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ABSTRACT This paper addresses learning safe output feedback control laws from partial observations of
expert demonstrations. We assume that a model of the system dynamics and a state estimator are available
along with corresponding error bounds, e.g., estimated from data in practice. We first propose robust
output control barrier functions (ROCBFs) as a means to guarantee safety, as defined through controlled
forward invariance of a safe set. We then formulate an optimization problem to learn ROCBFs from expert
demonstrations that exhibit safe system behavior, e.g., data collected from a human operator or an expert
controller. When the parametrization of the ROCBF is linear, then we show that, under mild assumptions,
the optimization problem is convex. Along with the optimization problem, we provide verifiable conditions
in terms of the density of the data, smoothness of the system model and state estimator, and the size of the
error bounds that guarantee validity of the obtained ROCBF. Towards obtaining a practical control algorithm,
we propose an algorithmic implementation of our theoretical framework that accounts for assumptions made
in our framework in practice. We validate our algorithm in the autonomous driving simulator CARLA and
demonstrate how to learn safe control laws from simulated RGB camera images.

INDEX TERMS Control barrier functions, data-driven robust control, output feedback control.

I. INTRODUCTION
Safety-critical systems rely on robust control laws that can
account for uncertainties in system dynamics and state esti-
mation. For example, consider an autonomous car equipped
with noisy sensors that navigates through urban traffic [1]. The
state of the car is not exactly known and estimated from out-
put measurements, e.g., from a dashboard camera, while the
dynamics of the car are not perfectly known either, e.g., due to
unknown friction coefficients. A model of the system dynam-
ics and a state estimator can usually be obtained, e.g., from
first principles or estimated from data, along with uncertainty
sets describing error bounds. Such error bounds are standard
in robust control theory [2], but designing robust control for
described systems is challenging. In this paper, we address
this problem by using the increasing availability of safe expert

demonstrations, e.g., car manufacturers recording safe driving
behavior of expert drivers. We propose a data-driven approach
to learning safe and robust control laws where safety is defined
as the ability of a system to stay within a set of states that
are labeled safe, e.g., states that satisfy a minimum safety
distance.

A. RELATED WORK
Control barrier functions (CBFs) were introduced in [3], [4] to
render a safe set controlled forward invariant. A CBF defines
a set of safe control inputs that can be used to find a minimally
invasive safety-preserving correction to a nominal control law
by solving a convex quadratic program. Many variations and
extensions of CBFs appeared in the literature, e.g., compo-
sition of CBFs [5], CBFs for multi-robot systems [6], CBFs
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encoding temporal logic constraints [7], and CBFs for systems
with higher relative degree [8]. Finally, CBFs and Hamilton-
Jacobi were found to share connections [9].

CBFs that account for uncertainties in the system dynam-
ics have been considered in two ways. The authors in [10]
and [11] consider input-to-state safety to quantify possible
safety violation. Conversely, the work in [12] proposes robust
CBFs to guarantee robust safety by accounting for all per-
missible errors within an uncertainty set. Input delays within
CBFs were discussed in [13], [14]. CBFs that account for
state estimation uncertainties were proposed in [15] and [16].
Relying on the same notion of measurement robust CBFs as
in [15], the authors in [17] present empirical evaluations on a
segway. While the notion of ROCBFs that we present in this
paper is inspired by measurement-robust CBFs as presented
in [15], we also consider uncertainties in the system dynamics
and focus on learning valid CBFs from expert demonstra-
tions. Similar to the notion of ROCBF, the authors in [18]
consider additive disturbances in the system dynamics and
state-estimation errors jointly.

Learning with CBFs: Approaches that use CBFs during
learning typically assume that a valid CBF is already given,
while we focus on constructing CBFs so that our approach
can be viewed as complementary. In [19], it is shown how safe
and optimal reward functions can be obtained, and how these
are related to CBFs. The authors in [20] use CBFs to learn
a provably correct neural network safety guard for kinematic
bicycle models. The authors in [21] consider that uncertainty
enters the system dynamics linearly and propose to use robust
adaptive CBFs, as originally presented in [22], in conjunction
with online set membership identification methods. In [23],
it is shown how additive and multiplicative noise can be
estimated online using Gaussian process regression for safe
CBFs. The authors in [24] collect data to episodically update
the system model and the CBF controller. A similar idea is
followed in [25] where instead a projection with respect to
the CBF condition is episodically learned. Imitation learning
under safety constraints imposed by a Lyapunov function was
proposed in [26]. Further work in this direction can be found
in [27], [28], [29].

Learning CBFs: An open problem is how valid CBFs
can be constructed. Indeed, the lack of systematic methods
to construct valid CBFs is a main bottleneck. For certain
types of mechanical systems under input constraints, analytic
CBFs can be constructed [30]. The construction of polynomial
barrier functions towards certifying safety for polynomial
systems by using sum-of-squares (SOS) programming was
proposed in [31]. Finding CBFs poses additional challenges
in terms of the control input resulting in bilinear SOS pro-
gramming as presented in [32], [33] and summarized in [34].
The work in [35] considers the construction of higher or-
der CBFs and their composition by, similarly to [32], [33],
alternating-descent heuristics to solve the arising bilinear SOS
program. Such SOS-based approaches, however, are known to
be limited in scalability and do not use potentially available
expert demonstrations.

A promising research direction is to learn CBFs from data.
The authors in [36] construct CBFs from safe and unsafe
data using support vector machines, while authors in [37]
learn a set of linear CBFs for clustered datasets. The au-
thors in [38] proposed learning limited duration CBFs and the
work in [39] learns signed distance fields that define a CBF.
In [40], a neural network controller is trained episodically
to imitate an already given CBF. The authors in [41] learn
parameters associated with the constraints of a CBF to im-
prove feasibility. These works present empirical validations,
but no formal correctness guarantees are provided. The au-
thors in [42], [43], [44], [45] propose counter-example guided
approaches to learn Lyapunov and barrier functions for known
closed-loop systems, while Lyapunov functions for unknown
systems are learned in [46]. In [47], [48], [49] control barrier
functions are learned and post-hoc verified, e.g., using Lips-
chitz arguments and satisfiability modulo theory, while [50]
uses a counter-example guided approach. As opposed to these
works, we make use of safe expert demonstrations. Expert
trajectories are utilized in [51] to learn a contraction metric
along with a tracking controller, while motion primitives are
learned from expert demonstrations in [52]. In our previous
work [53], we proposed to learn CBFs for known nonlinear
systems from expert demonstrations. We provided the first
conditions that ensure correctness of the learned CBF using
Lipschitz continuity and covering number arguments. In [54]
and [55], we extended this framework to partially unknown
hybrid systems. In this paper, we focus on state estimation and
provide sophisticated simulations of our method in CARLA.

B. CONTRIBUTIONS
In this paper, we learn safe output feedback control laws
for unknown systems. We first present robust output control
barrier functions (ROCBFs) to establish safety under system
dynamics and state estimation uncertainties. We then for-
mulate a constrained optimization problem for constructing
ROCBFs from safe expert demonstrations, and we present
verifiable conditions that guarantee the validity of the ROCBF.
While the optimization problem is in general nonconvex, we
identify conditions under which the problem is convex. For
the general case, we propose an approximate unconstrained
optimization problem that we can solve efficiently. Finally,
we propose an algorithmic implementation of our theoretical
framework to learn ROCBFs in practice, and we present an
empirical validation in CARLA [56].

