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1. Introduction

1.1. Semi-definite optimization

We denote by S™ the inner product space of n X n symmetric matrices with entries

in R and with the inner product (C, X) = Tr(CX). A pair of primal-dual semi-definite
optimization (SDO) problems is defined as

(P) v, := inf {(C,X>|<Ai,X>:bi, i=1,...,m, XtO},

Xesn
(D) vy = sup {bTy|ZyiAi+S:C’, S >0, yGRm},
(y,5)ER™ xS™ P

where A € S" fori =1,...,m, C € S®, b € R™, and = 0 means positive semi-definite.
A primal-dual vector (X,y, S) is called a solution if (X,y,S) € Sol(P) x Sol(D), where

Sol(P) i= { X [ (4", X) =bs, i=1,....m X=0, (C,X)=0;},
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Sol(D) := {(y,S) | ZyiAi +8=C, S=0,bly= vz}.

=1

Notation 1. We adopt the notation (-,-,---,-) to represent vectors or side by side ar-
rangement of matrices. We sometimes identify a symmetric matrix X = (X;;)nxn with
a column vector x by stacking the columns of the matrix on the top of each other, i.e.,
we use the vector isomorphism

vec: S" — R™
. (1.1)
XH (Xlla"'7X17l)X217"'7X2n7"'7X1’L17'"7X7ln) .

Following this notation, we also define A:= (vec(A'),... ,vec(Am))T.
1.2. Central path

SDO problems can be solved “efficiently” using path-following interior point methods
(IPMs) [35], where the central path plays a prominent role. The central path is an analytic
semi-algebraic function &(u):(0,00) — S™ x R™ x S™ whose graph (u,£(u)) satisfies

{Avec(X)=0b, ATy+vec(S—C) =0, vec(XS —pul,) =0, X,S >0}, (1.2)

where I, is the identity matrix of size n, and > 0 means positive definite. For every
fixed positive u, following Notation 1, there exists a unique (X (u),y(u), S(w)), so-called
a central solution, satisfying (1.2) [14, Theorem 3.1]. The analyticity of the central path
is immediate from the application of the analytic implicit function theorem to the non-
singular Jacobian at a central solution [14, Theorem 3.3]. Due to its semi-algebraicity
and the boundedness of & |(g 1) [14, Lemma 3.2], the central path converges' as u | 0 [23,
Theorem A.3] to a solution (X**,y**, 5**) in the relative interior of the solution set [18,
Lemma 4.2], see also [4, Page 301] for an alternative proof.

Definition 1.1. A solution (X,y,S) is called strictly complementary if X + S > 0. The
strict complementarity condition is said to hold if there exists a strictly complementary
solution for (P) — (D).

The following assumption is made throughout to guarantee the existence of the cen-
tral path. This also guarantees that Sol(P) x Sol(D) is non-empty and compact [46,
Corollary 4.2].

Assumption 1. The matrices A® for i = 1,...,m are linearly independent, and there
exists a feasible (X, y, S) such that X,S > 0.

! The first proof of convergence was given in [23, Theorem A.3] based on the curve selection lemma [30,
Lemma 3.1].
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The central path in case of SDO is analytic at g = 0 if and only if the limit point of the
central path is strictly complementary [18,22]. Unfortunately, the failure of analyticity
impairs the convergence rate of path-following IPMs, see e.g., [50]. This problem has
been extensively studied for linear optimization, linear complementarity problems, and
also SDO in the presence of the strict complementarity condition. We will survey some
of these results in Section 3. Our paper addresses the case for SDO regardless of the
strict complementarity condition.

Notation 2. Using the identification (1.1), the limit point (X** y**, S**) and a cen-
tral solution (X (u),y(u),S(p)) are identified by vectors v** = (z**;y**;s*) and
v(p) == (x(p); y(u); s(un)), respectively. Furthermore, the coordinates of the central path
are denoted by v;(u) for i = 1,...,n, where

n=m+ 2n>.

Notation 3. The indeterminates of the polynomials defining the semi-algebraic set (1.2)
are denoted by Vi,..., V.

2. Main results

In this paper, we explore the issue of analyticity in the absence of the strict comple-
mentarity condition. Our main motivation behind studying the analyticity of the central
path is the following key question, as originally stated in [37, Page 519]. This is the analog
of the problem on the central path in the case of linear complementarity problems [43,44].

Problem 1. Does there exist an integer p > 0 such that £(u?) is analytic at u = 07

We should indicate that an affirmative answer to Problem 1 has been already provided
in [24, Section 2.2], where p is the cycle number of the central path. It is also stated
in [24] that the cycle number of the central path can be determined using the endgame
technique in [33,34], see also [7, Chapter 3]. In this paper, we adopt a symbolic approach
to explicitly derive p from the Puiseux expansions of the polynomials in a semi-algebraic
description of the central path. Furthermore, we investigate the complexity of computing
a feasible p and prove an upper bound on the optimal value of p.

2.1. Upper bound on the ramification index

For the purpose of complexity analysis, we assume the integrality of the data in

(P) — (D).
Assumption 2. The entries in A for i =1,...,m, b, and C are all integers.

Notation 4. A bound on the bitsizes of the entries of A%, C, b is denoted by 7.
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In Section 5.2, we show that p attains its optimal value at the least common multiple
of the ramification indices of the Puiseux expansions of v;(x), which we denote by g,
see Notation 2. As a consequence, we show that p € Z,gq, i.e., any positive integer
multiple (> 1) of the ramification index would be also a feasible solution to Problem 1.
In particular, we prove an upper bound on the optimal p.

Theorem 1. The optimal p is the least common multiple of the ramification indices of

the Puiseuz expansions of v;(p) for i = 1,...,n. Furthermore, the optimal p is bounded
by 2O(m2+n2m+n4) .

Remark 1.If we also take into account m = O(n?) from Assumption 1 (because
Ay, ..., Ay, are assumed to be linearly independent), then the optimal p is 20(n")

Remark 2 (Designing higher-order IPMs). Our analytic reparametrization has the ad-
vantage that it is independent of the strict complementarity condition. In the words of
the author in [22], this approach might be helpful in designing higher-order IPMs for
SDO, and second-order conic optimization, with better local convergence than regular
primal-dual IPMs.

2.2. A symbolic procedure for computing p

Our main contribution is a symbolic procedure, see Algorithm 2, for computing a
feasible p in Problem 1. Using algorithmic real algebraic geometry and the theory of com-
plex algebraic curves, we propose a symbolic algorithm, based on the Newton-Puiseux
algorithm, which computes a feasible p using 20(m+n”) arithmetic operations, see Algo-
rithm 2. In the sequel, we prove that p from Algorithm 2 is bounded by 220(m+n2). The

following theorem summarizes one of the main results of this paper.

Theorem 2. Given the central path equations in (1.2) with coefficients in Z, Algorithm 2

computes a feasible p using 20(m+n)  grithmetic operations, where p is bounded by
2
22O(m+n ).

2.8. Outlines of the procedures and proofs

We now briefly state the ideas behind our symbolic algorithm and the proof of our
main results.

In order to prove Theorem 1, we use degree bounds from the parameterized bounded
algebraic sampling [5, Algorithm 12.18] and the quantifier elimination (see Theorem 3),
and then we apply the result of the Newton-Puiseux theorem (see Proposition 4.3).

In the next step, we elaborate on the proof technique of Theorem 1 to develop a
symbolic algorithm (Algorithm 2) for computing p. Our symbolic algorithm consists of
the following basis elements in order:
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o Computing a real univariate representation of the central path (Algorithm 1);

« Developing a formula which describes the graph of the i*? coordinate of the central
path based on the real univariate representation;

¢ Applying quantifier elimination to the preceding formula to develop a quantifier-free
P;-formula;

e Applying the univariate sign determination to identify P; € P; whose zero set con-
tains the graph of the i*® coordinate of the central path;

¢ Applying the Newton-Puiseux algorithm (Algorithm 2) to P; to compute a feasible p.

Algorithm 1 invokes the parameterized bounded algebraic sampling [5, Algo-
rithm 12.18] and the quantifier elimination algorithm [5, Algorithm 14.5] to compute the
real univariate representation of the central path for sufficiently small u, see Lemma 5.2.
The output is an (1 + 3)-tuple of polynomials in Z[u,T] along with a Thom encod-
ing ¢ which describes the tail end of the central path, see Section 4.1. By applying
the quantifier elimination algorithm to a quantified formula derived from the output
of Algorithm 1 (i.e., real univariate representations, see (5.6)), and then applying the
univariate sign determination algorithm [5, Algorithm 10.13], Algorithm 2 identifies a
polynomial P; € Z[u,V;], for i = 1,...,7, whose zero set contains the graph of the i‘"
coordinate of the central path. Algorithm 2 invokes a symbolic Newton-Puiseux algo-
rithm from [49, Algorithm 1] (see Proposition 4.2) to compute ramification indices of
all Puiseux expansions of P; = 0 near u = 0, for every ¢ = 1,...,n, which converge to
the i*® coordinate of the limit point of the central path. Here, we also utilize the real
univariate representation of the limit point of the central path from [4, Algorithm 3.2].
As a consequence, Algorithm 2 outputs a feasible p by computing the least common mul-
tiple, over ¢ = 1,...,n, of the product of all distinct ramification indices corresponding
to the above Puiseux expansions of P; = 0. The reason for taking the “product” of all
ramification indices in Algorithm 2 will be made clear in Section 6.3.

