial, see (5.2), formed by taking 
the sum of squares of polynomials in (1.2).

4.1. Puiseux series, real closed fields and semi-algebraic sets

In this section we recall some relevant notions from real algebraic geometry (the reader 
can consult [5, Chapter 2] for more details). From now on, for an integral domain D, 
we denote by D[Y1, . . . , Y�]≤d the subset of polynomials in the ring D[Y1, . . . , Y�] with 
degrees ≤ d. Furthermore, D(Y1, . . . , Y�) denotes the field of fractions of D[Y1, . . . , Y�].

Notation 5. Let K be a field of characteristic zero. A polynomial P ∈ K[X] is called 
separable if gcd(P, P ′) ∈ K \ {0}, where gcd(P, P ′) denotes the greatest common divisor 
of P and its derivative P ′. If there is no non-constant polynomial A ∈ K[X] such that 
A2 divides P , then P is called square-free.

If K is a field with characteristic zero, then P is separable if and only if it is square-free.

4.1.1. Puiseux series
A Puiseux series with coefficients in C (resp. R) is a Laurent series with fractional 

exponents, i.e., a series of the form 
∑∞

i=r ciε
i/q where ci ∈ C (resp. ci ∈ R), i, r ∈ Z, 

and q is a minimal positive integer, which is called the ramification index of the Puiseux 
series. Note that the minimality of q indicates that for every prime divisor p of q there 
exists an index i with ci �= 0 such that i is not divided by p.

Puiseux series appear naturally in algebraic geometry if we want to express the roots 
of a polynomial F (X, Y ), parametrized by X in a neighborhood of 0. In this paper, they 
appear in the proof of Theorem 1, when we express the roots of a polynomial Pi ∈ Z[μ, Vi]
near μ = 0, where the zero set of Pi contains the graph of the ith coordinate of the central 
path.

The set of Puiseux series in ε with coefficients in C (resp. R) is a field, which we 
denote by C〈〈ε〉〉 (resp. R〈〈ε〉〉). It is a classical fact that the field C〈〈ε〉〉 (resp. R〈〈ε〉〉) 
is algebraically closed (resp. real closed).

The subfield of R〈〈ε〉〉 of elements which are algebraic over R(ε) is called the field 
of algebraic Puiseux series with coefficients in R, and is denoted by R〈ε〉. It is the real 
closure of the ordered field R(ε) in which ε is positive but smaller than every positive 



10 S. Basu, A. Mohammad-Nezhad / Advances in Applied Mathematics 156 (2024) 102670
element of R. An alternative description of R〈ε〉 is that it is the field of germs of semi-
algebraic functions to the right of the origin. Thus, each element of R〈ε〉 is represented 
by a continuous semi-algebraic function (0, t0) → R (see [5, Chapters 2 and 3]), and 
this is the reason why the field R〈ε〉 plays an important role in the study of germs 
of semi-algebraic curves (for example, the germ of the central path which is a semi-
algebraic curve). We let o(·) denote the order of a Puiseux series, and it is defined as 
o(
∑∞

i=r ciε
i/q) = r/q if cr �= 0, see [5, Section 2.6]. We denote by R〈ε〉b the subring 

of R〈ε〉 of elements which are bounded over R (i.e. all Puiseux series in R〈ε〉 whose 
orders are non-negative). We denote by limε : R〈ε〉b → R a ring homomorphism which 
maps a bounded Puiseux series 

∑∞
i=0 ciε

i/q to c0 (i.e. to the value at 0 of the continuous 
extension of the corresponding curve).

In terms of germs, the elements of R〈ε〉b are represented by semi-algebraic functions 
(0, t0) → R which can be extended continuously to 0, and limε maps such an element to 
the value at 0 of the continuous extension.

4.1.2. Real closed fields
While for the most part we will be concerned with the field of real numbers, at some 

points we will need to consider the non-Archimedean real closed extensions of R – namely, 
the field of algebraic Puiseux series with coefficients in R. Recall from [5, Chapter 2] that 
a real closed field R is an ordered field in which every positive element is a square and 
every polynomial having an odd degree has a root in R.

Given a real closed field R and a finite set P ⊂ R[Y1, . . . , Y�], a quantifier-free P-
formula Φ(Y1, . . . , Y�) with coefficients in R is a Boolean combination of atoms P > 0, 
P = 0, or P < 0 where P ∈ P, and {Y1, . . . , Y�} are the free variables of Φ. A quantified 
P-formula is given by

Ψ = (Q1X1) · · · (QkXk) Φ(X1, . . . , Xk, Y1, . . . , Y�),

in which Qi ∈ {∀, ∃} are quantifiers and Φ is a quantifier-free P-formula with P ⊂
R[X1, . . . , Xk, Y1, . . . , Y�]. A formula with no free variable is called a sentence. The set 
of all (y1, . . . , y�) ∈ R� satisfying Ψ is called the R-realization of Ψ, and it is denoted by 
R(Ψ, R�). A P-semi-algebraic subset of R� is defined as the R-realization of a quantifier-
free P-formula.

It is a classical result due to Tarski [45] that the first order theory of real closed 
fields is decidable and admits quantifier elimination. Thus every quantified formula is 
equivalent modulo the theory of real closed fields to a quantifier-free formula. Later in 
the paper we will use an effective version of this theorem [5, Theorem 14.16] equipped 
with complexity estimates, as stated below.

Theorem 3 (Quantifier Elimination). Let P ⊂ R[X[1], . . . , X[ω], Y ]≤d be a finite set of s
polynomials, where X[i] is a block of ki variables, and Y is a block of � variables. Consider 
the quantified formula
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Ψ(Y ) = (Q1X[1]) · · · (QωX[ω]) Φ(X[1], . . . , X[ω], Y )

where Φ is a quantifier-free P-formula. Then there exists a quantifier-free formula

Θ(Y ) =
I∨

i=1

Ji∧
j=1

( Nij∨
n=1

sign(Pijn(Y )) = σijn

)

equivalent to Ψ, where Pijn(Y ) are polynomials in the variables Y , σijn ∈ {−1, 0, 1}, and

sign(Pijn(Y )) :=

⎧⎪⎪⎨
⎪⎪⎩
−1 Pijn(Y ) < 0,

0 Pijn(Y ) = 0,
1 Pijn(Y ) > 0.

Furthermore, we have

I ≤ s(kω+1)···(k1+1)(�+1)dO(kω)···O(k1)O(�),

Ji ≤ s(kω+1)···(k1+1)dO(kω)···O(k1),

Nij ≤ dO(kω)···O(k1),

and the degrees of the polynomials Pijn(y) are bounded by dO(kω)···O(k1). Moreover, there 
exists an algorithm ([5, Algorithm 14.5] (Quantifier Elimination)) to compute Θ(Y ) with 
complexity

s(kω+1)···(k1+1)(�+1)dO(kω)···O(k1)O(�)

in D, where D denotes the ring generated by the coefficients of the polynomials in P. If 
D = Z and τ denotes an upper bound on bitsizes of P, then the bitsizes of the integers 
in the intermediate computations and the output are bounded by τdO(kω)···O(k1)O(�).

We also state here the complexity of the quantifier elimination for deciding the truth 
or falsity of a sentence from [5, Theorem 14.14].

Theorem 4 (General Decision). Let P ⊂ R[X[1], . . . , X[ω]]≤d be a finite set of s polyno-
mials, where X[i] is a block of ki variables. Given a sentence Ψ, there exists an algorithm 
which decides the truth of Ψ using

s(kω+1)···(k1+1)dO(kω)···O(k1)

arithmetic operations in D, where D denotes the ring generated by the coefficients of the 
polynomials in P.
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4.1.3. Sign conditions, univariate representations, and Thom encodings
In our algorithms we will need to represent points symbolically whose coordinates are 

algebraic over the ground field R. We follow the representation used in the book [5].
Let R be a real closed field. Given a finite family P ⊂ R[Y1, . . . , Y�], a sign condition

on P is an element of {−1, 0, 1}P , i.e., a mapping P → {−1, 0, 1}. The realization of a 
sign condition σ on a set Z ⊂ R� is defined as

R(σ, Z) :=
{
y ∈ Z |

∧
P∈P

sign(P (y)) = σ(P )
}
.

