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Abstract—The electric power distribution network (PDN)
and the transportation network (TN) are generally oper-
ated/coordinated by different entities. However, they are coupled
through electric vehicle charging stations (EVCSs). This paper
proposes to coordinate the operation of the two systems via a fully
decentralized framework where the PDN and TN operators solve
their own operation problems independently, with only limited
information exchange. Nevertheless, the operation problems of
both systems are generally mixed-integer programs (MIP), for
which mature algorithms like the alternating direction method
of multipliers (ADMM) may not guarantee convergence. This
paper applies a novel distributed optimization algorithm called
the SD-GS-AL method, which is a combination of the simplicial
decomposition, gauss-seidel, and augmented Lagrangian, which
can guarantee convergence and optimality for MIPs. However, the
original SD-GS-AL may be computationally inefficient for solving
a complex engineering problem like the PDN-TN coordinated
optimization investigated in this paper. To improve the compu-
tational efficiency, an enhanced SD-GS-AL method is proposed
by redesigning the inner loop of the algorithm, which can
automatically and intelligently determine the iteration number of
the inner loop. Simulations on the test cases show the efficiency
and efficacy of the proposed framework and algorithm.

Index Terms—Decentralized algorithms, mixed-integer pro-
grams, optimal power-traffic flow.

NOMENCLATURE

Indices, Superscripts, Subscripts and Sets: TN Model

A Set of arcs in the traffic network

a Index for arcs in the traffic network

ev Superscript for EV

evcs Superscript for EVCS

m, n Index for nodes in the traffic network

N Set of nodes in the traffic network

Ors Path set of O-D pair rs
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q Index for path in the traffic network

rs Index for O-D pairs

Indices and Sets: Enhanced SD-GS-AL

CH(.) Convex hull

CH(Xp) Convex hull of Xp

Xp Mixed-integer convex set of dOPF

Xv Mixed-integer convex set of OTF

Parameters: PDN Model

�ik Squared of current carrying capacity of line ik

Sik MVA limit of line ik

vi, vi Minimum and maximum voltage limits

cG
i Grid electricity price

pD
i , qD

i Active, reactive power demand due to EVCS at

node i

pLoad
i , qLoad

i Active, reactive power demand at node i

pPV
i , qPV

i Active, reactive power output from solar PV at

node i

rik, xik Resistance and reactance of line ik

Parameters: TN Model

βrs Energy consumption ratio of EV

δ
q
a Binary variable to identify arcs of path q

λm Electricity price for charging at node m

Irs Vector for origin and destination nodes of rs

bm,max Availability of EVCS at node m

da Travelling distance of arc a

Ers
0 Initial battery energy of an EV

e
q
init Battery energy of EV at initial node of path q

Ers
min, Ers

max Minimum, maximum energy capacity of EV

Frs Travel demand of O-D pair rs

P
pile
m Rated power of EV charging piles at node m

Pevcs
m,max Maximum power output of EVCS at node m

Rrs Mile anxiety of EV

t0a, ca Parameters for travel time function of arc a

t0m, αm Parameters for waiting time in EVCS at node

m

tanφevcs
m Power factor of EVCS at node m

w Weighting factor from time to monetary cost

K Node-arc incidence matrix
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Parameters: Enhanced SD-GS-AL

εu Convergence tolerance of inner loop

ε/εu Convergence tolerance

γ Penalty parameter

J Maximum number of inner loop iterations

K Maximum number of outer loop iterations

Variables: PDN Model

�ik Squared of current flow on line ik

pG
i,t, pG Grid power purchased

pik, qik Active, reactive power flow on line ik

pG
i , qG

i Active and reactive power from grid at node i

vi Squared of voltage at node i

Variables: TN Model

γ
q
m 0-1 charging choice at node m

Crs
q Travel cost of path q

Crs Travel cost of O-D pair rs

E
q
m Charging energy of EV at node at node m

e
q
m Remaining battery energy of EV at node m

e
q
init Battery energy of EV at initial node of path q

f
q
rs Traffic flow rate on path q of O-D pair rs

pT
m, qT

m Active, reactive power demand of EVCS at

node m

ta Travel time on arc a

tm Charging time at node m

xa Traffic flow rate on arc a

xm Traffic flow rate at node m

Variables: Enhanced SD-GS-AL

xv OTF decision variables

xp dOPF decision variables

ϕ̌p Lagrangian lower bound of power subproblem

ϕ̌v Lagrangian lower bound of transportation sub-

problem

ϕ̂p Lagrangian upper bound of power subproblem

ϕ̂v Lagrangian upper bound of transportation sub-

problem

λp\λv Lagrangian multipliers

z Auxiliary variable

I. INTRODUCTION

D
UE TO the increasing concern over carbon emissions,

electric vehicles (EVs) are gradually replacing fossil-

fueled vehicles [1]. It is predicted that by 2030, the number of

EVs on the road will exceed 100 million, a massive increase

from the 5.1 million present in 2019. The widespread adoption

of EVs will lead to a significant increase in the electric-

ity demand on power distribution networks (PDNs) for EV

charging. This poses a high risk of PDN overloading during

peak-demand hours. Furthermore, the locations of EV charging

stations (EVCSs) along transportation networks (TNs) can

have an impact on the routes and travel times of EVs that

require charging. To mitigate the negative effects of large-scale

EV charging on PDNs and alleviate potential traffic congestion

in TNs, proper EV routing along TNs and charging schedules

are necessary. As a result, proper coordination between the

operation of EVs-infused transportation and power distribution

networks is vital to ensure the seamless adoption of large-scale

EVs.

In recent times, several studies have been conducted to

improve the efficiency and reliability of TNs and PDNs by

coordinating their operations. One such proposal put forth by

the authors in [2] suggests a centralized optimal traffic-power

flow for routing EVs in electrified TN, which has been further

extended to accommodate time-varying electricity prices and

traffic demands in [3]. The traffic flow is modeled using a

semi-dynamic traffic assignment technique that accounts for

flow propagation between adjacent periods. Meanwhile, [4]

introduces a bilevel optimization model that allows EV aggre-

gators to participate in day-ahead dispatch while adhering

to various system operation constraints. Additionally, [5]

proposes a centralized model for a dynamic pricing strategy for

integrated electricity charging and hydrogen refueling stations

(IEHSs) that guides the charging and refueling decisions

of different EV types and ensures the smooth operation of

IEHSs, the power distribution network, and the gas network.

Likewise, [6] proposes a dynamic pricing strategy for an

EV charging station that maximizes net charging profits by

incorporating the behavior of EV drivers based on both an

admission control scheme and a queuing model.

However, there is a common issue associated with the

above-mentioned studies: they all considered a centralized

operational framework. Since transportation and power distri-

bution systems are operated by different entities, and there is

no entity that has access to both TN and PDN information,

implementing a centralized model of operation may not be

practical due to privacy concerns and communication over-

head. The TN coordinator (TNC) has the responsibility of

solving the optimal traffic flow (OTF) for EVs [2], which

involves identifying the most efficient routing and charging

schedule for electric vehicles (EVs). On the other hand, the

task of the power distribution system operator (P-DSO) is

to operate the power distribution network by solving the

distribution-level optimal power flow (dOPF) problem [7].

Since electric vehicle charging stations (EVCSs) are powered

by power distribution networks (PDNs), TNs and PDNs are

physically connected. The variables that are common to both

OTF and dOPF are called boundary variables (i.e., charging

loads of EVCSs). If OTF and dOPF are solved independently

without coordination, boundary variables may not match,

resulting in an insecure or sub-optimal performance of both

systems.