The proof of Theorem 2 is determined based on the complexity of the parameter-
ized bounded algebraic sampling, the quantifier elimination, and the symbolic Newton-
Puiseux algorithm in [49, Algorithm 1]. Although Theorem 1 gives a singly exponential
upper bound on p, in Algorithm 2 we can only guarantee a doubly exponential upper
bound on a feasible p, because we take the product of all ramification indices.

Remark 3. Notice that a feasible p can be immediately derived using the degree of P;
with respect to V;, and without the use of Newton-Puiseux algorithm in Algorithm 2.
However, our goal here is to compute the best feasible p, if not optimal. This is also
important for computational optimization purposes, because higher values of p will result
in ill-conditioning of the Jacobian matrix of the central path equations, see also [24,
Remark 2].

Remark 4. We should indicate that Algorithm 2 will return the optimal p when the
branch containing the graph of the i*" coordinate of the central path is isolated from the
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other branches for every i = 1,...,n. In particular, Algorithm 2 returns the optimal p if
P; for all i =1,...,n are irreducible over C{u}.

The rest of this paper is organized as follows. In Section 3, we review prior results
on the complexity of SDO, convergence, and analyticity of the central path in cases of
linear optimization, linear complementarity problems, and SDO. In Section 4, we provide
the preliminaries to real algebraic geometry, the theory of complex algebraic curves, and
the central path. Our main results are presented in Sections 5 and 6. In Section 5.1, we
present the basis of Algorithm 1 for the real univariate representation of the central path,
when p is sufficiently small. In Section 5.2, we explain our theoretical approach and prove
Theorem 1. In Section 6, we present Algorithm 2 and then prove its complexity stated
in Theorem 2. Finally, we end with concluding remarks and topics for future research in
Section 7.

3. Prior and related work
3.1. Complexity

The convex nature of SDO by no means implies polynomial solvability, in contrast to
linear optimization. In the bit/real number model of computation, the complexity of SDO
and polynomial optimization is well-known: there is no polynomial-time algorithm yet for
an exact solution of these classes of optimization problems, see [3, Section 4.2] or [38,39].
In the bit model of computation, a semi-definite feasibility problem either belongs to
NP Nco — NP or it does not belong to NP U co — NP [38]. In the real number model
of computation [12], a semi-definite feasibility problem belongs to NP Nco — NP. Thus,
the intrinsic non-linearity of SDO makes it no easier to solve than a general polynomial
optimization problem. In terms of algorithmic real algebraic geometry, there exists an
algorithm to describe a primal-dual solution of SDO using

max { (n + m)O("Z), no(m)}

arithmetic operations, see [5, Algorithm 14.9] and [11, Proposition A1(5)]. Under As-
sumption 1, this bound improves to 20(m+1%) [4. Theorem 3.9].

3.2. Convergence

On the computational optimization side, there exist efficient primal-dual IPM solvers
to compute an approximate solution of SDO [14,35]. However, even for an approximate
solution, one can find well-structured pathological instances which IPM solvers either
fail to solve or solve at a very slow convergence rate, see e.g., [50]. By analogy with
linear optimization, this poor performance can be linked to analytic or algebro-geometric
properties of the central path [8,9,15,16,18,22,23,29]. To mention but a few, there is a
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body of research efforts that deal with limiting behavior of the central path under the
stronger condition of strict complementarity, see Definition 1.1. Among other outstanding
results, it is well-known that the central path is analytic at g = 0 [22, Theorem 1], and
converges to the limit point (X**, Y, S**) at the rate of 1 [29, Theorem 3.5]:

X (1) = X7 = O(p) and [[S(p) =S| = O(n). 3.1

This in turn accounts for the superlinear convergence of IPMs. On the other hand, both
the analyticity at p = 0 and the Lipschitzian bounds (3.1) fail to hold in the absence
of the strict complementarity condition [18], see also Example 4. In [4], the authors
investigated the degree and the convergence rate of the central path from the perspective
of algorithmic real algebraic geometry [5]. The authors provided a lower bound on the
convergence rate of the central path.

Proposition 3.1 (Theorem 1.1 in [}]). Let (X**,y**, S**) be the limit point of the central
path. Then for sufficiently small p we have

1X () = X[l = O(u*7) and ||S(n) — S| = O(u*"), (3.2)
where = 20(m+n%)
3.3. Analyticity

Variants of Problem 1 have been also studied for linear optimization and linear com-
plementarity problems, see e.g., [20,32,43,44]. For linear complementarity problems with
no strictly complementary solution, the central path with reparametrization p +— p? can
be analytically extended to g = 0 [43,44]. This is mainly due to the fact that variables
along the central path have magnitudes O(1), O(u), or O(\/;) [25]. However, such a
classification does not necessarily hold for SDO, as shown in [31, Theorem 3.8]. In fact,
the only studies of Problem 1 for SDO are either under the assumption that a strictly
complementary solution exists [22,37] or under very restrictive conditions [36].

Very recently, Hauenstein et al. [24] adopted numerical algebraic geometry techniques
(adaptive precision path tracking, endgames, projective spaces, see e.g., [7,42]) for an
accurate solution of SDO (with or without Assumption 1). The central path in [24] is
viewed as a bilinear homotopy parameterized by p and an IPM as a path tracking for
this bilinear homotopy. They applied an analytic reparametrization to the central path
(using possibly a non-optimal p) to improve the performance of the endgame technique.

4. Background

We briefly review the concepts of semi-algebraic sets, power and Puiseux series, com-
plex algebraic curves, and the analyticity of the central path. Our notation for real closed
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fields, Puiseux series, formal power series, algebraic curves, and semi-definite optimiza-
tion is consistent with those in [4,5,17,40,47]. For an exposition of algebraic curve theory
and algebraic functions, the reader is referred to [10,17,19,26,47].

Definition of complexity By complexity of an algorithm we will mean the number of
arithmetic operations in the ring Z including comparisons needed by the algorithm
(see [5, Chapter 8]). The complexity will be bounded in terms of the number of variables,
the number of polynomials in the input and the degrees of polynomials. More specifically,
the input to Algorithms 1 and 2 is an integral polynomial, see (5.2), formed by taking
the sum of squares of polynomials in (1.2).

4.1. Puiseuz series, real closed fields and semi-algebraic sets

In this section we recall some relevant notions from real algebraic geometry (the reader
can consult [5, Chapter 2] for more details). From now on, for an integral domain D,
we denote by D[Y7,...,Yy]<4 the subset of polynomials in the ring D[Y7,...,Y,] with
degrees < d. Furthermore, D(Y7,...,Ys) denotes the field of fractions of D[Y7,...,Y,].

Notation 5. Let K be a field of characteristic zero. A polynomial P € K[X] is called
separable if ged(P, P') € K\ {0}, where gcd(P, P') denotes the greatest common divisor
of P and its derivative P’. If there is no non-constant polynomial A € K[X] such that
A? divides P, then P is called square-free.

If K is a field with characteristic zero, then P is separable if and only if it is square-free.

4.1.1. Puiseux series

A Puiseuzx series with coefficients in C (resp. R) is a Laurent series with fractional
exponents, i.e., a series of the form .~ cie'/% where ¢; € C (resp. ¢; € R), 4,7 € Z,
and ¢ is a minimal positive integer, which is called the ramification index of the Puiseux
series. Note that the minimality of ¢ indicates that for every prime divisor p of ¢ there
exists an index ¢ with ¢; # 0 such that 4 is not divided by p.

Puiseux series appear naturally in algebraic geometry if we want to express the roots
of a polynomial F/(X,Y"), parametrized by X in a neighborhood of 0. In this paper, they
appear in the proof of Theorem 1, when we express the roots of a polynomial P; € Z[u, V;]
near p = 0, where the zero set of P; contains the graph of the i*" coordinate of the central
path.

The set of Puiseux series in € with coefficients in C (resp. R) is a field, which we
denote by C((¢)) (resp. R((¢))). It is a classical fact that the field C((e)) (resp. R((e)))
is algebraically closed (resp. real closed).