If R(σ, Z) �= ∅, then σ is said to be realized by P on Z. The set of all sign conditions 
realized by P on Z is denoted by SIGN(P, Z).

An �-univariate representation is an (� + 2)-tuple of polynomials u =
(
f, g0, . . . , g�

)
∈

R[T ]�+2, where f and g0 are coprime. A real �-univariate representation of an x ∈ R� is 
a pair (u, σ) of an �-univariate representation u and a Thom encoding σ of a real root tσ
of f such that

x =
(
g1(tσ)
g0(tσ) , . . . ,

g�(tσ)
g0(tσ)

)
∈ R�.

Let Der(f) :=
{
f, f (1), f (2), . . . , f (deg(f))} denote a list of polynomials in which f (i) for 

i > 0 is the formal ith-order derivative of f and deg(f) stands for the degree of f . The 
Thom encoding σ of tσ is a sign condition on Der(f) such that σ(f) = 0.

The notion of Thom encoding of real roots of a polynomial will be extensively used 
in this paper. The following proposition [5, Proposition 2.27] indicates that for any P ∈
R[X] and a root x ∈ R of P , the sign condition σ realized by Der(P ) at x characterizes 
the root x.

Proposition 4.1 (Thom’s Lemma). Let P ⊂ R[X] be a univariate polynomial and σ ∈
{−1, 0, 1}Der(P ). Then the realization of the sign condition σ is either empty, a point, or 
an open interval.

4.2. Local parametrization of complex algebraic curves

In this section, we recall basic definitions of affine and projective complex algebraic 
curves and some facts about their local parametrizations that will play a role later in 
the paper.

4.2.1. Algebraic curves and local parametrization
An algebraic subset of C� is the zero set of a set P of polynomials in C[Y1, . . . , Y�]. 

We denote

zero(P,C�) :=
{
y ∈ C� |

∧
P∈P

P (y) = 0
}
.
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As a special case, an affine complex algebraic curve C is defined as the zero set of a 
non-constant bivariate polynomial F ∈ C[X, Y ], i.e.,

C := zero(F,C2) = {(x, y) ∈ C2 | F (x, y) = 0}. (4.1)

If G ∈ C[X, Y, Z] is a non-zero homogeneous polynomial we call the subset of P 2(C)

D := {(x : y : z) ∈ P 2(C) | G(x, y, z) = 0}

projective complex algebraic curve.
Let C[[T ]] be the ring of formal power series in T over C, and let C((T )) denote its 

field of fractions. Let φ =
∑∞

i=r ciT
i ∈ C((T )), where ci ∈ C and r ∈ Z. If cr �= 0, 

the integer r is defined to be the order of φ, denoted by o(φ) = r. If φ = 0, we define 
o(φ) = ∞. We call a projective local parametrization of D a point (φ) :=

(
φ1(T ) : φ2(T ) :

φ3(T )
)
∈ P 2(C((T ))

)
such that

G
(
φ1(T ), φ2(T ), φ3(T )

)
= 0,

and for every non-zero ψ ∈ C((T )) it holds that ψ · φi �∈ C for some i. Given an affine 
algebraic curve C and a projective local parametrization for its projective closure C∗

(defined by the homogenization of F in (4.1)), we define an affine local parametrization
of C as

(φ1(T )/φ3(T ), φ2(T )/φ3(T )) ∈ C((T ))2.

If mini∈{1,2,3}{o(φi)} = 0,2 then the center of a projective local parametriza-
tion is defined to be (φ1(0) : φ2(0) : φ3(0)). Furthermore, if o(φ3) = 0, then 
(φ1(T )/φ3(T ), φ2(T )/φ3(T )) is an affine local parametrization of C with a finite affine 
center.

A local parametrization of D is called reducible if φi ∈ C((T s)) for some integer s > 1
and every i = 1, 2, 3. Two local parametrizations (φ1 : φ2 : φ3) and (ψ1 : ψ2 : ψ3) are 
called equivalent if there exists a ϕ ∈ C((T )) with o(ϕ) = 1 such that φi = ψi(ϕ) for 
i = 1, 2, 3. A place of C (resp. D) is an equivalence class of all its affine (resp. projective) 
irreducible local parametrizations.

The center of a place is the common center of its local parameterizations. A place of 
C with a center at a finite affine point p is often referred to as a branch of C at p, i.e., 
the set of all points (φ1(t), φ2(t)) ∈ C for t in a neighborhood of zero, where φ1 and φ2

are germs3 of holomorphic functions at zero.

2 Such a projective local parametrization always exists [47, Page 94].
3 A germ of holomorphic functions at x0 means an equivalence class of all holomorphic functions which 

yield the same values in a neighborhood of x0.
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Fig. 1. The branches of cusp (left) and nodal cubic (right) at 0.

Example 1. The affine complex algebraic curve (so-called cusp) defined by

F1(X,Y ) = Y 2 −X3

has a single branch at (0, 0), which is locally parameterized by (t2, t3). On the other 
hand, the complex curve (so-called nodal cubic) defined by

F2(X,Y ) = Y 2 −X3 −X2 = (Y −X
√
X + 1)(Y + X

√
X + 1)

has 2 branches at (0, 0), which are locally parameterized by (t, φ1(t)) and (t, φ2(t)), 
see Fig. 1. Notice that φ1(t) and φ2(t) are power series expansions of X

√
X + 1 and 

−X
√
X + 1, respectively.

We should also note that a point of a parametrization might be a center for more 
than one branch of C.

Example 2 (Example 2.66 in [40]). Consider the algebraic curve C defined by

F (X,Y ) = Y 5 − 4Y 4 + 4Y 3 + 2X2Y 2 −XY 2 + 2X2Y + 2XY + X4 + X3.

The curve C has two branches at 0. The roots corresponding to these branches have 
ramification indices 1 and 2, see Fig. 2.

Notation 6. In this paper, a complex number is denoted by a + b
√
−1, where a, b ∈ R, 

and exp(it) = cos(t) + i sin(t) is the complex exponential function. We use upper case 
letters for indeterminates of polynomials and (convergent) power series, while lower case 
letters are used for the arguments of (holomorphic) functions.
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Fig. 2. In this example, 0 is the center of two places of C.

4.2.2. Newton-Puiseux theorem
Let C{T} denote the ring of convergent power series in T , and assume without loss 

of generality that (0, 0) ∈ C. If ∂F/∂Y (0, 0) �= 0, then the implicit function theorem 
provides an affine local parametrization (T, φ(T )) of F = 0 with center (0, 0), where 
φ(T ) ∈ C{T}. In general, the Newton-Puiseux theorem [47, Theorem 3.1 of Chapter IV]
shows that an affine complex algebraic curve C has an affine local parameterization of the 
type (T q, φ(T )) for some positive integer q. The proof of the Newton-Puiseux theorem 
is constructive and uses the Newton polygon to show that the field of Puiseux series 
C〈〈T 〉〉 =

⋃∞
s=1 C((T 1/s)) is algebraically closed.

Proposition 4.2 (Theorems 3.2 and 4.1 and Section 4.2 of Chapter IV in [47]). Let

F (X,Y ) = a0 + a1Y + · · · + adY
d ∈ C[X][Y ], (4.2)

where ad �= 0. There exist d (not necessarily distinct) Puiseux series ψi(X) ∈ C〈X〉 for 
i = 1, . . . , d such that

F (X,Y ) = ad

d∏
i=1

(Y − ψi).

There exist k places of the curve F = 0 with center at (0, 0) corresponding to each ψi

with a positive order and multiplicity k. Conversely, corresponding to each place (φ1, φ2)
of C with center at (0, 0) there exist o(φ1) roots of F = 0 with identical positive orders.

