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Abstract—Manual trial-and-error methods are employed for
image parameter selection decisions in the processes that control
cyber-enabled scientific instruments. Particularly in materials
manufacturing use cases, where image analytics can be iterative,
time-consuming and prone to errors, there is a need to enhance
existing processes by using agents featuring learning algorithms
that recommend image analytics parameters for users. In this
paper, we present an analysis focused on identifying the optimal
learning algorithm for an AI agent guiding real-time image
processing tasks in carbon nanotube (CNT) manufacturing,
which involves enhancing instrument control of cyber-enabled
scanning electron microscope (SEM) instrument image scanning
setup parameters such as Zoom, Focus, and Contrast. Specifically,
we demonstrate the use of Reinforcement Learning (RL) and
Imitation Learning (IL) based agents within a Remote Instru-
mentation Science Environment (RISE), a modularized system
capable of utilizing multiple learning algorithms for guiding
image analytics tasks. Further, we conduct a comparative per-
formance analysis of RL and IL using 236 CNT images captured
in SEM material synthesis experiments. The experiments include
configuring scanning parameters for CNT images generated by
SEM, implementing CNT image segmentation, and assessing
the effectiveness of RL and IL agents in identifying scanning
parameters to enhance image quality. The objective is to predict
Zoom, Focus, and Contrast parameters using limited labeled
data for offline training, guiding dynamic adjustments in SEM
settings. Our findings reveal that the IL agent outperforms
the RL agent under dynamic conditions in characterizing CNT
image parameters - specifically, Zoom, Focus, and Contrast - by
evaluating image segmentation metrics.

Index Terms—user-Al agent interactions, real-time image ana-
lytics, intelligent adaptive systems, cyber-enabled manufacturing

I. INTRODUCTION

In data-intensive scientific workflows, particularly in the
materials development field, as is the case of carbon nanotube
(CNT) images characterization using a scanning electron mi-
croscope (SEM) [1], researchers deal with intricate manual
tasks that involve instrument calibration, data acquisition and
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Fig. 1: Illustration of remote instrumentation with automated feedback to assist
in image analytics and overcome limitations in manual processes.

management, and complex data analysis. Additionally, the col-
lected datasets involve multi-dimensional parameters [2], [3],
requiring specialized analytical tools for meaningful insights.
Conventional manual approaches are notably laborious and
result in time-consuming and error-prone processes. Image
characterization plays a crucial role in the field of CNT syn-
thesis research. Researchers rely on these results to determine,
in real-time, whether the CNT growth process is progressing
as expected. This enables them to take prompt actions, such as
updating SEM settings, to steer the experiment in the desired
direction. Implementing an automated process to assist users in
analyzing CNT images promptly will enhance their decision-
making abilities, ultimately improving the outcomes of the
experiment.

To minimize the manual effort associated with the trial-
and-error/time-consuming parameter selection, we can lever-
age remote instrumentation that employs learning algorithms
within agents as illustrated in Figure 1. The implementation
of closed-loop automated instrument control, as demonstrated
in [4], [5], ensures the efficient and accurate operation of
instruments. For novice users, the recommendations can be
helpful in the selection of the most suitable SEM settings,
which are critically needed e.g., in the context of growing
CNTs, where minor variations in the configuration of SEM
settings to capture the desired images can lead to unfavorable



results. However, an agent-based solution requires substantial
volume of images for model training [6] that are obtained
from actual CNT images by altering characteristics such as
Zoom, Focus, and Contrast. In addition, results from agent-
based solutions may not consistently meet the desired quality,
as tailoring image characteristics can induce variance in the
algorithms during training [7]. Therefore, it is crucial to ex-
plore optimal learning algorithms that are effective on limited
datasets for training, and can reduce the experimentation time
by streamlining the entire image analytics process.

