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Abstract—The electric power distribution network (PDN)
and the transportation network (TN) are generally oper-
ated/coordinated by different entities. However, they are coupled
through electric vehicle charging stations (EVCSs). This paper
proposes to coordinate the operation of the two systems via a fully
decentralized framework where the PDN and TN operators solve
their own operation problems independently, with only limited
information exchange. Nevertheless, the operation problems of
both systems are generally mixed-integer programs (MIP), for
which mature algorithms like the alternating direction method
of multipliers (ADMM) may not guarantee convergence. This
paper applies a novel distributed optimization algorithm called
the SD-GS-AL method, which is a combination of the simplicial
decomposition, gauss-seidel, and augmented Lagrangian, which
can guarantee convergence and optimality for MIPs. However, the
original SD-GS-AL may be computationally inefficient for solving
a complex engineering problem like the PDN-TN coordinated
optimization investigated in this paper. To improve the compu-
tational efficiency, an enhanced SD-GS-AL method is proposed
by redesigning the inner loop of the algorithm, which can
automatically and intelligently determine the iteration number of
the inner loop. Simulations on the test cases show the efficiency
and efficacy of the proposed framework and algorithm.

Index Terms—Decentralized algorithms, mixed-integer pro-
grams, optimal power-traffic flow.

NOMENCLATURE
Indices, Superscripts, Subscripts and Sets: TN Model

A Set of arcs in the traffic network

a Index for arcs in the traffic network
ev Superscript for EV

evcs Superscript for EVCS

m,n Index for nodes in the traffic network
N Set of nodes in the traffic network
Oy Path set of O-D pair rs
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q Index for path in the traffic network
rs Index for O-D pairs

Indices and Sets: Enhanced SD-GS-AL

CH(.) Convex hull

CH(Xp) Convex hull of X,

Xp Mixed-integer convex set of dOPF
Xy Mixed-integer convex set of OTF

Parameters: PDN Model

Lik Squared of current carrying capacity of line ik

Sik MVA limit of line ik

Vi, Vi Minimum and maximum voltage limits

S Grid electricity price

pé-), q? Active, reactive power demand due to EVCS at
node i

pload ghoad active, reactive power demand at node i

p?v, qf Active, reactive power output from solar PV at
node i

Tik» Xik Resistance and reactance of line ik

Parameters: TN Model

B Energy consumption ratio of EV

8d Binary variable to identify arcs of path ¢

A Electricity price for charging at node m

| S Vector for origin and destination nodes of rs

L — Auvailability of EVCS at node m

d, Travelling distance of arc a

EY Initial battery energy of an EV

eiit Battery energy of EV at initial node of path g

E., Ep .. Minimum, maximum energy capacity of EV

F* Travel demand of O-D pair rs

Pﬁfze Rated power of EV charging piles at node m

P ax Maximum power output of EVCS at node m

R Mile anxiety of EV

tg, Ca Parameters for travel time function of arc a

t%, Oy Parameters for waiting time in EVCS at node
m

tangy)”®  Power factor of EVCS at node m

w Weighting factor from time to monetary cost

K Node-arc incidence matrix
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Parameters: Enhanced SD-GS-AL

€u Convergence tolerance of inner loop

€/eu Convergence tolerance

y Penalty parameter

J Maximum number of inner loop iterations
K Maximum number of outer loop iterations

Variables: PDN Model

Y Squared of current flow on line ik

pft, pC Grid power purchased

Dik» qik Active, reactive power flow on line ik

piG, in Active and reactive power from grid at node i
Vi Squared of voltage at node i

Variables: TN Model

Yo 0-1 charging choice at node m

o Travel cost of path ¢

c” Travel cost of O-D pair rs

E}, Charging energy of EV at node at node m

et Remaining battery energy of EV at node m

el-qnit Battery energy of EV at initial node of path g

1 Traffic flow rate on path g of O-D pair rs

p;, ‘131 Active, reactive power demand of EVCS at
node m

ta Travel time on arc a

tm Charging time at node m

Xq Traffic flow rate on arc a

X Traffic flow rate at node m

Variables: Enhanced SD-GS-AL

Xy OTF decision variables

Xp dOPF decision variables

@p Lagrangian lower bound of power subproblem

Oy Lagrangian lower bound of transportation sub-
problem

Pp Lagrangian upper bound of power subproblem

Oy Lagrangian upper bound of transportation sub-
problem

Ap\Ay Lagrangian multipliers

z Auxiliary variable

I. INTRODUCTION

UE TO the increasing concern over carbon emissions,

electric vehicles (EVs) are gradually replacing fossil-
fueled vehicles [1]. It is predicted that by 2030, the number of
EVs on the road will exceed 100 million, a massive increase
from the 5.1 million present in 2019. The widespread adoption
of EVs will lead to a significant increase in the electric-
ity demand on power distribution networks (PDNs) for EV
charging. This poses a high risk of PDN overloading during
peak-demand hours. Furthermore, the locations of EV charging
stations (EVCSs) along transportation networks (TNs) can
have an impact on the routes and travel times of EVs that
require charging. To mitigate the negative effects of large-scale
EV charging on PDNs and alleviate potential traffic congestion
in TNs, proper EV routing along TNs and charging schedules
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are necessary. As a result, proper coordination between the
operation of EVs-infused transportation and power distribution
networks is vital to ensure the seamless adoption of large-scale
EVs.

In recent times, several studies have been conducted to
improve the efficiency and reliability of TNs and PDNs by
coordinating their operations. One such proposal put forth by
the authors in [2] suggests a centralized optimal traffic-power
flow for routing EVs in electrified TN, which has been further
extended to accommodate time-varying electricity prices and
traffic demands in [3]. The traffic flow is modeled using a
semi-dynamic traffic assignment technique that accounts for
flow propagation between adjacent periods. Meanwhile, [4]
introduces a bilevel optimization model that allows EV aggre-
gators to participate in day-ahead dispatch while adhering
to various system operation constraints. Additionally, [5]
proposes a centralized model for a dynamic pricing strategy for
integrated electricity charging and hydrogen refueling stations
(IEHSs) that guides the charging and refueling decisions
of different EV types and ensures the smooth operation of
IEHSSs, the power distribution network, and the gas network.
Likewise, [6] proposes a dynamic pricing strategy for an
EV charging station that maximizes net charging profits by
incorporating the behavior of EV drivers based on both an
admission control scheme and a queuing model.

However, there is a common issue associated with the
above-mentioned studies: they all considered a centralized
operational framework. Since transportation and power distri-
bution systems are operated by different entities, and there is
no entity that has access to both TN and PDN information,
implementing a centralized model of operation may not be
practical due to privacy concerns and communication over-
head. The TN coordinator (TNC) has the responsibility of
solving the optimal traffic flow (OTF) for EVs [2], which
involves identifying the most efficient routing and charging
schedule for electric vehicles (EVs). On the other hand, the
task of the power distribution system operator (P-DSO) is
to operate the power distribution network by solving the
distribution-level optimal power flow (dOPF) problem [7].
Since electric vehicle charging stations (EVCSs) are powered
by power distribution networks (PDNs), TNs and PDNs are
physically connected. The variables that are common to both
OTF and dOPF are called boundary variables (i.e., charging
loads of EVCSs). If OTF and dOPF are solved independently
without coordination, boundary variables may not match,
resulting in an insecure or sub-optimal performance of both
systems.