The subfield of R{(g)) of elements which are algebraic over R(e) is called the field
of algebraic Puiseux series with coefficients in R, and is denoted by R(e). It is the real
closure of the ordered field R(¢) in which ¢ is positive but smaller than every positive
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element of R. An alternative description of R{e) is that it is the field of germs of semi-
algebraic functions to the right of the origin. Thus, each element of R{(e) is represented
by a continuous semi-algebraic function (0,%¢9) — R (see [5, Chapters 2 and 3]), and
this is the reason why the field R{¢) plays an important role in the study of germs
of semi-algebraic curves (for example, the germ of the central path which is a semi-
algebraic curve). We let o(-) denote the order of a Puiseux series, and it is defined as
o(3°° i) = r/q if ¢, # 0, see [5, Section 2.6]. We denote by R(e); the subring
of R{e) of elements which are bounded over R (i.e. all Puiseux series in R(e) whose
orders are non-negative). We denote by lim. : R(¢), — R a ring homomorphism which
maps a bounded Puiseux series Y5 ¢;e¥/9 to cg (i.e. to the value at 0 of the continuous
extension of the corresponding curve).

In terms of germs, the elements of R{e); are represented by semi-algebraic functions
(0,t9) — R which can be extended continuously to 0, and lim. maps such an element to
the value at 0 of the continuous extension.

4.1.2. Real closed fields

While for the most part we will be concerned with the field of real numbers, at some
points we will need to consider the non-Archimedean real closed extensions of R — namely,
the field of algebraic Puiseux series with coefficients in R. Recall from [5, Chapter 2] that
a real closed field R is an ordered field in which every positive element is a square and
every polynomial having an odd degree has a root in R.

Given a real closed field R and a finite set P C R[Y1,..., Y], a quantifier-free P-
formula ®(Y1,...,Ys) with coefficients in R is a Boolean combination of atoms P > 0,
P =0,or P <0 where P € P, and {Y1,...,Y;} are the free variables of ®. A quantified
P-formula is given by

U= <Q1X1> T (Qka) q)(Xla .. '7Xk>Y1a .. '7n)a

in which Q; € {V,3} are quantifiers and ® is a quantifier-free P-formula with P C
R[X1,..., Xk Y1,...,Y]. A formula with no free variable is called a sentence. The set
of all (y1,...,y¢) € R satisfying W is called the R-realization of ¥, and it is denoted by
R(¥,R"). A P-semi-algebraic subset of R is defined as the R-realization of a quantifier-
free P-formula.

It is a classical result due to Tarski [45] that the first order theory of real closed
fields is decidable and admits quantifier elimination. Thus every quantified formula is
equivalent modulo the theory of real closed fields to a quantifier-free formula. Later in
the paper we will use an effective version of this theorem [5, Theorem 14.16] equipped
with complexity estimates, as stated below.

Theorem 3 (Quantifier Elimination). Let P C R[X[1), ..., X[, Y]<a be a finite set of s
polynomials, where X[; is a block of k; variables, and Y is a block of £ variables. Consider
the quantified formula
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V(YY) = (@1 X)) (QuXpw) (Xpps -5 Xy Y)

where ® is a quantifier-free P-formula. Then there exists a quantifier-free formula

1 Py,(Y)<0,

Furthermore, we have

I < slhot D) (k1) (E4+1) GO (ko) O(k1)O(0)

J; < (kw1 (ki+1) JO(ku)-+O (k1)

)

Ni; < do(kw)”'o(kl),

and the degrees of the polynomials P;;,(y) are bounded by dOke)0k1) - Moreover, there
exists an algorithm ([5, Algorithm 14.5] (Quantifier Elimination)) to compute O(Y") with
complexity

(k1) (k1 1) (£41) gO(k) O (k1) O(0)
in D, where D denotes the ring generated by the coefficients of the polynomials in P. If
D = Z and 7 denotes an upper bound on bitsizes of P, then the bitsizes of the integers
in the intermediate computations and the output are bounded by TdCFe)OkE1)OW)

We also state here the complexity of the quantifier elimination for deciding the truth
or falsity of a sentence from [5, Theorem 14.14].

Theorem 4 (General Decision). Let P C R[Xpy, ..., X[y]<a be a finite set of s polyno-
mials, where X;) is a block of k; variables. Given a sentence ¥, there exists an algorithm
which decides the truth of U using

(ko t 1) (k1 +1) JO(ko)-+-O (k1)

arithmetic operations in D, where D denotes the ring generated by the coefficients of the

polynomials in P.
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4.1.3. Sign conditions, univariate representations, and Thom encodings
In our algorithms we will need to represent points symbolically whose coordinates are
algebraic over the ground field R. We follow the representation used in the book [5].
Let R be a real closed field. Given a finite family P C R[Y1,...,Yy], a sign condition
on P is an element of {—1,0,1}”, i.e., a mapping P — {—1,0,1}. The realization of a
sign condition o on a set Z C R’ is defined as

R(0, Z) = {y €z| ) sign(P(y) = o(P)}.

PeP

If R(o,Z) # 0, then o is said to be realized by P on Z. The set of all sign conditions
realized by P on Z is denoted by SIGN(P, Z).

An l-univariate representation is an (£ + 2)-tuple of polynomials u = (f, gos - - - ,gz) €
R[T)**2, where f and go are coprime. A real (-univariate representation of an x € R is
a pair (u, o) of an f~univariate representation u and a Thom encoding o of a real root t,
of f such that

_ (9 (ts) ge(ts) Vi
v <go<ta>""’go<ta>> ei

Let Der(f) := {/, fO @ f(deg(f))} denote a list of polynomials in which f® for
i > 0 is the formal i*"-order derivative of f and deg(f) stands for the degree of f. The
Thom encoding o of ¢, is a sign condition on Der(f) such that o(f) = 0.

The notion of Thom encoding of real roots of a polynomial will be extensively used
in this paper. The following proposition [5, Proposition 2.27] indicates that for any P €
R[X] and a root x € R of P, the sign condition o realized by Der(P) at x characterizes
the root .

Proposition 4.1 (Thom’s Lemma). Let P C R[X] be a univariate polynomial and o €
{=1,0,1}Per (") Then the realization of the sign condition o is either empty, a point, or
an open interval.

4.2. Local parametrization of complex algebraic curves

In this section, we recall basic definitions of affine and projective complex algebraic
curves and some facts about their local parametrizations that will play a role later in
the paper.

4.2.1. Algebraic curves and local parametrization
An algebraic subset of C* is the zero set of a set P of polynomials in C[Y3,...,Yy].
We denote

zero(P,CY):= {y eCt| /\ P(y) = O}.
PeP
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As a special case, an affine complex algebraic curve C is defined as the zero set of a
non-constant bivariate polynomial F' € C[X,Y], i.e.,

C :=zero(F,C?) = {(x,y) € C? | F(x,y) = 0}. (4.1)
If G € C[X,Y, Z] is a non-zero homogeneous polynomial we call the subset of P2(C)
D:={(x:y:2) € P*C)|G(x,y,z) =0}

projective complex algebraic curve.

Let C[[T]] be the ring of formal power series in T over C, and let C((T)) denote its
field of fractions. Let ¢ = > .° ¢, T € C((T)), where ¢; € C and r € Z. If ¢, # 0,
the integer r is defined to be the order of ¢, denoted by o(¢) = r. If ¢ = 0, we define
o(¢) = oo. We call a projective local parametrization of D a point (¢) := (¢1(T) : ¢2(T) :
¢3(T)) € P2(C((T))) such that

G(¢1(T), ¢2(T), $3(T)) = 0,

and for every non-zero ¢ € C((T)) it holds that ¢ - ¢; & C for some i. Given an affine
algebraic curve C and a projective local parametrization for its projective closure C*

(defined by the homogenization of F' in (4.1)), we define an affine local parametrization
of C as

(61(T)/63(T), ¢2(T) /¢3(T)) € C((T))*.

If mingeqi231{o(¢i)} = 0,° then the center of a projective local parametriza-
tion is defined to be (¢1(0) : ¢2(0) : ¢3(0)). Furthermore, if o(¢3) = 0, then
(01(T)/3(T), d2(T)/p3(T)) is an affine local parametrization of C with a finite affine
center.

A local parametrization of D is called reducible if ¢; € C((T*)) for some integer s > 1
and every ¢ = 1,2,3. Two local parametrizations (¢1 : ¢o : ¢3) and (11 : ¥ : 13) are
called equivalent if there exists a ¢ € C((T)) with o(¢) = 1 such that ¢; = ¥;(p) for
i=1,2,3. A place of C (resp. D) is an equivalence class of all its affine (resp. projective)
irreducible local parametrizations.

The center of a place is the common center of its local parameterizations. A place of
C with a center at a finite affine point p is often referred to as a branch of C at p, i.e.,
the set of all points (¢1(t), @2(t)) € C for ¢ in a neighborhood of zero, where ¢; and ¢o
are germs® of holomorphic functions at zero.

2 Such a projective local parametrization always exists [47, Page 94].
3 A germ of holomorphic functions at o means an equivalence class of all holomorphic functions which
yield the same values in a neighborhood of x¢.
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Fig. 1. The branches of cusp (left) and nodal cubic (right) at 0.

