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ABSTRACT We consider the problem of multipath entanglement distribution to a pair of nodes in a
quantum network consisting of devices with nondeterministic entanglement swapping capabilities. Multipath
entanglement distribution enables a network to establish end-to-end entangled links across any number of
available paths with preestablished link-level entanglement. Probabilistic entanglement swapping, on the
other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case
when, due to practical constraints, swaps must be performed in temporal proximity to each other. Limiting
our focus to the case where only bipartite entanglement is generated across the network, we cast the problem
as an instance of generalized flow maximization between two quantum end nodes wishing to communicate.
We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for
networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum
number of Einstein—Podolsky—Rosen (EPR) states distributed to users per time unit, by solving the flow
problem for all possible network states generated by probabilistic entangled link presence and absence, and
subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks
with multiplexed links. While our approach for computing the overall network capacity has the undesirable
property that the total number of states grows exponentially with link multiplexing capability, it nevertheless
yields an exact solution that serves as an upper bound comparison basis for the throughput performance of
more easily implementable yet nonoptimal entanglement routing algorithms.

INDEX TERMS Entanglement distribution and routing, mixed-integer quadratically constrained program
(MIQCP), quantum network.

I. INTRODUCTION

Quantum networks consisting of first- and second-generation
quantum repeaters [1], [2] rely on entanglement distribution
to enable distributed quantum applications between distant
nodes. In the most basic scenario, bipartite entangled states
are first established at the physical (elementary) link level
between neighboring nodes, and later “connected” via en-
tangling measurements. The latter, a process also known
as entanglement swapping, serves to extend entanglement
across a longer distance, but for certain quantum architec-
tures succeeds only probabilistically. Fig. 1 illustrates a suc-
cessful execution of this process using the state W) =

(]00) + |11))/ V2 as an example. In large, complex quan-
tum networks with arbitrary topology, entanglement rout-
ing algorithms are necessary to determine the precise sub-
set of all available swapping operations that must be per-
formed in order to link two nodes that wish to communicate.
Efficient use of entanglement—a resource that is created
probabilistically and whose usefulness carries an expiration
date—is thus an advantageous property for such algorithms.
The number of choices that confront an entanglement routing
algorithm further increases when there is an option of utiliz-
ing multiple paths to distribute as many bipartite entangled
states to a pair of users as possible, and when entanglement
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FIGURE 1. Entanglement swapping. Quantum network nodes A4, B, and C
begin by generating elementary link-level entangled states |¥+)45 and
|¥+*)pc. A successful swap/BSM (Bell state measurement) at node B
results in an entangled state | ¥*)4c shared between A and C.

swapping success probability varies from node to node.

A metric of interest for the multipath entanglement distri-
bution problem is the overall bipartite entanglement capacity
(BEC) of a given network, defined here as the average num-
ber of bipartite entangled quantum states that the network
can provide to a specific pair of users or nodes, s and 7 (a
mathematical definition is provided later in this section). This
quantity is especially relevant to applications which have
either stringent rate requirements or a necessity to generate
multiple contemporaneous Einstein—Podolsky—Rosen (EPR)
pairs. An example of the former is a scenario wherein a pair
of users carrying out a quantum key distribution (QKD) [3],
[4]. [5] protocol wish to generate a secret key by a given
deadline. An example of the latter is a blind quantum com-
putation (BQC) protocol [6], [7] wherein typically, a user
and server must establish several EPR pairs close together
in time, in order to be able to carry out each round of the
protocol at all. The ability to utilize multiple paths along
which to generate entanglement may thus not only boost
an application’s performance but also make it feasible for
implementation on a network. Computation of the BEC pro-
vides insight into a network’s ability to support such quantum
applications. We note that in this work, the BEC is always
defined with respect to a node pair (s, f); and further, that
“capacity” here incorporates only the rate at which end-
to-end entanglement is generated (in contrast to other
definitions of capacity commonly found in quantum
literature).

Our goal in this article is to compute the BEC for an
arbitrary network serving a single user pair. We approach
this problem by computing the capacities of all possible
network states that result from probabilistic elementary link'
entanglement generation, and subsequently take the expecta-
tion of these values. In this article, “network state” is defined
in terms of the presence and location of entangled links;

! An elementary link is one that exists between two neighboring network
nodes, i.e., nodes which have a direct physical connection (e.g., optical
fiber).
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this is not to be confused with quantum states. We formu-
late the (sub)problem of computing the capacity of each
network state as an s-f flow optimization problem, where
the flow through the network may not split or merge, and
the network nodes “leak™ a certain amount of flow corre-
sponding to their entanglement swapping failure probabili-
ties. We cast this as a mixed-integer quadratically constrained
program (MIQCP), which can be directly applied to non-
multiplexed networks, i.e., those in which each link is able
to generate at most one entangled state per allotted time
interval. With a straightforward modification to the graph
corresponding to a given network state, the MIQCP can also
be applied to a multiplexed network (one in which each
elementary link may generate multiple entangled states per
time interval). A favorable consequence of the MIQCP ap-
proach is that its solution for a given network state yields
not only the capacity of the state but also a way to obtain it:
each variable’s value in the solution specifies the entangle-
ment routing procedure, i.e., the optimal set of swaps to be
performed.

A quantum network may be represented as an undirected
graph G = (V, £) with V comprising a set of nodes (e.g.,
quantum-equipped users, quantum repeaters, switches, etc.)
interconnected via physical links that make up the edge set £.
For a given point in time, the nefwork state is also represented
by a graph, G’ = (V, £"), where £ C £ indicates success-
fully generated link-level entanglement. A model commonly
used in literature is a network that operates in a synchronized,
time-slotted manner, i.e., time is discretized into equal-length
slots wherein network state may change according to new
events or actions. For the type of network we wish to analyze,
we are motivated to adopt such a model as well: specifically,
we assume that at the beginning of each time slot, all links
attempt entanglement generation, and that network state is
reset to the empty state (one in which no entangled links
are present) at the end of each time slot. Time slot length is
assumed to be long enough for all links to be able to perform
the necessary number of attempts. For instance, in the ab-
sence of multiplexing or with, e.g., spatial multiplexing, time
slot length need only be as long as the propagation delay of
the longest link in the network .. Certain temporal mul-
tiplexing proposals, on the other hand, might require a time
slot length that is a multiple of .. Entanglement swapping,
namely Bell state measurements (BSMs), is performed at the
end of each time slot, before elementary link-level entangle-
ment expires. This model is descriptive of a quantum network
with highly limited quantum memory coherence times—for
an example, networks with atomic ensemble memories [8]
necessitate an almost immediate use of entanglement once it
has been generated [9], [10]. Finally, we assume in our model
that each BSM succeeds with an enfanglement swapping
success probability g € (0, 1].