After realizing this issue, researchers have proposed decen-
tralized frameworks to coordinate TNs and PDNs with
EVs. These frameworks involve obtaining the routes of
EVs using the best response decomposition (BRD) algo-
rithm [8], coordination of hydrogen-integrated TN and
PDNs using the alternating direction method of multipliers
(ADMM) [9], a novel optimal traffic power flow problem via
an extended ADMM to analyze the spatial and temporal con-
gestion propagation on coupled transportation power systems
under congested roads, transmission lines and charging sta-
tions [10], multistage distributionally robust optimization
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model to address wind power uncertainty based on improved
ADMM [11], coordination of the charging schedule of EVs
and stochastic security-constrained unit commitment using
the bender decomposition method (BDM) [12], augmented
Lagrangian alternating direction inexact newton (ALADIN)
based coordination for time-varying traffic demands and inter-
temporal EV charging behavior [13], an improved fixed-point
algorithm (FPA) based on extrapolation for the spatial and
temporal evolution of traffic flows [14]. Similarly, other frame-
works include stochastic user equilibrium traffic assignment
using optimality condition decomposition (OCD) method [15],
strategic pricing method to maximize the profit of EVCS
owners using Karush-Kuhn-Tucker (KKT) condition [16], the
generalized user equilibrium method for the coupled power-
transportation network operation using a master and a series
of subproblems (MSS) approach [17], a new collaborative
pricing model for the power-transportation coupled network
based on a variational inequality approach using an improved
prediction-correction algorithm (IPCA) [18], the iterative col-
umn generation (CG) algorithm to explicitly describe PEVs’
driving range constraints on TNs [19].

Moreover, other decentralized optimization-based frame-
works to coordinate PDN and TN involve the multi-agent
system framework utilizing consensus algorithms for a real-
time navigation system for EV drivers, optimizing both
time and cost by considering traffic conditions and power
distribution, to guide drivers to the most efficient charg-
ing stations [20], Stackelberg game based iterative approach
for day-ahead scheduling framework for electric vehicles
integrating grid-to-vehicle and vehicle-to-grid services [21],
optimistic iterative algorithm and simulated annealing for
capturing the interconnected decisions of TN and PDN oper-
ators due to Electric Vehicles’ (EVs) actions [22], game
theory based multiagent approach to model the competitive
pricing strategies of individually-owned EV charging stations
in urban transportation networks, aiming to determine optimal
charging prices [23], combined consensus and generalized
benders decomposition algorithms for collaborative optimal
routing and scheduling method for EVs that unifies navigation
services in the transportation network with power scheduling
in the distribution network, improving traffic flow, charging
facility utilization, and charging economy [24], and CG based
approach for competitive pricing of EVCSs, considering both
competition and the impact on distribution locational marginal
price [25].

To simulate the routing and charging schedule of EVs in TN,
binary variables are employed, making OTF a mixed-integer
program [8]. Likewise, binary variables are used to capture
the behavior of switched capacitors and voltage regulators in
dOPF, thereby rendering the dOPF a mixed-integer program
too [26]. Nevertheless, the decentralized algorithms mentioned
above exhibit at least one of the following primary issues:
First, they do not provide a guarantee of optimality and
convergence for mixed-integer programs (MIPs), such as OTF
and dOPF. For instance, the BRD, ADMM, BDM, OCD,
KKT, CG, and IPCA algorithms can only ensure optimality
and convergence for convex problems. Second, some of these
algorithms, e.g., BRD and MSS, require TNC and P-DSO to
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Fig. 1. Proposed framework for the decentralized coordination of PDN and
TN.

exchange a significant amount of information, which results
in high investment in building communication channels and
causes long communication delays. Additionally, TNC and
P-DSO may not want to share their confidential information.
Third, some of these algorithms, such as ALADIN and
MSS, are not fully decentralized as they require certain steps
(such as updating the Hessian matrix and solving the master
subproblem) to be performed by a central coordinator (which
may not be practical in a purely decentralized environment).
Beyond the decentralized coordination of PDN and TN,
there is a broad interest across power systems for a decen-
tralized optimization algorithm applicable for mixed-integer
programs [27]. Some examples include the coordinated opera-
tion of the water-energy nexus, the coordinated operation and
restoration of power transmission and distribution systems,
and the integrated operation of power and gas networks.
Most commonly used decentralized optimization algorithms in
popular power system applications can be broadly categorized
into three types [27]: a) the Lagrangian relaxation-based
methods such as dual decomposition, ADMM, ALADIN,
analytical target cascading (ATC) [28], auxiliary problem prin-
ciple (APP) [29], and proximal message passing (PMP) [30];
b) the Karush—-Kuhn-Tucker (KKT) conditions based meth-
ods such as OCD, consensus algorithms, and heterogeneous
decomposition (HGD), and c) the benders decomposition
(BD) methods such as MSS. Nevertheless, as with previously
mentioned algorithms, these algorithms may not always work
for subproblems that contain integer variables. Therefore, there
is a need for a fully decentralized algorithm that facilitates the
coordination of MIP problems such as OTF and dOPF with
limited information exchange, as shown in Figure 1.
Recently, a promising algorithm called the SD-GS-AL
algorithm [31], which is a combination of the simplicial
decomposition, gauss-seidel, and augmented Lagrangian, has
been shown to guarantee optimality and convergence to MIP
subproblems if the number of inner loop iterations is set to be
big enough. However, a large number of inner loop iterations
results in a high computational burden, which makes the
SD-GS-AL algorithm computationally inefficient for problems
like the PDN-TN coordinated optimization. To be precise, in
the original SD-GS-AL algorithm, the number of inner loops
is set by the user in advance based on experience. If the
number of inner loop iterations is set too high, the algorithm
becomes computationally inefficient. If the number of inner
loop iterations is set too low, the algorithm may not converge.
To mitigate this issue, we propose an enhanced SD-GS-AL
decentralized algorithm by redesigning the inner loop of the
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algorithm, which can automatically and intelligently determine
the iteration number of the inner loop. The main contributions
can be summarized as follows:

1) From the engineering perspective, this research respects
the fact that the two systems are operated by different
operators and proposes to coordinate the two systems via
a new decentralized method, i.e., the enhanced SD-GS-
AL algorithm. The proposed method has the following
benefits: a) it is applicable to MIP problems with conver-
gence and optimality guaranteed under mild assumptions
(i.e., (1) the global optimal solution of the coordinated
dOPF-OTF is unique, (2) the objective function is linear,
and (3) the constraint sets are in mixed-integer convex
program (MICP) forms), b) it only requires limited
information exchange between PDN and TN operators,
which will help preserve the privacy of the two systems
and reduce the investment in building communication
channels, and c) it is fully decentralized so that all
the computations (i.e., optimizations) are carried out in
parallel by PDN operator and TN coordinator only.

2) From the perspective of mathematical method, being dif-
ferent from the original SD-GS-AL algorithm [31], the
redesigned inner loop can automatically and intelligently
terminate the inner loop iterations, which significantly
improves the computational efficiency of the overall
algorithm. Note that the proposed algorithm is general
and applicable to other problems that have similar
features.

II. PROBLEM FORMULATION
A. Power Distribution Network Model

Distributed energy resources (DERs), like solar photo-
voltaics (PVs), and grid power, which supply EVCSs in
the transportation network and other loads in the power
distribution network, are considered in this paper. The resulting
distribution system model is given as follows [32]:

Pi)* + (qi)* = vilix (1a)
Vi — Vi — 2(riepik + Xikqik)

+ (? + ()t = 0 (1b)
0 < i <l (Ic)
) + (@i)* < (Sa)’ (1d)
(v)" < vi < @) (le)

J

@ +a — g™ —qp = Z(qji — xjilji) + Z qik (1g)
J k

pP A =P =P =Y (pii — il + ) pi (1)
k

q° = pPran(6P). (1h)

The balanced power flows are modeled using the DistFlow
model [32], which is expressed in equation (1a). The distribu-
tion line connecting nodes i(j) and k(i) is denoted by the index
ik(ji). The voltage drop on a distribution line is constrained by
equation (1b), while the thermal and power carrying limits of
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distribution lines are given by constraints (1¢) and (1d), respec-
tively. The voltage limits are specified by constraint (1e). The
nodal active and reactive power balance equations are given
by constraints (1f) and (1g), respectively. The constraint (1h)
represents the reactive power demand due to the EVCSs, where
QiD is the power factor angle (is assumed fixed) of the EVCS.
Throughout the paper, bold symbols denote matrices/vectors
of corresponding variables.