In this paper, we present an analysis focused on identifying
the optimal learning algorithm for an Al agent guiding real-
time image processing tasks in CNT manufacturing, which
involves characterization of SEM settings in terms of Zoom,
Focus, and Contrast. Specifically, we demonstrate the use of
Reinforcement Learning (RL) and Imitation Learning (IL)
based agents within a Remote Instrumentation Science En-
vironment (RISE), a modularized system capable of utilizing
multiple learning algorithms for guiding image analytics tasks.
We considered RL because it showed potential in the CNT
manufacturing process in prior work [8] considering CNT
mechanical properties. However, given that training data can
be scarce, we also considered the use of IL that is known to
be suitable when working with smaller training datasets [9].
The goal of our analysis is to use the relevant RL/IL agent to
predict the pertinent Zoom, Focus, and Contrast parameters in
SEM settings through a chatbot interface to obtain high-quality
images required for desired CNT characterization, while re-
ducing user efforts in instrument setup. While our evaluation
focused on characterizing CNT images, our methodology can
be extended to address other data-intensive scientific workflow
scenarios. This includes situations where image characteriza-
tion can be evaluated outside of image segmentation, as seen
in biomedical imaging use cases.

Through experiments, we conduct a comparative perfor-
mance analysis of IL and RL under dynamic conditions
using 236 CNT images captured in SEM experiments. The
experiments involved configuration of preliminary scanning
parameters on the SEM before capturing initial images. Sub-
sequently, the acquired CNT images are subjected to an in-
stance segmentation pipeline, employing the CNTSegNet [10]
model — a dual loss, orientation-guided, self-supervised, deep
learning network — to identify and segment CNT elements.
Following segmentation, we compare the results with the
RL and IL agents to evaluate which optimizes the scanning
parameters to enhance image quality. Particularly, we compare
the performance of the agents in predicting Zoom, Focus and
Contrast parameter selections using labeled data for offline
training to guide the navigation of dynamic adjustments in
SEM instrument settings. To ensure result accuracy, we limit
our evaluation to authentic CNT images, excluding synthetic
or programmatically modified ones. Obtaining suitable CNT
images through practical experimentation is challenging, and
hence we rely solely on the available 256 CNT images deemed
appropriate for our study.

The remainder of the paper is organized as follows: In

Section II, we detail CNT characterization process workflow
involving image segmentation. In Section III, we describe
the learning-based SEM instrument control approach using
RL/IL algorithms. In Section IV, we describe the performance
comparison of the algorithms. Section V concludes the paper.

II. IMAGE SEGMENTATION IN CNT CHARACTERIZATION

Herein, we introduce a CNT manufacturing use case that can
benefit from remote instrumentation and real-time calibration
using Al-based agents subsequent to accurate image segmen-
tation. We specifically discuss how user-Al agent interaction
can be used to predict and recommend Zoom, Contrast and
Focus parameters in image acquisition tasks.

The process of growing CNT forests requires extensive
preparation for in-situ experiments. Human insight is crucial
to achieving desired material characteristics. High-quality im-
ages are valuable for evaluating the CNT forest structural
morphology, but manual SEM scanning parameter adjustments
are often time-consuming and can be error-prone due to trial-
and-error. This is particularly true for novice SEM users. A
dynamic setup recommendation system that optimizes SEM
parameters given the latest scanned image would expedite
image acquisition, reduce the need for human intervention and
enhance CNT forest characterization processes significantly.

Figure 2 illustrates our Remote Instrumentation Science
Environment (RISE) solution that features a closed-loop mech-
anism involving the CNT segmentation process using the
CNTSegNet [10] deep learning pipeline. Initial scanning pa-
rameters are set by CNT manufacturing users through the
SEM command controller using a web-based user interface
featuring a chatbot agent. This approach employs natural
language communication to provide users with the results of
system inferences and interpret their actions about the changes
on the SEM parameters. CNT images are processed using
instance segmentation powered by ML models in CNTSegNet
for CNT identification. Metrics from segmented images (i.e.,
Orientation Loss, Edge Coverage, Average Thickness, Average
Separation, and Distance Entropy) guide RL/IL agents in
predicting optimized scanning parameters (i.e., Zoom, Focus,
Contrast) [11].