If ad(0) = 0 in Proposition 4.2, then F (0, Y ) = 0 has less than d roots (including 
multiplicity). In that case, there exist Puiseux series ψi in Proposition 4.2 with negative 
orders, and they correspond to places with center at infinity.
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4.2.3. Weierstrass polynomial
The constructive proof of the Newton-Puiseux theorem yields an iterative procedure 

to compute ramification indices of the Puiseux expansions in Proposition 4.2, see Sec-
tion 6.1. A specialized version of Proposition 4.2 can be obtained if F is assumed to be an 
irreducible Weierstrass polynomial. A polynomial W ∈ C{X}[Y ] is called a Weierstrass 
polynomial of degree d if

W = a0 + a1Y + · · · + ad−1Y
d−1 + Y d,

where aj(0) = 0 for j = 0, . . . , d − 1. Given an irreducible W , the local parametrization 
of Proposition 4.2 can be explicitly written in terms of the degree of W .

Proposition 4.3 (Section 7.8 in [17]). Let W be irreducible over C{X}. Then there exists 
an affine local parametrization (T d, φ(T )) with φ(T ) ∈ C{T}, that describes the only 
branch of the curve W = 0 at (0, 0). Furthermore, W = 0 has d distinct roots near 
x = 0, and they are all described by

ψi(X) =
∞∑
j=1

cj

(
exp
(
2π

√
−1(i− 1)/d

)
X1/d

)j
, i = 1, . . . , d.

Example 3. The condition on the irreducibility of W is an integral part of Proposition 4.3
and cannot be dropped. For instance, the reducible Weierstrass polynomial

W (X,Y ) = (Y 3 −X2)(Y 2 −X3) = Y 5 −X3Y 3 −X2Y 2 + X5 ∈ C[X,Y ]

has roots Y = X
2
3 and Y = ±X

3
2 , while there is no local parametrization of the type 

(T 5, φ(T )) around x = 0.

Let C{X, Y } denote the ring of convergent power series in X and Y . Then Propo-
sition 4.3 can be applied to any F ∈ C[X, Y ] with F (0, Y ) �= 0. This fact immediately 
follows from the Weierstrass preparation theorem.

Proposition 4.4 (Section 6.7 in [17]). Suppose that F ∈ C{X, Y } such that

F (0, Y ) �= 0 and o(F (0, Y )) = d.

Then F can be uniquely written as F = UW , where U ∈ C{X, Y } is a unit element and 
W ∈ C{X}[Y ] is a Weierstrass polynomial of degree d. In particular, if F ∈ C{X}[Y ], 
then U ∈ C{X}[Y ] holds as well.

Remark 5. Locally, a branch of C at a point (say 0 ∈ C) is the germ of the zero set of an 
irreducible factor of F over C{X}, see [17, Page 123]. For instance, F1 = 0 in Example 1
has one branch at 0 because F1 is irreducible over C{X}. On the other hand, F2 has 
two irreducible factors in C{X}[Y ] and thus F2 = 0 has two branches at 0.
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4.3. Analyticity of the central path

The higher-order derivatives of the central path with respect to μ are all well-defined, 
by the implicit function theorem. More concretely, the ith-order derivatives of the central 
path for i ≥ 1 can be obtained by solving

〈Ai, X(i)〉 = 0, i = 1, . . . ,m,
m∑
i=1

y
(i)
i Ai + S(i) = 0,

X(i)S(μ) + X(μ)S(i) =
{
In i = 1,
−
∑i−1

j=1
(
i
j

)
X(j)S(i−j), i > 1,

where (X(i), y(i), S(i)) denotes the ith-order derivative, and the coefficient matrix is al-
ways non-singular. The analyticity of the central path at μ = 0 follows analogously if 
the Jacobian is non-singular at the unique solution, as a result of strict complementarity 
and non-degeneracy conditions, see [2, Theorem 3.1] and [21, Theorem 3.1].

Obviously, the bounds (3.1) and (3.2) do not imply the boundedness of the derivatives 
as μ ↓ 0, see e.g., Example 4. In fact, derivatives of the central path converge if and only 
if the strict complementarity condition holds [18, Section 6] and [22, Theorem 1]. For 
instance, consider an orthogonal basis Q :=

(
QB, QT , QN

)
for the 3-tuple of mutually 

orthogonal subspaces4

(
Col(X∗∗),Col(S∗∗), (Col(X∗∗) + Col(S∗∗))⊥

)
,

where Col(·) denotes the column space of a matrix. If the strict complementarity fails, 
then QT �= {0}, and thus the first-order derivative of the central path fails to converge, 
because

QT
T X

(1)(μ)QT Q
T
T S(μ)QT + QT

T X(μ)QT Q
T
T S

(1)(μ)QT = InT ,

while both QT
T S(μ)QT → 0 and QT

T X(μ)QT → 0 as μ ↓ 0.

Example 4. The minimization of a linear objective function over the 3-elliptope, see 
Fig. 3, can be cast into a SDO problem:

min
{

4x− 4y − 2z |
(1 x y
x 1 z
y z 1

)
� 0
}
. (4.3)

The unique solution of (4.3) is given by

4 The subspaces Col(X∗∗) and Col(S∗∗) are orthogonal by the condition XS = 0.
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Fig. 3. The derivatives of the central path fail to exist at μ = 0.

X∗ =
( 1 −1 1
−1 1 −1

1 −1 1

)
, y∗ = (−4, −1, −1)T , S∗ =

( 4 2 −2
2 1 −1

−2 −1 1

)
, (4.4)

which is not strictly complementary.
The graph of X12(μ) can be described as the set of all (μ, t) with μ > 0 satisfying

F (μ, T ) := 2T 3 + (2 − μ/2)T 2 − (μ + 2)T − 2 = 0, (4.5)⎛
⎝ 1 T −T

T 1 −2T 2 + μT/2 + 1
−T −2T 2 + μT/2 + 1 1

⎞
⎠ 	 0,

(
μ− 4T 2 −2

2 −2/T − 1 −1
−2 −1 −2/T − 1

)
	 0.

By the uniqueness of (4.4), we must have X12(μ) → −1 as μ ↓ 0. Then it follows 
from (4.5) that

X
(1)
12 (μ) = X2

12(μ)/2 + X12(μ)
6X2

12(μ) + (4 − μ)X12(μ) − (μ + 2) → ∞

as μ ↓ 0. This explains the tangential convergence of the central path in Fig. 3.

The algebraic curve F = 0 in Example 4 has two branches at (0, −1) and (0, 1), 
as demonstrated by Fig. 4. By invoking the “Algcurves” package in Maple5 we can 
numerically compute the Puiseux expansions of all roots of F = 0 near μ = 0 as follows

T1(μ) = −1 +
√

8
8 μ

1
2 + 1

32μ− 11
√

8
2048 μ

3
2 − 3

512μ
2 − 121

√
8

1048576μ
5
2

+ 15
32768μ

3 + 19405
√

8
268435456μ

7
2 + · · · ,

T2(μ) = −1 −
√

8
8 μ

1
2 + 1

32μ + 11
√

8
2048 μ

3
2 − 3

512μ
2 + 121

√
8

1048576μ
5
2

5 Available at https://www .maplesoft .com/.

https://www.maplesoft.com/


S. Basu, A. Mohammad-Nezhad / Advances in Applied Mathematics 156 (2024) 102670 19
Fig. 4. T1(μ) (the upper red segment of the branch) is the expansion of X12(μ); T2(μ) (the lower red 
segment of the branch) is the expansion of a semi-algebraic function converging to X∗∗

12 from the exterior 
of the positive semi-definite cone; T3(μ) (the green segment) is the expansion of a semi-algebraic function 
converging to an infeasible value. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

+ 15
32768μ

3 − 19405
√

8
268435456μ

7
2 + · · · ,

T3(μ) = 1 + 3
16μ + 3

256μ
2 − 15

16384μ
3 − 15

262144μ
4 + 345

16777216μ
5

− 21
33554432μ

6 − 1869
4294967296μ

7 + · · · ,

where T1 is the Puiseux expansion of the X12 coordinate of the central path. The order 
of the Puiseux series T1 indicates the non-Lipschitzian convergence

‖X(μ) −X∗∗‖ = O(√μ) and ‖S(μ) − S∗∗‖ = O(√μ).