After realizing this issue, researchers have proposed decen-

tralized frameworks to coordinate TNs and PDNs with

EVs. These frameworks involve obtaining the routes of

EVs using the best response decomposition (BRD) algo-

rithm [8], coordination of hydrogen-integrated TN and

PDNs using the alternating direction method of multipliers

(ADMM) [9], a novel optimal traffic power flow problem via

an extended ADMM to analyze the spatial and temporal con-

gestion propagation on coupled transportation power systems

under congested roads, transmission lines and charging sta-

tions [10], multistage distributionally robust optimization
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model to address wind power uncertainty based on improved

ADMM [11], coordination of the charging schedule of EVs

and stochastic security-constrained unit commitment using

the bender decomposition method (BDM) [12], augmented

Lagrangian alternating direction inexact newton (ALADIN)

based coordination for time-varying traffic demands and inter-

temporal EV charging behavior [13], an improved fixed-point

algorithm (FPA) based on extrapolation for the spatial and

temporal evolution of traffic flows [14]. Similarly, other frame-

works include stochastic user equilibrium traffic assignment

using optimality condition decomposition (OCD) method [15],

strategic pricing method to maximize the profit of EVCS

owners using Karush-Kuhn-Tucker (KKT) condition [16], the

generalized user equilibrium method for the coupled power-

transportation network operation using a master and a series

of subproblems (MSS) approach [17], a new collaborative

pricing model for the power-transportation coupled network

based on a variational inequality approach using an improved

prediction-correction algorithm (IPCA) [18], the iterative col-

umn generation (CG) algorithm to explicitly describe PEVs’

driving range constraints on TNs [19].

Moreover, other decentralized optimization-based frame-

works to coordinate PDN and TN involve the multi-agent

system framework utilizing consensus algorithms for a real-

time navigation system for EV drivers, optimizing both

time and cost by considering traffic conditions and power

distribution, to guide drivers to the most efficient charg-

ing stations [20], Stackelberg game based iterative approach

for day-ahead scheduling framework for electric vehicles

integrating grid-to-vehicle and vehicle-to-grid services [21],

optimistic iterative algorithm and simulated annealing for

capturing the interconnected decisions of TN and PDN oper-

ators due to Electric Vehicles’ (EVs) actions [22], game

theory based multiagent approach to model the competitive

pricing strategies of individually-owned EV charging stations

in urban transportation networks, aiming to determine optimal

charging prices [23], combined consensus and generalized

benders decomposition algorithms for collaborative optimal

routing and scheduling method for EVs that unifies navigation

services in the transportation network with power scheduling

in the distribution network, improving traffic flow, charging

facility utilization, and charging economy [24], and CG based

approach for competitive pricing of EVCSs, considering both

competition and the impact on distribution locational marginal

price [25].

To simulate the routing and charging schedule of EVs in TN,

binary variables are employed, making OTF a mixed-integer

program [8]. Likewise, binary variables are used to capture

the behavior of switched capacitors and voltage regulators in

dOPF, thereby rendering the dOPF a mixed-integer program

too [26]. Nevertheless, the decentralized algorithms mentioned

above exhibit at least one of the following primary issues:

First, they do not provide a guarantee of optimality and

convergence for mixed-integer programs (MIPs), such as OTF

and dOPF. For instance, the BRD, ADMM, BDM, OCD,

KKT, CG, and IPCA algorithms can only ensure optimality

and convergence for convex problems. Second, some of these

algorithms, e.g., BRD and MSS, require TNC and P-DSO to

Fig. 1. Proposed framework for the decentralized coordination of PDN and
TN.

exchange a significant amount of information, which results

in high investment in building communication channels and

causes long communication delays. Additionally, TNC and

P-DSO may not want to share their confidential information.

Third, some of these algorithms, such as ALADIN and

MSS, are not fully decentralized as they require certain steps

(such as updating the Hessian matrix and solving the master

subproblem) to be performed by a central coordinator (which

may not be practical in a purely decentralized environment).

Beyond the decentralized coordination of PDN and TN,

there is a broad interest across power systems for a decen-

tralized optimization algorithm applicable for mixed-integer

programs [27]. Some examples include the coordinated opera-

tion of the water-energy nexus, the coordinated operation and

restoration of power transmission and distribution systems,

and the integrated operation of power and gas networks.

Most commonly used decentralized optimization algorithms in

popular power system applications can be broadly categorized

into three types [27]: a) the Lagrangian relaxation-based

methods such as dual decomposition, ADMM, ALADIN,

analytical target cascading (ATC) [28], auxiliary problem prin-

ciple (APP) [29], and proximal message passing (PMP) [30];

b) the Karush–Kuhn–Tucker (KKT) conditions based meth-

ods such as OCD, consensus algorithms, and heterogeneous

decomposition (HGD), and c) the benders decomposition

(BD) methods such as MSS. Nevertheless, as with previously

mentioned algorithms, these algorithms may not always work

for subproblems that contain integer variables. Therefore, there

is a need for a fully decentralized algorithm that facilitates the

coordination of MIP problems such as OTF and dOPF with

limited information exchange, as shown in Figure 1.

Recently, a promising algorithm called the SD-GS-AL

algorithm [31], which is a combination of the simplicial

decomposition, gauss-seidel, and augmented Lagrangian, has

been shown to guarantee optimality and convergence to MIP

subproblems if the number of inner loop iterations is set to be

big enough. However, a large number of inner loop iterations

results in a high computational burden, which makes the

SD-GS-AL algorithm computationally inefficient for problems

like the PDN-TN coordinated optimization. To be precise, in

the original SD-GS-AL algorithm, the number of inner loops

is set by the user in advance based on experience. If the

number of inner loop iterations is set too high, the algorithm

becomes computationally inefficient. If the number of inner

loop iterations is set too low, the algorithm may not converge.

To mitigate this issue, we propose an enhanced SD-GS-AL

decentralized algorithm by redesigning the inner loop of the
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algorithm, which can automatically and intelligently determine

the iteration number of the inner loop. The main contributions

can be summarized as follows:

1) From the engineering perspective, this research respects

the fact that the two systems are operated by different

operators and proposes to coordinate the two systems via

a new decentralized method, i.e., the enhanced SD-GS-

AL algorithm. The proposed method has the following

benefits: a) it is applicable to MIP problems with conver-

gence and optimality guaranteed under mild assumptions

(i.e., (1) the global optimal solution of the coordinated

dOPF-OTF is unique, (2) the objective function is linear,

and (3) the constraint sets are in mixed-integer convex

program (MICP) forms), b) it only requires limited

information exchange between PDN and TN operators,

which will help preserve the privacy of the two systems

and reduce the investment in building communication

channels, and c) it is fully decentralized so that all

the computations (i.e., optimizations) are carried out in

parallel by PDN operator and TN coordinator only.

2) From the perspective of mathematical method, being dif-

ferent from the original SD-GS-AL algorithm [31], the

redesigned inner loop can automatically and intelligently

terminate the inner loop iterations, which significantly

improves the computational efficiency of the overall

algorithm. Note that the proposed algorithm is general

and applicable to other problems that have similar

features.

II. PROBLEM FORMULATION

A. Power Distribution Network Model

Distributed energy resources (DERs), like solar photo-

voltaics (PVs), and grid power, which supply EVCSs in

the transportation network and other loads in the power

distribution network, are considered in this paper. The resulting

distribution system model is given as follows [32]:

(pik)
2 + (qik)

2 = vi�ik (1a)

vi − vk − 2(rikpik + xikqik)

+
(
(rik)

2 + (xik)
2
)
�ik = 0 (1b)

0 ≤ �ik ≤ �ik (1c)

(pik)
2 + (qik)

2 ≤
(
Sik

)2
(1d)

(
vi

)2
≤ vi ≤ (vi)

2 (1e)

pG
i + pPV

i − pLoad
i − pD

i =
∑

j

(
pji − rji�ji

)
+

∑

k

pik (1f)

qG
i + qPV

i − qLoad
i − qD

i =
∑

j

(
qji − xji�ji

)
+

∑

k

qik (1g)

qD
i = pD

i tan(θD
i ). (1h)

The balanced power flows are modeled using the DistFlow

model [32], which is expressed in equation (1a). The distribu-

tion line connecting nodes i(j) and k(i) is denoted by the index

ik(ji). The voltage drop on a distribution line is constrained by

equation (1b), while the thermal and power carrying limits of

distribution lines are given by constraints (1c) and (1d), respec-

tively. The voltage limits are specified by constraint (1e). The

nodal active and reactive power balance equations are given

by constraints (1f) and (1g), respectively. The constraint (1h)

represents the reactive power demand due to the EVCSs, where

θD
i is the power factor angle (is assumed fixed) of the EVCS.