Fig. 2 illustrates an example quantum network with two
nodes, s and ¢, wishing to share as many entangled states
as possible. In a heterogeneous network, such as this one,
each link (i, j) has its own entanglement generation suc-
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FIGURE 2. Example of a quantum network where two nodes, s and t,
wish to share entanglement. Link (i, j) generates entanglement with
probability p;;, and node n; performs entanglement swapping with
success probability g;.

cess probability p;;, and each network node n; has its own
entanglement swapping success probability g;. Even if the
network in Fig. 2 were nonmultiplexed, so that each pair
of neighboring nodes shares at most one bipartite entangled
state at any time, we may nevertheless already encounter a
nontrivial decision-making scenario. Consider, for example,
a time instance when all entangled links are present: the
network then has the option of connecting s and ¢ via (a)
two paths, s —s) —sp) —f and s —s3 — 84 — I, or via (b) a
single path, s — s3 — s, —f. Even though option (a) may
result in two entangled states while option (b) produces at
most one, the optimal choice depends on the swapping suc-
cess probabilities of the nodes: if, for instance, g1 and g4 are
extremely low compared to g2 and g3, then one may opt for
(b) to avoid actions that result, with high probability, in no
s-t entanglement at all.

More concretely, the BEC of the aforementioned network
state is given by

max{qi1q2 + q3qs, G243}

where the capacity of each path is defined as the product
of entanglement swapping probabilities of the nodes on that
path. The capacity of a network state § may then be defined
as

Cs = r}lea%(Zf(r) 1_[ q; (1)
reR _t;r,t

where D is the set of all possible combinations of link-
disjoint s-f path sets in the network state, r € R is an s-f path
that is link-disjoint with all other paths in R, i € r is a node
that lies on path r; and f(r) is a function defined on path
r. f(r) may, in principle, incorporate an entanglement mea-
sure (e.g., secret key rate, entanglement entropy, distillable
entanglement, etc.) that is most relevant to the application
that is being executed by nodes s and ¢. As such entangle-
ment measures typically depend on the specific hardware
of the network nodes, link lengths, noise processes, entan-
glement generation protocols, among other factors (which
collectively determine the type of bipartite entanglement that
results on each link, as well as how each state evolves with
time), we take here f(r) = 1, for all s-f paths r € R to keep

VOLUME 5, 2024

the analysis both simple and general. In other words, we
compute only the expected number of entangled pairs shared
by s and ¢ at the end of swapping. We remark that in the
context of entanglement routing, a more general definition of
network state capacity Cs may exist: (1) need not be additive,
for instance.

Given our definition of network state capacity above, the
overall BEC of the network (with reference to nodes s, f) is
given by

C= Z PsCy 2)
Ses

where S is the set of all possible network states, and Ps is
the probability of observing the network in state S (see more
on this in Section III). While in this work we compute C
exactly for a number of networks, it is in principle possi-
ble to approximate it by computing the expectation over a
subset of S corresponding to the most likely network states
(with highest values of Pg). Arbitrarily tight upper and lower
bounds on C can be obtained by increasing the size of this
subset, and keeping in mind that the minimum and maximum
Cgs are given by 0 and Cg,,,, respectively, where Sgy is the
network state with all elementary link-level entanglement
successfully established.

We emphasize that the definition of network capacity pro-
vided in (2) is given for the specific setup described earlier in
the section, namely, for the case in which quantum nodes are
only capable of performing BSMs. This formula is a special
instance of certain information-theoretic definitions found in
literature that consider arbitrary and adaptive local opera-
tions and classical communication (LOCC); see Section II
for further discussion.

The rest of this article is organized as follows. In
Section II, we discuss relevant background and related work.
In Section I1I, we state our assumptions, describe our model
of a quantum network, and formulate the problem in terms of
s-t flow in a directed graph. In Section IV, we introduce the
MIQCP for nonmultiplexed networks and prove its validity,
while in Section V we extend the framework to multiplexed
networks. We present numerical examples in Section VI
Finally, Section VII concludes this article.

IL. RELATED WORK

Request scheduling, path selection, and entanglement
routing—problems which are closely interrelated in quan-
tum networking—have all previously received attention in
literature. In [11], Caleffi studied optimal entanglement rout-
ing, where the goal was to determine the best (single) path
between two nodes in a quantum network. Van Meter et al.
[12] adapted Dijkstra’s algorithm to quantum networks and
demonstrated its usefulness for path selection. Gyongyosi
et al. [13] proposed a decentralized routing scheme for find-
ing the shortest path in a quantum network. A number of
virtual graph construction and routing techniques were also
proposed, e.g., [14], [15], and [16]. Such approaches are es-
pecially useful for reducing quantum memory requirements
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on quantum nodes, as well as lowering latency during the
routing process.

As noted in the previous section, a host of studies take an
information-theoretic approach in their analyses of quantum
network capacity and development of entanglement distri-
bution protocols. Pirandola [17] and Azuma et al. [18] estab-
lished upper bounds on the maximum rate at which entangle-
ment can be distributed to two nodes in a quantum network.
The authors in [17] and [19] considered both single- and
multipath routing scenarios, with the latter focusing on re-
alistic networks, e.g., those with imperfect repeaters. In [20],
the authors study entanglement distribution protocols (again
from an information-theoretic perspective), for a family of
quantum networks wherein independent repeater schemes
run on each link. At the link level, details describing spe-
cific processes that generate entanglement, including, e.g.,
purification, are abstracted away. The authors use a graph-
theoretic result known as Menger’s Theorem, which quan-
tifies the number of edge-disjoint s-f paths in a network, to
derive protocols that can achieve information-theoretic lim-
its. While the work mainly focuses on deterministic entan-
glement swapping, the authors provide a brief treatment of
the probabilistic-swap case by proposing that swaps can be
performed along each s-f path in a “knockout tournament™
manner. In the context of our problem, neither this technique,
nor Menger’s Theorem, can be applied directly: the swapping
probabilities play a critical role in determining the optimal
set of edge-disjoint paths to be utilized by s and ¢.