5. Reparametrization of the central path

Although the Lipschitzian bounds (3.1) fail to exist in the absence of the strict com-
plementarity condition, we can still exploit local information around the center point to 
recover the analyticity of the central path. This remedial action can be applied to Exam-
ple 4, where the ramification index of T1 suggests the local parametrization (μ2, φ(μ))
of the curve F = 0 around μ = 0, where

φ(μ) = −1 +
√

8
8 μ + 1

32μ
2 − 11

√
8

2048 μ3 − 3
512μ

4 − 121
√

8
1048576μ

5 + 15
32768μ

6 + . . . ,

see Fig. 5. Thus, one may adopt a reparametrization μ �→ μρ under which the central 
path is analytic at μ = 0, where ρ is a positive integer multiple of the ramification index 
of the Puiseux expansion.
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Fig. 5. The algebraic curve (4.5) after the reparametrization μ → μ2. The reparametrized central path (red 
segment) is analytic at μ = 0.

In the worst-case scenario, the magnitude of the optimal ρ depends exponentially 
on n.

Example 5 (Example 3.3 in [14]). Consider the following SDO problem in dual form (D):

max
{

− yn | S =

⎛
⎜⎜⎜⎜⎜⎝

1 y1 y2 . . . yn−1
y1 y2 0 . . . 0

y2 0 y3
. . .

...
...

...
. . . . . . 0

yn−1 0 . . . 0 yn

⎞
⎟⎟⎟⎟⎟⎠ � 0

}
,

which has a unique solution (y∗∗, S∗∗) with y∗∗i = 0 for i = 1, . . . , n. In this 
case, y2(μ) = O(μ2−(n−2)), which implies a reparametrization μ �→ μρ with optimal 
ρ ≥ 2n−2.

In view of Example 4, our goal is to adopt a semi-algebraic approach to identify 
bivariate polynomials, analogous to F (μ, T ) in (4.5), that describe the tail end of the 
central path in a coordinate-wise manner. All we need then are the ramification indices of 
the Puiseux expansions corresponding to the roots of these bivariate polynomials around 
μ = 0, which give rise to a feasible ρ for Problem 1.

The basis elements of our semi-algebraic approach are the real univariate representa-
tion of the central path for sufficiently small μ, the quantifier elimination (see Theorem 3), 
and the Newton-Puiseux theorem (see Proposition 4.2), which we elaborate on in Sec-
tions 5.1 and 5.2.
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5.1. Real univariate representation of the central path

The central path system (1.2) can be considered as a μ-infinitesimally deformed poly-
nomial system G ⊂ Z[μ][V1, . . . , Vn̄], i.e., a μ-infinitesimal deformation of the polynomial 
system

{
A vec(X) = b, AT y + vec(S − C) = 0, vec(XS) = 0

}
,

whose zeros belong to C〈μ〉n̄. Without loss of generality, we consider the restriction of 
the central path to the interval (0, 1]. Recall that the central path is uniformly bounded, 
i.e., there exists, see Lemma 5.1, a rational ε > 0 such that

‖(X(μ), y(μ), S(μ))‖ ≤ 1/ε, ∀μ ∈ (0, 1]. (5.1)

Since we are interested in the central path, which is bounded over (0, 1], we only char-
acterize the bounded zeros of G in R〈μ〉n̄, which are defined as

zerob
(
G,R〈μ〉n̄

)
:= zero

(
G,R〈μ〉n̄

)
∩R〈μ〉n̄b ,

where R〈μ〉n̄b denotes the subring of R〈μ〉n̄ consisting of elements which are bounded 
over R. The central path for sufficiently small positive μ is a bounded solution of 
zero

(
G, R〈μ〉n̄

)
. Therefore, the limit point (X∗∗, y∗∗, S∗∗) is contained in

limμ zerob
(
G, R〈μ〉n̄

)
.

5.1.1. Parameterized bounded algebraic sampling
Our approach to characterize the bounded zeros of G is to compute real univari-

ate representation of the central path when μ is sufficiently small; this describes the 
coordinate vi(μ) of the central path as a rational function of μ and the roots of a uni-
variate polynomial. To that end, we define the two polynomials Q ∈ Z[μ, V1, . . . , Vn̄] and 
Q̃ ∈ Z[μ, V1, . . . , Vn̄+1] as follows

Q := ‖Ax− b‖2 + ‖AT y + s− c‖2 + ‖ vec(XS − μIn)‖2,

Q̃ := Q2 +
(
ε2(V 2

1 + · · · + V 2
n̄+1) − 1

)2
, (5.2)

where ε is defined in (5.1). Notice that for every fixed μ ∈ (0, 1], zero(Q̃(μ), Rn̄+1) is 
non-empty (it contains a central solution), and

⋃
μ∈R

zero(Q̃(μ),Rn̄+1)

is bounded, because zero(Q̃(μ), Rn̄+1) is the intersection of the cylinder based on 
zero(Pμ, Rn̄) and an n̄-sphere, where
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Algorithm 1 Real univariate representation of the central path.
Input: The polynomial Q̃ ∈ Z[μ, V1, . . . , Vn̄+1].
return The set U of parametrized univariate representations u and Thom encodings σ of roots of f ∈
Z[μ][T ]; There exists a real univariate representation (u, σ) with u ∈ U which describes the central path 
for sufficiently small positive μ, see Lemma 5.2.

Procedure:
(A) Generate the set U of parameterized univariate representations by applying [5, Algorithm 12.18]

(Parameterized Bounded Algebraic Sampling) with input Q̃ and parameter μ.
(B) Compute the ordered list of Thom encodings of the roots of f in R〈μ〉 by applying [5, Algo-

rithm 10.14] (Thom Encoding) to each f ∈ Z[μ][T ] in the set U .
(C) Decide which ((f, g), σ) describes the central path for sufficiently small positive μ by applying [5, 

Algorithm 14.3] (General Decision) to (5.4).

Pμ :=
{
A vec(X) = b, AT y + vec(S − C) = 0, vec(XS − μI) = 0

}
.

The idea here is to utilize the parameterized bounded algebraic sampling algorithm [5, 
Algorithm 12.18] with input Q̃ to describe, for every μ ∈ R, a finite set of sample 
points that meets every connected component of zero

(
Q̃(μ), Rn̄+1), see also [5, Proposi-

tion 12.42]. The description of these sample points is given by a set U of parameterized 
univariate representations

u := (f, g) =
(
f, (g0, g1, . . . , gn̄+1)

)
∈ Z[μ, T ]n̄+3.

We will prove in Lemma 5.2 that for sufficiently small positive μ, there exist a univariate 
representation u and a real root tσ of f with Thom encoding σ such that

vi(μ) = gi(μ, tσ)
g0(μ, tσ) ∈ R, i = 1 . . . , n̄, (5.3)

where g0(μ, tσ) �= 0. At the end, the problem of choosing the right 
(
(f, g), σ

)
is a real 

algebraic geometry problem and can be decided by the quantifier elimination algorithm.
To see this, let (X̂(μ), ŷ(μ), Ŝ(μ)) be associated to ((f, g), σ), and let, without loss of 

generality, Cx, Cs ∈ Z[μ][T, Λ] be the characteristic polynomials of X̂(μ) and Ŝ(μ), re-
spectively. Then ((f, g), σ) represents the central path, when μ is sufficiently small, if the 
following two Q-sentences with Q ⊂ Z[μ][T, Λ] are both true (see [5, Proposition 3.17]):

(∃T )(∀Λ)
(
sign(f (j)) = σ(f (j)), j ∈ Z≥0

)
∧
(
¬(Cx(T,Λ) = 0) ∨ (Λ > 0)

)
,

(∃T )(∀Λ)
(
sign(f (j)) = σ(f (j)), j ∈ Z≥0

)
∧
(
¬(Cs(T,Λ) = 0) ∨ (Λ > 0)

)
.