B. Transportation Network Model

In this subsection, we briefly provide a description of the
adopted model of the traffic flow for EVs. For a detailed
understanding of the model, readers are referred to [17].
The transportation network (TN) is represented by a directed
graph G = [N, A], where N and A refer to the set of nodes
and arcs, respectively. To specify electric vehicle (EV) travel
and charging options, a path is formed by combining nodes and
arcs. The nodes correspond to the starting and ending points
of an arc, junctions, and charging stations for EVs, while arcs
connect two nodes. Even though the traffic network will have
both electric and non-electric vehicles, we consider routing
and charging of only electric vehicles in this paper as in [17].
Therefore, the traffic parameters used in this paper are non-
electric vehicles discounted. The resulting model is given as
follows:

Ko =17 (2a)
—M(1—8%) < e, — el +d,p"” — EY,
<M(1-80),Y(n,m)=acA (2b)
el —d,B” > —M(1 —8%) + R*E},..
Y(n,m)=acA (2¢)
E? < bymax. Vm € N (2d)
El <yIlES  <el VmeN (2e)
ey =By @
Epin < €} < Epgy, YVm € N (2g)
1, = z2(1 + ().15(xa/ca)4>, VaeA (2h)
tm = 19 (1 4 o), Vm € N (2i)
0=/ L(Cp = Cs) 20.¥g € O 2j)
Z f¥=F" Vrs (2k)
q€O0ys
Xa=Y ) frsiVaeA 1)

s q€0ys
Xm=Y_ Y fyd.¥meN (2m)

rs qeors
cr = W(Z 1289 + Z(E%/P’,j{le + tmy,?l)>
a m
+ Y Efhm. ¥q. Vrs (2n)

m

Constraint (2a) specifies the starting and ending nodes of path
q for an origin-destination (O-D) pair rs. Note that the vector
I'* consists of two non-zero elements of 1 and -1 at the
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origin and the destination nodes of O-D pair rs, respectively.
Constraint (2b) tracks the dynamics of the energy stored in the
EVs, denoted by e}, and the charging energy at nodes, denoted
by Ej,. The EV energy consumption ratio is denoted by B,
and the binary variable y, indicates whether an EV along
path g is charged at node m. A very large positive constant M
is a Big-M parameter. Constraint (2c) accounts for the range
anxiety of EVs for O-D pair rs, represented by R'®, where
E}; . is the maximum energy that an EV for O-D pair rs can
store. Constraint (2d) specifies the charging behavior of EVs,
where by, max 1s set to O if there is no EV charging station
(EVCS) at node m. Constraint (2e) ensures that the EVs are
fully charged after each charging cycle, which is a realistic
assumption as EV drivers tend to minimize the frequency of
charging. Constraints (2f) and (2g) impose limits on the initial
energy stored (E(’) in the EVs and the maximum energy (and
minimum energy, E]. ) that can be stored in their batteries,
respectively.

The function #,(x,) in equation (2h), based on the com-
monly used Bureau of Public Roads (BPR) function [33],
represents travel time on arc a, where x, is the traffic flow
on arc a. The function #,(x,) in equation (2i) describes the
time required for charging and waiting for service at EVCSs,
where x,, is node traffic flow. The charging time is dependent
on the rated power of the charging station P2, while the
waiting time is represented by 0, which is fixed and is affected
by the level of congestion in EV charging stations (EVCSs),
estimated by «,,. To account for congestion in the power grid
at different locations, the electricity price A, at an EVCS
node m is given by the distribution locational marginal price
(DLMP) of the corresponding location in PDN, and more
information on how to obtain X, will be provided later when
we introduce the algorithm. The traffic equilibrium condition
is described by constraint (2j), which states that the travel cost
C' for origin-destination (O-D) pair rs should be equal for all
used paths and no greater than that for any unused path. This
condition is also known as the Wardrop User Equilibrium (UE)
Principle [34]. The variable f;* represents EV flow on path ¢
for O-D pair rs. Constraint (2k) represents the conservation
of traffic flow. In constraints (21) and (2m), the mathematical
expression for arc flow x, and node flow x, is provided.
Constraint (2n) provides the expression for the total cost (Cc’f)
of path g for an O-D pair rs, which includes travel time,
charging time for EVs, and the charging cost for EVs.

Note that this paper considers the static Traffic Assignment
Problem (TAP), which is the foundation for dynamic traffic
assignment. However, the dynamic TAP is more complex than
the static TAP, and there is no universally accepted model
available for it [17]. Moreover, the existing literature that
considers the coordination of PDN and TN with EVs mostly
uses static TAP for optimal coordination [17]. Nonetheless, the
proposed framework and algorithms would work for a dynamic
TAP if they were available.

C. Coupling Between PDN and TN

From a system-level perspective, on-road fast charging
stations would simultaneously impact vehicle routing in
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the transportation system, and power flows in the distri-
bution system, therefore, tightly coupling the two systems.
Mathematically, the coupling between PDN and TN can be
captured as follows:

Pm=2_Y frEL.¥meN (3a)
rs qeors
0 < P < Ppymars VM €N (3b)

where p] is the power consumption of EVs in TN and acts as a
power demand to PDN. The constraint (3a) is the active power
consumed at the EVCSs, while (3b) provides the capacity limit
of EVCS:s.

D. Convexification and Linearization of Non-Linear
Constraints

The PDN model (1) is a non-linear programming (NLP)
problem due to the non-linear non-convex constraint (la).
Similarly, the TN model (2) is in mixed-integer non-linear
programming (MINLP) form due to the non-linear BPR
function (2h) and bilinear traffic equilibrium constraint (2j).
In addition, the coupling constraint (3a) is non-linear due to
the multiplication of two continuous variables. Reference [32]
found that, if one can find the tight convex relaxation for
MINLP form, the solution of the mixed-integer convex pro-
gram (MICP) form of the dOPF model (1) coincides with the
solutions of the MINLP form but with a reduced computational
burden. Therefore, in this paper, we employ the convex hull
relaxation from [32], [35] for (1a) and piece-wise linearization
techniques from [36] for (2h) and (2j). For accuracy of the
convex hull relaxation and the piece-wise linearization, readers
are referred to [35] and [36], respectively. The convex hulls
relaxation of (la) is given as follows:

(4a)
(4b)

P,-zk + qizk <vilir
Syvi +yivi Lig < Sizk(Ki + ).
Note that the conic relaxation (4a) and the expression (4b)
collectively represent the convex hulls relaxation of (la).
The BPR function constraint (2h) is a non-linear constraint,
which is approximated by a piecewise linearization technique
using a special ordered set of type-2 (SOS2) variables [36].
In piecewise linearization, the non-linear function is divided
into a number of segments, and each segment is represented
by a linear function. The piecewise linearization of the BPR
function constraint (2h) is given as follows:

Xa = ZXZyZ; Ia = ZIZ(XZ))]Z

3 yi=1; 0< [y Vn} € 5082,
n

(5a)
(5b)

where x; and 7! denote the values of x, and 1, respectively,
while y” is a vector of SOS2 variables, in which at most
two adjacent variables can be nonzero. The user equilibrium
constraint (2j) is a bilinear constraint, which is linearized using

the Big-M method as follows:

0 qu” < Mvgs, Vg, rs (6a)
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0<Cl—C < M(l _ u{;), Vg, Vrs, (6b)
where, vg® is a binary variable for each path. The coupling
constraint (3a) is also a non-linear constraint. The same
piecewise linearization technique, used in (5), is applicable for
the linearization of (3a). Owing to the page limit, the detailed
modeling is omitted. Finally, the convex constraints set of
PDN, denoted by A&, is defined as follows:

A&p = {(Ib)-(1h), (4)} (N

while the mixed-integer convex constraints set of TN, denoted
by A, is defined as follows:

Xy = {(2a)—2g), (2i), 2Zk)-2n), 3), 5), O} B

E. Coordinated dOPF-OTF Formulation Under the
Decentralized Framework

This subsection presents the formulations of the coordinated
dOPF-OTF problem under the decentralized framework. In our
proposed framework, the power operator solves the following
dOPF subproblem:

(PO.) xmlo? folxp) = Z cSp8 = Cpb (9a)
p-%p .
14
S.t. pD =z (9b)
Xp € Xp, ap € {0, 1}, (9¢)
where ¢Y is electricity price (can be interpreted as the trans-

mission system’s (grid) locational marginal prices (LMPs))
and pO is electric power purchased by PDN from the grid.
As such, the objective function (9a) minimizes the power
purchased from the grid. pP represents the power demand due
to EVCSs in the dOPF model. Auxiliary variable z is utilized to
facilitate the decentralized operation. All the decision variables
of the PDN constraint set (7) are collectively referred to as xp
while o collectively represents the integer decision variables.
Even though there are no integer (including binary) variables
present in the PDN constraint set (7), we have introduced
binary variables &, in the compact form for the generalization
(for the potential future adoption) of the proposed algorithm.

Similarly, the transportation coordinator solves the follow-
ing OTF subproblem:

(TO.) gl,g"l/ Solxy) = Z qurscgs
s q

- Z F5C™ = FC (10a)

rs
st. pT=z (10b)
xy € Xy, ay € {0, 1}, (10c)

where xy collectively represents all the decision variables
while ay collectively represents the integer decision variables
of the TN constraint set (8). And, pT represents the power
consumed by EVCSs in OTF. The objective function of the
transportation subproblem (10a) minimizes the total cost of
the transportation sector (i.e., time and energy consumption
costs) [17]. Note that subscript p has been used for the dOPF
symbols while v for the OTF symbols throughout the paper.
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The decentralized formulation, i.e., (9) and (10) has one
significant advantage: it does not require any entity with access
to both A, and AX,. It is important to note that there is
no entity that has access to both PDN and TN information.
Therefore, the proposed decentralized formulation of coor-
dinated dOPF-OTF provides a practical framework that is
compatible for the coordination of PDNs and TNs in the real
world. Nonetheless, it can be observed from (9b) and (10b)
that the two subproblems are still coupled through z as
EVCS powers pT in a TN act as a power demand p? in a
PDN. If two models are solved independently without being
coordinated by a proper decentralized algorithm, the boundary
variables, i.e., p? and pT may not match with each other, which
will result in increased cost or insecure operation of PDN.
Therefore, in the next section, we introduce an enhanced SD-
GS-AL decentralized algorithm that allows TNC and P-DSO
to solve two subproblems separately but coordinately, with the
guarantee of boundary variables matching.

III. THE PROPOSED ALGORITHM

This section first provides an overview of the proposed
enhanced SD-GS-AL decentralized algorithm in Section III-A,
describes the redesigned inner loop in the second subsection,
and then proves the optimality and convergence in the third
subsection.

A. Overview of the Enhanced SD-GS-AL Algorithm

The key steps of the proposed enhanced SD-GS-AL algo-
rithm are provided in Algorithm 1. The algorithm is initialized
by assigning parameters in Step 1. Moreover, the starting
points (i.e., for iteration 0) for the auxiliary variable z, binary
variables e, and oy, Lagrangian multipliers ka and AyX, and
Lagrangian lower bounds ¢, and ¢, are assigned. Note that
ayp and oy collectively represent the binary variables of PDN
and TN subproblems, respectively. For the initial values of
auxiliary variable z and Lagrangian multipliers ka and A%,
we can use zero. For the initial values of binary variables o
and oy, we can use any feasible solution. For the Lagrangian
lower bounds ¢, and ¢y, we can use any small negative
number. Note that Step 2 to Step 8 constitutes the outer loop
while (11) in Step 3 is the inner loop.

For any current iteration k, the first element of the
Lagrangian relaxation value set LR is set to 0 while the
difference of the Lagrangian relaxation value ALRF is initially
set to a large number in Step 2. In addition, the initial values
of auxiliary variable z, binary variables &}, and ay, Lagrangian
multipliers ka and A,X, and Lagrangian lower bounds ¢p and
@y are set to that of the previous iteration k — 1.

The L,Ii in (11a) and L; in (11b) have the following detailed
expressions in Step 3:

y 2
18 = cGpC — (a)TpP + Euz _pP )2, (16a)

L) =FC+ () p" + ngT — sz (16b)

Note that (16a) and (16b), the augmented Lagrangian relax-
ations of (9) and (10), respectively, are computed in parallel
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Algorithm 1 Enhanced SD-GS-AL Decentralized Algorithm

1: Parameters initialization:

1) Parameters selection: Choose the outer loop convergence tolerance
€, inner loop convergence tolerance €y, penalty parameter y, outer
loop iteration limit K.

2) Starting point: Starting points for auxiliary variable z, binary
variables ap and ay, Lagrangian multipliers Ap and Ay, and
Lagrangian lower bounds ¢p and ¢y are assigned by P-DSO and
TNC, respectively.

2: Iteration initialization: Set LR¥: = {0} and ALRK: = {a laI%e number},
and {z, lps Av, ap, Ay, ‘Z’p, (,Z’v}k: ={z, }wp» Ay, ap, Uy, @p> Ov} -1

3: Lagrangian upper bound computation: While ALR" > ¢, repeat the
following (11):

LR’S,xpk,pD(k) <« minD {Ls (xp,pD,zk, lpk):

Xp.p
apeapk,xpe)(p} (11a)
LR]\‘,,ka,pT(k) < min {L\}j (xv,pT,zk,Avk):

v pT
\D4
av €k xy € xv} (11b)
2 2
zk <~ min{ Hz —pD(k) H + HPT(k) - Z” } (1 1C)
z 2 2
LR* < LRKU {(LR’g + LRlé)} (11d)
k k k
ALR® < LR}, , — LR}, ., (11e)
And, obtain the Lagrangian upper bounds as follows:
oK — LRF + Zuzk —pP® ”2 (12a)
P p 2 2
2
o < LR+ Z[p"0 | (12b)

4: Convergence check: If ((2}5 + gﬁl\f) - ((ZJS + (Zzl\f) < €, then terminate, and
(xpk,ka,zk, ka, Ak, (ZJ]I;, gb’v‘) is the solution. Otherwise, continue.