In [21], the authors presented linear programs (LPs) based
on the max-flow min-cut theorem, with the goal of efficiently
computing bounds on entanglement distribution rates. We
remark that the max-flow min-cut theorem is also inappli-
cable to our problem, as it does not offer assurances that
flow will not split or merge. A number of studies obtained
exact results only in idealized situations, or specific network
topologies: for instance, the authors in [17] analyzed routing
with ideal repeater nodes (namely, with perfect BSMs) and
reduced the problem to finding the maximum flow through
a quantum network. Dai et al. [22] proposed an LP for op-
timal remote entanglement distribution, in a scenario where
quantum memories have the capability to store qubits for an
infinite amount of time. In [23], Cicconetti et al. optimized
request scheduling and path selection in quantum networks
with multiple user requests over a finite time horizon, but
did not consider entanglement swap failures. As mentioned
in the previous section, we consider networks which reset the
state at the end of each time slot; this means that there is no
need to consider a time horizon beyond a single time slot.

Yet another collection of studies opted for heuristic strate-
gies. Le et al. [24] applied a deep neural network to address
the problem of servicing multiple end-to-end entanglement
requests in a quantum network, where entanglement swap-
ping always succeeds. In [25], Victora et al. optimized distill-
able entanglement in quantum networks; here, multiple paths
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were considered, although entanglement swapping was as-
sumed to succeed with unit probability. Several other quality-
of-service (QoS)-conscious entanglement routing algorithms
have been proposed [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], with examples of QoS being bandwidth or
throughput, latency, efficient resource use, fidelity, secret key
rate; and number of and fairness to concurrent flows. Of these
studies, perhaps the most similar formulation to that of our
work is found in [32], although the problem is posed with
an emphasis on resource allocation: in particular, redundant
resource provisioning is proposed before any entanglement
generation attempts take place. This work improved that of
Shi et al. [36] which introduced another (in general nonopti-
mal) algorithm for concurrent entanglement routing.

Another study with a similar formulation to that of ours
(albeit, with the broader aim of distributing entanglement to
multiple simultaneously communicating source-destination
pairs in a network), is that of [37], wherein the authors con-
structed an LP to solve the entanglement distribution prob-
lem using a multicommodity flow approach. It was assumed
that entanglement swapping succeeds probabilistically al-
though all repeaters were assumed to have equal BSM suc-
cess probabilities. Users were assumed to have minimum
end-to-end fidelity requirements which translated into a max-
imum permitted number of swapping operations. The rate
maximization problem was solved using an edge-based for-
mulation which involved the construction of an extended
graph, resulting in an LP that scales efficiently with the num-
ber of variables within the optimization problem. The ob-
jective function of the optimization framework then summed
over the flow out of all source nodes in the extended graph,
but the assumption of equal-probability entanglement swaps
allowed the authors to treat same-length paths in this graph
(i.e., paths with the same number of hops) equally. Specifi-
cally, any path of length j has a gain factor of qj ~, where g
is the BSM success probability. The reason why we cannot
(at least, directly or through simple/obvious modifications)
adopt our problem as a special case of this multicommodity
flow approach, is that in our formulation, node heterogeneity
(arising from potentially different swapping success proba-
bilities) does not allow us to decouple gain factors g; from
the flow variables—two equal-length paths could have sub-
stantially different flow capacities, making the g;’s a more
fundamental aspect of the problem.

Pant et al. [38] investigated multipath entanglement rout-
ing in a setting where BSMs succeed probabilistically. The
authors proposed routing protocols based on global or local
knowledge of the network topology and link state. For a grid
network topology, the authors introduced a greedy algorithm,
which while not optimal in general, yields a rate that is within
a constant factor of the optimum. As the setup and assump-
tions in this work are most similar to those in our article,
we use a similar algorithm as a comparison basis of our
results. In [39], Patil et al. improved on the results of [38], by
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allowing n-GHZ measurements at network nodes, for n > 3.
Leone et al. [40] also experimented with multipath routing
algorithms but without optimality guarantees. On a final note,
entanglement routing has also been studied within the con-
text of entanglement percolation, as in [41]; this, however,
lies outside the scope of the current study.

I1l. PROBLEM FORMULATION
In this work, we consider a quantum network that operates
under the following assumptions.

1) The network is comprised of quantum repeater nodes
interconnected by physical links (e.g., optical fiber) in
an arbitrary topology.

2) During execution, time is discretized into slots. A time
slot is divided into two stages: I, wherein all links
attempt entanglement generation, and II, wherein
all nodes attempt entanglement swapping. We will
sometimes refer to the network state immediately
after stage I as a snapshot. In stage II, only BSMs
may occur—nodes are incapable of other types of
entangling measurements.

3) A network node has a number of links, each of which
is allocated quantum storage wherein entangled states
may be stored. If the link implements multiplexing
(e.g., temporal, spatial, or frequency), so that it may
generate up to k > 1 entangled states per time slot, then
the link has k dedicated storage qubits; otherwise, it has
a single storage qubit.

4) At the end of a time slot (after entanglement swapping
has taken place), any unconsumed entanglement—
entangled states that were not involved in swapping
operations—is discarded.

5) End-to-end entanglement, when generated success-
fully across any s-f path in the network using the pro-
cesses described above, is assumed to be of sufficiently
high fidelity for the application(s) at nodes s and f
desiring the Bell pair.

The first part of assumption 2) implies that the network
is operating in a coordinated manner: first, entanglement is
attempted, and subsequently entanglement routing decisions
are executed using global knowledge of the network via en-
tanglement swapping. Such schemes, which may be accom-
plished with the help of a centralized controller, have been
proposed as a means of scaling up quantum networks and
ensuring QoS to applications, e.g., delivery of high-fidelity
end-to-end entanglement. See, e.g., [42], which proposes
such an architecture as a way of circumventing some of the
limitations of near-term multiuser quantum networks, [43]
which adopts the aforementioned, and [44] where the authors
suggest a software-defined networking (SDN) approach to-
ward such ends.
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FIGURE 3. Two possible network snapshots after link-level
entanglement generation attempts. (a) Snapshot 1. (b) Snapshot 2.

IV. “LEAKY” DISJOINT s-t FLOW IN GRAPHS WITH UNIT
EDGE CAPACITY

We focus now on solving the flow problem for a nonmul-
tiplexed network snapshot. While entanglement distribution
is inherently symmetric (with no difference in treatment of
the end nodes), when cast as a flow problem necessity arises
for one node to be designated the source (s) and the other
the terminal (f): flow has directionality. Either node may
assume either role—see discussion at the end of this section.
To proceed with this formulation, however, we must devise
a directed representation of the undirected graph G repre-
senting a network state (snapshot) immediately after stage
I (link-level entanglement generation).

From now on, we may assume that the snapshot G con-
tains at least one path between s and ¢ (since, otherwise, the
capacity of the snapshot is trivially zero). Let G = (V, E)
represent the corresponding directed graph for the snapshot.
We construct this graph by converting each undirected edge
(u, v) of G into a set of directed edges (u, v) and (v, u),
for any u, v ¢ {s, t}. For undirected edges (s, ), it suffices
to include only directed edges (s, ) within E, and for any
undirected edges (f, u), it suffices to include only directed
edges (u,t) within E. Fig. 3 depicts two possible directed
snapshots resulting from entanglement generation attempt
stages of the network shown in Fig. 2.