(5.4)

Now we can apply [5, Algorithm 14.3] (General Decision) to (5.4).
Algorithm 1 summarizes our symbolic procedure for the real univariate representation 

of the central path.
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5.1.2. Complexity and the proof of correctness
The correctness of Algorithm 1 follows from Theorem 4, and Lemma 5.2 below, and its 

complexity follows from the complexity of [5, Algorithm 12.18] and [5, Algorithm 14.3]. 
First, we need the following quantitative result.

Lemma 5.1. The polynomial Q̃ in (5.2) has coefficients with bitsizes bounded by 
τ2O(m+n2).

Proof. All we need here is the magnitude of 1/ε in Q̃, which is also an upper bound on 
the norm of central solutions for all μ ∈ (0, 1], see (5.1). From the central path equations 
in (1.2) it follows that 〈X(μ) −X(1), S(μ) − S(1)〉 = 0, which results in

〈X(μ), S(1)〉 + 〈S(μ), X(1)〉 = n(μ + 1).

Since the central solutions are positive definite,

〈X(μ), S(1)〉 > 0, 〈S(μ), X(1)〉 > 0,

and thus for all μ ∈ (0, 1] we have

〈X(μ), S(1)〉 ≤ 2n and 〈S(μ), X(1)〉 ≤ 2n.

Furthermore, the centrality condition XS = I implies that

‖X(μ)‖ ≤ 2n
λmin(S(1)) ≤ 2nλmax(X(1)),

‖S(μ)‖ ≤ 2n
λmin(X(1)) ≤ 2nλmax(S(1)),

∀μ ∈ (0, 1]. (5.5)

By the integrality of the data, see Assumption 2, there exists [6, Theorem 1] a ball 
of radius r = 2τ2O(m+n2) containing every isolated point of zero(P ′, Rn̄), including 
(X(1), y(1), S(1)), where

P ′ :=
{
A vec(X) = b, AT y + vec(S − C) = 0, vec(XS − In) = 0

}
.

This also gives an upper bound on λmax(X(1)) and λmax(S(1)) which, by (5.5), yields

‖X(μ)‖, ‖S(μ)‖ = 2τ2O(m+n2)
, ∀μ ∈ (0, 1].

Now the result follows when we choose 1/ε = 2τ2O(m+n2) . �
Lemma 5.2. The polynomials (f, g) ∈ U have degree O(1)n̄+1 and their coefficients have 
bitsizes τ2O(m+n2), where τ is an upper bound on the bitsizes of the entries in Ai, C, 
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and b. Furthermore, there exist a Thom encoding σ, u ∈ U , and γ = 2τ2O(m+n2) such 
that (u, σ) describes the central path for all μ ∈ (0, 1/γ).

Proof. The output of [5, Algorithm 12.18] is a set of (n̄+ 3)-tuples of polynomials (f, g)
in Z[μ, T ] of degree O(degV (Q̃))n̄+1, where degV (Q̃) = 8 is the degree of Q̃ with respect 
to V . The bound on the bitsizes of the coefficients follows from Lemma 5.1 and [5, 
Algorithm 12.18].

Since a central solution is an isolated solution6 of zero
(
Q(μ), Rn̄

)
, the projections 

of the real points associated to u to the first n̄ coordinates contain the central path 
when μ ∈ (0, 1]. Since there are finitely many (n̄ + 3)-tuples of polynomials in U , there 
must exist (f, g) ∈ U and μ0 > 0 such that (f, g) describes the central solutions for all 
μ ∈ (0, μ0).

Let ((f, g), σ) be a real univariate representation for which (5.4) is true (i.e., it 
describes the central path for sufficiently small μ), where (f, g) ∈ Z[μ, T ]n̄+2 (after 
discarding gn̄+1), and consider the following formulas:

Φx(μ) = (∃T )(∀Λ)
(
sign(f (j)) = σ(f (j)), j ∈ Z≥0

)
∧
(
¬(Cx(T,Λ) = 0) ∨ (Λ > 0)

)
,

Φs(μ) = (∃T )(∀Λ)
(
sign(f (j)) = σ(f (j)), j ∈ Z≥0

)
∧
(
¬(Cs(T,Λ) = 0) ∨ (Λ > 0)

)
.

Notice that R(Φx, R) ∩ R(Φs, R) �= ∅. By Theorem 3, Φx and Φs are equivalent to 
quantifier-free Px- and Ps-formulas, where Px, Ps ⊂ Z[μ] are of degrees 2O(m+n2). By [5, 
Lemma 10.3] and Lemma 5.1, the absolute values of all non-zero real roots of polynomials 
in Px, Ps are bigger than 1/γ, where γ = 2τ2O(m+n2) . This completes the proof. �

Now, we can prove the complexity of Algorithm 1.

Theorem 5. There exist γ = 2τ2O(m+n2) and an algorithm with complexity 2O(m+n2) to 
compute ((f, g), σ) which represents the central path for all μ ∈ (0, 1/γ).

Proof. The complexity of Step A in Algorithm 1 is 2O(m+n2), which is determined by [5, 
Algorithm 12.18] and noting that tdegμ(Q̃) = 6, where tdegμ(Q̃) is the total degree of 
monomials in Q̃ containing μ. The complexity of Step B is determined by the number 
of parametrized univariate representations (f, g) in U , which is O(deg(Q̃))n̄+1 and the 
complexity of [5, Algorithm 10.14] applied to every (f, g) ∈ U . Step C decides the truth 
or falsity of (5.4) for every real univariate representation ((f, g), σ). By Theorem 4, all 
this can be done using 2O(m+n2) arithmetic operations. The second part of the theorem 
is the direct application of Lemma 5.2. �
6 This follows from the implicit function theorem.
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5.2. Puiseux expansion of the central path

Existence of the reparametrization in Problem 1 can be shown by invoking the output 
of Algorithm 1 and Proposition 4.2. By substituting the roots t ∈ R〈μ〉 of f(μ, T ) =
0, it is easy to see that the ith coordinate of the central path can be represented by ∑∞

j=0 cijμ
j/qi with cij ∈ R, and qi ∈ Z (see [47, Theorem 1.2 of Chapter IV]).7 Then 

one can choose ρ to be (an integer multiple of) the least common multiple of qi over 
i ∈ {1, . . . , ̄n}.

An alternative approach, which we will follow in Section 6, can be given in terms 
of a semi-algebraic description of the coordinates. More precisely, let ((f, g), σ) with 
(f, g) ∈ U being the real univariate representation of the central path for all sufficiently 
small μ, see Theorem 5. Then the graph of vi(μ), when μ is sufficiently small, can be 
described by the following quantified formula

(∃T )
(
Vig0 − gi = 0

)
∧
(
sign(f (j)(μ, T )) = σ(f (j)), j = 0, 1, . . .

)
. (5.6)

By Theorem 3, (5.6) is equivalent to a quantifier-free Pi-formula with Pi ⊂ Z[μ, Vi]. 
Furthermore, there exists a polynomial Pi ∈ Pi such that Pi(μ, vi(μ)) = 0 for suffi-
ciently small μ and Pi(0, v∗∗i ) = 0 (because (5.6) describes the graph of a semi-algebraic 
function). Note that Pi ∈ Z[μ, Vi] in Theorem 3, as the output of the quantifier elimina-
tion, is the product of a finite number of polynomials in Z[μ, Vi], see e.g., the proof of 
Lemma 2.5.2 in [13, Page 36]. Therefore, Pi need not be irreducible over C (or even R). 
Nevertheless, Pi has an absolutely irreducible factor with real coefficients, whose zero set 
contains the graph of the ith coordinate of the central path when μ is sufficiently small.

Proposition 5.1. The polynomial Pi has an absolutely irreducible factor Ri ∈ R[μ, Vi]
such that Ri(μ, vi(μ)) = 0.