5: Lagrangian lower bound computation: Compute the intermediate
Lagrangian lower bound as follows:

Pp» apk < gp (xpk + y(zk —pD(k)))
@v, Olvk <~ @y (kvk + )/(I’T(k) — Zk)>
6: Lagrangian lower bound quality check: The intermediate Lagrangian

lower bound passes the quality check, and iteration is declared forward
iteration if the following inequality holds:

(13a)
(13b)

@k +05 = @+ @ = @+ b, (14)
Perform the dual variables updates and keep the Lagrangian lower bounds
if the iteration is declared forward:

Apk < Apk y (2 —pP0) (15a)
Wy (pT0 - ) (15b)
ok < (15¢)
g < @ (15d)
Otherwise, the iteration is declared neutral: Algorithm continues without

updates.
7: Loop: Set k: = k+ 1 and go back to Step 2.

by P-DSO and TNC, respectively. Moreover, LR’E and LR@
represent the values of Lagrangian relaxations (16a) and (16b),
respectively. In (16a) and (16b), binary variables are fixed so
that PDN and TN sub-problems are continuous. The binary
variables are fixed from the solutions of the previous iteration
of MIP subproblems in Step 5. Moreover, the auxiliary variable
z is computed as in (11c). The auxiliary variable update (11c)
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can be assigned to either of the operators (in our study, we
assign it to the TN coordinator) as the only information shared
is the boundary variables from both networks. Moreover, the
Lagrangian relaxation value set LR¥ is updated as in (11d)
while the difference of the Lagrangian relaxation value ALR¥
is updated as in (1le), where the two most recent elements
of LR* are utilized (subscript end represents the most recent
element). Finally, the Lagrangian upper bounds ¢, and ¢y,
are computed as in (12) in Step 3. Note that Algorithm 1
is said to converge if the difference of Lagrangian bounds
(@p + @v) — (¢p + ¢v)) is within the limit of tolerance, as
stated in Step 4. In this paper, the proposed enhanced SD-GS-
AL algorithm is used to coordinate the MICP subproblems.
Therefore, it converges to the global optimal solution of the
centralized implementation of MICP subproblems.

The ¢, and ¢, ((13a) and (13b) respectively), which are
used to obtain the intermediate Lagrangian lower bounds ¢,
and ¢y and to update binary variables e, and ay in Step 5, are
computed in parallel by P-DSO and TNC, respectively, and
are given as follows:

¢p(xp’<) = min {poG —aH PP i xp € Xp}, (17a)
Xp,P~,0p
(ﬁv(lvk) =

min {Fc F NPT xy e Xv}.
xv.pTay

Note that no variables (including binary) are fixed in Step 35,
although binary variables are fixed in Step 3. The intermediate
Lagrangian lower bounds (¢, and ¢,) computed in Step
5 go through a quality check in Step 6. If the intermediate
Lagrangian lower bounds calculated in Step 5 are greater
than the previously calculated lower bounds ((ﬁ’rj and ¢k)
and smaller than the current upper bounds (@g and <Z>’\f) as
stipulated in (14), the intermediate lower bounds pass the
quality check (iteration is declared forward), and Lagrangian
multipliers are updated in a decentralized manner as in (15a)
and (15b). Moreover, the Lagrangian lower bounds (gbg and
¢’V‘) are also updated as in (15¢) and (15d). Otherwise, the
algorithm continues without updates. It is worth noting that
all the computations, including lagrangian multipliers update,
are performed in Algorithm 1 by P-DSO and TNC in parallel.

Note that the proposed algorithm requires setting four
parameters: outer loop convergence tolerance (€), inner loop
convergence tolerance (€,), penalty parameter (y), and outer
loop iteration limit (K). While most of these parameters are
standard in augmented Lagrangian-based algorithms [37], the
penalty parameter (y) is pivotal in determining the step size
in any augmented Lagrangian-based algorithm. If the penalty
parameter (y) is set too small, the algorithm could take a
long time to converge. If it is set too high, it could overstep
the optimal point, and the algorithm may not converge. Thus,
erring toward a smaller y is advisable to ensure systematic
progress toward the optimal solution in accordance with
standard augmented Lagrangian penalty parameter guidelines.

(17b)

B. Why Does the Enhanced SD-GS-AL Algorithm
Outperform the Original One?

In the SD-GS-AL algorithms, the purpose of the inner loop
is to compute the optimal value of Lagrangian relaxation of

Authorized licensed use limited to: University of Central Florida. Downloaded on December 24,2024 at 00:26:28 UTC from IEEE Xplore. Restrictions apply.



SHARMA et al.: ENHANCED SD-GS-AL ALGORITHM

subproblems for a given value of Lagrangian multipliers. The
original SD-GS-AL algorithm [31] defines the inner loop as
follows:

Repeat (18) #,,4x times:

LR];,xpk,pD(k) < min {Lp (xp p z Ap )
xpp
ap € ap ,Xp € Xp} (18a)
LR]\(H kava(k) <~ m]n {LV (szp Z A'Vk>
xy.pT
oy € oy ,xVeX } (18b)
k D(k 2 T(k
Y s N
z

where 4, is the pre-defined number of inner loop iterations.
However, there is a critical issue associated with such a setting.
Namely, for a specific problem, a proper value of 4, is
unknown in advance. If #,,4, is too small, the algorithm may
not converge as the calculated value of Lagrangian relaxation
may not be optimal. If #,,y is too big, the algorithm takes a
long time to converge.

To avoid this issue, we propose a new inner loop as
given in (11), yielding an enhanced SD-GS-AL algorithm.
In (11), we designed a stopping criterion using which the
algorithm judges whether to stop the inner loop. To be specific,
the current value of Lagrangian relaxation is checked for
convergence before each new inner loop iteration. If the
difference between current and previous values of Lagrangian
relaxation (denoted by ALRX) is within the limit of the inner
loop convergence tolerance (denoted by €,,), the new inner loop
iteration is not executed. On the other hand, if the difference
exceeds the tolerance, the inner loop proceeds with a new
iteration, employing the most recent parameter and variable
values as specified in Step 3.

As such, the new algorithm no longer relies on the
pre-determined #,,,, and can automatically and intelligently
determine when to stop the inner loop for each outer loop
iteration. It brings two advantages. First, it prevents the inner
loop from continuing unnecessarily after the Lagrangian value
has already converged after a few iterations, thereby saving
time and computational resources. Second, it helps prevent
the convergence failures of the original algorithm, which are
caused by setting too small 7.

C. Optimality and Convergence

In [31], the original SD-GS-AL algorithm has been proved
for convergence and optimality. Nonetheless, the inner loop
has been redesigned in the proposed enhanced SD-GS-AL
algorithm. In this subsection, we will prove that convergence
and optimality still hold under the new inner loop.

Theorem: The sequence {(x*,z*)} generated by the
Algorithm 1 converges to the global optimal solution of MICP
dOPF and OTF subproblems as k — oo.
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Proof: We introduce the following definitions for brevity
and conciseness:

L=1L5+Ly, (19a)
P°() = ¢y (Ap) + oy Ay, (19b)
05 (1p") = min [e%p© — 1,5 TpPxp € CH,) |, (190)

Xp,P
¢ (ka) = mm{FC + AT oy € CH(XV)}, (19d)
v.P
CH(.) := Convex Hulls, (19e)
Qb()v) = ‘ﬁp(xp) + ¢V()~v), (191)
@(xv Z, )") = @p(xp»z: A'P) +¢V(vaz3 )"V)v (19g)
X =, UA,, (19h)
xk = (xpk, ka)(vector concatenation), (19i)
(x—z) = ((pT —z), (z—pD))~ (19))

The convergence condition at x € X for a limit point (¥, z) of
the sequence {(xk, zk)} is defined as [31]:

Li(x,z;5) >0 forallse X — {x}, (20)

where L} (x,z; 5) = limg_.q some B.

The Direction Related Assumption is given as follows: for
any iteration k, sk is chosen such that x¥ + s* € X and
L;(x, z;s) > 0. Note that sk is a gradient of xk.

The proof has three parts. Part 1 proves the convergence of
the proposed algorithm, Part 2 verifies the optimality, and Part
3 provides convergence of the boundary variables.

Part 1: The sequence {(xk,zk)} generated by Step 3 in
Algorithm 1 always converges to the limit point (X, 7).