Throughout the paper, bold symbols denote matrices/vectors

of corresponding variables.

B. Transportation Network Model

In this subsection, we briefly provide a description of the

adopted model of the traffic flow for EVs. For a detailed

understanding of the model, readers are referred to [17].

The transportation network (TN) is represented by a directed

graph G = [N, A], where N and A refer to the set of nodes

and arcs, respectively. To specify electric vehicle (EV) travel

and charging options, a path is formed by combining nodes and

arcs. The nodes correspond to the starting and ending points

of an arc, junctions, and charging stations for EVs, while arcs

connect two nodes. Even though the traffic network will have

both electric and non-electric vehicles, we consider routing

and charging of only electric vehicles in this paper as in [17].

Therefore, the traffic parameters used in this paper are non-

electric vehicles discounted. The resulting model is given as

follows:

Kδq
a = Irs (2a)

− M
(
1 − δq

a

)
≤ eq

m − eq
n + daβ

rs − Eq
m

≤ M
(
1 − δq

a

)
,∀(n, m) = a ∈ A (2b)

eq
n − daβ

rs ≥ −M
(
1 − δq

a

)
+ RrsErs

max,

∀(n, m) = a ∈ A (2c)

Eq
m ≤ bm,max,∀m ∈ N (2d)

Eq
m ≤ γ q

mErs
max ≤ eq

m,∀m ∈ N (2e)

e
q
init = Ers

0 (2f)

Ers
min ≤ eq

m ≤ Ers
max,∀m ∈ N (2g)

ta = t0a

(
1 + 0.15(xa/ca)

4
)
,∀a ∈ A (2h)

tm = t0m(1 + αmxm),∀m ∈ N (2i)

0 ≤ f rs
q ⊥

(
Crs

q − Crs

)
≥ 0,∀q ∈ Ors (2j)

∑

q∈Ors

f rs
q = Frs,∀rs (2k)

xa =
∑

rs

∑

q∈Ors

f rs
q δq

a,∀a ∈ A (2l)

xm =
∑

rs

∑

q∈Ors

f rs
q γ q

m,∀m ∈ N (2m)

Crs
q = w

(
∑

a

taδ
q
a +

∑

m

(
Eq

m/Ppile
m + tmγ q

m

))

+
∑

m

Eq
mλm,∀q,∀rs (2n)

Constraint (2a) specifies the starting and ending nodes of path

q for an origin-destination (O-D) pair rs. Note that the vector

Irs consists of two non-zero elements of 1 and -1 at the
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origin and the destination nodes of O-D pair rs, respectively.

Constraint (2b) tracks the dynamics of the energy stored in the

EVs, denoted by e
q
m, and the charging energy at nodes, denoted

by E
q
m. The EV energy consumption ratio is denoted by βrs,

and the binary variable γ
q
m indicates whether an EV along

path q is charged at node m. A very large positive constant M

is a Big-M parameter. Constraint (2c) accounts for the range

anxiety of EVs for O-D pair rs, represented by Rrs, where

Ers
max is the maximum energy that an EV for O-D pair rs can

store. Constraint (2d) specifies the charging behavior of EVs,

where bm,max is set to 0 if there is no EV charging station

(EVCS) at node m. Constraint (2e) ensures that the EVs are

fully charged after each charging cycle, which is a realistic

assumption as EV drivers tend to minimize the frequency of

charging. Constraints (2f) and (2g) impose limits on the initial

energy stored (Ers
0 ) in the EVs and the maximum energy (and

minimum energy, Ers
min) that can be stored in their batteries,

respectively.

The function ta(xa) in equation (2h), based on the com-

monly used Bureau of Public Roads (BPR) function [33],

represents travel time on arc a, where xa is the traffic flow

on arc a. The function tm(xm) in equation (2i) describes the

time required for charging and waiting for service at EVCSs,

where xm is node traffic flow. The charging time is dependent

on the rated power of the charging station P
pile
m , while the

waiting time is represented by t0m, which is fixed and is affected

by the level of congestion in EV charging stations (EVCSs),

estimated by αm. To account for congestion in the power grid

at different locations, the electricity price λm at an EVCS

node m is given by the distribution locational marginal price

(DLMP) of the corresponding location in PDN, and more

information on how to obtain λm will be provided later when

we introduce the algorithm. The traffic equilibrium condition

is described by constraint (2j), which states that the travel cost

Crs for origin-destination (O-D) pair rs should be equal for all

used paths and no greater than that for any unused path. This

condition is also known as the Wardrop User Equilibrium (UE)

Principle [34]. The variable f rs
q represents EV flow on path q

for O-D pair rs. Constraint (2k) represents the conservation

of traffic flow. In constraints (2l) and (2m), the mathematical

expression for arc flow xa and node flow xm is provided.

Constraint (2n) provides the expression for the total cost (Crs
q )

of path q for an O-D pair rs, which includes travel time,

charging time for EVs, and the charging cost for EVs.

Note that this paper considers the static Traffic Assignment

Problem (TAP), which is the foundation for dynamic traffic

assignment. However, the dynamic TAP is more complex than

the static TAP, and there is no universally accepted model

available for it [17]. Moreover, the existing literature that

considers the coordination of PDN and TN with EVs mostly

uses static TAP for optimal coordination [17]. Nonetheless, the

proposed framework and algorithms would work for a dynamic

TAP if they were available.

C. Coupling Between PDN and TN

From a system-level perspective, on-road fast charging

stations would simultaneously impact vehicle routing in

the transportation system, and power flows in the distri-

bution system, therefore, tightly coupling the two systems.

Mathematically, the coupling between PDN and TN can be

captured as follows:

pT
m =

∑

rs

∑

q∈Ors

f rs
q Eq

m,∀m ∈ N (3a)

0 ≤ pT
m ≤ pT

m,max,∀m ∈ N (3b)

where pT
m is the power consumption of EVs in TN and acts as a

power demand to PDN. The constraint (3a) is the active power

consumed at the EVCSs, while (3b) provides the capacity limit

of EVCSs.

D. Convexification and Linearization of Non-Linear

Constraints

The PDN model (1) is a non-linear programming (NLP)

problem due to the non-linear non-convex constraint (1a).

Similarly, the TN model (2) is in mixed-integer non-linear

programming (MINLP) form due to the non-linear BPR

function (2h) and bilinear traffic equilibrium constraint (2j).

In addition, the coupling constraint (3a) is non-linear due to

the multiplication of two continuous variables. Reference [32]

found that, if one can find the tight convex relaxation for

MINLP form, the solution of the mixed-integer convex pro-

gram (MICP) form of the dOPF model (1) coincides with the

solutions of the MINLP form but with a reduced computational

burden. Therefore, in this paper, we employ the convex hull

relaxation from [32], [35] for (1a) and piece-wise linearization

techniques from [36] for (2h) and (2j). For accuracy of the

convex hull relaxation and the piece-wise linearization, readers

are referred to [35] and [36], respectively. The convex hulls

relaxation of (1a) is given as follows:

p2
ik + q2

ik ≤ vi�ik (4a)

S
2
ikvi + vivi �ik ≤ S

2
ik(vi + vi). (4b)

Note that the conic relaxation (4a) and the expression (4b)

collectively represent the convex hulls relaxation of (1a).