In addition to the basic flow conservation constraint fre-
quently encountered in flow problems, our formulation must
also account for the following two phenomena: 1) entan-
glement swapping is subject to failures and 2) each swap
operation consumes two entangled links. Incorporating 1)
can be accomplished simply by modeling each node in the
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snapshot as lossy, with a gain factor equal to the entangle-
ment swapping success probability. Incorporating 2) on the
other hand is less straightforward, as it involves designing
constraints that ensure the following:

1) two opposing flows cannot coexist, i.e., edges (i, j)
and (j,7) cannot simultaneously carry flow—this
corresponds to the assumption that any two neighbor-
ing nodes have at most one entangled link between
them;

2) flows do not split into two or more portions as they
propagate through the network;

3) each flow remains disjoint from other flows (flows do
not merge); in the special case of a network with unit
edge capacities, this amounts to ensuring that each
edge is used by at most one flow.

We call the second constraint flow intactness and the third
Jflow disjointness. As we shall see, these requirements may be
satisfied with the help of indicator variables that help direct
and restrict the flow as necessary. We begin by introduc-
ing an MIQCP that solves this constrained flow problem in
Section I'V-A, where we also intuitively explain the purpose
of each constraint. In Section IV-B, we prove more rigorously
the validity of the MIQCP.

A. MIQCP FORMULATION

Let Fjj,i # 1, j # s, represent flow from node i to j. Consider

the following objective function and set of constraints:

max Y Fj (3)
ek

O<F;=<1 V(i,j)eE 4)

xXije € (0,1} VG, j), k) € E/i#k j#5,1 (5

Y @i +xji) <1 V. j)eE (6)
k

xijk(Fijq; — Fix) =0 VG, j), (k) € E @)

Y xijk = Fj VG, j)eE/j#t ®
k

Y (Fij—Fiig)=0 VieV,i#s,t. )

Jjev

An intuitive explanation of each line is as follows: first, the
objective function maximizes the flow to node f, and since
flow can only originate at node s, the solution maximizes
the overall s-f flow. In Section IV-B, we explain why this is
equivalent to obtaining the capacity of our snapshot graph.
Next, we have the constraint on the flow variables F};: the up-
per bound of one is due to the fact that we have one quantum
memory per physical link interface, and F;; € [0, 1] is due to
the fact that our “internal” network nodes are lossy (internal
nodes are all nodes in V except s and ). In the next line, we
introduce binary variables x;j; defined for an internal node j
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and two of its physical neighbors i and k. These variables help
us perform a constrained form of bipartite matching between
the incoming and the outgoing edges to/from node j.

Then, constraint (6) enacts the flow disjointness and in-
tactness constraints, which consist of ensuring that an edge
admits flow from at most one other node, and that an edge
releases flow to at most one other node. Further, constraint
(6) ensures that two neighboring nodes i and j are only
allowed to share flow in one direction. Next, constraint (7)
ensures that whenever flow travels from i to j and into k,
it must be conserved. Note that this is a more refined flow
constraint than that of (9), which conserves flow at each node
but does not necessarily ensure the proper amount of flow
on each edge, as dictated by the intactness and disjointness
constraints. Finally, constraint (8) ensures that flow cannot
exist on an edge unless a bipartite matching constraint allows
it, i.e., for a flow to be nonzero, there must be a variable
xjjic indicating that the edge is actually being used to carry
flow.

B. MIQCP VALIDITY
We next study the validity of the MIQCP given by (3)—(9).
This involves proving the following:

1) that neighboring nodes share flow in one direction at a
time

Fi>0=>F;=0,V(Gj) ek (10)

2) that flow intactness and disjointness hold. Formally,
this means the following: given a node j # f, first con-
struct the sets

T; = {F;: i, j) € E. F; > 0} (11)
O ={Fjx : (j.k) e E,Fjx > 0}. (12)

In other words, 7 ; is the set of nonzero incoming flows
and O; is the set of outgoing flows with respect to j. We
require the existence of a one-to-one correspondence
between these sets, which satisfies the condition that
foraflow F;j € 1}, F;;jq; = Fj for aflow Fjy € Oj;

3) that flows in the network follow valid s-f paths.
A wvalid, I-hop path is defined by a sequence of
positive flows F ., F i, -.-, Fji,, satisfying
Fiigi1 i = Fippy» k= 1,2, ..., 1, where the set of
nodes {i1, i2, ..., ij} € V. Note that nodes in the path
may in principle repeat, although this would not yield
optimal results with subunit gain factors. A valid
s-f path has the additional property that iy = s and
1 =10

4) that each constraint is necessary.

Having defined path validity, as well as flow intactness and
disjointness, we are now able to establish a direct connection
between the snapshot capacity (1) with f(r)=1 VreR,
and the MIQCP objective (3). Namely, let us assume that
all three conditions hold for any flow in the graph. Then,
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FIGURE 4. Different scenarios relevant to Lemma 1 proof. Directed
arrows indicate presence of flow in that direction.

for a given Fj; > 0, the flow must have originated at node
s and followed a valid paths — ny —ng — --- > np — t
through the network, all the while staying intact and dis-
joint. Since the objective is to maximize flow—a value that
lies in [0,1], it follows that F; ,, = 1. Combining this with
the aforementioned flow properties allows us to deduce that
Fii =q1,92 ..., qi, where g;,i € {1, ..., k}, is the gain fac-
tor associated with node n;. This expression corresponds to a
single term in the sum of (1), and the flow maximization ob-
jective then results in finding the optimal set of link-disjoint
paths in the graph. We thus conclude that the value of the
MIQCP objective function for a given snapshot is equivalent
to the snapshot’s capacity.

1) NEIGHBORING NODES SHARE FLOW IN AT MOST ONE
DIRECTION
We begin with some useful lemmas.

Lemma 1: For any edge (j, k)s.t. j £ s

Zx,vjk:0:>ij:0.
i

Intuitively, this result states that if no edge (i, j) carries flow
into (j, k), then the flow value on (j, k) is zero.

Proof: Our proof is by contradiction. Assume that
Fj = 0, for a node j # s, while Zl- Xjjk = 0. Recall that
there are no outgoing edges at node ¢ by our definition of
G, so we know that j is an internal node. Then, by condition
(9) on node j, we see that

Fix+) Fi—q;y F;j=0 (13)
ik i
which implies the existence of some node A such that Fj; > 0
(since if no such node exists, (9) is violated due to the left-
hand side being strictly positive). Thus, we may rewrite (13)
as

Fi—q;Faj + ) Fii—q; ) Fj=0. (14
ik ih
We do not require that h # k for our proof. Fig. 4(a) depicts
the scenario, where h # k.