Here, we prove that the limit point (¥,Zz) of the sequence
{(xk,zk)} of feasible solutions to the problems (9) and (10)
satisfies the convergence condition (20). Note that subprob-
lems in Step 3 are continuous as integer variables are fixed.
According to the Armijo rule, we have

k kok k k k
L(x + B"s ,z)—L(x Z) 50L’(xk zk )
/gk

for any o € (0, 1). Note that ¥ is the step length of the
Armijo rule. As L;(xk, 7 sk) < 0 according to the Direction
Related Assumption (defined above) and ,Bk > 0, above
expression can be rewritten as L(xk + ﬂksk,zk) < L(xk,zk).
We also have L(x*t1, z5t1) < L(xk 4 g¥sk, z¢) < L(xF, zF) and
Lk 251y < L(xk, 2. Also, L is bounded from below, we
have limg_ oo L(x*, z5) = L > —o00. Hence, we have

lim L(xk+1’zk+1> —L( k k) 0.

L(x+Bs,z)—L(x,z) for
B

1)

k— 00

Furthermore,
fim L(xk + phsk zk) —L( k ") 0. 22)
k— 00

For the sake of contradiction, we assume that

limg_, 00 (x%,2) = (¥,%Z) does not satisfy the convergence
condition (20). From the definition of gradient-related
assumption, we have

limsup L, (xk Jal sk> < 0.

k— 00

(23)
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Hence, in conclusion, 1il_nk_>oo ﬂk =0. Fr01_n Arr_nijo rule, after
a certain iteration k > k, we can define (8%}, Bk = ¥y for
some y, where ,Bk < 1 and we have

L(xk 4 Bksk, 28
) = Bk
If we apply the mean value theorem to the right side of the
above expression, for some B* € [0, B¥1, we have

oL, (xk,zk; sk) < L;(xk + Bk, 25 sk).

— L(x, 25

oL, (xk, kst (24)

(25)
Moreover, limsup;_, ., L;(xk,zk;sk) < 0, and if we take
a limit point 5 of {s*} such that L.(x,z,5) < 0.
Also, we have, limy_, o rexc L, (x5, 25 s%) = L.(%,7;5) and
limy s oo keic L (k4 prsk, 5 sk = L!.(x,Z; 5). From these two
factors, we can infer that L (x, z; 5) is continuous. Now, from
expression (25), we have
oL, (x,z;5) < L.(¥,z;5) = 0<(1—-0)L.(X,Z;5).
Since (1 — o) > 0, L..(¥,z;5) < 0 which is a contradiction.
Therefore, the limit point (x, z) of the sequence {(xk, zk)} ie.,
limg_ o0 (x*, 2) = (%,7) satisfies the convergence condition,
which means Step 3 in Algorithm 1 has a limit point. It is
worth noting that the solution of Step 3 is reported as the final
solution when the algorithm converges, as stated in Step 4;
this part of the proof shows that Algorithm 1 has a converged
solution.

Part 2: The limit point (¥,7) of the sequence {(x*,z%)}
generated by Step 3 in Algorithm 1 is a global optimal solution
of the MICP subproblems.

From Part 1, we have that the algorithm converges to the
limit point (x,Z). In other words, the algorithm produces a
solution, (x, z). Here, we establish the global optimality of the
solution (x,z). The optimality conditions (KKT conditions)
associated with the (x,z) € argmin, {L(x,z,1):a € ok} is
given as follows:

Oy = [VF@ + A+ yG—2]T1] [x—F]
> 0.

Note that integer (binary) variables are fixed here. The above
optimality condition can also be written as:

min{®,} = 0.
X

The above expression can be re-written in terms of ¢(A +
y(X —2),Xx) as:

GA+yE—2).%) =f@® + A E+ylx—zl3
— L(# 7z, + gllfc —zl13.
‘We have,
G0 = minff) + Ve ) T - )
+ATxx € X}.

Note that according to [38], minimizing linear objective func-
tion over mixed-integer convex sets A&}, and X is equivalent
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to minimizing linear objective function over convex hulls sets,
CH(&}) and CH(Xy). Also, we have

PEZA) = LEZ )+ SIF—ZI5.
Hence for a unique solution,

PA+yE—2),%) =@, Z, )= ¢ (¥,Z, A). (26)

The expression (26) implies that the upper and lower bounds of
the Lagrangian function converge as k — oo. In other words,
Algorithm 1 converges to the global optimal solution of the
centralized implementation of MICP subproblems.

Part 3: The boundary variables (p® and p") also match
when the Lagrangian upper and lower bounds match as
k — oo.

In Part 2, we have shown that the upper and lower bounds
of Lagrangian match as k — oo. In this part, we show that
the boundary variables (pP and pT) also match as k — oo.
From (11a), (11b), (12), and (16), the Lagrangian upper bound
is given as follows,

2
FFC+0)Tp T +y HpT - sz. @7

From (17), the Lagrangian lower bound is given as follows,

(28)

From Part 2, we have that ¢ = ¢ = ¢ — ¢ = 0 as k — 0.
This can be expressed in terms of (27) and (28) as follows,

o R R TR

For positive values of y, pD, pT, and z, the followings must
hold to make left side of (29) equal the right side of (29),

b4 —pD =0
pT —-z=0
ie, p? =p'. (30)

The expression (30) represents that the boundary variables (p?
and pT) match when the Lagrangian upper and lower bounds
match as k — oo.

IV. CASE STUDY

We tested the proposed enhanced SD-GS-AL algorithm
on three power-transportation systems. In this section, the
simulation setup is first described. Second, the advantages of
the proposed method are illustrated via simulation results.

A. Simulation Setup

Generally, the covered area of TN is much larger than that
of a power distribution feeder. Therefore, to make the area of
coverage similar, one power distribution feeder supplies one
EVCS in a TN in this paper, as in [33]. For Case 1, the three
modified IEEE 13-node test feeders represent the PDN, while
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EVCS

Solar photovoltaic
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BT 615 143 200 9 8 7 6fs

PDN and TN topology (Case 2).

@ Solar photovoltaic

Fig. 3.

the 5-node road network represents the TN, as shown in Fig. 2.
For Case 2, the four modified IEEE 33-node test feeders are
used to represent the PDN, while the modified Nguyen-Dupius
network is adopted to represent the TN, as shown in Fig. 3.
For Case 3, the four modified IEEE 123-node test feeders are
used to represent the PDN, while the modified Sioux Falls
network [39] is adopted to represent the TN, as shown in
Fig. 4. It is worth mentioning that feeders are not coupled with
each other, and they are supplied by different buses of the
transmission network (grid), hence different grid prices (can
be interpreted as LMPs of transmission system). The details
of the physical coupling between TN and PDN and the grid
prices used are provided in Table I. In Figures 2 and 3, the
network drawn in green color represents the feeder, while the
network drawn in blue color represents TN. For Case 3, shown
in Figure 4, the feeder topology is not drawn for brevity.
The arcs parameters for TN of Case 1 are provided in
Table II, while those of Case 2 and 3 are adopted from [13]
and [39], respectively. For Case 1, two O-D pairs considered
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Feeder 1:
IEEE 123 node feeder
Node: 2

Feeder 2:
IEEE 123 node feeder
Node: 3

Feeder 4:
IEEE 123 node feeder
Node: 5

Feeder 3:
IEEE 123 node feeder
Node: 4

O TN node
. EVCS

Fig. 4. PDN and TN topology (Case 3).