The BPR function constraint (2h) is a non-linear constraint,

which is approximated by a piecewise linearization technique

using a special ordered set of type-2 (SOS2) variables [36].

In piecewise linearization, the non-linear function is divided

into a number of segments, and each segment is represented

by a linear function. The piecewise linearization of the BPR

function constraint (2h) is given as follows:

xa =
∑

n

xn
ayn

a; ta =
∑

n

tna
(
xn

a

)
yn

a (5a)

∑

n

yn
a = 1; 0 ≤

{
yn

a,∀n
}

∈ SOS2, (5b)

where xn
a and tna denote the values of xa and ta, respectively,

while yn
a is a vector of SOS2 variables, in which at most

two adjacent variables can be nonzero. The user equilibrium

constraint (2j) is a bilinear constraint, which is linearized using

the Big-M method as follows:

0 ≤ f rs
q ≤ Mνrs

q ,∀q, rs (6a)
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0 ≤ Crs
q − Crs ≤ M

(
1 − νrs

q

)
,∀q,∀rs, (6b)

where, νrs
q is a binary variable for each path. The coupling

constraint (3a) is also a non-linear constraint. The same

piecewise linearization technique, used in (5), is applicable for

the linearization of (3a). Owing to the page limit, the detailed

modeling is omitted. Finally, the convex constraints set of

PDN, denoted by Xp, is defined as follows:

Xp := {(1b)-(1h), (4)} (7)

while the mixed-integer convex constraints set of TN, denoted

by Xv, is defined as follows:

Xv := {(2a)–(2g), (2i), (2k)–(2n), (3), (5), (6)}. (8)

E. Coordinated dOPF-OTF Formulation Under the

Decentralized Framework

This subsection presents the formulations of the coordinated

dOPF-OTF problem under the decentralized framework. In our

proposed framework, the power operator solves the following

dOPF subproblem:

(PO.) min
xp,αp

fp
(
xp

)
:=

∑

i

cG
i pG

i = cGpG (9a)

s.t. pD = z (9b)

xp ∈ Xp,αp ∈ {0, 1}, (9c)

where cG is electricity price (can be interpreted as the trans-

mission system’s (grid) locational marginal prices (LMPs))

and pG is electric power purchased by PDN from the grid.

As such, the objective function (9a) minimizes the power

purchased from the grid. pD represents the power demand due

to EVCSs in the dOPF model. Auxiliary variable z is utilized to

facilitate the decentralized operation. All the decision variables

of the PDN constraint set (7) are collectively referred to as xp

while αp collectively represents the integer decision variables.

Even though there are no integer (including binary) variables

present in the PDN constraint set (7), we have introduced

binary variables αp in the compact form for the generalization

(for the potential future adoption) of the proposed algorithm.

Similarly, the transportation coordinator solves the follow-

ing OTF subproblem:

(TO.) min
xv,αv

fv(xv) :=
∑

rs

∑

q

f rs
q Crs

q

=
∑

rs

FrsCrs = FC (10a)

s.t. pT = z (10b)

xv ∈ Xv,αv ∈ {0, 1}, (10c)

where xv collectively represents all the decision variables

while αv collectively represents the integer decision variables

of the TN constraint set (8). And, pT represents the power

consumed by EVCSs in OTF. The objective function of the

transportation subproblem (10a) minimizes the total cost of

the transportation sector (i.e., time and energy consumption

costs) [17]. Note that subscript p has been used for the dOPF

symbols while v for the OTF symbols throughout the paper.

The decentralized formulation, i.e., (9) and (10) has one

significant advantage: it does not require any entity with access

to both Xp and Xv. It is important to note that there is

no entity that has access to both PDN and TN information.

Therefore, the proposed decentralized formulation of coor-

dinated dOPF-OTF provides a practical framework that is

compatible for the coordination of PDNs and TNs in the real

world. Nonetheless, it can be observed from (9b) and (10b)

that the two subproblems are still coupled through z as

EVCS powers pT in a TN act as a power demand pD in a

PDN. If two models are solved independently without being

coordinated by a proper decentralized algorithm, the boundary

variables, i.e., pD and pT may not match with each other, which

will result in increased cost or insecure operation of PDN.

Therefore, in the next section, we introduce an enhanced SD-

GS-AL decentralized algorithm that allows TNC and P-DSO

to solve two subproblems separately but coordinately, with the

guarantee of boundary variables matching.

III. THE PROPOSED ALGORITHM

This section first provides an overview of the proposed

enhanced SD-GS-AL decentralized algorithm in Section III-A,

describes the redesigned inner loop in the second subsection,

and then proves the optimality and convergence in the third

subsection.

A. Overview of the Enhanced SD-GS-AL Algorithm

The key steps of the proposed enhanced SD-GS-AL algo-

rithm are provided in Algorithm 1. The algorithm is initialized

by assigning parameters in Step 1. Moreover, the starting

points (i.e., for iteration 0) for the auxiliary variable z, binary

variables αp and αv, Lagrangian multipliers λp
k and λv

k, and

Lagrangian lower bounds ϕ̌p and ϕ̌v are assigned. Note that

αp and αv collectively represent the binary variables of PDN

and TN subproblems, respectively. For the initial values of

auxiliary variable z and Lagrangian multipliers λp
k and λv

k,

we can use zero. For the initial values of binary variables αp

and αv, we can use any feasible solution. For the Lagrangian

lower bounds ϕ̌p and ϕ̌v, we can use any small negative

number. Note that Step 2 to Step 8 constitutes the outer loop

while (11) in Step 3 is the inner loop.

For any current iteration k, the first element of the

Lagrangian relaxation value set LRk is set to 0 while the

difference of the Lagrangian relaxation value 
LRk is initially

set to a large number in Step 2. In addition, the initial values

of auxiliary variable z, binary variables αp and αv, Lagrangian

multipliers λp
k and λv

k, and Lagrangian lower bounds ϕ̌p and

ϕ̌v are set to that of the previous iteration k − 1.

The L
p
γ in (11a) and Lv

γ in (11b) have the following detailed

expressions in Step 3:

L
p
γ := cGpG − (λp)�pD +

γ

2

∥∥∥z − pD
∥∥∥

2

2
, (16a)

Lv
γ := FC + (λv)

�pT +
γ

2

∥∥∥pT − z

∥∥∥
2

2
. (16b)

Note that (16a) and (16b), the augmented Lagrangian relax-

ations of (9) and (10), respectively, are computed in parallel
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Algorithm 1 Enhanced SD-GS-AL Decentralized Algorithm

1: Parameters initialization:
1) Parameters selection: Choose the outer loop convergence tolerance

ε, inner loop convergence tolerance εu, penalty parameter γ , outer
loop iteration limit K.

2) Starting point: Starting points for auxiliary variable z, binary
variables αp and αv, Lagrangian multipliers λp and λv, and
Lagrangian lower bounds ϕ̌p and ϕ̌v are assigned by P-DSO and
TNC, respectively.

2: Iteration initialization: Set LRk: = {0} and 
LRk: = {a large number},
and {z, λp, λv, αp, αv, ϕ̌p, ϕ̌v}k: = {z, λp, λv, αp, αv, ϕ̌p, ϕ̌v}k−1.