Proof. Let Ri ∈ C[μ, Vi] be an absolutely irreducible factor of Pi whose zero set contains 
the graph of the ith coordinate of the central path. Then we assume that Ri can be written 
as

Ri = Re(Ri) +
√
−1 Im(Ri),

where Re(Ri), Im(Ri) ∈ R[μ, Vi] are the non-zero real and imaginary parts of Ri obtained 
from the real and imaginary parts of their coefficients. Then Ri(μ, vi(μ)) = 0 indicates 
that

Re(Ri)(μ, vi(μ)) = Im(Ri)(μ, vi(μ)) = 0

7 In case of the central path, j must be non-negative, since otherwise the root would be unbounded.
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for all sufficiently small positive μ, which in turn implies that Re(Ri) and Im(Ri) have 
a common factor, see e.g., [41, Page 4]. However, this would contradict the absolute 
irreducibility of Ri. �
Remark 6. For complexity purposes, we do not include any factorization step in Algo-
rithm 2. Instead, we choose Pi to contain only the tail end of the central path, i.e., for 
sufficiently small positive μ.

Let Pi :=
∑di

j=0 pij(μ)V j
i from Theorem 3 applied to (5.6), where pij(μ) ∈ Z[μ] and 

di := degVi
(Pi). By Proposition 4.2, Pi can be factorized as

Pi(μ, Vi) = pidi
(μ)

di∏
�=1

(
Vi − ψi�(μ)

)
, i = 1, . . . , n̄, (5.7)

where the ramification index of ψi� is denoted by qi�. Therefore, there exists a unique 
(multiple) factor �i in (5.7) such that

vi(μ) = ψi�i(μ) :=
∞∑
j=0

cijμ
j/qi�i , for all sufficiently small μ > 0, (5.8)

where cij ∈ R and ci0 = v∗∗i .

Remark 7. Although zero(Q̃(μ), Rn̄+1) is bounded over all μ, not every root of Pi = 0
near μ = 0 is bounded, unless pidi

(0) �= 0.

Remark 8. Notice that ψi�i ∈ R〈μ〉 because vi(μ) is semi-algebraic [5, Proposition 3.17].

Note that Pi = 0 may have more than one branch at (0, v∗∗i ), because Pi is not nec-
essarily irreducible over C{μ},8 see Example 2. However, one of these branches contains 
the graph of the ith coordinate of the central path, when μ is sufficiently small, see 
Proposition 4.2.

Remark 9. By Proposition 4.2, if ψi�i is not a multiple root of Pi = 0, then exactly one 
of the branches of Pi = 0 contains the graph of the ith coordinate of the central path, 
when μ is sufficiently small.

This branch, in analogy with Example 4, is described by a set of qi�i distinct Puiseux 
expansions, including (5.8),

ψik(μ) =
∞∑
j=0

cij

(
exp
(
2π

√
−1(k − 1)/qi�i

)
μ1/qi�i

)j
, k = 1, . . . , qi�i ,

8 Remember that a branch of Pi = 0 is the germ of the zero set of an irreducible factor of Pi over C{μ}.
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which they all converge to (0, v∗∗i ). Thus, letting qi be the ramification index of ψi�i(μ), 
q the least common multiple of all qi�i over i ∈ {1, . . . , ̄n}, and ρ be a positive integer 
multiple of q, then we get the series

ψi�i(μρ) ∈ C{μ}, i = 1, . . . , n̄,

which are all convergent in a neighborhood of μ = 0. This indicates that v(μρ) is analytic 
at μ = 0, providing an explicit answer to Problem 1.

Remark 10. We should note that q is well-defined and independent of the Pi and the 
semi-algebraic description (5.6), see [5, Theorem 3.14].

Remark 11. The authors in [24, Page 4] indicate the analyticity of v(μρ) near μ = 0
in terms of the cycle number of the central path, see also [24, Remark 2]. However, in 
contrast to [24], our algorithmic derivation of ρ is explicit in terms of the degrees and 
Puiseux expansions of the defining polynomials Pi.

Now, we can provide the proof of Theorem 1.

Proof of Theorem 1. By Theorem 3, the quantifier elimination applied to (5.6) returns 
quantifier-free formulas involving polynomials Pi ∈ Z[μ, Vi] of degrees 2O(m+n2). With 
no loss of generality, see Section 6, we can assume that

Pi(0, Vi) �= 0, Pi(0, 0) = 0, i = 1, . . . , n̄.

By Proposition 4.4, Pi is the product of a Weierstrass polynomial Wi ∈ C{μ}[Vi] of 
degree degVi

(Pi) and a unit Ui ∈ C{μ}[Vi]. We may also assume that Wi is irreducible 
over C{μ} (by only considering the unique component of Wi whose zero set contains the 
graph of the ith coordinate of the central path, see Remark 5). Now, the application of 
Proposition 4.3 to Wi implies that

qi�i ≤ degVi
(Pi), i = 1, . . . , n̄.

Finally, we get the result by noting that degVi
(Pi) = 2O(m+n2) and q ≤

∏n̄
i=1 qi. �

Remark 12. In the presence of the strict complementarity condition, q = 1 must be 
exactly 1, since otherwise the analyticity of the central path would fail at μ = 0 [22, 
Theorem 1].

Remark 13. We should note that qi�i from two different coordinates need not be identical. 
For instance, the ramification indices of the coordinates of the central path in Example 5
with n = 4 are 1, 2, or 4:
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X(μ) =

⎛
⎜⎜⎜⎝

O(μ) 0 O(μ 3
4 ) O(μ 1

2 )
0 O(μ 3

4 ) 0 0
O(μ 3

4 ) 0 O(μ 1
2 ) O(μ 1

4 )
O(μ 1

2 ) 0 O(μ 1
4 ) 1

⎞
⎟⎟⎟⎠ , y(μ) =

⎛
⎜⎜⎝

0
O(μ 1

4 )
O(μ 1

2 )
O(μ)

⎞
⎟⎟⎠ ,

S(μ) =

⎛
⎜⎜⎜⎝

1 0 O(μ 1
4 ) O(μ 1

2 )
0 O(μ 1

4 ) 0 0
O(μ 1

4 ) 0 O(μ 1
2 ) 0

O(μ 1
2 ) 0 0 O(μ)

⎞
⎟⎟⎟⎠ .

6. A symbolic algorithm based on the Newton-Puiseux theorem

In this section, we address the complexity of computing a feasible ρ using Algorithm 2, 
which applies the Newton-Puiseux theorem to Pi.

Given the real univariate representation ((f, g), σ) from Algorithm 1 (after discarding 
gn̄+1), we choose the semi-algebraic description (5.6) and apply the quantifier elimination 
algorithm to obtain a finite set Pi ⊂ Z[μ, Vi]. We then identify a polynomial Pi ∈ Pi

such that Pi(μ, vi(μ)) = 0 for sufficiently small μ. This can be done by computing 
SIGN(Der(f), Vij), see Section 4.1.3, where

Vij := zero
(
g
degVi

(Rij)
0 Rij

(
μ, gi/g0

)
,R〈μ〉

)
(6.1)

for every Rij ∈ Pi and then checking σ ∈ SIGN(Der(f), Vij).

6.1. Newton-Puiseux algorithm

By the proof of the Newton-Puiseux theorem, see [47, Page 98], the roots of Pi = 0
near μ = 0 are constructed as

ϕis(μ) = ai1μ
γi1 + ai2μ

γi1+γi2 + ai3μ
γi1+γi2+γi3 + · · · ,

where ϕis corresponds to the segment s (described by the equation y + γi1x = βi1) of 
the Newton polygon of Pi, γi1 ∈ Q is the negative of the slope of the segment s of the 
Newton polygon of Pi, and ai1 ∈ C is a (multiple) root of a polynomial in Z[T ] by which 
the terms of the lowest order of μ in the polynomial

Pi(μ, μγi1(Vi + T )) (6.2)

vanish (see [47, (3.4) on Page 98]). Notice that every segment s of the Newton polygon 
of Pi determines the order γi1 of a set of Puiseux series, as root(s) of Pi = 0 near μ = 0. 
In particular, for the Puiseux series (5.8) we have γi1 ≥ 0, because ψi�i(μ) is convergent.
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This procedure continues by forming the Newton polygon for

P
(j+1)
i := μ−βijP

(j)
i (μ, μγij (Vi + aij)), j = 1, 2, . . . , (6.3)

where P (1)
i := Pi, choosing a segment γi(j+1) > 0, and finding a (multiple) root ai(j+1)

of a polynomial by which the terms of the lowest order of μ in the polynomial

P j+1
i (μ, μγi(j+1)(Vi + T )) (6.4)

vanish. The multiplicity of aij decreases monotonically, and it stabilizes at a constant 
integer after a finite number of iterations, say Ni. Thus, successive γij have bounded de-
nominators, and qi is equal to the smallest common denominator of γi1, . . . , γiNi

(see [47, 
Page 100]).