Since Fj; > 0, by condition (8) there exists a node / such
that xp;; = 1, and by condition (6) applied to edge (h, j),
this / is unique. Further, given the way that the x;;; variables
are defined, we can be sure that [ £ h. Thus, if h =k, i.e.,
Xij1 = 1, then we know by the definition of the variables x;jk
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that / # k. On the other hand, if h # k, then by our assump-
tion that Z‘-xijk = 0, it follows that xyjx = 0, so that [ # &,
i.e., in either case, [ # k—an important observation that, as
we shall see shortly, means that flow Fj will remain in the
equation.

By condition (7) applied to edges (h, j) and (j, [), we must
have

Frjq; = Fj (15)

which implies that F; is strictly positive, so that we have flow
from j to /, as depicted in Fig. 4(b), for the case where h # k.
Thus, we may write (14) as

Fix—qiFij+Fii+ ) Fi—q; ) F;j=0  (16)
ik, i#h

and by (15)

Fie+ ) Fii—q; ) F;j=0. an
ik, 1 i#h

Comparing (13) and (17), we see that the only difference is
that in the latter, two components on the left-hand side have
cancelled each other out: one from each of the sums, while
the Fj; component has not changed at all. If we now attempt
to balance out Fj; using another (negative) component from
the second sum above, say F;; (g # h), then conditions (8)
and (6) ensure the existence of a unique m # g for which
Xgjm = 1. Note that m # k since either (i) g # Kk, so that if
m = k we would have xgj = 1, which contradicts our as-
sumption that x;x = 0 Vi, or (ii) g = k, so that x j,, does not
allow m = k by definition. Further, m # [, since we already
have xj; = 1, so we cannot also have xg; = 1 (this is pro-
hibited by condition (6) applied to edge (j, [)). By condition
(7) we thus have positive flow Fj,,, for m # k, [, which must
come from the first sum in (17).

It is evident that any time we attempt to balance out flow
Fj; with a negative component from (13), we force another
(strictly positive) flow into node k, and this positive flow can-
cels the negative component, leaving Fj unaffected. We can
continue this cancellation process until there are no longer
any negative components left in the flow balance equation,
which would leave us with a strictly positive value on the
left-hand side that is > Fj. From this, we conclude that
Zixijk:():}ijZO- O

Lemma 2: For any edge (i, j) e E, F;; > 0= F;; = 0.

Proof: Note that by G’s construction, edges (j, s) and
(f, j) do not exist, so we are only concerned with edges (i, j)
for which i, j ¢ {s, t}. If F;; > 0, then by condition (8), there
exists a node k' for which x; i = 1. Then, by condition (6),
Y ¢ Xji = 0.By Lemma 1, Fj; = 0. O
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FIGURE 5. Valid flow scenario described in Section IV-B3.

2) FLOW INTACTNESS AND DISJOINTNESS
Lemma 3: Flow cannot split or merge. In other words, there
is a one-to-one correspondence between incoming and out-
going flow for any node’s flow balance equation. A conse-
quence of this is that there is an even number of components
for any flow conservation equation (9).

Proof: For any node i # s, f, the flow conservation con-
straint equation (or flow balance equation) (9) can be rewrit-

ten as
> Fy=q¢ ) Fi (18)

JEVIF=0 JEV/Fji=0

where, by Lemma 2, no j' on the left-hand side may be equal
to a j on the right-hand side. Consider any Fj;. Since it is
positive (and since i # ), we must have, by constraint (8),
some node k for which x;x = 1, and by constraint (6) this
k must be unique. Then, by constraint (7), we must have
Fjiqi = Fy, implying that Fz > 0. Then, Lemma 1 implies
that there exists some node / for which x;;x = 1, and con-
straint (6) ensures that this / is unique. But since we already
have x;; = 1, it must be that [ = j. Thus, for every flow Fj;
on the right-hand side of (18) there is a unique corresponding
flow Fj, on the left-hand side of (18), proving the lemma. [J
Lemma 3 implies flow intactness and disjointness.

3) PATH VALIDITY

First, we show that flows in the network originate at node
s and terminate at node f. To show this, we consider a flow
F;j > 0, with i, j # s, 1, respectively. Let us first see where
the flow ends: since j #f, there exists a node k # i for
which x;j = 1 [condition (8)], which then implies a positive
Fji [condition (7)]. If kK = ¢, we are done, as condition (8)
no longer applies, and there are no outgoing edges from .
Otherwise, condition (8) is applicable: 31 # j s.t. xji =1,
implying a positive flow Fj;. We note here that in principle,
[ could be the same node as i, as shown in Fig. 5, albeit
likely a suboptimal option, especially if i is a lossy node (i.e.,
where g; < 1). Continued applications of conditions (8) and
(7), subject to constraint (6), continue until the sole stopping
condition—positive flow that ends at node ¢.

We now focus on the origin of flow F;;, by backtrack-
ing it from node i with repeated applications of Lemma 1.
First, note that by the contrapositive of the lemma’s hypoth-
esis, Fjj > 0 = fouj # 0, implying that xp;; = 1 for some
h # j. By condition (7), Fj,; > 0, and if h = s, we are done,
since Lemma 1 no longer applies, and there are no edges
that go into s. Otherwise, the lemma does apply, and we
continue its application along with condition (7) until the
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FIGURE 6. Example illustrating the necessity of constraint (6). Nodes 1
and 4 have gain factors ¢, while nodes 2 and 3 have unit gain factors.

only stopping condition is reached, i.e., until we find a flow
originating at node s. Finally, recall that, by Lemma 3, no
flow in the network may split or merge—together with the
discussion above, it is evident that the paths are valid, i.e.,
they are disjoint, intact paths that originate at s and end at ¢.