3: Lagrangian upper bound computation: While 
LRk > εu, repeat the
following (11):

LRk
p, xp

k, pD(k) ← min
xp,pD

{
L

p
γ

(
xp, pD, zk, λp

k
)

:

αp ∈ αp
k, xp ∈ Xp

}
(11a)

LRk
v, xv

k, pT(k) ← min
xv,pT

{
Lv
γ

(
xv, pT, zk, λv

k
)

:

αv ∈ αv
k, xv ∈ Xv

}
(11b)

zk ← min
z

{∥∥∥z − pD(k)
∥∥∥

2

2
+

∥∥∥pT(k) − z

∥∥∥
2

2

}
(11c)

LRk ← LRk ∪
{
(LRk

p + LRk
v)

}
(11d)


LRk ← LRk
end − LRk

end−1 (11e)

And, obtain the Lagrangian upper bounds as follows:

ϕ̂k
p ← LRk

p +
γ

2

∥∥∥zk − pD(k)
∥∥∥

2

2
(12a)

ϕ̂k
v ← LRk

v +
γ

2

∥∥∥pT(k) − zk
∥∥∥

2

2
(12b)

4: Convergence check: If (ϕ̂k
p + ϕ̂k

v) − (ϕ̌k
p + ϕ̌k

v) ≤ ε, then terminate, and(
xp

k, xv
k, zk, λp

k, λv
k, ϕ̌k

p, ϕ̌k
v

)
is the solution. Otherwise, continue.

5: Lagrangian lower bound computation: Compute the intermediate
Lagrangian lower bound as follows:

ϕ̃p, αp
k ← ϕ̌p

(
λp

k + γ
(

zk − pD(k)
))

(13a)

ϕ̃v, αv
k ← ϕ̌v

(
λv

k + γ
(

pT(k) − zk
))

(13b)

6: Lagrangian lower bound quality check: The intermediate Lagrangian
lower bound passes the quality check, and iteration is declared forward

iteration if the following inequality holds:

(ϕ̂k
p + ϕ̂k

v) ≥ (ϕ̃k
p + ϕ̃k

v) ≥ (ϕ̌k
p + ϕ̌k

v). (14)

Perform the dual variables updates and keep the Lagrangian lower bounds
if the iteration is declared forward:

λp
k ← λp

k + γ

(
zk − pD(k)

)
(15a)

λv
k ← λv

k + γ

(
pT(k) − zk

)
(15b)

ϕ̌k
p ← ϕ̃k

p (15c)

ϕ̌k
v ← ϕ̃k

v (15d)

Otherwise, the iteration is declared neutral: Algorithm continues without
updates.

7: Loop: Set k: = k + 1 and go back to Step 2.

by P-DSO and TNC, respectively. Moreover, LRk
p and LRk

v

represent the values of Lagrangian relaxations (16a) and (16b),

respectively. In (16a) and (16b), binary variables are fixed so

that PDN and TN sub-problems are continuous. The binary

variables are fixed from the solutions of the previous iteration

of MIP subproblems in Step 5. Moreover, the auxiliary variable

z is computed as in (11c). The auxiliary variable update (11c)

can be assigned to either of the operators (in our study, we

assign it to the TN coordinator) as the only information shared

is the boundary variables from both networks. Moreover, the

Lagrangian relaxation value set LRk is updated as in (11d)

while the difference of the Lagrangian relaxation value 
LRk

is updated as in (11e), where the two most recent elements

of LRk are utilized (subscript end represents the most recent

element). Finally, the Lagrangian upper bounds ϕ̂p and ϕ̂v

are computed as in (12) in Step 3. Note that Algorithm 1

is said to converge if the difference of Lagrangian bounds

(ϕ̂p + ϕ̂v) − (ϕ̌p + ϕ̌v)) is within the limit of tolerance, as

stated in Step 4. In this paper, the proposed enhanced SD-GS-

AL algorithm is used to coordinate the MICP subproblems.

Therefore, it converges to the global optimal solution of the

centralized implementation of MICP subproblems.

The ϕ̌p and ϕ̌v ((13a) and (13b) respectively), which are

used to obtain the intermediate Lagrangian lower bounds ϕ̃p

and ϕ̃v and to update binary variables αp and αv in Step 5, are

computed in parallel by P-DSO and TNC, respectively, and

are given as follows:

ϕ̌p

(
λp

k
)

:= min
xp,pD,αp

{
cGpG − (λp

k)�pD : xp ∈ Xp

}
, (17a)

ϕ̌v

(
λv

k
)

:= min
xv,p

T,αv

{
FC + (λv

k)�pT : xv ∈ Xv

}
. (17b)

Note that no variables (including binary) are fixed in Step 5,

although binary variables are fixed in Step 3. The intermediate

Lagrangian lower bounds (ϕ̌p and ϕ̌v) computed in Step

5 go through a quality check in Step 6. If the intermediate

Lagrangian lower bounds calculated in Step 5 are greater

than the previously calculated lower bounds (ϕ̌k
p and ϕ̌k

v)

and smaller than the current upper bounds (ϕ̂k
p and ϕ̂k

v) as

stipulated in (14), the intermediate lower bounds pass the

quality check (iteration is declared forward), and Lagrangian

multipliers are updated in a decentralized manner as in (15a)

and (15b). Moreover, the Lagrangian lower bounds (ϕ̌k
p and

ϕ̌k
v) are also updated as in (15c) and (15d). Otherwise, the

algorithm continues without updates. It is worth noting that

all the computations, including lagrangian multipliers update,

are performed in Algorithm 1 by P-DSO and TNC in parallel.

Note that the proposed algorithm requires setting four

parameters: outer loop convergence tolerance (ε), inner loop

convergence tolerance (εu), penalty parameter (γ ), and outer

loop iteration limit (K). While most of these parameters are

standard in augmented Lagrangian-based algorithms [37], the

penalty parameter (γ ) is pivotal in determining the step size

in any augmented Lagrangian-based algorithm. If the penalty

parameter (γ ) is set too small, the algorithm could take a

long time to converge. If it is set too high, it could overstep

the optimal point, and the algorithm may not converge. Thus,

erring toward a smaller γ is advisable to ensure systematic

progress toward the optimal solution in accordance with

standard augmented Lagrangian penalty parameter guidelines.

B. Why Does the Enhanced SD-GS-AL Algorithm

Outperform the Original One?

In the SD-GS-AL algorithms, the purpose of the inner loop

is to compute the optimal value of Lagrangian relaxation of
Authorized licensed use limited to: University of Central Florida. Downloaded on December 24,2024 at 00:26:28 UTC from IEEE Xplore.  Restrictions apply. 
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subproblems for a given value of Lagrangian multipliers. The

original SD-GS-AL algorithm [31] defines the inner loop as

follows:

Repeat (18) tmax times:

LRk
p, xp

k, pD(k) ← min
xp,pD

{
L

p
γ

(
xp, pD, zk,λp

k
)

:

αp ∈ αp
k, xp ∈ Xp

}
(18a)

LRk
v, xv

k, pT(k) ← min
xv,p

T

{
Lv

γ

(
xv, pT, zk,λv

k
)

:

αv ∈ αv
k, xv ∈ Xv

}
(18b)

zk ← min
z

{∥∥∥z − pD(k)
∥∥∥

2

2
+

∥∥∥pT(k) − z

∥∥∥
2

2

}
, (18c)

where tmax is the pre-defined number of inner loop iterations.

However, there is a critical issue associated with such a setting.

Namely, for a specific problem, a proper value of tmax is

unknown in advance. If tmax is too small, the algorithm may

not converge as the calculated value of Lagrangian relaxation

may not be optimal. If tmax is too big, the algorithm takes a

long time to converge.

To avoid this issue, we propose a new inner loop as

given in (11), yielding an enhanced SD-GS-AL algorithm.

In (11), we designed a stopping criterion using which the

algorithm judges whether to stop the inner loop. To be specific,

the current value of Lagrangian relaxation is checked for

convergence before each new inner loop iteration. If the

difference between current and previous values of Lagrangian

relaxation (denoted by 
LRk) is within the limit of the inner

loop convergence tolerance (denoted by εu), the new inner loop

iteration is not executed. On the other hand, if the difference

exceeds the tolerance, the inner loop proceeds with a new

iteration, employing the most recent parameter and variable

values as specified in Step 3.