In contrast to our previous works [53], [54], [55], in which
we assume perfect state knowledge, we focus on dealing
with state estimation errors. Our paper additionally differs
from [53], [54], [55] in its practical focus. We discuss the
algorithmic implementation of our framework to account for
assumptions of our work in practice. For instance, our frame-
work crucially relies on obtaining “unsafe” data which is hard
to obtain in practice, and we propose a new algorithm to obtain
unsafe datapoints as boundary points from the set of safe
expert demonstrations based on reverse k-nearest neighbors.
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II. BACKGROUND AND PROBLEM FORMULATION
At time t ∈ R≥0, let x(t ) ∈ Rn be the state of the dynamical
control system described by the set of equations

ẋ(t ) = f (t ) + g(t )u(t ), (1a)

x(0) := x0 (initial condition), (1b)

f (t ) := F (x(t ), t ) (internal dynamics), (1c)

g(t ) := G(x(t ), t ) (input dynamics), (1d)

y(t ) := Y (x(t )) (output measurements), (1e)

u(t ) := U (y(t ), t ) (output feedback control law), (1f)

where x0 ∈ Rn is the initial condition. The functions F : Rn ×
R≥0 → Rn and G : Rn ×R≥0 → Rn×m are only partially
known, e.g., due to unmodeled dynamics or noise, and locally
Lipschitz continuous in the first and piecewise continuous and
bounded in the second argument.

Assumption 1: We assume known nominal models F̂ :
Rn ×R≥0 → Rn and Ĝ : Rn ×R≥0 → Rn×m together with
functions !F : Rn ×R≥0 → R≥0 and !G : Rn ×R≥0 →
R≥0 that bound their respective errors as1

∥F̂ (x, t )− F (x, t )∥ ≤ !F (x, t ) for all (x, t ) ∈ Rn ×R≥0,

|||Ĝ(x, t )− G(x, t )||| ≤ !G(x, t ) for all (x, t ) ∈ Rn ×R≥0.

The functions F̂ (x, t ), Ĝ(x, t ), !F (x, t ) and !G(x, t ) are as-
sumed to be locally Lipschitz continuous in the first and
piecewise continuous and bounded in the second argument.

The models F̂ (x, t ) and Ĝ(x, t ) may be obtained by iden-
tifying model parameters or by system identification [57],
while the assumption of error bounds !F (x, t ) and !G(x, t )
is standard in robust control [2]. We now define the set of
admissible system dynamics as

F (x, t ) := { f ∈ Rn|∥F̂ (x, t )− f ∥ ≤ !F (x, t )},

G(x, t ) := {g ∈ Rn×m||||Ĝ(x, t )− g||| ≤ !G(x, t )}.

The output measurement map Y : Rn → Rp is only partially
known and locally Lipschitz continuous. For instance, Y can
describe a dashboard camera that is hard to model. We assume
that there exists an inverse yet unknown map X : Rp→ Rn

that recovers the state x as X (Y (x)) = x. This means that a
measurement y uniquely defines a corresponding state x and
implies that p ≥ n. This way, we implicitly assume high-
dimensional measurements y such as a dashboard camera
where the inverse map X recovers the position of the system,
or even its velocity when a sequence of camera images is
available. Since Y and X are unknown, one can, however,
not recover the state x from y. We present an example in the
simulation study and refer to related literature using similar
assumptions, such as [15], [58].

Assumption 2: We assume to have a known model X̂ :
Rp→ Rn together with a function !X : Rp→ R≥0 that

1We let ∥ · ∥ be a vector norm and denote ∥ · ∥⋆ by its dual norm, while
||| · ||| is the induced matrix norm.

FIGURE 1. Uncertain system under consideration.

bounds the error

∥X̂ (y)− X (y)∥ ≤ !X (y) for all y ∈ Y (Rn).

The functions X̂ (y) and !X (y) are assumed to be locally
Lipschitz continuous.

The state estimator X̂ (y) and the error bound !X (y) may
be obtained using machine learning methods, see e.g., [15],
[58], or X̂ (y) can encode the extended Kalman filter together
with !X (y), see e.g., [59], [60]. We now define the set of
admissible inverse output measurement maps as

X (y) := {x ∈ Rn|∥X̂ (y)− x∥ ≤ !X (y)}.

Finally, the function U : Rp ×R≥0 → U is the output feed-
back control law where U ⊆ Rm encodes input constraints.
System (1) is illustrated in Fig. 1. Let a solution to (1) under
an output feedback control law U (y, t ) be x : I → Rn where
I ⊆ R≥0 is the maximum definition interval of x.

The goal in this paper is to learn an output feedback control
law U (y, t ) such that prescribed safety properties with respect
to a geometric safe set S ⊆ Rn are met by the system in (1).
By geometric safe set, we mean that S describes the set of
safe states as naturally specified on a subset of the state space
(e.g., to avoid collision, vehicles must maintain a minimum
separating distance).

Definition 1: A set C ⊆ Rn is said to be robustly output
controlled forward invariant with respect to the system in (1)
if there exist an output feedback control law U (y, t ) such that,
for all initial conditions x(0) ∈ C, for all admissible system
dynamics F (x, t ) ∈ F (x, t ) and G(x, t ) ∈ G(x, t ), and for all
admissible inverse output measurement maps X (y) ∈ X (y),
every solution x(t ) to (1) under U (y, t ) is such that: 1) x(t ) ∈
C for all (t ) ∈ I, and 2) the interval I is unbounded, i.e.,
I = [0,∞). If the set C is additionally contained within the
geometric safe set S , i.e., C ⊆ S , the system in (1) is said to
be safe under the safe control law U (y, t ).

Towards this goal, we assume a data set of expert demon-
strations consisting of N1 input-output data pairs (yi, ui ) ∈
Rp ×Rm along with a time stamp ti ∈ R≥0 as

Zdyn := {(yi, ti, ui )}N1
i=1

that were recorded when the system was in a safe state X (yi ) ∈
int(S ) where int(S ) denotes the interior of the safe set S .
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FIGURE 2. Proposed framework to learn safe control laws.

We assume to have expert control inputs ui available that
can later be used for learning a safe control law. The pairs
of expert demonstrations (yi, ti, ui ) have to be such that a
system trajectory starting from a state x ∈ !X (yi ) can be kept
within the safe set S . If this was not the case, the later posed
optimization problem (in (7)) would be infeasible. There are
interesting observations as to what constitutes a “good” expert
action ui, see [53] for details.

Problem 1: Let the system in (1) and the set of safe expert
demonstrations Zdyn be given. Under Assumptions 1 and 2,
learn a function h : Rn → R from Zdyn so that the set

C := {x ∈ Rn
∣∣ h(x) ≥ 0} (2)

is robustly output controlled forward invariant with respect to
(1) and such that C ⊆ S , i.e., so that (1) is safe.

An overview of our proposed solution is shown in Fig. 2.
We formulate a constrained optimization problem to learn a
function h(x) so that the learned safe set C is robustly output
controlled forward invariant and contained within the geomet-
ric safe set S , i.e., C ⊆ S . The optimization problem takes the
system model M := (F̂ , Ĝ, X̂ ,!F ,!G,!X ) and the expert
demonstrations {(yi, ui, ti )} as inputs and imposes constraints
on a function q and h(x) that will be derived in the sequel. We
remark that the proofs of technical lemmas, propositions, and
theorems can be found in the appendices.

III. ROBUST OUTPUT CONTROL BARRIER FUNCTIONS
Let h : Rn → R be a twice continuously differentiable func-
tion, and assume that h is such that the set C in (2) has
non-empty interior. Let Y ⊆ Rp be a sufficiently large open
set such that Y ⊇ Y (C) where Y (C) denotes the image of C
under Y 2. This assumption is equivalent to X (Y ) ⊇ C. The set
X (Y ) is typically the domain of interest in existing state-based
CBF frameworks, see e.g., [4].