Example 1. The affine complex algebraic curve (so-called cusp) defined by
(X, Y)=Y?-X?3

has a single branch at (0,0), which is locally parameterized by (¢2,#3). On the other
hand, the complex curve (so-called nodal cubic) defined by

FBRX,Y)=Y?-X]-X?=(Y - XVX+ )Y +XVX+1)

has 2 branches at (0,0), which are locally parameterized by (¢, ¢1(t)) and (t, ¢2(¢)),
see Fig. 1. Notice that ¢1(t) and ¢2(t) are power series expansions of X+ X + 1 and

— XV X + 1, respectively.

We should also note that a point of a parametrization might be a center for more
than one branch of C.

Example 2 (Example 2.66 in [40]). Consider the algebraic curve C defined by
F(X,Y)=Y% —4Y* +4Y3 + 2X%Y? — XY? 4+ 2X%Y +2XY + X* + X3,

The curve C has two branches at 0. The roots corresponding to these branches have
ramification indices 1 and 2, see Fig. 2.

Notation 6. In this paper, a complex number is denoted by a + by/—1, where a,b € R,
and exp(it) = cos(t) + isin(t) is the complex exponential function. We use upper case
letters for indeterminates of polynomials and (convergent) power series, while lower case
letters are used for the arguments of (holomorphic) functions.
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Fig. 2. In this example, O is the center of two places of C.

4.2.2. Newton-Puiseux theorem

Let C{T'} denote the ring of convergent power series in T', and assume without loss
of generality that (0,0) € C. If 9F/9Y (0,0) # 0, then the implicit function theorem
provides an affine local parametrization (T,¢(T)) of F = 0 with center (0,0), where
@(T) € C{T}. In general, the Newton-Puiseux theorem [47, Theorem 3.1 of Chapter IV]
shows that an affine complex algebraic curve C has an affine local parameterization of the
type (T, ¢(T)) for some positive integer g. The proof of the Newton-Puiseux theorem
is constructive and uses the Newton polygon to show that the field of Puiseux series
C{T)) = U2, C((TY/*)) is algebraically closed.

Proposition 4.2 (Theorems 3.2 and 4.1 and Section 4.2 of Chapter IV in [/7]). Let
F(X,Y)=ao+a1Y + - +a,Y% € C[X][Y], (4.2)

where aqg # 0. There exist d (not necessarily distinct) Puiseuz series ¢;(X) € C(X) for
i=1,...,d such that

d
FOXY) = ad [J(V = ).

i=1

There exist k places of the curve F' = 0 with center at (0,0) corresponding to each ;
with a positive order and multiplicity k. Conversely, corresponding to each place (¢1, p2)
of C with center at (0,0) there exist o(¢1) roots of F = 0 with identical positive orders.

If a4(0) = 0 in Proposition 4.2, then F(0,Y) = 0 has less than d roots (including
multiplicity). In that case, there exist Puiseux series 1; in Proposition 4.2 with negative
orders, and they correspond to places with center at infinity.
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4.2.8. Weierstrass polynomial

The constructive proof of the Newton-Puiseux theorem yields an iterative procedure
to compute ramification indices of the Puiseux expansions in Proposition 4.2, see Sec-
tion 6.1. A specialized version of Proposition 4.2 can be obtained if F' is assumed to be an
irreducible Weierstrass polynomial. A polynomial W € C{X}[Y] is called a Weierstrass
polynomial of degree d if

W:a0+a1Y—i—---+ad_1Y‘i_1 —‘,—Yd,

where ¢;(0) =0 for j =0,...,d — 1. Given an irreducible W, the local parametrization
of Proposition 4.2 can be explicitly written in terms of the degree of W.

Proposition 4.3 (Section 7.8 in [17]). Let W be irreducible over C{X}. Then there exists
an affine local parametrization (T4, ¢(T)) with ¢(T) € C{T}, that describes the only
branch of the curve W = 0 at (0,0). Furthermore, W = 0 has d distinct roots near
x =0, and they are all described by

ic (exp 27r\/7(171)/d)X1/d> i=1,...,d.

j=1

Example 3. The condition on the irreducibility of W is an integral part of Proposition 4.3
and cannot be dropped. For instance, the reducible Weierstrass polynomial

W(X,Y)= (Y- X?)(Y?-X3=Y°-X3V3 - X?Y? + X5 c C[X,Y]

has roots Y = X3 and Y = £X %, while there is no local parametrization of the type
(T°,6(T)) around z = 0.

Let C{X,Y} denote the ring of convergent power series in X and Y. Then Propo-
sition 4.3 can be applied to any F' € C[X,Y] with F(0,Y) # 0. This fact immediately
follows from the Weierstrass preparation theorem.

Proposition 4.4 (Section 6.7 in [17]). Suppose that F' € C{X,Y} such that
F(0,Y)#0 and o(F(0,Y)) =d.

Then F can be uniquely written as F = UW, where U € C{X,Y} is a unit element and
W e C{X}[Y] is a Weierstrass polynomial of degree d. In particular, if F € C{X}[Y],
then U € C{X}[Y] holds as well.

Remark 5. Locally, a branch of C at a point (say 0 € C) is the germ of the zero set of an
irreducible factor of F over C{X}, see [17, Page 123]. For instance, F; = 0 in Example 1
has one branch at 0 because F; is irreducible over C{X}. On the other hand, F» has
two irreducible factors in C{X}[Y] and thus F» = 0 has two branches at 0.
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4.3. Analyticity of the central path

The higher-order derivatives of the central path with respect to p are all well-defined,
by the implicit function theorem. More concretely, the i*?-order derivatives of the central
path for ¢ > 1 can be obtained by solving

(A XDy =0, i=1,...,m,

m

doyAl+ 50 =0,
=1

I, i=1,
— Z’—ll (;)X(j)g(i—j)7 i>1,

j=

XOS(p) + X (u)S" = {

where (X @ y® S@)) denotes the i*"-order derivative, and the coefficient matrix is al-
ways non-singular. The analyticity of the central path at u = 0 follows analogously if
the Jacobian is non-singular at the unique solution, as a result of strict complementarity
and non-degeneracy conditions, see [2, Theorem 3.1] and [21, Theorem 3.1].

Obviously, the bounds (3.1) and (3.2) do not imply the boundedness of the derivatives
as u | 0, see e.g., Example 4. In fact, derivatives of the central path converge if and only
if the strict complementarity condition holds [18, Section 6] and [22, Theorem 1]. For
instance, consider an orthogonal basis Q := (Qp,Q7,Qxr) for the 3-tuple of mutually
orthogonal subspaces*

( Col(X ™), Col(S*™), (Col(X™**) + Col(S**))J‘) ,
where Col(-) denotes the column space of a matrix. If the strict complementarity fails,

then Q7 # {0}, and thus the first-order derivative of the central path fails to converge,
because

QL XD (1)QrQLS(WQT + QX (1)QrQESD (1) Q7 = I,
while both Q¥S(1)Q7 — 0 and Q¥ X (1)Q7 — 0 as p | 0.

Example 4. The minimization of a linear objective function over the 3-elliptope, see
Fig. 3, can be cast into a SDO problem:

1 x vy
min{4x4y22| z 1 =z EO}. (4.3)
y z 1

The unique solution of (4.3) is given by

4 The subspaces Col(X**) and Col(S**) are orthogonal by the condition XS = 0.
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" Central path
Fig. 3. The derivatives of the central path fail to exist at p = 0.
1 -1 1 4 2 =2
X*=[-1 1 =1), y*=(~4, -1, -, s*=| 2 1 -1/, (44)
1 -1 1 -2 -1 1

which is not strictly complementary.
The graph of Xj2(u) can be described as the set of all (u,t) with p > 0 satisfying

F(u,T):=2T%+ (2 — p/2)T* — (u+2)T —2 =0, (4.5)
1 T -T
T 1 =272+ uT/2+1 | =0,
-T 27?4 uT/2+1 1
p— AT 2 —2
2 —2/T—1 ~1 = 0.
-2 ~1 —2/T —1

By the uniqueness of (4.4), we must have Xj5(u) — —1 as p | 0. Then it follows
from (4.5) that

_ Xt (1)/2 + Xz (p)
6X% (1) + (4 — p)X12(p) — (0 +2)

as p J 0. This explains the tangential convergence of the central path in Fig. 3.