Remark 14. The multiplicity of aij eventually stabilizes at 1 if Pi = 0 has no multiple 
root in C〈μ〉. By [47, Theorem IV.3.5], this can be guaranteed if

degVi
(gcd(Pi, ∂Pi/∂Vi)) = 0.

6.2. Symbolic computation

We apply a symbolic version of the Newton-Puiseux algorithm in [49, Algorithm 1]
to compute qi for all bounded Puiseux expansions of Pi(μ, Vi) = 0 with limit equal to 
v∗∗i . The idea of [49, Algorithm 1] is to compute the exponents γij [49, Algorithm 1, 
Step 1] and then carry the roots symbolically using the minimal polynomials Sij ∈ Z[T ]
of aij [49, Algorithm 1, Step 6] and the minimal polynomials Zij ∈ Z[T ] of the primitive 
elements αij of the extension field Q(ai1, . . . , aij), αij being an algebraic integer such 
that Q(αij) = Q(ai1, . . . , aij) [49, Algorithm 1, Step 9].

For the purpose of computing the ramification indices, the Newton-Puiseux algorithm 
in [49, Algorithm 1] continues until aij becomes a simple root of (6.4). To that end, we re-
place Pi by Pi/ Contμ(Pi), where Contμ(Pi) is the content of Pi ∈ Z[μ][Vi], i.e., the great-
est common divisor of the coefficients of Pi in Z[μ], and we set Pi := μαiPi(μ, Vi/μ

θi), 
where αi and θi are non-negative integers satisfying

{
αi + o(pidi

) = θidi,

αi + o(pij) ≥ jθi, j = 1, . . . , di − 1,
(6.5)

where di = degVi
(Pi). This technique [28, Page 247] ensures the boundedness of the roots 

of Pi = 0. We also assume that Pi is a square-free polynomial for every i = 1, . . . , ̄n, see 
Remark 14. Notice that if

degVi
(gcd(Pi, ∂Pi/∂Vi)) > 0,
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then Pi has a multiple factor in Z(μ)[Vi] [5, Propositions 4.15 and 4.24], and by [47, 
Theorem I.9.5] Pi has also a multiple factor in Z[μ, Vi]. In this case, we can compute the 
separable part of Pi in Z[μ, Vi] (which is also square-free) by applying [5, Algorithm 10.1]
to Pi and ∂Pi/∂Vi, see [5, Corollary 10.15].

Proposition 6.1. The Newton-Puiseux algorithm in [49, Algorithm 1] computes the ram-
ification indices in 2O(m+n2) iterations.

Proof. The maximum number of iterations follows from the bound

Ni ≤ 4 degμ(Pi) degVi
(Pi)2

in [49, Page 1170]. �
6.3. On computing the optimal ρ

In order to obtain the optimal ρ, one would still need to identify a factor in (5.7) which 
describes the graph of the ith coordinate of the central path. However, this identification 
cannot be made by solely using the truncation of a Puiseux expansion (although we 
can generate as many terms as we want using the technique in [28]). More precisely, 
the Newton-Puiseux algorithm only computes a truncation of the Puiseux expansion of 
vi(μ), which, in general, will not satisfy (5.3) exactly. On the other hand, we should 
also recall that Pi = 0 may have more than one branch at (0, v∗∗i ), because Pi is not 
necessarily irreducible over C{μ}, see Example 2. Thus, an optimal ρ may not be always 
obtained using this approach.

To get as smallest feasible ρ as possible, we first check the irreducibility of Pi. If it 
holds, then zero(Pi, C2) has exactly one branch at (0, v∗∗i ), which contains the graph of 
the ith coordinate of the central path. Otherwise, we identify all branches of Pi = 0 at 
(0, v∗∗i ). We use the following technical result in Algorithm 2 to decide whether Pi is 
irreducible over C{μ}.

Proposition 6.2. Suppose that all zeros of Pi are bounded and Pi is square-free. Then Pi

is irreducible over C{μ} iff Pi = 0 has a Puiseux expansion with a ramification index 
equal to degVi

(Pi).

Proof. By the assumptions and Proposition 4.2, a Puiseux expansion with ramification 
index qis implies a branch (T qis , φ(T )) and qis distinct roots of Pi = 0. Thus qis =
degVi

(Pi) implies that Pi = 0 has exactly one branch at (0, v∗∗i ), since otherwise Pi = 0
would have more than degVi

(Pi) bounded roots. Analogously, qis < degVi
(Pi), implies 

that Pi = 0 must have more than one branch and thus Pi must have more than one 
factor in C{μ}[Vi]. �
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By Proposition 6.2, if Pi is irreducible over C{μ}, then qi = degVi
(Pi). Otherwise, 

we compute the product of ramification indices over all bounded Puiseux expansions of 
Pi = 0 with limit v∗∗i , i.e., only segments with slopes ≤ −θi, see (6.5), which yield a 
Puiseux expansion with Si1(v∗∗i ) = 0. Let (ū, ̄σ) with ū :=

(
f̄ , 
(
ḡ0, ̄g1, . . . , ̄gn̄

))
∈ Z[T ]n̄+2

be the real univariate representation of v∗∗ from [4, Algorithm 3.2], and let

V∗∗
i := zero

(
ḡ
deg(Si1)
0 Si1

(
ḡi/ḡ0

)
,R
)
. (6.6)

Then given a truncation of a Puiseux expansion of Pi = 0 from [49, Algorithm 1], the 
truth or falsity of Si1(v∗∗i ) = 0 can be decided by computing SIGN(Der(f̄), {0}) if γi1 > θi
or SIGN(Der(f̄), V∗∗

i ) if γi1 = θi and then checking the inclusion σ̄ ∈ SIGN(Der(f̄), {0})
or σ̄ ∈ SIGN(Der(f̄), V∗∗

i ).
Finally, we compute ρ as the least common multiple of all ρi, where ρi is the product 

of all distinct qis corresponding to the above Puiseux expansions of Pi = 0. The outline 
of the above procedure is summarized in Algorithm 2.

Remark 15. It is clear that ρ =
∏n̄

i=1(degVi
(Pi)!) will be a feasible integer for Problem 1. 

However, analogous to the proof of Theorem 1, our goal is to compute the smallest 
possible feasible ρ.

Remark 16. It is worth noting that Algorithm 2 outputs the optimal ρ as long as the 
branch of Pi = 0 containing the graph of the ith coordinate of the central path is isolated 
for every i = 1, . . . , ̄n. In particular, an optimal ρ is obtained if Pi is irreducible over 
C{μ} for all i = 1, . . . , ̄n.

Example 6. It is easy to see from Fig. 4 that F = 0 is not irreducible over C{μ}, because 
it involves two isolated branches at (0, −1) and (0, 1). However, Algorithm 2 still returns 
the optimal ρ = 2 for Example 4.

6.4. Complexity and the proof of correctness

The correctness of Algorithm 2 follows from the correctness of Algorithm 1, [4, Algo-
rithm 3.2], Theorem 3, and [49, Algorithm 1]. Step D identifies Pi for every i = 1, . . . , ̄n. 
Step F guarantees that the roots of Pi = 0 are all bounded, and Step G guarantees that 
the Puiseux expansions of Pi are all distinct. Step H checks the irreducibility of Pi using 
Proposition 6.2. Step I applies the symbolic Newton-Puiseux algorithm to every segment 
of the Newton polygon of Pi, if Pi is not irreducible over C{μ}. Step J decides the truth 
or falsity of Si1(v∗∗i ) = 0 for all truncated Puiseux expansions obtained from Step I and 
thus identifies the branches at (0, v∗∗i ).