We recall that a function α : R→ R is an extended class K
function if it is a strictly increasing function with α(0) = 0.

2Note that the function Y is unknown. In Section IV, we construct the sets
Y and C in a way so that Y ⊇ Y (C) holds.

We can guarantee that C is robustly output controlled for-
ward invariant if there exists a locally Lipschitz continuous
extended class K function α : R→ R such that

sup
u∈U

inf
x∈X (y)

inf
f∈F (x,t )
g∈G(x,t )

⟨∇h(x), f + gu⟩︸ ︷︷ ︸
Change in h along

all dynamics

+α(h(x)) ≥ 0 (3)

for all (y, t ) ∈ Y ×R≥0 where ⟨·, ·⟩ denotes the inner-product
between two vectors. Unfortunately, the condition (3) is diffi-
cult to evaluate due the infimum operators. Towards a more
tractable condition, we first define the function B : Rn ×
R≥0 × U → R as

B(x, t, u) := ⟨∇h(x), F̂ (x, t ) + Ĝ(x, t )u⟩︸ ︷︷ ︸
Change in h along model dynamics

+α(h(x))

−∥∇h(x)∥⋆(!F (x, t ) + !G(x, t )∥u∥)︸ ︷︷ ︸
Robustness term accounting for system model error

where ∥ · ∥⋆ denotes the dual norm. Satisfaction of constraint
(3) can now be guaranteed by

sup
u∈U

inf
x∈X (y)

B(x, t, u) ≥ 0

reducing the complexity to the infimum operator over the state
measurement uncertainty X (y). For an output measurement
y ∈ Y and fixed u and t , denote the local Lipschitz con-
stant of the function B(x, t, u) within the set X (y) ⊆ Rn by
LipB(y, t, u). We now define ROCBF that will guarantee that
the set C is robustly output controlled forward invariant.

Definition 2: The function h(x) is said to be a robust output
control barrier function (ROCBF) on an open set Y ⊇ Y (C)
if there exist a locally Lipschitz continuous extended class K
function α : R→ R3 such that

sup
u∈U

B(X̂ (y), t, u)− LipB(y, t, u)!X (y)︸ ︷︷ ︸
Robustness term accounting

for state estimation error

≥ 0 (4)

for all (y, t ) ∈ Y ×R≥0.
Note that ROCBFs account for both system model and

estimation error uncertainties. The standard CBF condition
from [4] is recovered if the system is completely known, i.e.,
the sets F (x, t ), G(x, t ), and X (y) are singletons. Now define
the set of safe control inputs induced by a ROCBF as

Us(y, t ) := {u ∈ U
∣∣ B(X̂ (y), t, u)− LipB(y, t, u)!X (y) ≥ 0}.

We next show that a control law U (y, t ) ∈ Us(y, t ) renders the
set C robustly output controlled forward invariant.

Theorem 1: Assume that h(x) is a ROCBF on the set Y that
is such that Y ⊇ Y (C), and assume that the function U : Y ×
R≥0 → U is continuous in the first and piecewise continuous
in the second argument and such that U (y, t ) ∈ Us(y, t ). Then
x(0) ∈ C implies x(t ) ∈ C for all t ∈ I. If the set C is compact,
it follows that C is robustly output controlled forward invariant
under U (y, t ), i.e., I = [0,∞).

3Recall that α is contained within the function B(x, t, u).
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FIGURE 3. Problem Setup (left): The set of observed safe expert demonstrations Zdyn (black lines). Also shown, the set of admissible output
measurements Y (orange ring). Transformation into state domain (centre): The geometric safe set S (red box) and the set of admissible safe states D
(green region) that is defined as the union of ϵ-balls centered at X̂ (yi ). Learned safe set (right): The set of as unsafe labeled states N (golden ring) that
defines the σ-layer surrounding D.

IV. LEARNING ROCBFS FROM EXPERT DEMONSTRATIONS
The previous section provides safety guarantees when h(x)
is a ROCBF. However, one is still left with the potentially
difficult task of constructing a twice continuously differen-
tiable function h(x) such that (i) the set C defined in (2) is
contained within the set S and has a sufficiently large volume,
and (ii) it satisfies the barrier constraint (4) on an open set Y
that is such that Y ⊇ Y (C). In fact, ensuring that a function
h(x) satisfies the constraint (4) can involve verifying complex
relationships between the vector fields F̂ (x, t ) and Ĝ(x, t ),
the state estimate X̂ (y), the function h(x), and its gradient
∇h(x), while accounting for the error bounds !X (y) as well
as !F (x, t ) and !G(x, t ).

This challenge motivates the approach taken in this paper,
wherein we propose an optimization-based approach to learn-
ing a ROCBF from safe expert demonstrations.

A. THE DATASETS
We first define the finite set of safe datapoints

Zsafe :=
⋃

(yi,ti,ui )∈Zdyn

X̂ (yi )

as the projection of all datapoints yi in Zdyn via the state
estimator X̂ into the state domain. For ϵ > 0, define the set
of admissible states D ⊆ Rn as

D := D′ \ bd(D′) with D′ :=
⋃

xi∈Zsafe

Bϵ (xi )

where Bϵ (xi ) := {x ∈ Rn
∣∣ ∥x − xi∥ ≤ ϵ} is the closed norm

ball of size ϵ centered at xi and where bd(·) denotes the
boundary of a set. Conditions on ϵ will be specified later to
ensure validity of the learned control law. The set D′ is the
union of these ϵ norm balls, see Fig. 3 (left and centre). The
set of admissible states D is equivalent to the set D′ without
its boundary so that D is open. Note that D is based on expert
demonstrations yi via the state estimator X̂ (yi ). The expert
demonstrations yi in Zdyn define an ϵ-net of D. In other words,
for each x ∈ D there exists a yi in (yi, ti, ui ) ∈ Zdyn such that
∥X̂ (yi )− x∥ ≤ ϵ. We additionally assume that D is such that
D ⊆ S , which can be easily achieved by adjusting ϵ or by
omitting yi from Zdyn in the definition of Zsafe when datapoints
X̂ (yi ) are close to bd(S ). Note here that S is typically known

as part of the safety specification. This additional requirement
is necessary to later ensure safety in the sense that the learned
safe set is such that C ⊆ S .

We define the set of admissible output measurements as

Y := Y (D),

i.e., as the projection of the set D under the unknown output
measurement map Y . We remark that the set Y , illustrated in
Fig. 3 (left), is consequently also unknown. Note however that
the set Y is open as required in Theorem 1.

For σ > 0, we define the set of unsafe labeled states

N := {bd(D)⊕ Bσ (0)} \ D,

where ⊕ is the Minkowski sum operator. The set N should
be thought of as a layer of width σ surrounding the set D,
see Fig. 3 (right) for a graphical depiction. As will be made
clear in the sequel, by enforcing that the value of the learned
function h(x) is negative on N , we ensure that the set C
(defined as the zero-superlevel set of h(x)) is contained within
D, and hence also within S . This is why we refer to N as set
of unsafe labeled states. To ensure that h(x) < 0 for all x ∈ N ,
we assume that points

ZN := {xi}N2
i=1

are sampled from N such that ZN forms an ϵN -net of N , i.e.,
for each x ∈ N there exists a xi ∈ ZN such that ∥x − xi∥ ≤
ϵN . Conditions on ϵN will be specified later. We emphasize
that no control inputs ui are needed for the samples in ZN as
these points are not generated by the expert and are instead ob-
tained by computational methods such as gridding or uniform
sampling (see Section V for details).