— 00

1
X5 ()

The algebraic curve F' = 0 in Example 4 has two branches at (0,—1) and (0,1),
as demonstrated by Fig. 4. By invoking the “Algcurves” package in Maple® we can
numerically compute the Puiseux expansions of all roots of F' = 0 near u = 0 as follows

V8 11 11vV8 5 3 , 1218

g8 M T3l T 0P T 512" T 1048576"
15 5 19405\8 1
_|_ /u u2 sy,
32768" T 268435456
V8 1 11v8 s 3 5, 121V/8 -

1
To(u) = —-1— Y25 4 — 4 Y23 2 —2evVE
2(1) g Tt o0us ™ T 512t T T0ass76

5 Available at https://www.maplesoft.com/.


https://www.maplesoft.com/

S. Basu, A. Mohammad-Nezhad / Advances in Applied Mathematics 156 (2024) 102670 19

/
-

Central path

Infeasible path |
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Fig. 4. T1(p) (the upper red segment of the branch) is the expansion of Xi2(p); T2(p) (the lower red
segment of the branch) is the expansion of a semi-algebraic function converging to X;5 from the exterior
of the positive semi-definite cone; T5(u) (the green segment) is the expansion of a semi-algebraic function
converging to an infeasible value. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

15 5 194058
—‘u — —NJQ + ey
32768" ~ 268435456

3 3 15 15 345

T =1 - Y2 3 _ 4 5

slu) =1+ J6i+ 5ueh” ~ Ta3aat ~ 262124" T 1677216"

2 1869
335544321 T 1294967296" :

+

where T} is the Puiseux expansion of the X5 coordinate of the central path. The order
of the Puiseux series T} indicates the non-Lipschitzian convergence

X (1) = X**|| = O(/p) and [[S(u) = 5™ = O(Vn).
5. Reparametrization of the central path

Although the Lipschitzian bounds (3.1) fail to exist in the absence of the strict com-
plementarity condition, we can still exploit local information around the center point to
recover the analyticity of the central path. This remedial action can be applied to Exam-
ple 4, where the ramification index of T} suggests the local parametrization (u2, ¢(u))
of the curve F' = 0 around p = 0, where

V8 1 118 3 1218 15
plp) =14 —p+ —p’ — ———p — ——pt - 1’ +
8 32 2048 512 1048576 3276

6
8,u +...,

see Fig. 5. Thus, one may adopt a reparametrization p — p” under which the central
path is analytic at ;= 0, where p is a positive integer multiple of the ramification index
of the Puiseux expansion.
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Fig. 5. The algebraic curve (4.5) after the reparametrization u — p2. The reparametrized central path (red
segment) is analytic at g = 0.

In the worst-case scenario, the magnitude of the optimal p depends exponentially

on n.

Example 5 (Ezample 3.5 in [1/]). Consider the following SDO problem in dual form (D):

Ly oy Yn—1
vy y2 0 0
max{—yn|S— y2 0 ys i0}7
N 0
Yn—1 0 0 Yn
which has a unique solution (y**,S**) with y/* = 0 for ¢ = 1,...,n. In this

case, ya(u) = O(ur(n_m), which implies a reparametrization p +— p” with optimal
p Z 2n—2_

In view of Example 4, our goal is to adopt a semi-algebraic approach to identify
bivariate polynomials, analogous to F'(u,T) in (4.5), that describe the tail end of the
central path in a coordinate-wise manner. All we need then are the ramification indices of
the Puiseux expansions corresponding to the roots of these bivariate polynomials around
© = 0, which give rise to a feasible p for Problem 1.

The basis elements of our semi-algebraic approach are the real univariate representa-
tion of the central path for sufficiently small p, the quantifier elimination (see Theorem 3),
and the Newton-Puiseux theorem (see Proposition 4.2), which we elaborate on in Sec-

tions 5.1 and 5.2.
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5.1. Real univariate representation of the central path

The central path system (1.2) can be considered as a p-infinitesimally deformed poly-
nomial system G C Z[u][V1, ..., Vz], i.e., a p-infinitesimal deformation of the polynomial
system

{Avec(X) =b, ATy +vec(S—C) =0, vec(XS) =0},

whose zeros belong to C{u)™. Without loss of generality, we consider the restriction of
the central path to the interval (0, 1]. Recall that the central path is uniformly bounded,
i.e., there exists, see Lemma 5.1, a rational € > 0 such that

(X (), y(p), S()Il < 1/e, Y e (0,1]. (5.1)

Since we are interested in the central path, which is bounded over (0, 1], we only char-
acterize the bounded zeros of G in R{u)™, which are defined as

zeroy, (G, R(p)") := zero(G, R{u)") NR{w)y,

where R(u)}" denotes the subring of R(u)™ consisting of elements which are bounded
over R. The central path for sufficiently small positive yu is a bounded solution of
zero(G,R(u)™). Therefore, the limit point (X**,y**, 5**) is contained in
lim,, zero, (G, R (1)™).

5.1.1. Parameterized bounded algebraic sampling

Our approach to characterize the bounded zeros of G is to compute real univari-
ate representation of the central path when p is sufficiently small; this describes the
coordinate v; (1) of the central path as a rational function of p and the roots of a uni-
variate polynomial. To that end, we define the two polynomials Q € Z[u, V1,..., V5] and
Qe Zlu, Vh, ..., Vii1] as follows

Q= [|Az —b|]> + |[ATy + s — c[|” + || vec(X S — puI,,) ||,
Qi=Q*+ (V2 +-+V2 ) -1 (5.2)

where ¢ is defined in (5.1). Notice that for every fixed p € (0, 1], zero(Q(u),R™*!) is
non-empty (it contains a central solution), and

| zero(Q (), R™ 1)

is bounded, because zero(Q(u),R™*!) is the intersection of the cylinder based on
zero(P,,R™) and an n-sphere, where
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Algorithm 1 Real univariate representation of the central path.

Input: The polynomial @ € Z[u, Vi,..., Vayi].

return The set U of parametrized univariate representations u and Thom encodings o of roots of f &
Z[p][T); There exists a real univariate representation (u, o) with u € U which describes the central path
for sufficiently small positive p, see Lemma 5.2.

Procedure:

(A) Generate the set U of parameterized univariate representations by applying [5, Algorithm 12.18]
(Parameterized Bounded Algebraic Sampling) with input Q and parameter p.

(B) Compute the ordered list of Thom encodings of the roots of f in R{u) by applying [5, Algo-
rithm 10.14] (Thom Encoding) to each f € Z[u][T] in the set U.

(C) Decide which ((f, g), o) describes the central path for sufficiently small positive p by applying [5,
Algorithm 14.3] (General Decision) to (5.4).

P = {Avec(X) =b, ATy +vec(S—C) =0, vec(XS — pnl) =0}

The idea here is to utilize the parameterized bounded algebraic sampling algorithm [5,
Algorithm 12.18] with input Q to describe, for every 1 € R, a finite set of sample
points that meets every connected component of zero(@(u), ]Rﬁ“), see also [5, Proposi-
tion 12.42]. The description of these sample points is given by a set U of parameterized
univariate representations

U= (f,g) = (fv (QOagla cee 7gﬁ+1)) € Z[/IHT]TH_?)‘

We will prove in Lemma 5.2 that for sufficiently small positive u, there exist a univariate
representation u and a real root ¢, of f with Thom encoding ¢ such that

_ gi(u, tU)

- eR, i=1....7, 5.3
g0 t) (5:3)

vi (1)

where go(p1,t5) # 0. At the end, the problem of choosing the right ((f,g),o) is a real
algebraic geometry problem and can be decided by the quantifier elimination algorithm.

To see this, let (X (1), 9(1), S(1)) be associated to ((f,g), o), and let, without loss of
generality, C,,, Cs € Z[u][T, A] be the characteristic polynomials of X (x) and S(y), re-
spectively. Then ((f, g), o) represents the central path, when g is sufficiently small, if the

following two Q-sentences with Q C Z[u][T, A] are both true (see [5, Proposition 3.17]):

(3T)(VA) (sign(fD) = 0(f9). j € Zz0) A (~(CalT.A) = 0) V (A > 0)),

. ) (5.4)

3T)(VA) (sign(f9) = o(f9), j € Zso) A (—(Cs(T,A) =0) V (A >0

Now we can apply [5, Algorithm 14.3] (General Decision) to (5.4).
Algorithm 1 summarizes our symbolic procedure for the real univariate representation

of the central path.
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5.1.2. Complexity and the proof of correctness

The correctness of Algorithm 1 follows from Theorem 4, and Lemma 5.2 below, and its
complexity follows from the complexity of [5, Algorithm 12.18] and [5, Algorithm 14.3].
First, we need the following quantitative result.

Lemma 5.1. The polynomial Q in (5.2) has coefficients with bitsizes bounded by
790(mtn?),

Proof. All we need here is the magnitude of 1/¢ in Q, which is also an upper bound on
the norm of central solutions for all u € (0, 1], see (5.1). From the central path equations
n (1.2) it follows that (X (u) — X (1), S(n) — S(1)) = 0, which results in

(X (), S(1)) + (S(w), X (1)) = n(p + 1)
Since the central solutions are positive definite,
(X (p), S(1)) >0, (S(n), X(1)) >0,
and thus for all 4 € (0,1] we have
(X(p),8(1)) <2n and (S(n), X(1)) < 2n.