4) NECESSITY OF EACH CONSTRAINT

We consider here the nontrivial constraints (6)—(9). While
they were all previously helpful in arguing certain flow prop-
erties, we have yet to show that each of these constraints is
necessary. To do so, we consider the MIQCP of Section IV-A
without each constraint individually, and provide counterex-
amples that illustrate undesirable flow behavior.First, sup-
pose that (6) is removed from the MIQCP. Fig. 6 presents
an example where the absence of this constraint allows two
opposing flows to coexist—edge (2,3) carries unit flow, while
simultaneously edge (3,2) carries an € amount of flow; we
explain how this happened shortly. In this network, nodes
2 and 3 have unit gain factors while nodes 1 and 4 have
gain factors of €. From the undirected snapshot (top), it is
evident that depending on the value of €, it may be optimal
to either use the two completely disjoint paths s —1 —3 — ¢
and s —2 —4 — 1, or simply the path s —2 —3 —f. The
former yields a snapshot capacity of 2e, while the latter
yields 1. Without constraint (6), however, it is also possible
to obtain a snapshot capacity of 1 + €2, if one uses paths
§—2—3—tands —1—3 —2 —4 —t.Table 1 presents all
nonzero variables and their assigned values for this network.
Note that constraints (7)—(9) are satisfied, but without (6)
path s — 1 —3 — 2 — 4 — 1, which is not disjoint with path
§ —2 — 3 —1, is active. Constraint (6) would have ensured
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TABLE 1 Variables and Their Assigned Values for the Network in Fig. 6
(Variables Assigned 0 Not Shown)

Flow on (4,7) | Corresp. z;
Fs1 =1 Is13 = 1
Fi3=¢ 132 =1
Faz =¢ 324 =1
Foy =€ T24¢ = 1
Fy = €2 N/A
For=1 Tg23 =1
Fa3 =1 T3t = 1
F3: =1 N/A

FIGURE 7. Example illustrating the necessity of constraint (7). Nodes 1
and 2 have gain factors of 1/2, node 3 a unit gain factor, and node 4 a
gain factor of e < 1.

TABLE 2 Variables and Their Assigned Values for the Network in Fig. 7
(Variables Assigned 0 Not Shown)

Flow on (7, j) | Corresp. x;;x
Fg =1 Ts13 =1
F13 =0.5 T3t = 1
F3: =1 N/A

Feo =1 Ts23 =1
Fo3 =0.5 T34 = 1

that xz3 and x3p4 are not both set to one (similarly for xp3,
and x132).

We next move on to constraint (7): to see why it is nec-
essary, consider the network in Fig. 7. Here, nodes 1 and
2 have gain factors of 1/2, node 3 a unit gain factor, and
node 4 a gain factor of € < 1. The true optimal value of the
objective is 0.5 + 0.5¢ < 1, using for example the two edge-
disjoint paths s — 1 —3 —f and s — 2 — 3 — 4 — . Without
constraint (7); however, it is possible to route flow so that
the optimal value is 1, as shown in Fig. 7, bottom. First,
note that with these flow assignments, flow at each internal
node is balanced [constraint (9)]. Table 2 makes it easy to see
that (8) is also satisfied; the second column of the table can
also be used to verify that conditions (6) are met. If (7) were
included, it would have ensured that flows do not merge at
node 3.
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FIGURE 8. Example illustrating the necessity of constraint (9). All
internal nodes have unit gain factors.

TABLE 3 Variables and Their Assigned Values for the Network in Fig. 8
(Variables Assigned 0 Not Shown)

Flow on (4, 7) | Corresp. x;;
Fs1 =1 zs13 =1
Fi3=1 x13¢t = 1
F3 =1 N/A
Fia=1 z12t =1
For =1 N/A

Finally, we address constraint (9). Fig. 8 presents a net-
work snapshot (top) and corresponding flow formulation
(bottom) where the sink node f receives more flow than is
released from the source s. In this network, all internal nodes
have unit gain factors. Table 3 presents the nonzero flows
and their corresponding xjj’s [each set to one, to ensure that
constraints (8) are satisfied]. It can be checked from the right
column of the table that constraints (6) are also satisfied.
Since x,13, X13;, and x;o, are set to one, we have F;; = Fi3,
Fi3 = F3;, and Fjp = Fy,, respectively, to ensure that (7) are
satisfied. Without constraint (9); however, nothing enforces
overall flow conservation at node 1.

We conclude this section with a final remark: that switch-
ing the roles of s and £ so that s is the sink and ¢ the source,
i.e., reversing the flow within the network, yields the same
solution to the snapshot flow problem. To see this, recall
that flows follow edge-disjoint s-f paths, with the additional
requirement that if positive flow exists on edge (i, j), then
edge (J, 1) carries zero flow. This means that to obtain the
same solution on a reversed network, one simply reverses
each of the s-f paths obtained on the original network. This
reversal preserves all necessary requirements on the flow,
and the amount of flow that reaches node s in the modified
network is the same as the amount that would have reached
t in the original network (the multiplication order of g;’s is
inconsequential). Obtaining a better solution on the reversed
network is impossible, as a consequence of the same argu-
ment as above—one could obtain the same solution on the
original network using path reversal.
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1
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FIGURE 9. Example multiplexed network snapshot snippet, (a), is
transformed by first placing a node of unit gain factor in the middle of
each entangled link as shown in (b), and then by converting to a directed
graph, (c). (a) Initial snapshot. (b) Entangled link transformation. (c)
Conversion to a directed graph.

V. EXTENSION TO MULTIPLEXED LINKS

In this section, we extend our approach to compute the ca-
pacity of a multiplexed quantum network, i.e., one in which
neighboring nodes may establish multiple entangled links in
a single time slot. There are two approaches of extending the
problem formulation to include multiplexing at the link level.
The first is to modify the MIQCP from the previous section
to account for the possible presence of more than one Bell
pair on each link. Another approach is to instead transform
the graph in a way that would conform with the MIQCP in
Section I'V. While the first method may be more efficient in
yielding a solution (it uses fewer decision variables), in this
work, we adapt the latter approach as it has the advantage
of not requiring any changes to the MIQCP, thus making it
straightforward to check its correctness.

We propose to carry out such a transformation as follows:
consider a link that has capacity c = 2, 3, ... We firstreplace
the link with ¢ undirected links, each with capacity one. We
then transform each such entangled link (i, j) into two edges
and a new node n with unit gain factor, so that the result is
a snapshot with edges (i, n) and (n, j), and no direct edge
between i and j. An example of this step is shown in Fig. 9(b),
for the multiplexed network snippet in 9(a), where all nodes
are assumed to be internal ones. This step is only necessary
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FIGURE 10. Five-node network snapshot with multiplexing. Each edge
has a capacity, or the number of available Bell pairs that were
successfully generated for this snapshot. The loss factors for the internal
nodes 1, 2, and 3 are 0.5, 0.27, and 0.64, respectively.

for snapshot edges with capacities of at least two—notice
that the edge (3.,4) in the example is unchanged. Note further
that this transformation does not change the solution of the
problem, in particular because each new node has a unit gain
factor and is only connected to two nodes which no longer
have a direct connection. Hence, the resulting snapshot is
equivalent to the original one within the context of our flow
problem, but has the advantageous property that each edge
is of unit capacity. The next step is thus to convert the trans-
formed snapshot into a directed graph, as shown in Fig. 9(c)
(for a snippet of a snapshot), enabling us to apply the MIQCP
to obtain a solution.