As such, the new algorithm no longer relies on the

pre-determined tmax and can automatically and intelligently

determine when to stop the inner loop for each outer loop

iteration. It brings two advantages. First, it prevents the inner

loop from continuing unnecessarily after the Lagrangian value

has already converged after a few iterations, thereby saving

time and computational resources. Second, it helps prevent

the convergence failures of the original algorithm, which are

caused by setting too small tmax.

C. Optimality and Convergence

In [31], the original SD-GS-AL algorithm has been proved

for convergence and optimality. Nonetheless, the inner loop

has been redesigned in the proposed enhanced SD-GS-AL

algorithm. In this subsection, we will prove that convergence

and optimality still hold under the new inner loop.

Theorem: The sequence {(xk, zk)} generated by the

Algorithm 1 converges to the global optimal solution of MICP

dOPF and OTF subproblems as k → ∞.

Proof: We introduce the following definitions for brevity

and conciseness:

L := L
p
γ + Lv

γ , (19a)

ϕc(λ) := ϕc
p

(
λp

)
+ ϕc

v(λv), (19b)

ϕc
p

(
λp

k
)

:= min
xp,pD

{
cGpG − (λp

k)�pD:xp ∈ CH(Xp)

}
,(19c)

ϕc
v

(
λv

k
)

:= min
xv,p

T

{
FC + (λv

k)�pT:xv ∈ CH(Xv)

}
, (19d)

CH(.) := Convex Hulls, (19e)

ϕ̌(λ) := ϕ̌p

(
λp

)
+ ϕ̌v(λv), (19f)

ϕ̂(x, z,λ) := ϕ̂p

(
xp, z,λp

)
+ ϕ̂v(xv, z,λv), (19g)

X := Xp ∪ Xv, (19h)

xk := (xp
k, xv

k)(vector concatenation), (19i)

(x − z) :=
((

pT − z
)
,

(
z − pD

))
. (19j)

The convergence condition at x ∈ X for a limit point (x̄, z̄) of

the sequence {(xk, zk)} is defined as [31]:

L′
x(x, z; s) ≥ 0 for all s ∈ X − {x}, (20)

where L′
x(x, z; s) = limβ→0

L(x+βs,z)−L(x,z)
β

for some β.

The Direction Related Assumption is given as follows: for

any iteration k, sk is chosen such that xk + sk ∈ X and

L′
x(x, z; s) ≥ 0. Note that sk is a gradient of xk.

The proof has three parts. Part 1 proves the convergence of

the proposed algorithm, Part 2 verifies the optimality, and Part

3 provides convergence of the boundary variables.

Part 1: The sequence {(xk, zk)} generated by Step 3 in

Algorithm 1 always converges to the limit point (x̄, z̄).

Here, we prove that the limit point (x̄, z̄) of the sequence

{(xk, zk)} of feasible solutions to the problems (9) and (10)

satisfies the convergence condition (20). Note that subprob-

lems in Step 3 are continuous as integer variables are fixed.

According to the Armijo rule, we have

L
(
xk + βksk, zk

)
− L

(
xk, zk

)

βk
≤ σL′

x

(
xk, zk; sk

)
(21)

for any σ ∈ (0, 1). Note that βk is the step length of the

Armijo rule. As L′
x(x

k, zk; sk) < 0 according to the Direction

Related Assumption (defined above) and βk ≥ 0, above

expression can be rewritten as L(xk + βksk, zk) < L(xk, zk).

We also have L(xk+1, zk+1) ≤ L(xk +βksk, zk) < L(xk, zk) and

L(xk+1, zk+1) < L(xk, zk). Also, L is bounded from below, we

have limk→∞ L(xk, zk) = L̄ > −∞. Hence, we have

lim
k→∞

L
(

xk+1, zk+1
)

− L
(

xk, zk
)

= 0.

Furthermore,

lim
k→∞

L
(

xk + βksk, zk
)

− L
(

xk, zk
)

= 0. (22)

For the sake of contradiction, we assume that

limk→∞(xk, zk) = (x̄, z̄) does not satisfy the convergence

condition (20). From the definition of gradient-related

assumption, we have

lim sup
k→∞

L′
x

(
xk, zk; sk

)
< 0. (23)
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Hence, in conclusion, limk→∞ βk = 0. From Armijo rule, after

a certain iteration k ≥ k̄, we can define {β̄k}, β̄k = βk/γ for

some γ , where β̄k ≤ 1 and we have

σL′
x

(
xk, zk; sk

)
<

L
(
xk + β̄ksk, zk

)
− L

(
xk, zk

)

β̄k
. (24)

If we apply the mean value theorem to the right side of the

above expression, for some β̃k ∈ [0, β̄k], we have

σL′
x

(
xk, zk; sk

)
< L′

x

(
xk + β̃ksk, zk; sk

)
. (25)

Moreover, lim supk→∞ L′
x(x

k, zk; sk) < 0, and if we take

a limit point s̄ of {sk} such that L′
x(x̄, z̄, s̄) < 0.

Also, we have, limk→∞,k∈K L′
x(x

k, zk; sk) = L′
x(x̄, z̄; s̄) and

limk→∞,k∈K L′
x(x

k+β̃ksk, zk; sk) = L′
x(x̄, z̄; s̄). From these two

factors, we can infer that L′
x(x, z; s) is continuous. Now, from

expression (25), we have

σL′
x(x̄, z̄; s̄) ≤ L′

x(x̄, z̄; s̄) =⇒ 0 ≤ (1 − σ)L′
x(x̄, z̄; s̄).

Since (1 − σ) > 0, L′
x(x̄, z̄; s̄) < 0 which is a contradiction.

Therefore, the limit point (x̄, z̄) of the sequence {(xk, zk)} i.e.,

limk→∞(xk, zk) = (x̄, z̄) satisfies the convergence condition,

which means Step 3 in Algorithm 1 has a limit point. It is

worth noting that the solution of Step 3 is reported as the final

solution when the algorithm converges, as stated in Step 4;

this part of the proof shows that Algorithm 1 has a converged

solution.

Part 2: The limit point (x̄, z̄) of the sequence {(xk, zk)}

generated by Step 3 in Algorithm 1 is a global optimal solution

of the MICP subproblems.

From Part 1, we have that the algorithm converges to the

limit point (x̄, z̄). In other words, the algorithm produces a

solution, (x̄, z̄). Here, we establish the global optimality of the

solution (x̄, z̄). The optimality conditions (KKT conditions)

associated with the (x̄, z̄) ∈ argminx,z{L(x, z,λ):α ∈ αk} is

given as follows:

�x :=
[
∇f (x̄) + [λ + γ (x̄ − z̄)]�1

]�[
x − x̄

]

≥ 0.

Note that integer (binary) variables are fixed here. The above

optimality condition can also be written as:

min
x

{�x} = 0.

The above expression can be re-written in terms of ϕ̌(λ +

γ (x̄ − z̄), x̄) as:

ϕ̌(λ + γ (x̄ − z̄), x̄) = f (x̄) + λ�x̄ + γ ‖x̄ − z̄‖2
2

= L(x̄, z̄,λ) +
γ

2
‖x̄ − z̄‖2

2.

We have,

ϕ̌(λ, xk) := min
x

{
f (xk) + ∇xf (xk)�(x − xk)

+λ�x:x ∈ X

}
.

Note that according to [38], minimizing linear objective func-

tion over mixed-integer convex sets Xp and Xv is equivalent

to minimizing linear objective function over convex hulls sets,

CH(Xp) and CH(Xv). Also, we have

ϕ̂(x̄, z̄,λ) := L(x̄, z̄,λ) +
γ

2
‖x̄ − z̄‖2

2.