Furthermore, the centrality condition XS = I implies that

2n
Amin(S(1))

2n
)\min(X(l))

By the integrality of the data, see Assumption 2, there exists [6, Theorem 1] a ball

”X(N)” < < 2n)‘maX(X(1))a
Y € (0,1]. (5.5)

1Sl < < 2nAmax(5(1)),

m 7L2 B
of radius r = 272" containing every isolated point of zero(P’,R"™), including
(X(1),y(1),5(1)), where

P’ = {Avec(X) =b, ATy + vec(S—C) =0, vec(XS —1I,) =0}
This also gives an upper bound on Apax(X (1)) and Apax(S(1)) which, by (5.5), yields

27_20(m+n2)

Xl (1S ()l = o Vee(01].

m 712
Now the result follows when we choose 1/e = gr20(m
Lemma 5.2. The polynomials (f,g) € U have degree O(1)" Tt and their coefficients have

bitsizes 720(m+"2), where T is an upper bound on the bitsizes of the entries in A, C,
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m ’!L2
and b. Furthermore, there exist a Thom encoding o, w € U, and v = 972%™ cueh,
that (u, o) describes the central path for all u € (0,1/7).

Proof. The output of [5, Algorithm 12.18] is a set of (7 + 3)-tuples of polynomials (f, g)
in Z[u, T] of degree O(degy (Q))™**, where degy,(Q) = 8 is the degree of Q with respect
to V. The bound on the bitsizes of the coefficients follows from Lemma 5.1 and [5,
Algorithm 12.18].

Since a central solution is an isolated solution® of zero(Q(,u),Rﬁ), the projections
of the real points associated to u to the first n coordinates contain the central path
when p € (0,1]. Since there are finitely many (n + 3)-tuples of polynomials in U, there
must exist (f,g) € U and pg > 0 such that (f,g) describes the central solutions for all
p € (0, po)-

Let ((f,g9),0) be a real univariate representation for which (5.4) is true (i.e., it
describes the central path for sufficiently small p), where (f,g) € Z[u,T)"*? (after
discarding gr+1), and consider the following formulas:

(1) = (3T)(VA) (sign(f9) = o(fV)), j € Zx0) A (~(Co(T,A) = 0) V (A > 0)),
D, (p) = (AT)(VA) (sign(fD)) = o(f9)), j € Zzo) A (~(Cs(T,A) = 0) V (A > 0)).

Notice that R(®,,R) N R(Ps,R) # (. By Theorem 3, &, and P, are equivalent to
quantifier-free P,- and P,-formulas, where P,., Ps C Z[u] are of degrees 20(m-+n%), By [5,
Lemma 10.3] and Lemma 5.1, the absolute values of all non-zero real roots of polynomials

_ 27_2()(m+n2)

in P,, Ps are bigger than 1/7, where v . This completes the proof. 0O

Now, we can prove the complexity of Algorithm 1.

’Y _ 2T20(m+n2)

Theorem 5. There exist and an algorithm with complezity 20(m+n?) 4o

compute ((f,g),0) which represents the central path for all p € (0,1/7).

Proof. The complexity of Step A in Algorithm 1 is 20(m+”2), which is determined by [5,
Algorithm 12.18] and noting that tdeg#(Q) = 6, where tdeg#(Q) is the total degree of
monomials in @ containing p. The complexity of Step B is determined by the number
of parametrized univariate representations (f,g) in U, which is O(deg(Q))™*! and the
complexity of [5, Algorithm 10.14] applied to every (f,g) € U. Step C decides the truth
or falsity of (5.4) for every real univariate representation ((f,g),o). By Theorem 4, all
this can be done using 20(m+n”) arithmetic operations. The second part of the theorem

is the direct application of Lemma 5.2. O

6 This follows from the implicit function theorem.
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5.2. Puiseuz expansion of the central path

Existence of the reparametrization in Problem 1 can be shown by invoking the output
of Algorithm 1 and Proposition 4.2. By substituting the roots t € R{u) of f(u,T) =
0, it is easy to see that the i*" coordinate of the central path can be represented by
Z;io cij,uj/qi with ¢;; € R, and ¢; € Z (see [47, Theorem 1.2 of Chapter IV]).” Then
one can choose p to be (an integer multiple of) the least common multiple of ¢; over
ie{l,...,n}.

An alternative approach, which we will follow in Section 6, can be given in terms
of a semi-algebraic description of the coordinates. More precisely, let ((f,g),o) with
(f,9) € U being the real univariate representation of the central path for all sufficiently
small p, see Theorem 5. Then the graph of v;(u), when p is sufficiently small, can be
described by the following quantified formula

(3T) (Vigo — g: = 0) A (sign(f9(u, 7)) = o (), j=0,1,...). (5.6)

By Theorem 3, (5.6) is equivalent to a quantifier-free P;-formula with P; C Z[u, V;].
Furthermore, there exists a polynomial P; € P; such that P;(p,v;(p)) = 0 for suffi-
ciently small 1 and P;(0,v}*) = 0 (because (5.6) describes the graph of a semi-algebraic
function). Note that P; € Z[u, V;] in Theorem 3, as the output of the quantifier elimina-
tion, is the product of a finite number of polynomials in Z[u, V;], see e.g., the proof of
Lemma 2.5.2 in [13, Page 36]. Therefore, P; need not be irreducible over C (or even R).
Nevertheless, P; has an absolutely irreducible factor with real coefficients, whose zero set
contains the graph of the i*" coordinate of the central path when p is sufficiently small.

Proposition 5.1. The polynomial P; has an absolutely irreducible factor R; € Rlu, V;]
such that R;(p,vi(p)) = 0.

Proof. Let R; € C[u, V;] be an absolutely irreducible factor of P; whose zero set contains

the graph of the i*! coordinate of the central path. Then we assume that R; can be written
as

R; = Re(R;) + vV—-1Im(R;),

where Re(R;), Im(R;) € R[u, V;] are the non-zero real and imaginary parts of R; obtained
from the real and imaginary parts of their coefficients. Then R;(u,v;(1)) = 0 indicates
that

Re(Ri)(p, vi(p)) = Im(R;) (p, i) = 0

7 In case of the central path, j must be non-negative, since otherwise the root would be unbounded.
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for all sufficiently small positive p, which in turn implies that Re(R;) and Im(R;) have
a common factor, see e.g., [41, Page 4]. However, this would contradict the absolute
irreducibility of R;. O

Remark 6. For complexity purposes, we do not include any factorization step in Algo-
rithm 2. Instead, we choose P; to contain only the tail end of the central path, i.e., for
sufficiently small positive p.

Let P, := Zj o Pij (1 )V/ from Theorem 3 applied to (5.6), where pi;(u) € Z[u] and
d; := degy, (P;). By Proposition 4.2, P; can be factorized as

d;
Py, Vi) = pia, ( HV Yie(p i=1,...,n, (5.7)

where the ramification index of ¥, is denoted by ¢;¢. Therefore, there exists a unique
(multiple) factor ¢; in (5.7) such that

o0

vi (1) = Yie, (1 Z 17/ %4 for all sufficiently small p > 0, (5.8)
=0

where ¢;; € R and ¢;0 = v;™*

Remark 7. Although zero(Q(u), R™*!) is bounded over all x, not every root of P; = 0
near £ = 0 is bounded, unless p;4, (0) # 0.

Remark 8. Notice that ¢;s, € R(u) because v; (1) is semi-algebraic [5, Proposition 3.17].

Note that P, = 0 may have more than one branch at (0,v}*), because P; is not nec-
essarily irreducible over C{u},® see Example 2. However, one of these branches contains
the graph of the i*" coordinate of the central path, when g is sufficiently small, see
Proposition 4.2.

Remark 9. By Proposition 4.2, if v;,, is not a multiple root of P; = 0, then ezactly one
of the branches of P; = 0 contains the graph of the i*" coordinate of the central path,
when p is sufficiently small.

This branch, in analogy with Example 4, is described by a set of g;,, distinct Puiseux
expansions, including (5.8),

Vi (@) = cij<exp(27r\/—1(k— 1)/qigi)ul/q“~’i>]7 k=1,...,q0,,

Jj=0

8 Remember that a branch of P; = 0 is the germ of the zero set of an irreducible factor of P; over C{u}.
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which they all converge to (0,v;*). Thus, letting g; be the ramification index of ¥, (1),
q the least common multiple of all ¢, over ¢ € {1,...,n}, and p be a positive integer
multiple of ¢, then we get the series

Yie,(p?) € C{pn}, i=1,...,n,

which are all convergent in a neighborhood of = 0. This indicates that v(p”) is analytic
at u = 0, providing an explicit answer to Problem 1.

Remark 10. We should note that ¢ is well-defined and independent of the P; and the
semi-algebraic description (5.6), see [5, Theorem 3.14].

Remark 11. The authors in [24, Page 4] indicate the analyticity of v(uf) near pu = 0
in terms of the cycle number of the central path, see also [24, Remark 2]. However, in
contrast to [24], our algorithmic derivation of p is explicit in terms of the degrees and
Puiseux expansions of the defining polynomials P;.

Now, we can provide the proof of Theorem 1.