Fig. 10 shows an example of a simple network snapshot
with multiplexing. The solution for this example is easy to
obtain by hand: first, note that there is a direct edge between
s and ¢, of capacity 1. Then, there are two paths s — 3 — 1,
contributing 0.64 x 2 = 1.28 to the total capacity. The next
obvious paths are the two s — 1 — ¢ paths (each of which
necessarily yields a higher capacity than the longer path s —
2 — 1 —1t), with an overall capacity of 0.5 x 2 = 1. Finally,
we may use one of the s —2 — 1 — ¢ paths, with a capacity
of 0.27 x 0.5 = 0.135. This yields a snapshot capacity of
14+ 1.28 + 14 0.135 = 3.415, which is also the output of
the MIQCP.

VL. NUMERICAL EXAMPLES

We evaluate our capacity computation approach on several
unit edge capacity and multiplexed quantum network scenar-
ios. For nonmultiplexed networks, we validate the results of
the MIQCP using a brute-force capacity computation method
applied to every possible network snapshot. For multiplexed
networks, whose brute-force validation is infeasible due to
both the total number of snapshots as well as their complex-
ities (i.e., a large number of disjoint path set combinations
to be evaluated), we apply the brute-force method to a small
subset of the snapshots. These results are further validated
by the capacity predictions of the local-knowledge-based al-
gorithm introduced by Pant et al. [38]. In this work, the au-
thors study multipath entanglement routing in homogeneous
networks, wherein all links and nodes have identical entan-
glement generation and swapping success probabilities, re-
spectively. The proposed routing algorithm uses a Euclidean
distance-based metric, as well as local link state knowledge
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to inform each individual repeater what entanglement swaps
to perform. To compare against our formulation, the distance
metric was updated to use hop distances which was seen to
perform better on our arbitrary-topology, nonhomogeneous
networks. Additional modifications were made to account
for multiplexed edges, before Monte Carlo simulations were
performed to find the average capacity; a full description of
the algorithm is given in [45]. As this algorithm provides
no guarantee of yielding an optimal solution on a network
snapshot, we expect a worse performance than that achieved
with the MIQCP.

For most of our examples, entanglement generation suc-
cess probabilities are computed using the formula p = cn,
where 7 is the transmissivity of optical fiber and c is a factor
that accounts for various losses other than the transmission
loss in fiber. For a specific link /, the former is given by

m = 1070-1AL (19)

where f is the fiber attenuation coefficient and L; is the length
of the link. We take ¢ = 0.9 and 8 = 0.2 dB/km. Note that
this value for c is optimistic for near-term quantum networks,
but using it does allow us to explore more interesting regimes
(as well as to avoid numerical instability issues).

Two of the networks which we study in this section,
namely, the Abilene and the NSFNet, which formerly
stretched across the contiguous U.S., are scaled down when
we evaluate our capacity computation method on them: the
NSFNet to a metropolitan area, and the Abilene to a campus-
sized area. The reason for this is threefold as follows.

1) A first- or second-generation quantum network with
this topology stretched across the U.S. would require
additional repeater chains to implement long connec-
tions, as direct connections over these distances would
result in prohibitively high transmission losses.

2) Ignoring the practical aspect of the item above,
high transmission losses translate to very small en-
tanglement generation success probabilities, poten-
tially resulting in numerical instability during capacity
computation.

3) Studying metropolitan and campus-area-sized net-
works is more relevant to the near term.

We solve each snapshot’s corresponding MIQCP using
the Gurobi Optimizer (version 9.1.2, with default solver op-
tions) [46]. Our code is available at [47]. Throughout this
section, network capacities are in ebits per second, unless
otherwise noted.

A. SIMPLE FIVE-NODE NETWORK

The first scenario we consider is the simple five-node net-
work in Fig. 10. The link-level entanglement generation suc-
cess probabilities for this network have been randomly cho-
sen, and are 0.5679, 0.5179, 0.4723, 0.2479, 0.7839, 0.5423,
and 0.4308 for edges (0,1), (0,2), (0,3), (0,4), (1,2), (1.4),
and (3,4), respectively. The entanglement swapping success
probabilities, also randomly chosen, are 0.5, 0.27, and 0.64
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FIGURE 11. Abilene network topology, scaled down to a metropolitan
area (see Table 4 for link lengths and entanglement generation success
probabilities). Edges are labeled with link capacities for the multiplexed
version of the network.

FIGURE 12. NSFNet topology.

TABLE 4 Description of the Abilene Network, With Success Probabilities
Corresponding to the Scaled-Down Distances

Edge Original dist. (km) | Scaled dist. (km) | Success prob.
(s,1) 1138 1.138 0.8540
(s,3) 1641 1.641 0.8345
(1,2) 503 0.503 0.8794
(1,3) 1504 1.504 0.8398
(2,5) 2206 2.206 0.8131
(3,4) 896 0.896 0.8636
(4,5) 1041 1.041 0.8579
(4,7) 727 0.727 0.8704
(5,8) 1128 1.128 0.8544
(6,7) 265 0.265 0.8891
(6,t) 1144 1.144 0.8538
(7,8) 688 0.688 0.8719
(8,9) 872 0.872 0.8646
(9,1) 328 0.328 0.8865

for nodes 1, 2, and 3, respectively. The network capacity
of this network is 1.2121 ebits per time unit, which can be
compared to the maximum possible 3.415 when all links are
present. The network capacity value obtained via MIQCP
matches that of the brute-force algorithm. The local knowl-
edge algorithm produces an average capacity of 1.18019,
similar to our calculated results.

B. NETWORKS BASED ON THE ABILENE NETWORK
Launched in the late 90s, the Abilene Network connected
several institutions across the United States and was used
extensively for research and development until its retirement
in 2007. The topology of the network is shown in Fig. 11;
Table 4 provides a more detailed description of the network.
Each node’s BSM success probability was sampled uni-
formly at random from (0.9,1), resulting in {g;,..., g9} =
{0.99, 0.96, 0.92,0.93, 0.91, 0.99, 0.97, 0.92, 0.98}.
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FIGURE 13. Pruned version of the SURFnet topology.