While the definition of the set C in (2) is specified over all
of Rn, e.g., the definition of C considers all x ∈ Rn such that
h(x) ≥ 0, we make a minor modification to this definition in
order to restrict the domain of interest to N ∪D as

C := {x ∈ N ∪D
∣∣ h(x) ≥ 0}. (5)

This restriction is natural, as we are learning a function h(x)
from data sampled only over N ∪D. The size of the set D
affects the size of the set C, i.e., C may be conservative if only
few expert demonstrations are available, e.g., consider Fig. 3
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but with fewer expert demonstrations in which case the green
and grey regions would simply shrink.

B. THE CONSTRAINED OPTIMIZATION PROBLEM
We first state the constrained optimization problem for learn-
ing valid ROCBFs, and then provide conditions in Sec-
tion IV-C under which a feasible solution is a valid ROCBF.

Let H be a normed function space of twice continuously
differentiable functions h : Rn → R. Define

q(y, t, u) := B(X̂ (y), t, u)− LipB(y, t, u)!X (y) (6)

analogously to (4), but using a known surrogate function
LipB(y, t, u) in place of the Lipschitz constant LipB(y, t, u).
The function LipB(y, t, u) will be a hyperparameter4 in our
algorithm as discussed in Section V, and will be adjusted to
ensure that LipB(y, t, u) ≥ LipB(y, t, u).

We formulate the following constrained optimization prob-
lem to learn a ROCBF from expert demonstrations:

argmin
h∈H

∥h∥ (7a)

s.t. h(xi) ≥ γsafe, ∀xi ∈ Zsafe (7b)

h(xi ) ≤ −γunsafe, ∀xi ∈ ZN (7c)

q(yi, ti, ui ) ≥ γdyn,∀(yi, ti, ui ) ∈ Zdyn (7d)

where the set Zsafe is a subset of Zsafe, i.e., Zsafe ⊆ Zsafe, as
detailed in the next section and where γsafe, γunsafe, γdyn > 0
are hyperparameters. Instead of global hyperparameters γsafe,
γunsafe, and γdyn, one can use individual hyperparameters for
each datapoint. Note that expert demonstrations (yi, ti, ui ) in-
dicate feasibility of the control problem at hand, and hence
indicate feasibility of (7). With increasing sizes of the un-
certainty sets F (x, t ), G(x, t ), and X (y), the optimization
problem (7) may however become infeasible.

C. CONDITIONS GUARANTEEING LEARNED SAFE ROCBFS
We now derive conditions under which a feasible solution to
the constrained optimization problem (7) is a safe ROCBF.

1) GUARANTEEING C ⊂ D ⊆ S
We begin with establishing the requirement that C ⊂ D ⊆ S .
First note that constraint (7b) ensures that the set C, as defined
in (5), has non-empty interior when Zsafe ̸= ∅. We next state
conditions under which the constraint (7c) ensures that the
learned function h from (7) satisfies h(x) < 0 for all x ∈ N ,
which in turn ensures that C ⊂ D ⊆ S .

Proposition 1: Let h(x) be Lipschitz continuous with local
Lipschitz constant Liph(xi ) within the set BϵN (xi ) for data-
points xi ∈ ZN . Let γunsafe > 0, ZN be an ϵN -net of N , and
let

ϵN <
γunsafe

Liph(xi )
(8)

4A natural choice is LipB(y, t, u) := Lip1 + Lip2∥u∥⋆ + Lip3∥u∥ for suffi-
ciently large positive constants Lip1, Lip2, and Lip3.

for all xi ∈ ZN . Then, the constraint (7c) ensures that h(x) < 0
for all x ∈ N .

In summary, Proposition 1 says that a larger Lipschitz con-
stant of the function h requires a larger margin γunsafe and/or
a finer net of unsafe datapoints as indicated by ϵN .

We next discuss the choice of Zsafe. Assume first that
Zsafe = Zsafe in constraint (7b). In this case, the constraints
(7b) and (7c), as well as the condition in (8) of Proposition 1,
may be conflicting, leading to infeasibility of the optimization
problem (7). This infeasibility arises from the fact that we
are simultaneously asking for the value of h(x) to vary from
γsafe to −γunsafe over a short distance of at most ϵ + ϵN while
having a small Lipschitz constant. In particular, as posed, the
constraints require that |h(xs)− h(xu)| ≥ γsafe + γunsafe for
xs ∈ Zsafe and xu ∈ ZN safe and unsafe samples, respectively,
but the sampling requirements (Zsafe and ZN being ϵ and ϵN -
nets of D and N , respectively) imply that ∥xs − xu∥ ≤ ϵN + ϵ

for at least some pair (xs, xu), which in turn implies that

Liph(xu) ! |h(xs)− h(xu)|
∥xs − xu∥

≥ γsafe + γunsafe

ϵN + ϵ
.

The local Lipschitz constant Liph(xu) may hence get too large
if γsafe and γunsafe are chosen to be too large, and we may
exceed the required upper bound γunsafe/ϵN in (8). We ad-
dress this issue as follows: for fixed γsafe, γunsafe, and desired
Lipschitz constant Lh < γunsafe/ϵN , we define

Zsafe :=
{

xi ∈ Zsafe
∣∣ inf

x∈ZN
∥x − xi∥ ≥

γsafe + γunsafe

Lh

}
, (9)

which corresponds to a subset of admissible safe states, i.e.,
Zsafe ⊂ Zsafe. Intuitively, this introduces a buffer region across
which h(x) can vary in value from γsafe to −γunsafe for the
desired Lipschitz constant Lh. Enforcing (7b) over Zsafe allows
for smoother functions h(x) to be learned at the expense of a
smaller invariant safe set C.

Note finally that, if h(x) is such that C ⊂ D (i.e., under
the conditions in Proposition 1), then Y (C) ⊆ Y (D) = Y by
definition of Y so that Y ⊇ Y (C) as required in Theorem 1.

2) INCREASING THE VOLUME OF C
We next explain how to avoid learning a safe set C consisting
of many disconnected sets, which would not be practical, and
show simultaneously how to increase the volume of C. Let

D := ∪xi∈ZsafeBϵ (xi )

and note that Zsafe is an ϵ-net of D by definition. We next show
conditions under which h(x) ≥ 0 for all x ∈ D.

Proposition 2: Let h(x) be Lipschitz continuous with local
Lipschitz constant Liph(xi ) within the set Bϵ (xi ) for datapoints
xi ∈ Zsafe. Let γsafe > 0 and let

ϵ ≤ γsafe

Liph(xi )
(10)

for all xi ∈ Zsafe. Then, the constraint (7b) ensures that h(x) ≥
0 for all x ∈ D.
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The previous result can be used to guarantee that the set C
defined in (5) contains the set D, i.e., D ⊆ C. Hence, the set D
can be seen as the minimum volume of the set C that we can
guarantee. Note that, under the provided conditions, it holds
that C is such that D ⊆ C ⊂ D ⊆ S .

We note that the amount of data needed to satisfy conditions
(8) and (10) in Propositions 1 and 2 grows exponentially with
the dimension n, see e.g., [61, Section 4.2].

3) GUARANTEEING THAT h(x) IS A ROCBF
Propositions 1 and 2 guarantee that the level-sets of the
learned function h(x) satisfy the desired geometric safety
properties. We now derive conditions that ensure that h(x) is
a ROCBF, i.e., that the ROCBF constraint (4) is also satisfied.