Now, we can prove Theorem 2. First, we need the following results.
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Algorithm 2 Reparametrization based on the Newton-Puiseux theorem.
Input: The polynomial Q̃ ∈ Z[μ, V1, . . . , Vn̄+1]; An empty set Li for every i = 1, . . . , ̄n
return A feasible ρ for which 

(
X(μρ), y(μρ), S(μρ)

)
is analytic at μ = 0

Procedure:
(A) Apply Algorithm 1 to Q̃ and let the output be ((f, g), σ).
(B) Apply [4, Algorithm 3.2] to Q̃ and let the output be ((f̄ , ̄g), ̄σ).
(C) For every i = 1, . . . , ̄n, apply the quantifier elimination algorithm [5, Algorithm 14.5] with in-

put (5.6). Let the output be a finite set Pi of polynomials in Z[μ, Vi].
(D) For every i = 1, . . . , ̄n and every Rij ∈ Pi apply [5, Algorithm 10.13] (Univariate Sign Determi-

nation) with input gdegVi
(Rij)

0 Rij

(
μ, gi/g0

)
and Der(f), and let SIGN(Der(f), Vij) be the output, 

see (6.1). If σ ∈ SIGN(Der(f), Vij), then choose Rij as the polynomial whose zero set contains the 
graph of the ith coordinate of the central path for sufficiently small μ. Set Pi := Rij .

(E) For every i = 1, . . . , ̄n compute Contμ(Pi) by applying [5, Algorithm 10.1] iteratively to the coeffi-
cients of Pi (as a polynomial in Vi). Then replace Pi by Pi/ Contμ(Pi).

(F) For every i = 1, . . . , ̄n apply the procedure (6.5) to Pi.
(G) For every i = 1, . . . , ̄n apply [5, Algorithm 10.1] with inputs Pi, ∂Pi/∂Vi ∈ Z[μ][Vi] and replace Pi

by its separable part.
(H) For every i = 1, . . . , ̄n apply the symbolic Newton-Puiseux algorithm [49, Algorithm 1] to only one 

segment of the Newton polygon of Pi. If for the given segment the ramification index of the Puiseux 
expansion is equal to degVi

(Pi), then set ρi = degVi
(Pi). Otherwise, go to Step I.

(I) For every i failing the condition of Step H, apply the symbolic Newton-Puiseux algorithm [49, 
Algorithm 1] to Pi for the rest of segments s with negative slope of magnitude ≥ θi, see (6.5). Let 
the output be qis, γi1, and the minimal polynomial Si1 ∈ Z[T ].

(J) Given γi1 and Si1 for every i from Step I, if γi1 > θi, then apply [5, Algorithm 10.11] (Sign Deter-
mination) with input {0} and Der(f̄). If γi1 = θi, then apply [5, Algorithm 10.13] (Univariate Sign 
Determination) with input ḡdeg(Si1)

0 Si1
(
ḡi/ḡ0

)
and Der(f̄). Let the output be SIGN(Der(f̄), {0})

or SIGN(Der(f̄), V∗∗
i ), respectively, see (6.6). If σ̄ ∈ SIGN(Der(f̄), {0}) or σ̄ ∈ SIGN(Der(f̄), V∗∗

i ), 
then add s to Li.

(K) For every i from Step J compute ρi :=
∏

s∈Li
qis. Then compute the least common multiple of ρi

over i = 1, . . . , ̄n.

Lemma 6.1 (Theorem 3.9 in [4]). There exists an algorithm to compute the real univariate 
representation (ū, ̄σ) using 2O(m+n2) arithmetic operations, where

deg(f̄),deg(ḡ) = 2O(m+n2).

Lemma 6.2. The ramification indices of Puiseux expansions of Pi = 0 can be computed 
using 2O(m+n2) arithmetic operations.

Proof. The result is immediate from [49, Theorem 1] and Theorem 3. The total com-
plexity of computing a ramification index [49, Theorem 1] is

(degVi
(Pi) · degμ(Pi))O(1),

where by Theorem 3 we have

degVi
(Pi),degμ(Pi) = 2O(m+n2). �

Proof of Theorem 2. The overall complexity of Algorithm 2 is dominated by the com-
plexity of Algorithm 1, [4, Algorithm 3.2], and the complexity of the quantifier elimina-
tion [5, Algorithm 14.5]. By Lemmas 5.2 and 6.1, Theorem 3, and Theorem 5, Steps A
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to C run with complexity 2O(m+n2), and the quantifier elimination applied to (5.6) out-
puts quantifier-free formulas with polynomials of degree 2O(m+n2) and coefficients of 
bitsizes τ2O(m+n2). The complexity of Steps D to G and Steps J and K depend on 
n̄, card(Pi), deg(Rij), deg(f), deg(f̄), card(Der(f̄)), and card(Der(f)), and they are 
all 2O(m+n2). Steps H and I apply the Newton-Puiseux algorithm to segments of the 
Newton polygon of Pi which, by Lemma 6.2, have the total complexity 2O(m+n2). The 
doubly exponential bound on the magnitude of ρ follows from the proof of Theorem 1, 
degVi

(Pi) = 2O(m+n2), and the inequality

∏
s∈Li

qis ≤
⌈
e

degVi
(Pi)

e

⌉
. �

Finally, we should note that there exist procedures (e.g., based on Hensel’s lemma [27, 
Theorem 4.2.5], Proposition 4.4, and the Newton-Puiseux algorithm) for factorization 
of polynomials over C{μ}, see e.g., [1,48]. However, such factorization procedures over 
C{μ} would only generate a finite number of terms from each factor. Thus, even with the 
presence of such procedures, we would not be able to identify the branch of the central 
path, because only a truncation of the convergent power series, i.e., the coefficients of an 
irreducible factor, would be available to us.

7. Concluding remarks and future research

In this paper, we studied the analyticity of the central path of SDO in the absence of 
the strict complementarity condition. In essence, the superlinear convergence of primal-
dual IPMs rests on the analyticity of the central path at the limit point, which is 
guaranteed under the stronger condition of strict complementarity. By means of the semi-
algebraic description (5.6) and the Puiseux expansions of the roots of Pi = 0 for every 
i = 1, . . . , ̄n, we developed a symbolic algorithm to compute a reparametrization μ �→ μρ

such that 
(
X(μρ), y(μρ), S(μρ)

)
is analytic at μ = 0, in which ρ attains its optimal value 

at q, i.e., the least common multiple of ramification indices of the Puiseux expansions 
of vi(μ). Our semi-algebraic approach provides an upper bound 2O(m2+n2m+n4) on q
and leads to Algorithm 2 for computing a feasible ρ. Algorithm 2 computes a feasible 
ρ, using 2O(m+n2) arithmetic operations, as the least common multiple of 

∏
s qis, where 

the product is over all distinct ramification indices corresponding to bounded Puiseux 
expansions with limit v∗∗i . We proved that a feasible ρ from Algorithm 2 is bounded by 

22O(m+n2) . In case that the polynomials Pi are all irreducible over C{μ}, Algorithm 2
outputs the optimal ρ.

Real analyticity of a semi-algebraic function Broadly speaking, Algorithm 2 can be 
modified to guarantee the analyticity of any semi-algebraic function. In contrast to com-
plex analyticity, which can be verified using the Cauchy-Riemann conditions, checking 
the real analyticity is a harder problem. Suppose that the graph of a bounded semi-
algebraic function f : R → R is described by a quantified formula Ψ. Then, as a sufficient 
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condition, the analyticity of f at a given x0 ∈ R is confirmed if an analog of Algorithm 2
with input Ψ returns ρ = 1. However, the output would be inconclusive if ρ > 1. The 
reason lies in the fact that neither Algorithm 2 nor its analog for an arbitrary semi-
algebraic function f distinguishes between different branches, and therefore ρ may not 
be optimal. This is the subject of our future research.
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