The capacity of the nonmultiplexed scaled-down Abilene
Network, as defined by (2), is 0.8301 (this number matches
that of the brute-force search algorithm output). This value
can be contrasted with the capacity of the snapshot with all
entangled links present: 1.607. The local knowledge algo-
rithm gives an average capacity of 0.85271. For the multi-
plexed Abilene Network, we leave the link generation prob-
abilities unchanged, i.e., in each time slot, there may be up
to ¢; EPR pairs on link /, each generated with probability p;.
The swapping success probabilities are also left unchanged.
The capacity of the multiplexed Abilene Network with edge
capacities ¢;, as shown in Fig. 11 is 1.387. This can be
compared to a capacity of 0.95198 provided by the local-
knowledge algorithm. For a multiplexed Abilene Network
with ¢; = 2 VI, capacity increases to 1.983. This increase
in capacity compared to that of the network in Fig. 11 is
due to the possibility of generating extra links on bottleneck
edges (6,7) and (8,9). This can be compared to a capacity of
1.62778 given by the local-knowledge algorithm.

C. NETWORK BASED ON THE NSFNET

NSFNET was a backbone network that linked several
U.S. national supercomputing centers and later played
a part in developing a portion of the Internet back-
bone. A version of the NSFNET topology is presented
in Fig. 12. Table 5 describes the original approximate
link distances, adopted from [48], as well as scaled dis-
tances. Success probabilities for link-level entanglement
generation correspond to the scaled distances. The BSM
success probabilities, sampled uniformly at random from
(0.5,1) and rounded down, are set to {gi,...,q12} =
{0.9,0.9,0.8,0.5,0.5,0.5,0.5,0.5,0.7,0.5,0.7,0.5}. The
network capacity is 0.1013397 (brute-force algorithm vali-
dates this). The local knowledge algorithm gives an average
capacity of 0.08136.

D. NETWORK BASED ON SURFNET
SURFnet is a backbone network used for research and
education purposes in the Netherlands. Fig. 13 depicts a
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Nijmegen

TABLE 5 Description of the NSFNet Network, With Success Probabilities
Corresponding to Rescaled Metropolitan-Area Distances

Edge Original dist. (km) | Scaled dist. (km) | Success prob.
(s,1) 1100 11 0.5423
(s,2) 600 6 0.6827
(s,3) 1000 10 0.5679
(1,2) 1600 16 0.4308
(1,7) 2800 28 0.2479
(2,5) 2000 20 0.3583
(3,4) 600 6 0.6827
(3,10) 2400 24 0.2980
(4,5) 1100 11 0.5423
(4,86) 800 8 0.6226
(5,8 1200 12 0.5179
(5,12) 2000 20 0.3583
(6,7) 700 7 0.6520
(7,9) 700 7 0.6520
(8,9) 900 9 0.5946
(9,11) 500 5 0.7149
(9,1) 500 5 0.7149
(10,11) 800 8 0.6226
(10,1) 1000 10 0.5679
(11,12) 500 5 0.7149
(12,) 300 3 0.7839

pruned version of the SURFnet topology. The full topology
is provided in [49] and a detailed dataset is located at [50].
Note that, contrary to what is shown in Fig. 2 of [49],
according to SURFnet topological data there is no link
between nodes Delft 1 and R’dam 1: to make the (Delft,
Rotterdam) link, we assume there is no Delft 2 node, and
sum the fiber lengths between Delft 1, Delft 2, and R’dam 1.
In a similar manner, we also eliminate nodes Utrecht 2,
Wageningen 1, Nijmegen 2, Zwolle 2, and Enschede 1. The
pruned topology is described in more detail in Table 6.
Swapping success probabilities are set to {g;,...,qi5} =
{0.87, 0.74, 0.79, 0.62, 0.73, 0.98, 0.77,0.76, 0.62, 0.74,
0.81,0.84,0.7, 0.68, 0.99}. Our goal is to determine the
s-t flow between Delft and Enschede. We determine this
value to be 1.0762 x 10~/ (validated by the brute-force
algorithm). The local knowledge based algorithm gave a
network capacity of 0. This could be in part because it was
calculated over a finite number of samples, and is believed
to agree with our results. We remark that the reason for the
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TABLE 6 Link Lengths and Corresponding Link-Level Entanglement
Generation Success Probabilities for the SURF Network

Edge Distance (km) | Success prob.
(Delft, Rotterdam) = (s, 1) 16.8 0.4152
(Delft, Leiden) = (s, 2) 30.6 02199
(Leiden, Amsterdam) = (2, 3) 60.4 0.0557
(Rotterdam, Utrecht) = (1, 5) 70 0.0358
(Amsterdam, Hilversum) = (3,4) 30.2 0.2240
(Amsterdam, Almere) = (3,7) 389 0.1501
(Utrecht, Hilversum) = (4, 5) 36.7 0.1661
(Hilversum, Almere) = (4, 7) 354 0.1763
(Utrecht, Amersfoort) = (5, 6) 33.8 0.1898
(Almere, Lelystad) = (7,9) 442 0.1176
(Amersfoort, Wageningen) = (6, 8) 62.5 0.0506
(Wageningen, Nijmegen) = (8, 12) 66.3 0.0425
(Nijmegen, Arnhem) = (11,12) 25.7 0.2756
(Nijmegen, Zutphen) = (12, 15) 58.1 0.0620
(Arnhem, Apeldoorn) = (10, 11) 453 0.1117
(Apeldoorn, Deventer) = (10, 14) 244 0.2926
(Lelystad, Zwolle) = (9, 13) 477 0.1001
(Deventer, Zwolle) = (13, 14) 44.7 0.1149
(Zwolle, Enschede) = (13, t) 78.7 0.0240
(Zutphen, Enschede) = (15, £) 60 0.0568

low capacity compared to the other examples is due to both
the comparably large number of hops between s and £, as
well as the (in general) much lower link-level entanglement
generation rates. Based on these results, we conclude
that this network would benefit from multiplexing, or if
unavailable, an alternative method of boosting link-level
rates, e.g., via a single-photon entanglement generation
scheme [51], [52].

VIl. CONCLUSION

In this work, we studied the problem of multipath entan-
glement routing between two nodes in a quantum network.
The links in the network may have multiplexing capabil-
ities, but repeater nodes may not be able to perform de-
terministic entanglement swapping. To solve the problem,
we proposed an MIQCP, the solution of which yields the
optimal throughput for a given time interval. By averaging
over all possible network states, we were able to obtain the
average capacity of various networks included in our case
studies.

A possible future direction of our work is to explore ap-
proximation methods to the capacity computation. A simple
way to achieve this would be to compute the capacities of
only the most likely network snapshots (those occurring with
relatively high probabilities). Other approximations, possi-
bly with much lower time complexities, are also of interest.
An extension of our work would be to consider a time horizon
beyond one time slot, and to allow the repeater nodes to
perform n-GHZ measurements, for n > 2 instead of, or in
addition to BSMs.
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