Proof of Theorem 1. By Theorem 3, the quantifier elimination applied to (5.6) returns
quantifier-free formulas involving polynomials P; € Z[u, V;] of degrees 20(m+n?)  With
no loss of generality, see Section 6, we can assume that

Pi(0,V;) £0, P0,0)=0, i=1,...,"

By Proposition 4.4, P; is the product of a Weierstrass polynomial W; € C{u}[V;] of
degree degy, (P;) and a unit U; € C{u}[V;]. We may also assume that W; is irreducible
over C{u} (by only considering the unique component of W; whose zero set contains the
graph of the i*" coordinate of the central path, see Remark 5). Now, the application of
Proposition 4.3 to W; implies that

qie, < degy. (P;), i=1,...,n.
Finally, we get the result by noting that degy, (P;) = 20(m+1%) and ¢ < H?:l g. O
Remark 12. In the presence of the strict complementarity condition, ¢ = 1 must be
exactly 1, since otherwise the analyticity of the central path would fail at u = 0 [22,
Theorem 1].
Remark 13. We should note that g;¢, from two different coordinates need not be identical.

For instance, the ramification indices of the coordinates of the central path in Example 5
with n =4 are 1, 2, or 4:
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O(m) 0  Oui) O(uz) 0
| o owh o 0 | O@uH)
= o 0 o o | o |
O(t) 0  Oi) 1 O(p)
1 0 O(pi) Op?)
| oo owh 0 o
SW=lowh 0 owh o
O(uz) 0 0 O

6. A symbolic algorithm based on the Newton-Puiseux theorem

In this section, we address the complexity of computing a feasible p using Algorithm 2,
which applies the Newton-Puiseux theorem to P;.

Given the real univariate representation ((f, g), o) from Algorithm 1 (after discarding
gn+1), we choose the semi-algebraic description (5.6) and apply the quantifier elimination
algorithm to obtain a finite set P; C Z[u, V;]. We then identify a polynomial P; € P;
such that P;(u,v;(p)) = 0 for sufficiently small px. This can be done by computing
SIGN(Der(f), Vi;), see Section 4.1.3, where

v, (Rij)

Vij 1= zero (gé‘eg Rij (1, gi/go),R<u>) (6.1)

for every R;; € P; and then checking o € SIGN(Der(f), Vs;).
6.1. Newton-Puiseux algorithm

By the proof of the Newton-Puiseux theorem, see [47, Page 98], the roots of P, = 0
near p = 0 are constructed as

pr('u) — aillffﬂ{“ + ai2M7i1+'Y'i2 + aiSM’Yu-‘r’Yiz-i-’Yi?, I

where ;5 corresponds to the segment s (described by the equation y + v, 12 = 541) of
the Newton polygon of P;, v;1 € Q is the negative of the slope of the segment s of the
Newton polygon of P;, and a;; € C is a (multiple) root of a polynomial in Z[T] by which
the terms of the lowest order of 1 in the polynomial

Pi(p, (Vi + 1)) (6.2)
vanish (see [47, (3.4) on Page 98]). Notice that every segment s of the Newton polygon

of P; determines the order «;; of a set of Puiseux series, as root(s) of P, = 0 near p = 0.
In particular, for the Puiseux series (5.8) we have ;1 > 0, because 1, (1) is convergent.
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This procedure continues by forming the Newton polygon for
P = P P (09 (Vi aig)), G =12, (6.3)

where Pi(l) := P;, choosing a segment 7;(;j;+1) > 0, and finding a (multiple) root ai(j+1)
of a polynomial by which the terms of the lowest order of i in the polynomial

P 000 (V; + 7)) (6.9

vanish. The multiplicity of a;; decreases monotonically, and it stabilizes at a constant
integer after a finite number of iterations, say /V;. Thus, successive v;; have bounded de-
nominators, and ¢; is equal to the smallest common denominator of v;1, ..., vin, (see [47,
Page 100]).

Remark 14. The multiplicity of a;; eventually stabilizes at 1 if P; = 0 has no multiple
root in C(u). By [47, Theorem IV.3.5], this can be guaranteed if

degy; (ged(P;, 0P;/9V;)) = 0.
6.2. Symbolic computation

We apply a symbolic version of the Newton-Puiseux algorithm in [49, Algorithm 1]
to compute g; for all bounded Puiseux expansions of P;(u,V;) = 0 with limit equal to
v}*. The idea of [49, Algorithm 1] is to compute the exponents ~;; [49, Algorithm 1,
Step 1] and then carry the roots symbolically using the minimal polynomials S;; € Z[T
of a;; [49, Algorithm 1, Step 6] and the minimal polynomials Z;; € Z[T] of the primitive
elements «;; of the extension field Q(a;1,...,a:5), o;; being an algebraic integer such
that Q(a;) = Q(as1, ..., as5) [49, Algorithm 1, Step 9].

For the purpose of computing the ramification indices, the Newton-Puiseux algorithm
in [49, Algorithm 1] continues until a;; becomes a simple root of (6.4). To that end, we re-
place P; by P;/ Cont,,(P;), where Cont, (P;) is the content of P; € Z[u][V;], i.e., the great-
est common divisor of the coefficients of P; in Z[u], and we set P; := u® P;(u, V;/u%),
where o; and 6; are non-negative integers satisfying

(6.5)

a; + o(pia,) = 0id;,
Oéi-‘rO(pij)Zjei, jZl,...,di—l,

where d; = degy, (P;). This technique [28, Page 247] ensures the boundedness of the roots
of P; = 0. We also assume that P; is a square-free polynomial for every i = 1,...,n, see
Remark 14. Notice that if

degy;, (ged(P;, 0P;/0V;)) > 0,



30 S. Basu, A. Mohammad-Nezhad / Advances in Applied Mathematics 156 (2024) 102670

then P; has a multiple factor in Z(u)[V;i] [5, Propositions 4.15 and 4.24], and by [47,
Theorem 1.9.5] P; has also a multiple factor in Z[u, V;]. In this case, we can compute the
separable part of P; in Z[u, V;] (which is also square-free) by applying [5, Algorithm 10.1]
to P, and OP;/0V;, see [5, Corollary 10.15].

Proposition 6.1. The Newton-Puiseuz algorithm in [[9, Algorithm 1] computes the ram-
ification indices in 20(m+n’) jterations.

Proof. The maximum number of iterations follows from the bound
N; < 4deg, (P;) degy, (P;)?

in [49, Page 1170]. O

6.3. On computing the optimal p

In order to obtain the optimal p, one would still need to identify a factor in (5.7) which
describes the graph of the i*" coordinate of the central path. However, this identification
cannot be made by solely using the truncation of a Puiseux expansion (although we
can generate as many terms as we want using the technique in [28]). More precisely,
the Newton-Puiseux algorithm only computes a truncation of the Puiseux expansion of
v; (1), which, in general, will not satisfy (5.3) exactly. On the other hand, we should
also recall that P; = 0 may have more than one branch at (0,v}*), because P; is not
necessarily irreducible over C{u}, see Example 2. Thus, an optimal p may not be always
obtained using this approach.

To get as smallest feasible p as possible, we first check the irreducibility of P;. If it
holds, then zero(P;, C?) has exactly one branch at (0,v;*), which contains the graph of
the i*" coordinate of the central path. Otherwise, we identify all branches of P; = 0 at
(0,v}*). We use the following technical result in Algorithm 2 to decide whether P; is
irreducible over C{u}.

Proposition 6.2. Suppose that all zeros of P; are bounded and P; is square-free. Then P;
is irreducible over C{u} iff P, = 0 has a Puiseux expansion with a ramification index
equal to degy. (F;).

Proof. By the assumptions and Proposition 4.2, a Puiseux expansion with ramification
index g;s implies a branch (T'%=,¢(T)) and ¢;s distinct roots of P; = 0. Thus ¢;s =
degy, (P;) implies that P; = 0 has exactly one branch at (0,v;*), since otherwise P; = 0
would have more than degy, (P;) bounded roots. Analogously, ¢;s < degy, (F;), implies
that P; = 0 must have more than one branch and thus P; must have more than one
factor in C{u}[V;]. O
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By Proposition 6.2, if P; is irreducible over C{u}, then ¢; = degy, (F;). Otherwise,
we compute the product of ramification indices over all bounded Puiseux expansions of
P, = 0 with limit v;*, i.e., only segments with slopes < —0;, see (6.5), which yield a

Puiseux expansion with ;1 (v;*) = 0. Let (4, 5) with @ := (f, (go, 1, -, r)) € Z[T)" >
be the real univariate representation of v** from [4, Algorithm 3.2], and let

Vl** = Zero (g(()leg(sﬂ)sﬂ (§Z/§O)a R) . (66)

Then given a truncation of a Puiseux expansion of P; = 0 from [49, Algorithm 1], the

truth or falsity of S;1 (v}*) = 0 can be decided by computing SIGN(Der(f), {0}) if vi1 > 0;

or SIGN(Der(f), V;*) if v;1 = 0; and then checking the inclusion & € SIGN(Der(f), {0})
or & € SIGN(Der(f), Vi*).