To satisfy constraint (4) for each (y, t ) ∈ Y ×R≥0, there
must exist a control input u ∈ U such that q(y, t, u) ≥ 0. We
follow a similar idea as in Propositions 1 and 2 and note in
this respect that the y components of Zdyn form an ϵ̄-net of Y
(see Appendix D for a proof) where ϵ̄ is

ϵ̄ := LipY (ϵ + !̄X )

with !̄X := supy∈Y !X (y) denoting the maximum estimation
error and LipY being the Lipschitz constant of the output
measurement map Y within the set D := D ⊕ B2!̄X

(0)5.
We additionally assume to know a bound on the difference

of the function q for different times t . More formally, for each
ȳ ∈ Bϵ̄ (y), let Bndq(y, u) be such that

|q(ȳ, t ′, u)− q(ȳ, t ′′, u)| ≤ Bndq(y, u),∀t ′, t ′′ ≥ 0. (11)

The bound Bndq(y, u) exists and can be obtained as all
components of q(y, t, u) are bounded in t . This is a natural as-
sumption to obtain formal guarantees on the function q(y, t, u)
from a finite dataset Zdyn since it is not possible to sample the
time domain R≥0 densely with a finite number of samples.
It can be seen that Bndq(y, u) = 0 when the system (1) is
independent of t .

Proposition 3: Let q(y, t, u) be Lipschitz continuous6 in y
for fixed t and u with local Lipschitz constant Lipq(yi, ti, ui )
within the set Bϵ̄ (yi ) for each (yi, ti, ui ) ∈ Zdyn. Let γdyn > 0
and

ϵ̄ ≤
γdyn − Bndq(yi, ui )

Lipq(yi, ti, ui )
(12)

for all (yi, ti, ui ) ∈ Zdyn. Then, the constraint (7d) ensures
that, for each (y, t ) ∈ Y ×R≥0, there exists a u ∈ U such that
q(y, t, u) ≥ 0. If additionally LipB(y, t, u) ≤ LipB(y, t, u) for
each (y, t, u) ∈ Y ×R≥0 × U , then h(x) is a ROCBF.

In summary, Proposition 3 says that a larger Lipschitz con-
stant of the function q requires a larger margin γdyn and/or a

5The set D is equivalent to the set of admissible safe states D enlarged by
a ball of size 2!̄X .

6Note that q(y, ti, ui ) is locally Lipschitz continuous. As the function h(x)
is twice continuously differentiable, we immediately have that ∇h(x) is lo-
cally Lipschitz continuous over the bounded domain D. Also note that F̂ , Ĝ,
!F , !G, α, h(x), X̂ , and !X are Lipschitz continuous.

smaller ϵ̄, i.e., a finer net of safe datapoints as indicated by ϵ

and/or a reduction in the measurement map error !X .
The next theorem summarizes our results, follows from the

previous results, and is provided without proof.
Theorem 2: Let h(x) be a twice continuously differentiable

function. Let the sets S , C, Y , D, and N as well as the data-
sets Zsafe, Zdyn, and ZN be defined as above. Suppose that ZN
forms an ϵ-net of N and that the conditions (8), (10), and (12)
are satisfied. Assume also that LipB(y, t, u) ≤ LipB(y, t, u) for
each (y, t, u) ∈ Y ×R≥0 × U . If h(x) satisfies the constraints
(7b), (7c), and (7d), then h(x) is a ROCBF on Y and it holds
that the set C is non-empty and such that D ⊆ C ⊆ S .

V. ALGORITHMIC IMPLEMENTATION
In this section, we present the algorithmic implementation of
the previously presented results. We will discuss various as-
pects related to solving the constrained optimization problem
(7), the construction of the involved datasets, and estimating
Lipschitz constants of the functions h(x) and q(y, t, u).

A. THE ALGORITHM
We summarize our algorithm to learn safe ROCBFs h(x) in
Algorithm 1. We first construct the set of safe datapoints Zsafe
from the expert demonstrations Zdyn (line 3). We construct
the set of as unsafe labeled datapoints ZN from Zsafe (line 4),
i.e., ZN ⊆ Zsafe, by identifying boundary points in Zsafe and
labeling them as unsafe (details can be found in Section V-B).
We then re-define Zsafe by removing the unsafe labeled dat-
apoints ZN from Zsafe (line 5). Following our discussion in
Section IV-C, we obtain Zsafe according to (9) (line 6). We
then solve the constrained optimization problem (7) by an
unconstrained relaxation defined in (13) (line 7) as discussed
in Section V-C. Finally, we check if the constraints (7b)–(7d)
and the constraints (8), (10), (12) are satisfied by the learned
function h(x) (line 8). If the constraints are not satisfied, the
hyperparameters are adjusted and the process is repeated (line
9). We discuss Lipschitz constant estimation of h and q and
the hyperparameter selection in Section V-D.

While our algorithmic implementation is an approximate
solution of the proposed framework, we mention that solving
an unconstrained relaxation of (7) and bootstrapping hyperpa-
rameters is a common technique in machine learning when
solving nonconvex constrained optimization problems [62].
Such techniques are necessary for learning based methods
to be applied to realistic systems. As we reported in earlier
works, see e.g., [54] for hybrid systems, such techniques per-
form well in practice and can even outperform experts.

B. CONSTRUCTION OF THE DATASETS
Due to the conditions in equations (8), (10), and (12), the first
requirement is that the datasets Zsafe and ZN are dense, i.e.,
that ϵ and ϵN are small. It is also required that ZN is an ϵN -net
of the set of unsafe labeled states N . In order to construct
the ϵN -net ZN of N , a simple randomized algorithm, which
repeatedly uniformly samples from N , works with high prob-
ability, see e.g., [61]. Hence, as long as we can efficiently
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Algorithm 1: Learning ROCBF from Expert Demonstra-
tions.

Input: Set of expert demonstrations Zdyn,
1: system model (F̂ , Ĝ, X̂ ,!F ,!G,!X ),
2: hyperparameters (α, γsafe, γunsafe, γdyn, Lh, LipB, k, η)

Output: Safe ROCBF h(x)
3: Zsafe ← ∪(yi,ti,ui )∈Zdyn X̂ (yi ) # Safe datapoints
4: ZN ← BPD(Zsafe, k, η) # Unsafe datapoints obtained

by boundary point detection (BPD) in Algorithm 2.
5: Zsafe ← Zsafe \ ZN
6: Zsafe ← according to (9)
7: h(x)← solution of (13) # relaxation of the

constrained optimization problem in (7)
8: while constr. (7b)–(7d), (8), (10), (12) are violated do
9: Modify hyperparameters and start from line 3

10: end while

sample from N , e.g., when N is a basic primitive set or
has a set-membership oracle, uniform sampling or gridding
methods are viable strategies.

However, as this is in general not possible, we use a bound-
ary point detection algorithm in line 4 of Algorithm 1. The
idea is to obtain the set of unsafe labeled datapoints ZN in-
stead from the set of safe datapoints Zsafe. To perform this
step efficiently, our approach is to detect geometric bound-
ary points of the set Zsafe. This subset of boundary points
is labeled as ZN , while we re-define Zsafe to exclude the
boundary points ZN in line 5 of Algorithm 1. Particularly,
we detect boundary points in Zsafe based on the concept of
reverse k-nearest neighbors, see e.g., [63]. The main idea is
that boundary points typically have fewer reverse k-nearest
neighbors than interior points. For k > 0, we find the k-nearest
neighbors of each datapoint xi ∈ Zsafe. Then, we find the re-
verse k-nearest neighbors of each datapoint xi ∈ Zsafe, that is,
we find the datapoints x′i ∈ Zsafe that have xi as their k-nearest
neighbor. Finally, we choose a threshold η > 0 and label all
datapoints xi ∈ Zsafe as a boundary point whose cardinality of
reverse k-nearest neighbors is below η.