TABLE I
INFORMATION ON THE PHYSICAL COUPLING BETWEEN
TN AND PDN AND GRID PRICES

Feeder I  Feeder 2  Feeder 3  Feeder 4
TN Node 2 3 5
Case 1 Feeder Node 633 650 680
Grid Price ($/MWh) 70.47 77.52 84.57
TN Node 6 7 9 10
Case 2 Feeder Node 3 4 5 6
Grid Price ($/MWh) 70.47 77.52 84.57 91.62
TN Node 5 11 16 15
Case 3 Feeder Node 2 3 4 5
Grid Price ($/MWh) 70.47 77.52 84.57 91.62
TABLE 11

TN ARCS PARAMETERS (CASE 1)

Sart End la Ca da
(min.)  (per min.)  (miles)
172 2/1 120 40 150
2/3 32 130 40 150
3/4 4/3 120 40 150
1/4 4/1 195 47 225
4/5 5/4 195 47 225

are 1—4 and 4—1 with a traffic (EV) demand of 30 each.
For Case 2, four O-D pairs considered are 1—2, 1 -3, 4—2,
and 4—3 with a traffic demand of 60 each. For Case 3,
six O-D pairs considered are 1—20, 2—13, 3—19, 4—18,
12—7, and 23—6 with a traffic demand of 60 each. The
capacity of each solar photovoltaic (PV) used in the feeders
of all cases is 200 KW. While the locations of PVs of the
first two test cases are shown in Figures 2 and 3, the locations
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TABLE III
ALGORITHM PARAMETERS

dew 0 K2 AWC @ g

Case 1  6e-3/le-1  4e-6 300 0 0 -9999  -99999
Case 2 6e-3/le-1  4e-6 200 0 0 -9999  -99999
Case 3 6e-3/2e-1  4e-6 200 0 0 -9999  -99999

of PVs in the feeders of Case 3 are nodes—19, 47, and 76.
Moreover, the parameters used for the proposed algorithm are
provided in Table III.

It should be noted that in the TN model, all feasible paths
for each origin-destination pair can be used as input. However,
in a larger network, the number of feasible paths can become
overwhelming. Additionally, not all feasible paths for a given
origin-destination pair are actually used by electric vehicles,
as many of them are much longer and thus more costly than
shorter alternatives. To address this issue, we have narrowed
down the set of feasible paths by following a specific rule.
First, all paths for each origin-destination pair are generated.
Then, any paths that do not contain at least one EVCS node
are removed as infeasible. Finally, any feasible paths that are
longer than twice the length of the shortest path (in terms of
distance) are also removed.

B. Validation of the Proposed Algorithm

In this subsection, the proposed enhanced SD-GS-AL algo-
rithm is validated and compared with the original SD-GS-AL
algorithm [31] and ADMM [40] using three test cases.

1) Case-1: IEEE 13-Node PDN and 5-Node TN: This
subsection exhibits the results of the coordination of TN and
PDN through numerical experiments on a test system, shown
in Figure 2. The proposed algorithm is compared with the
ADMM and the original SD-GS-AL. Since the difference of
Lagrangian upper and lower bounds (also called convergence
error) is used as a convergence criterion in the proposed and
original SD-GS-AL algorithms, and the difference of boundary
variables is used as a convergence criterion in the ADMM [40],
two types of plots are utilized for unit consistency in the
comparison. First, the plot of convergence error (i.e., the
difference of Lagrangian bounds) is compared for both the
proposed and original SD-GS-AL algorithms, as shown in
Figure 5. Note that the ADMM does not utilize the concept of
Lagrangian bounds; therefore, it is not included in Figure 5.
Second, the plot of boundary error (i.e., the sum of the absolute
difference of all boundary variables) has been utilized for
comparison with ADMM, as shown in Figure 6. The figures
illustrate that the proposed enhanced SD-GS-AL algorithm
outperforms ADMM and original SD-GS-AL as they failed to
converge after 300 outer iterations. Note that a non-zero error
indicates the original SD-GS-AL algorithm and ADMM failed
to converge. The convergence and boundary errors of only 20
iterations are shown in Figures 5 and 6 for better visualization.

2) Case-2: IEEE 33-Node PDN and Modified Nguyen-
Dupius TN: This subsection provides the results of the
coordination of TN and PDN through numerical experiments
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Fig. 5. Comparison of the convergence error (i.e., the difference of

Lagrangian bounds) of the proposed enhanced SD-GS-AL algorithm and the
original SD-GS-AL algorithm (with one inner loop iteration) (Case 1).
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Fig. 6. Comparison of the boundary error (i.e., the difference of boundary

variables) of the proposed enhanced SD-GS-AL algorithm, the original SD-
GS-AL algorithm (with one inner loop iteration), and the ADMM (Case 1).
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Fig. 7. Comparison of the convergence error (i.e., the difference of
Lagrangian bounds) of the proposed enhanced SD-GS-AL algorithm and the
original SD-GS-AL algorithm (with one inner loop iteration) (Case 2).

on a bigger system. The topology of the transportation network
and the power distribution feeder is shown in Fig. 3. As
in Case 1, the proposed algorithm is compared with the
ADMM and the original SD-GS-AL [31] as presented in
Figures 7 and 8. The figures illustrate that the proposed
enhanced SD-GS-AL algorithm outperforms ADMM and orig-
inal SD-GS-AL as they failed to converge after 200 outer
iterations. For better visualization, the errors of only 20
iterations are shown in Figure 7 and 8.
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TABLE IV
COMPARISON OF COMPUTATIONAL PERFORMANCE

. Number of inner Total inner Total outer Objective Computational
Algorithm . . . . . . Converged? .
loop iterations loop iterations  loop iterations value time
Enhanced SD-GS-AL N/A 28 10 Yes $29941.16 101.1 s
Case 1 Original SD-GS-AL L 300 300 No N/A N/A
8 104 13 Yes $29941.11 243.1 s
ADMM N/A N/A 300 No N/A N/A
Centralized N/A N/A N/A Yes $29941.21 11.2's
Enhanced SD-GS-AL N/A 56 20 Yes $ 49549.04 200.4 s
Case2  Original SD-GS-AL ! 200 200 No /A /A
5 110 22 Yes $ 49549.02 3429 s
ADMM N/A N/A 200 No N/A N/A
Centralized N/A N/A N/A Yes $ 49549.13 19.2 s
Enhanced SD-GS-AL N/A 80 32 Yes $ 59218.29 440 s
Case 3 Original SD-GS-AL ! 200 200 No N/A N/A
12 468 39 Yes $ 59218.30 1092 s
ADMM N/A N/A 200 No N/A N/A
Centralized N/A N/A N/A Yes $ 59218.35 30.2 s
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Fig. 8. Comparison of the boundary error (i.e., the difference of boundary ~ Fig. 9.  Comparison of the convergence error (i.e., the difference of

variables) of the proposed enhanced SD-GS-AL algorithm, the original SD-
GS-AL algorithm (with one inner loop iteration), and the ADMM (the ADMM
convergence error is scaled down by a factor of 10) (Case 2).

3) Case-3: IEEE 123-Node PDN and 24-Node Sioux Falls
TN: This subsection provides the results of the coordination of
TN and PDN through numerical experiments on a much bigger
system. The topology of the transportation network and the
power distribution feeder is shown in Fig. 4. As in Cases 1 and
2, the proposed algorithm is compared with the ADMM and
the original SD-GS-AL [31] as presented in Figures 9 and 10.
The figures illustrate that the proposed enhanced SD-GS-AL
algorithm outperforms ADMM and original SD-GS-AL as
they failed to converge after 200 outer iterations. For better
visualization, the errors of only 25 iterations are shown in
Figure 9 and 10.

4) Computational Performance: In this subsection, the
computational performance of the proposed enhanced SD-GS-
AL algorithm is compared with the original SD-GS-AL [31]
and ADMM [40], and the centralized implementation of
coordinated dOPF and OTF, as shown in Table IV. It is worth
noting that this paper does not aim to pursue computational
efficiency over the centralized model. However, the proposed
algorithm outperforms the existing decentralized algorithms

Lagrangian bounds) of the proposed enhanced SD-GS-AL algorithm and the
original SD-GS-AL algorithm (with one inner loop iteration) (Case 3).