In addition, the chatbot agent suggests new parameters
based on the characterized SEM image parameters, and upon
user confirmation, the chatbot relays the parameters to the
SEM command controller for instrument adjustment and exe-
cution of new image scanning. This adjustment process con-
tinues iteratively until CNT manufacturing users are content
with the image quality, ensuring that subsequent experiment
images are captured with the latest confirmed scanning param-
eters. Alternatively, users can directly interact with the SEM
controller through a user interface for manual control, when
immediate action is needed. By utilizing the chatbot agent’s
assistance, users can explore additional options for configuring
SEM parameters without being constrained by a fixed set of
values. They can also do so without the concern of applying
values beyond reasonable limits, as the chatbot agent interacts
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Fig. 2: Illustration of the CNT images segmentation workflow and SEM feedback control mechanism in the Remote Instrumentation Science Environment.

with users to communicate the potential outcomes of their
selections.

III. LEARNING-BASED SEM CONTROL

In this section, we detail our RL and IL based instrument
control approaches, designed to tackle the issues of time-
consuming and error-prone manual instrument control, espe-
cially for novice users seeking to adjust instrument settings in
CNT image collection.

A. RL-based Instrument Control Approach

1) RL-based Model Description

The instrumentation control process involves optimizing a
decision-making process with five input parameters (Orienta-
tion Loss, Edge Coverage, Average Thickness, Average Sepa-
ration, and Distance Entropy) used to determine three distinct
setup action values (Zoom, Focus, Contrast). The objective
is to determine the best action values, aiming to achieve the
best possible settings for an SEM on obtaining ideal CNT
images. This decision-making task poses a challenge due to
the complex multi-input and multi-output nature of the CNT
manufacturing problem.

Given the heuristic nature of providing dynamic-parameter
recommendations, and the need to uncover optimal strate-
gies in a complex parameters action space, we selected Q-
Learning [12], [13], a reinforcement learning technique which
is suitable as a potential solution to address these complexities
and discover optimal action-selection strategies. The key com-
ponent of this technique is the Q-value function, also referred
to as the action-value function, which represents the state-
action relation. The Q-value function is derived from the the
Bellman equation, a recursive mathematical expression used
in RL to represent the expected cumulative reward (Q-value)
assigned to an agent for taking a specific action in the current
state of the environment [14]. The Q-value function Q(s,a)
takes two inputs parameters the current state and an action, and
predicts a new state, which is intended to increase a cumulative
reward that an agent would earn by acting in state s and then
adhering to the best course of action a. Below we elaborate on
the description of the state space, action space, and Q-value
function in the context of our CNT images scanning and image
optimization.

State space: The state space defines all potential combinations
of values of the five CNT images segmentation metrics. This

five-dimensional space defines a current (AT, AS, EC, OL,
DE) and predicted next (ATt, ASt, ECt, OLt, DEt) state of
our SEM setup. Where, AT: Average Thickness; AS: Average
Separation; EC: Edge Coverage; OL: Orientation Loss; DE:
Distance Entropy. From a current state, the agent proceeds to
the next state by choosing the best action calculated by the
Q-Learning Equation 1.

Q(s,a)* + Q(s,a) + afr +ymaz(Q(s', a')) — Q(s,a)](l)

Where, Q(s,a)* is the Q-value, representing the expected

cumulative reward for taking action a in state s; r is the
immediate reward obtained by taking action a in state s; « is
the learning rate determining the impact of new information on
the Q-value; ~ is the discount factor balancing immediate and
future rewards; max(Q(s’,a’)) represents the maximum Q-
value achievable in the next state s’; s’ is the subsequent state;
and, o’ is the optimal action in the next state. In the context of
the CNT image characterization, state s represents the current
value of the CNT image segmentation results (AT, AS, EC,
OL, DE); action a represents the agent’s decision of selecting
specific zoom, focus, and contrast values for the given CNT
image; and, the reward r is given by the accuracy of the agent
in inferring the right CNT zoom, focus, and contrast values of
the CNT image being evaluated.
Action space: The action space includes all possible options
for the setting parameters (Zoom, Focus, Contrast) that can be
selected to setup the SEM instrument. Given a current state
s and action a, the probability of each possible pair of next
state (s1) and reward (r), is defined by Equation 2.

plst,rls,a) =

PT{St+1 = 81, Rt+1 = ’I"|St =S, At = a} (2)

2) RL-based Instrument Control

Algorithm 1 implements our Q-learning, an RL-based
approach for CNT image scanning optimization for real-time
calibration. This algorithm is used to train our RL agent
on learning an optimal policy to predict the Zoom, Focus
and Contrast. In this case, the environment represents the
image segmentation metrics where the agent (the Q-learning
algorithm) takes prediction actions that are suitable to optimize
the quality of the CNT image. The segmentation parameters