Algorithm 2 summarizes the boundary point detection algo-
rithm. We first compute the pairwise distances between each
of the N1 safe datapoints in Zsafe (line 1). The result is a
symmetric N1 × N1 matrix M where the element at position
(i, j) represents the pairwise distance between the states xi
and x j , i.e., Mi j := ∥xi − x j∥. Next, we calculate the k-nearest
neighbors of each xi, denoted by kNNi, as the set of indices
corresponding to the k smallest column entries in the ith
row of M (line 2). We calculate the reverse k-nearest neigh-
bors of each xi as RkNNi := |{x j ∈ Zsafe|xi ∈ kNNj}| (line
3). We then threshold each RkNNi by η (line 4), i.e., zi :=
1(RkNNi ≤ η) where 1 is the indicator function. We obtain a
tuple (z1, . . . , zN1 ) ∈ RN1 , where the indices i corresponding
to states xi = 1 are boundary points.

We have not yet specified the paramters ϵ and ϵN to be able
to check the constraints (8), (10), and (12). While the value of
ϵ merely defines the set of admissible states D and determines

Algorithm 2: Boundary Point Detection - BPD
(Zsafe, k, η).

Input: Set of safe states Zsafe, number of nearest
neighbors k, neighbor threshold η > 0

Output: Set of boundary points, i.e., the set of as
unsafe labeled states ZN

1: M ← compute_pairwise_dists(Zsafe) # compute
pairwise distances between elements in Zsafe

2: kNNi ← comp_k_near_neighbors(M ) # compute
k-nearest neighbors of xi ∈ Zsafe

3: RkNNi ← comp_reverse_k_near_neighbors(kNN )
# compute reverse k-nearest neighbors of xi ∈ Zsafe

4: zi ← 1(RkNNi ≤ η) # threshold RkNNi by η

the size of the safe set C as discussed in Section IV-C, the
value of ϵN is important as the set of unsafe labeled states N
should fully enclose D. This imposes an implicit lower bound
on ϵN to guarantee safety. Therefore, one can artificially sam-
ple additional datapoints in proximity of ZN and add these to
the set ZN . One way to get an estimate of ϵN is to calculate
the distance of each datapoint to the closest datapoint in ZN ,
respectively. Then, taking the maximum or an average over
these values gives a good estimate of ϵN .

Finally, we discuss what behavior expert demonstrations in
Zdyn should exhibit. We focus on the ROCBF constraint (4),
which must be verified to hold for some u ∈ U , by using the
expert demonstration (yi, ti, ui ) in (7d). The more transverse
the vector field of the input dynamics ⟨Ĝ(X̂ (yi ), ti ), ui⟩ is to
the level sets of the function h(X̂ (yi )) (i.e., the more parallel
it is to the inward pointing normal ∇h(X̂ (yi ))), the larger the
inner-product term in constraint (7d) will be without increas-
ing the Lipschitz constant of h(x). This means that the expert
demonstrations should demonstrate how to move away from
the unsafe labeled set.

C. SOLVING THE CONSTRAINED OPTIMIZATION PROBLEM
Some remarks are in order with respect to the optimization
problem (7). If the extended class K function α is linear and H
is parameterized as H := {⟨φ(x), θ⟩|θ ∈ *} where * ⊆ Rl is
a convex set and φ : Rn → Rl is a known basis function, then
the optimization problem (7) is convex. Note here in particular
that ∥∇h(x)∥⋆ is convex in θ since 1) ∇h(x) is linear in θ , 2)
norms are convex functions, and 3) composition of a convex
with a linear function preserves convexity. We remark that rich
function classes such as infinite dimensional reproducing ker-
nel Hilbert spaces can be approximated to arbitrary accuracy
with such an H [64].

In the more general case when H := {h(x; θ )|θ ∈ *}, such
as when h(x; θ ) is a deep neural network or when α is a
general nonlinear function, the optimization problem (7) is
nonconvex. Due to the computational complexity of general
nonlinear constrained programming, we propose an uncon-
strained relaxation of the optimization problem (7). Our
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FIGURE 4. Simulation environment in CARLA. The cars are tracking desired reference paths on different courses. Left: The training course from which
training data, during a left turn, was generated to train and test the ROCBF. Middle: An unknown test course on which the learned ROCBF is tested.
Right: Downsampled RGB dashboard camera image.

unconstrained relaxation results in the optimization problem:

max
λs,λu,λd

min
θ∈*
∥θ∥2 + λs

∑

xi∈Zsafe

[
γsafe − h(xi; θ )

]
+ (13a)

+ λu
∑

xi∈ZN

[
h(xi; θ ) + γunsafe

]
+ (13b)

+ λd
∑

(yi,ti,ui )∈Zdyn

[
γdyn − q(yi, ti, ui; θ )

]
+ (13c)

where [r]+ := max{r, 0} for r ∈ R and where the function
q(u, y, t; θ ) is as in (6) but now defined via h(x; θ ). The
positive parameters λs, λu, and λd are dual variables. While
the unconstrained optimization problem (13) is in general a
nonconvex optimization problem, it can be solved efficiently
in practice by iteratively solving the outer and inner optimiza-
tion problems with respect to (λs, λu, λd) and θ , respectively,
with stochastic first-order gradient methods such as Adam or
stochastic gradient descent [62].

D. HYPERPARAMETERS AND LIPSCHITZ
CONSTANT ESTIMATION
We treat (α, γsafe, γunsafe, γdyn, Lh, LipB, k, η) as hyperparam-
eters and bootstrap over them. This is a common technique in
machine learning and usually done via grid search. Due to the
nonconvexity of the optimization problem, one may not be
able to satisfy all constraints in (7b)–(7d), (8), (10), (12). We
hence terminate the while loop in line 9 of Algorithm 1 when
a satisfactory empirical behavior is achieved.

The conditions in equations (8), (10), and (12) depend
on Lipschitz constants of the functions h and q. Since we
assume that h is twice continuously differentiable and we
restrict ourselves to a compact domain N ∪D, we have that h
and ∇h are both uniformly Lipschitz over N ∪D. In [53],
we showed two examples of H (we considered DNNs and
functions parametrized by random Fourier features) where an
upper bound on the Lipschitz constants of functions h ∈ H
and its gradient ∇h(x) can be efficiently estimated, and we
refer the interested reader to [53].

VI. SIMULATIONS
We construct a safe ROCBF within the autonomous driving
simulator CARLA [56] for a car driving on a road by using
camera images, see Fig. 4. In particular, our goal is to learn a
ROCBF for the lateral control of the car, i.e., a lane keeping
controller, while we use a built-in controller for longitudinal
control. Lane keeping in CARLA is achieved by tracking a
set of predefined waypoints. The control problem at hand is
challenging which makes it difficult to satisfy all constraints
in equations (7b)–(7d) and (8), (10), (12). As described in
Section V-D, we search over the hyperparameters of Algo-
rithm 1 until satisfactory behavior is achieved. The code for
our simulations and videos of the car under the learned safe
ROCBFs are available at https://github.com/unstable-zeros/
learning-rocbfs

As we have no direct access to the system dynamics of the
car, we identify a system model. The model for longitudinal
control is estimated from data and consists of the velocity v

of the car and the integrator state d of the PID. The identified
longitudinal model of the car is

v̇ = −1.0954v − 0.007v2 − 0.1521d + 3.7387

ḋ = 3.6v − 20.

For the lateral control of the car, we consider a bicycle model

ṗx = v cos(θ ),

ṗy = v sin(θ ),

θ̇ = v/L tan(δ),

where px and py denote the position in a global coordinate
frame, θ is the heading angle with respect to a global coor-
dinate frame, and L := 2.51 is the distance between the front
and the rear axles of the car. The control input is the steering
angle δ that we design such that the car tracks waypoints
provided by CARLA. Treating u := tan(δ) as the control input
yields a control affine system.