3500 T
Enhanced SD-GS-AL

Original SD-GS-AL | |
\ \ ADMM

‘ \ |
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20 25

3000 [~

2500 -
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@
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(=}
T

1000

500 -

Iterations

Fig. 10. Comparison of the boundary error (i.e., the difference of boundary
variables) of the proposed enhanced SD-GS-AL algorithm, the original SD-
GS-AL algorithm (with one inner loop iteration), and the ADMM (Case 3).

with similar features. For example, in Case 1, the original
SD-GS-AL (with one inner loop iteration) and ADMM failed
to converge. However, with eight inner loop iterations, the
original SD-GS-AL converged in 13 outer iterations compared
to 10 outer iterations of the proposed enhanced SD-GS-AL
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TABLE V
CHARGING AND ROUTING OF EVs (CASE 1)

O-D pair  Path (flow) O-D pair  Path (flow)
14 1-Q@—03—4 (7) A1 4-53—-@—1 (7)
1—-0—4 (23) 4—Q—1 (23)
TABLE VI

CHARGING AND ROUTING OF EVs (CASE 2)

O-D pair  Path (flow)

1—2 1—5—6—0—8—2 (60)
4—2 4—-5-0—D—8—2 (60)
1—3 1-5—-®—0—11—3 (60)
4—3 4—-9—O—11—-3 (60)

algorithm, as shown in Table IV. Nonetheless, the original
SD-GS-AL required more than three times more inner loop
iterations (104 total inner loop iterations) than the proposed
enhanced SD-GS-AL algorithm (28 total inner loop iterations).
Similarly, in Cases 2 and 3, the proposed enhanced SD-GS-
AL algorithm outperformed the original SD-GS-AL algorithm
and ADMM. For a larger test case, i.e., Case 3, the compu-
tational improvement realized from the enhanced SD-GS-AL
algorithm is even bigger. For example, with the enhanced SD-
GS-AL, the number of inner loop iterations required is 80
compared to the 468 inner loop iterations required by the
original SD-GS-AL. It is worth noting that the ADMM did
not converge for all three test cases considered in this paper.
Moreover, the proposed algorithm converged to the solutions
of the centralized implementation of coordinated dOPF and
OTF, as shown in Table IV.

C. Engineering Validation of the Simulation Results

In this subsection, the engineering validation of the simula-
tion results is made.

1) EVs Path, Path Flows, and EVs Charging: In this
subsection, we provide optimal paths to route EVs and
corresponding path flows and charging nodes for EVs in TN
for all test cases. Table V provides the routing and charging
of EVs along with the path flow for Case 1. For example, for
the O-D pair 1-4, 7 EVs are routed on path 1-Q—Q3—4
while 23 EVs are routed on path 1—@)—4. Note that the
circled node number indicates where the EVs are recharged.
Similarly, Table VI provides the routing and charging of EVs
along with the path flow for Case 2. The routing and charging
of EVs with path flows for Case 3 will be discussed next when
we discuss the implications of PDN-TN coordination on EVs
flows.

2) Implications of PDN-TN Coordination on EV Flows:
This subsection illustrates the implications of PDN-TN coor-
dination on EV flows through comparative analysis. For
comparison, three scenarios are considered: 1) EVs flows
without PDN-TN coordination, 2) EVs flows with PDN-TN
coordination using grid prices provided in Table I, and 3) EVs
flows with PDN-TN coordination using congested grid prices.
For the third scenario, we adjust the grid price of one feeder to
simulate congested grid prices. Subsequent simulations allow
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TABLE VII
EVS FLOWS ILLUSTRATING PDN-TN COORDINATION
WITH DIFFERENT GRID PRICES (CASE 3)

O-D pair  Path (flow)
1—20 1-3—4—0)—8—16—17—19—20 (60)
2—13 2—6—0)—4—3—12—13 (60)
Scenario-1: 3—4—5—-9—-10—>00—17—19 4)
No PDN.TN 3—19 3—4—11—-14—0—19 45)
coordination 3—12—11—-14—0B—19 (11)
4—18 4—Q)—6—8—7—18 (60)
12—7 12—0)—10—16—18—7 (36)
23—6 23— 14—0)—4—5—6 (60)
1—20 1-3—-4—-03—8—16—17—19—20 (60)
2—13 2—6—0)—4—3—12—13 (60)
3—4—5—6—8—0—17—19 (44)
Scenario-2: 3—19 3—4—11—=14—0—19 (5)
Coordination 3—-12—11-14—-0—19 (11)
with normal 4—18 4—3)—6—8—7—18 (60)
grid prices 127 12—53—4—03)—6—8—7 (24)
12—-0)—10—16—18—7 (36)
2356 23— 14—0)—4—5—6 (53)
23522—0—19—17—16 —8—6 (7)
1—20 1-3—4—0)—8—16—17—19—20 (60)
2—13 2—6—0)—4—3—12—13 (60)
Scenario3: 3—4—5—6—8—(0—17—19 (20)
Coordination 3—19 3—4—11—-14—0—19 (23)
with congested 3—12—=11—-14—0—19 (17)
R . 4—18 4—®—6—8—7—18 (60)
grid prices
127 12—53—4—0)—6—8—7 (22)
12——10—16—18—7 (38)
23—6 23—14——4—5—6 (60)

us to analyze and compare the changes in EV flows. It should
be noted that the grid prices referred to in Table I represent the
Locational Marginal Prices (LMPs) in the power transmission
system (PTS). During congestion in parts of the PTS, the
LMPs (also called grid prices in this paper) at affected buses
surge markedly, setting them apart from the rest of the system.
Therefore, to simulate congested grid prices, the grid price of
Feeder 4 is changed from $91.62 to $140.94. The rest of the
grid prices are left unchanged.

For brevity, we only consider Case 3 in the comparative
analysis. Table VII shows the results of the comparison, which
shows variations in the routing and charging of EVs across
different coordination scenarios. Notably, EV traffic is reduced
on routes supplied by congested grid prices compared to those
with normal pricing. For example, for O-D pair 3— 19, the
first path 3—4—5—6—8— (00— 17— 19 routes 44 out of 60
EVs in normal grid price condition (scenario 2). However, in
the congested grid price scenario (scenario 3), the same path
carries less than half the number of EVs (i.e., 20). It is worth
noting that the congested feeder supplies the EVCS located
at node 16 on this path. Therefore, fewer EVs were routed
through this path in the congested scenario. This highlights
the importance of PDN-TN coordination in the face of rising
EV charging.

3) Distribution-Level Optimal Power Flow Results: This
subsection presents nodal voltage profiles of feeders across all
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three different test cases. Figures 11, 12, and 13 illustrate that
the nodal voltages for the feeders in each test case remain
within the specified limits (0.94 p.u. - 1.06 p.u.) Nonetheless,
from the Figures, we can observe that the EVCS operation
in TN has some impact on the voltage profile in the feeder.
For example, Feeder 3 supplies the EVCS at node 5 in TN in
Case 1 (shown in Figure 2). As seen from Table V, most of
the EV traffic (46 (234-23) out of 60) gets charged at node
5. Therefore, the nodal voltage profile of Feeder 3 (which
supplies EVCS at node 5 in TN) is lower than the voltage
profile of the other two feeders, as seen from Figure 11.
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Nonetheless, the voltage profile of all feeders across three test
cases is within the acceptable operation limits.

V. CONCLUSION

This paper presents an enhanced SD-GS-AL decentralized
algorithm for coordinating PDN and TN with EVs. In com-
parison to existing methods, the main benefits of the proposed
algorithm are: 1) unlike existing algorithms like ADMM, it is
applicable to MIP problems with convergence and optimality
guaranteed; 2) it only requires limited information exchange
between PDN and TN operators, which will help preserve
the privacy of the two systems and reduce the investment in
building communication channels, 3) it is fully decentralized
so that all the computations are carried out by PDN operator
and TN coordinator only (in parallel), 4) it is faster than the
original SD-GS-AL [31]. The simulation results showed the
significance of the proposed framework and algorithm over
the existing ones.
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