Hence for a unique solution,

ϕ̌(λ + γ (x̄ − z̄), x̄) = ϕ̂(x̄, z̄,λ)= ϕc(x̄, z̄,λ). (26)

The expression (26) implies that the upper and lower bounds of

the Lagrangian function converge as k → ∞. In other words,

Algorithm 1 converges to the global optimal solution of the

centralized implementation of MICP subproblems.

Part 3: The boundary variables (pD and pT) also match

when the Lagrangian upper and lower bounds match as

k → ∞.

In Part 2, we have shown that the upper and lower bounds

of Lagrangian match as k → ∞. In this part, we show that

the boundary variables (pD and pT) also match as k → ∞.

From (11a), (11b), (12), and (16), the Lagrangian upper bound

is given as follows,

ϕ̂ = ϕ̂p + ϕ̂v

= cGpG − (λp)�pD + γ

∥∥∥z − pD
∥∥∥

2

2

+ FC + (λv)
�pT + γ

∥∥∥pT − z

∥∥∥
2

2
. (27)

From (17), the Lagrangian lower bound is given as follows,

ϕ̌ = ϕ̌p + ϕ̌v

= cGpG − (λp)�pD + FC + (λv)
�pT. (28)

From Part 2, we have that ϕ̂ = ϕ̌ ⇒ ϕ̂ − ϕ̌ = 0 as k → ∞.

This can be expressed in terms of (27) and (28) as follows,

γ

∥∥∥z − pD
∥∥∥

2

2
+ γ

∥∥∥pT − z

∥∥∥
2

2
= 0. (29)

For positive values of γ , pD, pT, and z, the followings must

hold to make left side of (29) equal the right side of (29),

z − pD = 0

pT − z = 0

i.e., pD = pT. (30)

The expression (30) represents that the boundary variables (pD

and pT) match when the Lagrangian upper and lower bounds

match as k → ∞.

IV. CASE STUDY

We tested the proposed enhanced SD-GS-AL algorithm

on three power-transportation systems. In this section, the

simulation setup is first described. Second, the advantages of

the proposed method are illustrated via simulation results.

A. Simulation Setup

Generally, the covered area of TN is much larger than that

of a power distribution feeder. Therefore, to make the area of

coverage similar, one power distribution feeder supplies one

EVCS in a TN in this paper, as in [33]. For Case 1, the three

modified IEEE 13-node test feeders represent the PDN, while

Authorized licensed use limited to: University of Central Florida. Downloaded on December 24,2024 at 00:26:28 UTC from IEEE Xplore.  Restrictions apply. 



SHARMA et al.: ENHANCED SD-GS-AL ALGORITHM 3913

Fig. 2. PDN and TN topology (Case 1).

Fig. 3. PDN and TN topology (Case 2).

the 5-node road network represents the TN, as shown in Fig. 2.

For Case 2, the four modified IEEE 33-node test feeders are

used to represent the PDN, while the modified Nguyen-Dupius

network is adopted to represent the TN, as shown in Fig. 3.

For Case 3, the four modified IEEE 123-node test feeders are

used to represent the PDN, while the modified Sioux Falls

network [39] is adopted to represent the TN, as shown in

Fig. 4. It is worth mentioning that feeders are not coupled with

each other, and they are supplied by different buses of the

transmission network (grid), hence different grid prices (can

be interpreted as LMPs of transmission system). The details

of the physical coupling between TN and PDN and the grid

prices used are provided in Table I. In Figures 2 and 3, the

network drawn in green color represents the feeder, while the

network drawn in blue color represents TN. For Case 3, shown

in Figure 4, the feeder topology is not drawn for brevity.

The arcs parameters for TN of Case 1 are provided in

Table II, while those of Case 2 and 3 are adopted from [13]

and [39], respectively. For Case 1, two O-D pairs considered

Fig. 4. PDN and TN topology (Case 3).

TABLE I
INFORMATION ON THE PHYSICAL COUPLING BETWEEN

TN AND PDN AND GRID PRICES

TABLE II
TN ARCS PARAMETERS (CASE 1)

are 1→4 and 4→1 with a traffic (EV) demand of 30 each.

For Case 2, four O-D pairs considered are 1→2, 1→3, 4→2,

and 4→3 with a traffic demand of 60 each. For Case 3,

six O-D pairs considered are 1→20, 2→13, 3→19, 4→18,

12→7, and 23→6 with a traffic demand of 60 each. The

capacity of each solar photovoltaic (PV) used in the feeders

of all cases is 200 KW. While the locations of PVs of the

first two test cases are shown in Figures 2 and 3, the locations
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TABLE III
ALGORITHM PARAMETERS

of PVs in the feeders of Case 3 are nodes–19, 47, and 76.

Moreover, the parameters used for the proposed algorithm are

provided in Table III.

It should be noted that in the TN model, all feasible paths

for each origin-destination pair can be used as input. However,

in a larger network, the number of feasible paths can become

overwhelming. Additionally, not all feasible paths for a given

origin-destination pair are actually used by electric vehicles,

as many of them are much longer and thus more costly than

shorter alternatives. To address this issue, we have narrowed

down the set of feasible paths by following a specific rule.

First, all paths for each origin-destination pair are generated.

Then, any paths that do not contain at least one EVCS node

are removed as infeasible. Finally, any feasible paths that are

longer than twice the length of the shortest path (in terms of

distance) are also removed.

B. Validation of the Proposed Algorithm

In this subsection, the proposed enhanced SD-GS-AL algo-

rithm is validated and compared with the original SD-GS-AL

algorithm [31] and ADMM [40] using three test cases.

1) Case-1: IEEE 13-Node PDN and 5-Node TN: This

subsection exhibits the results of the coordination of TN and

PDN through numerical experiments on a test system, shown

in Figure 2. The proposed algorithm is compared with the

ADMM and the original SD-GS-AL. Since the difference of

Lagrangian upper and lower bounds (also called convergence

error) is used as a convergence criterion in the proposed and

original SD-GS-AL algorithms, and the difference of boundary

variables is used as a convergence criterion in the ADMM [40],

two types of plots are utilized for unit consistency in the

comparison. First, the plot of convergence error (i.e., the

difference of Lagrangian bounds) is compared for both the

proposed and original SD-GS-AL algorithms, as shown in

Figure 5. Note that the ADMM does not utilize the concept of

Lagrangian bounds; therefore, it is not included in Figure 5.

Second, the plot of boundary error (i.e., the sum of the absolute

difference of all boundary variables) has been utilized for

comparison with ADMM, as shown in Figure 6. The figures

illustrate that the proposed enhanced SD-GS-AL algorithm

outperforms ADMM and original SD-GS-AL as they failed to

converge after 300 outer iterations. Note that a non-zero error

indicates the original SD-GS-AL algorithm and ADMM failed

to converge. The convergence and boundary errors of only 20

iterations are shown in Figures 5 and 6 for better visualization.

2) Case-2: IEEE 33-Node PDN and Modified Nguyen-

Dupius TN: This subsection provides the results of the

coordination of TN and PDN through numerical experiments

Fig. 5. Comparison of the convergence error (i.e., the difference of
Lagrangian bounds) of the proposed enhanced SD-GS-AL algorithm and the
original SD-GS-AL algorithm (with one inner loop iteration) (Case 1).

Fig. 6. Comparison of the boundary error (i.e., the difference of boundary
variables) of the proposed enhanced SD-GS-AL algorithm, the original SD-
GS-AL algorithm (with one inner loop iteration), and the ADMM (Case 1).