To be able to learn a ROCBF in a data efficient manner, we
convert the above lateral model (defined in a global coordinate
frame) into a local coordinate frame. We do so relatively to
the waypoints that the car has to follow. We consider the
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FIGURE 5. State-based ROCBF controller.

cross-track error ce of the car. In particular, let wp1 be the
waypoint that is closest to the car and let wp2 be the way-
point proceeding wp1. Then the cross-track error is defined
as ce := ∥w∥ sin(θw ) where w ∈ R2 is the vector pointing
from wp1 to the car and θw is the angle between w and the
vector pointing from wp1 to wp2. We further consider the
error angle θe := θ − θt where θt is the angle between the
vector pointing from wp1 to wp2 and the global coordinate
frame. The simplified local model is

ċe = v sin(θe),

θ̇e = v/2.51u− θ̇t .

In summary, we have the state x := [v d ce θe]T and the
control input u := tan(δ) as well as the external input, given
during runtime, of θ̇t . Consequently, let

F̂ :=

⎡

⎢⎢⎢⎣

−1.095v − 0.007v2 − 0.152d + 3.74
3.6v − 20
v sin(θe)
−θ̇t

⎤

⎥⎥⎥⎦

Ĝ :=

⎡

⎢⎢⎢⎣

0
0
0

v/2.51

⎤

⎥⎥⎥⎦

along with estimated error bounds !F (x, t ) := 0.1 and
!G(x, t ) = 0.1 (calculated from simulations).

For collecting safe expert demonstrations Zdyn, we use
an “expert” PID controller u(x) that uses full state knowl-
edge of x. Throughout this section, we use the parameters
α(r) := r, γsafe := γunsafe := 0.05, and γdyn := 0.01 to train
safe ROCBFs h(x). For the boundary point detection algo-
rithm in Algorithm 2, we select k := 200 and η such that
40 percent of the points in Zsafe are labeled as boundary points.

A. STATE-BASED ROCBF
We first learn a ROCBF controller in the case that the state x
is perfectly known, i.e., the model of the output measurement
map is such that X̂ (y) = X (y) = x and the error is !X (y) :=
0. The trained ROCBF h(x) is a two-layer DNN with 32 and
16 neurons per layer.

The safety controller applied to the car is then obtained as
the solution of the convex optimization problem minu∈U ∥u∥
subject to the constraint q(u, y, t ) ≥ 0. In Fig. 5(a), exam-
ple trajectories of ce(t ) and θe(t ) under this controller are
shown. Solid lines indicate the learned ROCBF controller,
while dashed lines indicate the expert PID controller for com-
parison. Colors in both subplots match the corresponding
trajectories. The initial conditions of d (0) and v(0) are set
to zero in all cases here, similar to all other plots in the re-
mainder. Fig. 5(b) shows different initial conditions ce(0) and
θe(0) and how the ROCBF controller performs relatively to
the expert PID controller on the training course. In particular,
each point in the plot indicates an initial condition from which
system trajectories under both the ROCBF and expert PID
controller are collected. The color map shows

max
t

|cROCBF
e (t )|−max

t
|cExp

e (t )|

where cROCBF
e (t ) and cExp

e (t ) denote the cross-track errors
under the ROCBF and expert PID controllers, respectively.
Fig. 5(c) shows the same plot, but for the test course from
which no data has been collected to train the ROCBF. In this
plot, one ROCBF trajectory resulted in a collision as detected
by CARLA. We assign by default a value of 2.5 in case of a
collision (see the yellow point in Fig. 5(c)).

B. PERCEPTION-BASED ROCBF
We next learn a ROCBF in the case that y corresponds
to images taken from an RGB camera mounted to the
dashboard of the car. To train a perception map X̂ , we
have resized the images as shown in Fig. 4(c). We as-
sume knowledge of θe, v, and d , while we estimate ce
from y, i.e., x := [v d X̂ (y) θe]T . The architecture of
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FIGURE 6. Perception-based ROCBF controller.

X̂ is a Resnet18, i.e., a convolutional neural network with
18 layers. Its performance on training data within opera-
tion range ce ∈ [−2, 2] is shown in Fig. 6(a). Based on this
plot, we set !X (y) := 0.5 to account for estimation errors
within this range. We remark that we observed larger es-
timation errors outside this range. However, larger !X (y)
resulted in learning infeasible ROCBFs. We additionally se-
lected the hyperparameter LipB(y, t, u) := Lip1 + Lip2∥u∥.
We achieved the best results by using Lip1 = Lip2 := 0.1
during testing, while using the norm of the partial deriva-
tives of ⟨∇h(x), F̂ (x, t )⟩+ α(h(x))− ∥∇h(x)∥2!F (x, t ) and
⟨∇h(x), Ĝ(x, t )⟩ − ∥∇∥2!G(x, t ), respectively, during train-
ing. The trained ROCBF h(x) is again a two-layer DNN with
32 and 16 neurons per layer. Fig. 6(b)–(c) show the same plots
as in the previous section and evaluate the ROCBF relatively
to the expert PID controller. Importantly, note here that the
expert PID controller uses state knowledge, while the ROCBF
uses RGB images from the dashboard camera as inputs so
that it is no surprise that the relative gap between these two
becomes larger, as shown in Fig. 6(b)–(c).

We further performed a comparison with our prior
work [53] where we learn CBFs which corresponds to the
setting when !F = !G = !X = 0. The result of the learned
CBF is shown in Fig. 7. In direct comparison with Fig. 6(c),
we can see the benefit of learning ROCBFs.

VII. CONCLUSION AND SUMMARY
In this paper, we have shown how safe control laws can be
learned from expert demonstrations under system model and
measurement map uncertainties. We first presented robust out-
put control barrier functions (ROCBFs) as a means to enforce
safety, which is here defined as the ability of a system to
remain within a safe set using the notion of forward invari-
ance. We then proposed an optimization problem to learn
such ROCBFs from safe expert demonstrations, and presented
verifiable conditions for the validity of the ROCBF. These
conditions are stated in terms of the density of the data and on
Lipschitz and boundedness constants of the learned function

FIGURE 7. Comparison with learned CBF from [53].

as well as the models of the system dynamics and the mea-
surement map. We proposed an algorithmic implementation
of our theoretical framework to learn ROCBFs in practice.
Finally, our simulation studies show how to learn safe control
laws from RGB camera images within the autonomous driving
simulator CARLA.

APPENDIX A
PROOF OF THEOREM 1
Recall that f (t ) := F (x(t ), t ), g(t ) := G(x(t ), t ), y(t ) :=
Y (x(t )) and u(t ) := U (y(t ), t ) according to (1c)–(1f) and we
define for convenience

f̂ (t ) := F̂ (x(t ), t )

ĝ(t ) := Ĝ(x(t ), t )

δF (t ) := !F (x(t ), t )

δG(t ) := !G(x(t ), t )

x̂(t ) := X̂ (y(t )).