Finally, we compute p as the least common multiple of all p;, where p; is the product
of all distinct ¢;s corresponding to the above Puiseux expansions of P; = 0. The outline

of the above procedure is summarized in Algorithm 2.

Remark 15. It is clear that p = H?Zl(degvi (P;)!) will be a feasible integer for Problem 1.
However, analogous to the proof of Theorem 1, our goal is to compute the smallest
possible feasible p.

Remark 16. It is worth noting that Algorithm 2 outputs the optimal p as long as the
branch of P; = 0 containing the graph of the i*" coordinate of the central path is isolated
for every ¢ = 1,...,n. In particular, an optimal p is obtained if P; is irreducible over
C{up} foralli=1,...,n.

Example 6. It is easy to see from Fig. 4 that F' = 0 is not irreducible over C{u}, because
it involves two isolated branches at (0, —1) and (0, 1). However, Algorithm 2 still returns
the optimal p = 2 for Example 4.

6.4. Complexity and the proof of correctness

The correctness of Algorithm 2 follows from the correctness of Algorithm 1, [4, Algo-
rithm 3.2], Theorem 3, and [49, Algorithm 1]. Step D identifies P; for every i = 1,..., 7.
Step F' guarantees that the roots of P; = 0 are all bounded, and Step G guarantees that
the Puiseux expansions of P; are all distinct. Step H checks the irreducibility of P; using
Proposition 6.2. Step I applies the symbolic Newton-Puiseux algorithm to every segment
of the Newton polygon of P;, if P; is not irreducible over C{u}. Step J decides the truth
or falsity of S;1(v;*) = 0 for all truncated Puiseux expansions obtained from Step I and
thus identifies the branches at (0, v;™*).

Now, we can prove Theorem 2. First, we need the following results.
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Algorithm 2 Reparametrization based on the Newton-Puiseux theorem.

Input: The polynomial Q € Z[u, Vi,..., Vayi]; An empty set £; for every i =1,...,7
return A feasible p for which (X (u”),y(p”), S(p”)) is analytic at p =0
Procedure:

(A) Apply Algorithm 1 to @ and let the output be ((f, g) ),0).

(B) Apply [4, Algorlthm 3.2] to Q and let the output be ((f 3),5).

(C) For every ¢ = 1,...,n, apply the quantifier elimination algorithm [5, Algorithm 14.5] with in-
put (5.6). Let the output be a finite set P; of polynomials in Z[u, V;].

(D) For every ¢ = 1,...,n and every R;; € P; apply [5, Algorithm 10.13] (Univariate Sign Determi-
nation) with input ggcgv’(R”>Rij (1, 9i/g0) and Der(f), and let SIGN(Der(f), V;;) be the output,
see (6.1). If o € SIGN(Der(f), Vi;), then choose R;; as the polynomial whose zero set contains the
graph of the i'® coordinate of the central path for sufficiently small p. Set P; := R;;.

(E) For every i =1,...,n compute Cont, (P;) by applying [5, Algorithm 10.1] iteratively to the coeffi-
cients of P; (as a polynomial in V;). Then replace P; by P;/ Cont, (P;).

(F) For every ¢ =1,...,n apply the procedure (6.5) to P;.

(G) For every i =1,...,n apply [5, Algorithm 10.1] with inputs P;, dP; /0V; € Z[u][V;] and replace P;
by its separable part.

(H) For every ¢ = 1,...,7n apply the symbolic Newton-Puiseux algorithm [49, Algorithm 1] to only one
segment of the Newton polygon of P;. If for the given segment the ramification index of the Puiseux
expansion is equal to degy, (P;), then set p; = degy, (P;). Otherwise, go to Step I.

(I) For every i failing the condition of Step H, apply the symbolic Newton-Puiseux algorithm [49,
Algorithm 1] to P; for the rest of segments s with negative slope of magnitude > 6;, see (6.5). Let
the output be g¢;s, vi1, and the minimal polynomial S;; € Z[T].

(J) Given ~v;1 and S;; for every 4 from Step I, if ;1 > 60;, then apply [5, Algorithm 10.11] (Sign Deter-
mination) with input {0} and Der(f). If 7,1 = 0;, then apply [5, Algorithm 10.13] (Univariate Sign
Determination) with input ggeg(s“)sn(gi/go) and Der(f). Let the output be SIGN(Der(f), {0})
or SIGN(Der(f), V}*), respectively, see (6.6). If & € SIGN(Der(f), {0}) or & € SIGN(Der(f), V™),
then add s to £;.

(K) For every ¢ from Step J compute p; := HSELL qis- Then compute the least common multiple of p;
over t =1,...,n.

Lemma 6.1 (Theorem 3.9 in [}]). There exists an algorithm to compute the real univariate

representation (u, ) using 20(m+n?) grithmetic operations, where

deg(f), deg(g) = 200+,

Lemma 6.2. The ramification indices of Puiseux expansions of P; = 0 can be computed

using 20(

2 . . .
mAn®) grithmetic operations.

Proof. The result is immediate from [49, Theorem 1] and Theorem 3. The total com-

plexity of computing a ramification index [49, Theorem 1] is

(degy, (P) - deg,, (P;))°W,

where by Theorem 3 we have

degy, (P;), degH(Pi) — 90(m+n®) 4

Proof of Theorem 2. The overall complexity of Algorithm 2 is dominated by the com-

plexity of Algorithm 1, [4, Algorithm 3.2], and the complexity of the quantifier elimina-

tion [5

, Algorithm 14.5]. By Lemmas 5.2 and 6.1, Theorem 3, and Theorem 5, Steps A
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to C run with complexity 2O(m+"2), and the quantifier elimination applied to (5.6) out-
puts quantifier-free formulas with polynomials of degree 20(m+1%) and coefficients of
bitsizes 720(m+7*) The complexity of Steps D to G and Steps J and K depend on
n, card(P;), deg(R;;), deg(f), deg(f), card(Der(f)), and card(Der(f)), and they are
all 20(m+n%), Steps H and I apply the Newton-Puiseux algorithm to segments of the
Newton polygon of P; which, by Lemma 6.2, have the total complexity 20(m+n?) The
doubly exponential bound on the magnitude of p follows from the proof of Theorem 1,

degy. (P;) = 20(m+n%) " and the inequality

degvi(Pi)
7] 0

HQisé ’76 €

SEL;

Finally, we should note that there exist procedures (e.g., based on Hensel’s lemma [27,
Theorem 4.2.5], Proposition 4.4, and the Newton-Puiseux algorithm) for factorization
of polynomials over C{u}, see e.g., [1,48]. However, such factorization procedures over
C{p} would only generate a finite number of terms from each factor. Thus, even with the
presence of such procedures, we would not be able to identify the branch of the central
path, because only a truncation of the convergent power series, i.e., the coefficients of an
irreducible factor, would be available to us.

7. Concluding remarks and future research

In this paper, we studied the analyticity of the central path of SDO in the absence of
the strict complementarity condition. In essence, the superlinear convergence of primal-
dual TPMs rests on the analyticity of the central path at the limit point, which is
guaranteed under the stronger condition of strict complementarity. By means of the semi-
algebraic description (5.6) and the Puiseux expansions of the roots of P; = 0 for every
i=1,...,n, we developed a symbolic algorithm to compute a reparametrization y — u?
such that (X (), y(p?), S(p?)) is analytic at g = 0, in which p attains its optimal value
at ¢, i.e., the least common multiple of ramification indices of the Puiseux expansions
of v;(p). Our semi-algebraic approach provides an upper bound 20(m*+n’m+n®) o q
and leads to Algorithm 2 for computing a feasible p. Algorithm 2 computes a feasible
p, using 20(m+n) arithmetic operations, as the least common multiple of [ ], g;s, where
the product is over all distinct ramification indices corresponding to bounded Puiseux
expansions with limit v;*. We proved that a feasible p from Algorithm 2 is bounded by
220(m+n2). In case that the polynomials P; are all irreducible over C{u}, Algorithm 2
outputs the optimal p.

Real analyticity of a semi-algebraic function Broadly speaking, Algorithm 2 can be
modified to guarantee the analyticity of any semi-algebraic function. In contrast to com-
plex analyticity, which can be verified using the Cauchy-Riemann conditions, checking
the real analyticity is a harder problem. Suppose that the graph of a bounded semi-
algebraic function f : R — R is described by a quantified formula ¥. Then, as a sufficient
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condition, the analyticity of f at a given g € R is confirmed if an analog of Algorithm 2
with input ¥ returns p = 1. However, the output would be inconclusive if p > 1. The
reason lies in the fact that neither Algorithm 2 nor its analog for an arbitrary semi-
algebraic function f distinguishes between different branches, and therefore p may not
be optimal. This is the subject of our future research.
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