Fig. 7. Comparison of the convergence error (i.e., the difference of
Lagrangian bounds) of the proposed enhanced SD-GS-AL algorithm and the
original SD-GS-AL algorithm (with one inner loop iteration) (Case 2).

on a bigger system. The topology of the transportation network

and the power distribution feeder is shown in Fig. 3. As

in Case 1, the proposed algorithm is compared with the

ADMM and the original SD-GS-AL [31] as presented in

Figures 7 and 8. The figures illustrate that the proposed

enhanced SD-GS-AL algorithm outperforms ADMM and orig-

inal SD-GS-AL as they failed to converge after 200 outer

iterations. For better visualization, the errors of only 20

iterations are shown in Figure 7 and 8.
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TABLE IV
COMPARISON OF COMPUTATIONAL PERFORMANCE

Fig. 8. Comparison of the boundary error (i.e., the difference of boundary
variables) of the proposed enhanced SD-GS-AL algorithm, the original SD-
GS-AL algorithm (with one inner loop iteration), and the ADMM (the ADMM
convergence error is scaled down by a factor of 10) (Case 2).

3) Case-3: IEEE 123-Node PDN and 24-Node Sioux Falls

TN: This subsection provides the results of the coordination of

TN and PDN through numerical experiments on a much bigger

system. The topology of the transportation network and the

power distribution feeder is shown in Fig. 4. As in Cases 1 and

2, the proposed algorithm is compared with the ADMM and

the original SD-GS-AL [31] as presented in Figures 9 and 10.

The figures illustrate that the proposed enhanced SD-GS-AL

algorithm outperforms ADMM and original SD-GS-AL as

they failed to converge after 200 outer iterations. For better

visualization, the errors of only 25 iterations are shown in

Figure 9 and 10.

4) Computational Performance: In this subsection, the

computational performance of the proposed enhanced SD-GS-

AL algorithm is compared with the original SD-GS-AL [31]

and ADMM [40], and the centralized implementation of

coordinated dOPF and OTF, as shown in Table IV. It is worth

noting that this paper does not aim to pursue computational

efficiency over the centralized model. However, the proposed

algorithm outperforms the existing decentralized algorithms

Fig. 9. Comparison of the convergence error (i.e., the difference of
Lagrangian bounds) of the proposed enhanced SD-GS-AL algorithm and the
original SD-GS-AL algorithm (with one inner loop iteration) (Case 3).

Fig. 10. Comparison of the boundary error (i.e., the difference of boundary
variables) of the proposed enhanced SD-GS-AL algorithm, the original SD-
GS-AL algorithm (with one inner loop iteration), and the ADMM (Case 3).

with similar features. For example, in Case 1, the original

SD-GS-AL (with one inner loop iteration) and ADMM failed

to converge. However, with eight inner loop iterations, the

original SD-GS-AL converged in 13 outer iterations compared

to 10 outer iterations of the proposed enhanced SD-GS-AL
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TABLE V
CHARGING AND ROUTING OF EVS (CASE 1)

TABLE VI
CHARGING AND ROUTING OF EVS (CASE 2)

algorithm, as shown in Table IV. Nonetheless, the original

SD-GS-AL required more than three times more inner loop

iterations (104 total inner loop iterations) than the proposed

enhanced SD-GS-AL algorithm (28 total inner loop iterations).

Similarly, in Cases 2 and 3, the proposed enhanced SD-GS-

AL algorithm outperformed the original SD-GS-AL algorithm

and ADMM. For a larger test case, i.e., Case 3, the compu-

tational improvement realized from the enhanced SD-GS-AL

algorithm is even bigger. For example, with the enhanced SD-

GS-AL, the number of inner loop iterations required is 80

compared to the 468 inner loop iterations required by the

original SD-GS-AL. It is worth noting that the ADMM did

not converge for all three test cases considered in this paper.

Moreover, the proposed algorithm converged to the solutions

of the centralized implementation of coordinated dOPF and

OTF, as shown in Table IV.

C. Engineering Validation of the Simulation Results

In this subsection, the engineering validation of the simula-

tion results is made.

1) EVs Path, Path Flows, and EVs Charging: In this

subsection, we provide optimal paths to route EVs and

corresponding path flows and charging nodes for EVs in TN

for all test cases. Table V provides the routing and charging

of EVs along with the path flow for Case 1. For example, for

the O-D pair 1-4, 7 EVs are routed on path 1→ 2©→ 3©→4

while 23 EVs are routed on path 1→ 5©→4. Note that the

circled node number indicates where the EVs are recharged.

Similarly, Table VI provides the routing and charging of EVs

along with the path flow for Case 2. The routing and charging

of EVs with path flows for Case 3 will be discussed next when

we discuss the implications of PDN-TN coordination on EVs

flows.

2) Implications of PDN-TN Coordination on EV Flows:

This subsection illustrates the implications of PDN-TN coor-

dination on EV flows through comparative analysis. For

comparison, three scenarios are considered: 1) EVs flows

without PDN-TN coordination, 2) EVs flows with PDN-TN

coordination using grid prices provided in Table I, and 3) EVs

flows with PDN-TN coordination using congested grid prices.

For the third scenario, we adjust the grid price of one feeder to

simulate congested grid prices. Subsequent simulations allow

TABLE VII
EVS FLOWS ILLUSTRATING PDN-TN COORDINATION

WITH DIFFERENT GRID PRICES (CASE 3)

us to analyze and compare the changes in EV flows. It should

be noted that the grid prices referred to in Table I represent the

Locational Marginal Prices (LMPs) in the power transmission

system (PTS). During congestion in parts of the PTS, the

LMPs (also called grid prices in this paper) at affected buses

surge markedly, setting them apart from the rest of the system.

Therefore, to simulate congested grid prices, the grid price of

Feeder 4 is changed from $91.62 to $140.94. The rest of the

grid prices are left unchanged.

For brevity, we only consider Case 3 in the comparative

analysis. Table VII shows the results of the comparison, which

shows variations in the routing and charging of EVs across

different coordination scenarios. Notably, EV traffic is reduced

on routes supplied by congested grid prices compared to those

with normal pricing. For example, for O-D pair 3→19, the

first path 3→4→5→6→8→16©→17→19 routes 44 out of 60

EVs in normal grid price condition (scenario 2). However, in

the congested grid price scenario (scenario 3), the same path

carries less than half the number of EVs (i.e., 20). It is worth

noting that the congested feeder supplies the EVCS located

at node 16 on this path. Therefore, fewer EVs were routed

through this path in the congested scenario. This highlights

the importance of PDN-TN coordination in the face of rising

EV charging.

3) Distribution-Level Optimal Power Flow Results: This

subsection presents nodal voltage profiles of feeders across all
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Fig. 11. Nodal voltage profile (Case 1).

Fig. 12. Nodal voltage profile (Case 2).

Fig. 13. Nodal voltage profile (Case 3).

three different test cases. Figures 11, 12, and 13 illustrate that

the nodal voltages for the feeders in each test case remain

within the specified limits (0.94 p.u. - 1.06 p.u.) Nonetheless,

from the Figures, we can observe that the EVCS operation

in TN has some impact on the voltage profile in the feeder.

For example, Feeder 3 supplies the EVCS at node 5 in TN in

Case 1 (shown in Figure 2). As seen from Table V, most of

the EV traffic (46 (23+23) out of 60) gets charged at node

5. Therefore, the nodal voltage profile of Feeder 3 (which

supplies EVCS at node 5 in TN) is lower than the voltage

profile of the other two feeders, as seen from Figure 11.

Nonetheless, the voltage profile of all feeders across three test

cases is within the acceptable operation limits.

V. CONCLUSION

This paper presents an enhanced SD-GS-AL decentralized

algorithm for coordinating PDN and TN with EVs. In com-

parison to existing methods, the main benefits of the proposed

algorithm are: 1) unlike existing algorithms like ADMM, it is

applicable to MIP problems with convergence and optimality

guaranteed; 2) it only requires limited information exchange

between PDN and TN operators, which will help preserve

the privacy of the two systems and reduce the investment in

building communication channels, 3) it is fully decentralized

so that all the computations are carried out by PDN operator

and TN coordinator only (in parallel), 4) it is faster than the

original SD-GS-AL [31]. The simulation results showed the

significance of the proposed framework and algorithm over

the existing ones.
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