Due to the chain rule and since U (y, t ) ∈ Us(y, t ), note that
each solution x : I → Rn to (1) under U (y, t ) satisfies

B(x̂(t ), t, u(t )) ≥ LipB(y(t ), t, u(t ))!X (y(t )). (14)
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Note now that the term LipB(y(t ), t, u(t ))!X (y(t )) in the
right-hand side of (14) can be bounded as

LipB(y(t ), t, u(t ))!X (y(t ))

(a)
≥ LipB(y(t ), t, u(t ))∥x̂(t )− x(t )∥
(b)
≥ |B(x̂(t ), t, u(t ))− B(x(t ), t, u(t ))|

≥ B(x̂(t ), t, u(t ))− B(x(t ), t, u(t ))

where (a) follows since x(t ) ∈ X (y(t )) due to Assump-
tion 2 and where (b) simply follows since LipB(y(t ), t, u(t ))
is the local Lipschitz constant of the function B(x, t, u)
within the set X (y(t )). From (14) and the definitions of the
functions B(x, t, u) and LipB(y, t, u), it hence follows that
B(x(t ), t, u(t )) ≥ 0. Note next that the following holds

B(x(t ), t, u(t )) ≥ 0

⇔ ⟨∇h(x(t )), f̂ (t ) + ĝ(t )u(t )⟩+ α(h(x(t )))

≥ ∥∇h(x(t ))∥⋆(δF (t ) + δG(t )∥u(t )∥)
(c)⇒ ⟨∇h(x(t )), f (t ) + g(t )u(t )⟩+ α(h(x(t ))) ≥ 0

⇔ ḣ(x(t )) ≥ −α(h(x(t ))) (15)

where the implication in (c) follows since

∥∇h(x(t ))∥⋆(δF (t ) + δG(t )∥u(t )∥)
(d )
≥ ∥∇h(x(t ))∥⋆(∥ f̂ (t )− f (t )∥+ |||ĝ(t )− g(t )|||∥u(t )∥)
(e)
≥ ∥∇h(x(t ))∥⋆(∥ f̂ (t )− f (t )∥+ ∥(ĝ(t )− g(t ))u(t ))∥)
( f )
≥ ⟨∇h(x(t )), f̂ (t ) + ĝ(t )u(t )⟩ − ⟨∇h(x(t )), f (t ) + g(t )u(t )⟩

where the inequality (d ) follows since f (t ) ∈ F (x(t ), t ) and
g(t ) ∈ G(x(t ), t ) due to Assumption 1 and where the inequal-
ity (e) follows by properties of the induced matrix norm ||| · |||.
The inequality ( f ) follows by application of Hölder’s inequal-
ity. Consequently, by (15) it holds that ḣ(x(t )) ≥ −α(h(x(t )))
for all t ∈ I.

Next note that v̇(t ) = −α(v(t )) with v(0) ≥ 0 admits a
unique solution v(t ) that is such that v(t ) ≥ 0 for all t ≥ 0
[65, Lemma 4.4]. Using the Comparison Lemma [65, Lemma
3.4] and assuming that h(x(0)) ≥ 0, it follows that h(x(t )) ≥
v(t ) ≥ 0 for all t ∈ I, i.e., x(0) ∈ C implies x(t ) ∈ C for all
t ∈ I. Recall that (1) is defined on X (Y ) and that Y ⊇ Y (C)
so that X (Y ) ⊇ C. Since x ∈ C for all t ∈ I and when C is
compact, it follows by [65, Theorem 3.3]7 that I = [0,∞),
i.e., C is forward invariant under U (y, t ).

APPENDIX B
PROOF OF PROPOSITION 1
Note that, for any x ∈ N , there exists a point xi ∈ ZN satis-
fying ∥x − xi∥ ≤ ϵN since ZN is an ϵN -net of N . For any

7Note that the same result as in [65, Theorem 3.3] holds when the system
dynamics are continuous, but not locally Lipschitz continuous.

x ∈ N , we now select such an xi ∈ ZN for which

h(x) = h(x)− h(xi ) + h(xi )
(a)
≤ |h(x)− h(xi )|− γunsafe

(b)
≤ Liph(xi )∥x − xi∥ − γunsafe

(c)
≤ Liph(xi )ϵN − γunsafe

(d )
< 0.

Note that inequality (a) follows from constraint (7c), while
inequality (b) follows by Lipschitz continuity. Inequality (c)
follows by the assumption of ZN being an ϵN -net of N and,
finally, the strict inequality in (d ) follows due to (8).

APPENDIX C
PROOF OF PROPOSITION 2
The proof follows similarly to the proof of Proposition 1. For
any x ∈ D, we select an xi ∈ Zsafe with ∥x − xi∥ ≤ ϵ which is
possible since the set Zsafe is an ϵ-net of D. It follows that

0 = h(xi )− h(xi )
(a)
≤ h(xi )− h(x) + h(x)− γsafe

(b)
≤ Liph(xi )∥x − xi∥+ h(x)− γsafe

(c)
≤ Liph(xi )ϵ + h(x)− γsafe

(d )
≤ h(x).

Note that inequality (a) follows from constraint (7b), while
inequality (b) follows by Lipschitz continuity. Inequality (c)
follows by Zsafe being an ϵ-net of D and, finally, the inequality
in (d ) follows due to (10).

APPENDIX D
PROOF THAT y COMPONENTS OF ZDYN FORM AN ϵ̄-NET
OF Y
Lemma 1: Let ϵ̄ := LipY (ϵ + !̄X ) where LipY is the Lip-
schitz constant of the function Y within the set D := D ⊕
B2!̄X

(0) where !̄X := supy∈Y !X (y). Then the y components
of Zdyn form an ϵ̄-net of Y .

Proof: For each y ∈ Y , there exists (yi, ti, ui ) ∈ Zdyn such
that ∥X (y)− X̂ (yi )∥ ≤ ϵ by definition of Y as Y = Y (D) and
since the y components of Zdyn transformed via X̂ form an
ϵ-net of D. By Assumption 2, we also know that ∥X (yi )−
X̂ (yi )∥ ≤ !̄X . By Lipschitz continuity of Y , it follows that

∥y − yi∥ = ∥Y (X (y))− Y (X (yi ))∥ ≤ LipY ∥X (y)− X (yi )∥

≤ LipY (∥X (y)− X̂ (yi )∥+ ∥X̂ (yi )− X (yi )∥)

≤ LipY (ϵ + !̄X ) =: ϵ̄.

Consequently, the y components of Zdyn form an ϵ̄-net of Y .

APPENDIX E
PROOF OF PROPOSITION 3
Note first that, for each y ∈ Y , there exists a pair (yi, ti, ui ) ∈
Zdyn satisfying ∥y − yi∥ ≤ ϵ̄ since the y component of Zdyn
form an ϵ̄-net of Y by Lemma 1. For any pair (y, t ) ∈ Y ×
R≥0, we now select such a pair (yi, ti, ui ) ∈ Zdyn satisfying
∥y − yi∥ ≤ ϵ̄ for which then

0
(a)
≤ q(yi, ti, ui )− γdyn
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≤ |q(yi, ti, ui )− q(y, ti, ui )| + q(y, ti, ui )− γdyn

(b)
≤ Lipq(yi, ti, ui )∥yi − y∥+ q(y, ti, ui )− γdyn

(c)
≤ Lipq(yi, ti, ui )ϵ̄ + q(y, ti, ui )− γdyn

≤ Lipq(yi, ti, ui )ϵ̄ + |q(y, ti, ui )− q(y, t, ui )|

+ q(y, t, ui )− γdyn

(d )
≤ Lipq(yi, ti, ui )ϵ̄ + Bndq(yi, ui ) + q(y, t, ui )− γdyn

(e)
≤ q(y, t, ui ).

Inequality (a) follows from constraint (7d). Inequality (b)
follows by Lipschitz continuity, while inequality (c) follows
since the y component of Zdyn is an ϵ̄-net of Y . Inequality (d )
follows by the bound Bndq(yi, ui ) that bounds the function
q for all values of t . Inequality (e) follows simply by (12).
Consequently, q(y, t, ui ) ≥ 0 for all (y, t ) ∈ Y ×R≥0.

If now LipB(y, t, u) ≤ LipB(y, t, u), as stated per assump-
tion, it follows that (4) holds and that h(x) is a ROCBF.
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