Algorithm 1: Update State and Calculate Reward

Require: action: Chosen action, previous rewards for Zoom, Focus, and Contrast

Ensure: reward: Calculated reward, flag: Flag indicating state update, state_data:
Dictionary of Zoom, contrast, and focus

: reward <— 0

. alpha < 0.001

: discount_factor <— 0.999

. Zoom < state[’AT’] X state[’AS’]

: focus < state[’EC’]

. contrast <— state[’OL’] X state[’'DE’]

1 prev_q_value <— O {Initialize prev_q_value}
UPDATE_STATEstate, alpha, gamma, reward, prev_action, q_values {Update
Zoom, focus, and contrast based on Q-Learning formula}

8: prev_q_value < q_values[prev_action]

9: max_q_value_next_state <— max(q_values)

10: td_error < reward + discount_factor X max_q_value_next_state - prev_q_value

11: q_values[prev_action] «— prev_q_value + alpha X td_error

12: state[’AT’] <— Zoom X state[’AT’]

13: state[’AS’] «+— Zoom X state[’AS’]

14: state['EC’] <+ focus x state['EC’]

15: state[’OL’] <— contrast X state[’OL’]

16: state['DE’] <— contrast X state[’DE’]

17: flag < False

18: state_history.append(state)

19: action_history.append(action)

20: return state, reward, flag, {"Zoom’: [Zoom], contrast’: [contrast], "focus’:

[focus]} =0

NN R W =

(i.e., Orientation Loss, Edge Coverage, Average Thickness,
Average Separation and Distance Entropy) are used as features
to evaluate the quality of the image. They provide information
about the performance of the image processing algorithm
based on the chosen parameters. The environment provides
feedback in the form of rewards based on the agent’s action
taken in each state. The algorithm iteratively explores the
environment, refines its actions, and converges to an optimal
solution over time. Our RL agent code is available here [15].

B. IL-based Instrument Feedback Control Approach

1) IL-based Model Description

IL, also known as behavioral cloning or learning from
demonstrations [16], is a type of machine learning technique
used in the field of artificial intelligence. It involves learn-
ing a behavior by imitating the actions of a demonstrator.
In this approach, an agent observes the expert’s behavior
as demonstrations and tries to learn a mapping between
the observed states and the corresponding actions taken by
the expert. Traditionally, supervised learning requires vast
amounts of labeled data to achieve accurate results, however,
IL has been proven to perform well under limited availability
of training data. In domains where generating this labeled
data is a challenge, IL emerges as an suitable solution. By
imitating expert demonstrations, our model learns to make
predictions for unseen situations. Our specific problem re-
volves around predicting three distinct but interrelated actions
— Zoom, Focus, and Contrast — based on five input features
Orientation Loss, Edge Coverage, Average Thickness, Average
Separation, and Distance Entropy related to image quality and
composition. This problem can be addressed by training the
IL agent using actual CNT image segmentation metrics and
its Zoom, Focus, and Contrast characteristics, so the agent
learns how to adjust these parameters based on the given image

segmentation metrics aiming to predict similar parameters of
the images used in the training process.

Gradient Boosting Regressor: In our IL-based feedback
command agent approach, we employ a Gradient Boosting
Regressor [9] architecture individually for predicting each
target label. It aims to produce a prediction model in the form
of an ensemble of weak prediction models, typically decision
trees. The idea is to add new models to correct the errors
made by existing models. Models are added sequentially until
no further improvements can be made. Mathematically [17],
the prediction of the ensemble model F' is described by
Equation 3.

M
F@) = Ymhm(z) 3)
m=1

Where M is the number of trees, h,,(x) is the m-th
tree, and <, is the learning rate. A smaller learning rate
means each tree will correct fewer errors of its predecessors,
requiring more trees but often resulting in a more robust
model. Subsampling controls the fraction of samples used for
fitting the individual base learners. It introduces randomness
into the ensemble, aiding in making the model robust against
overfitting, and is a form of Stochastic Gradient Boosting. The
model’s performance (see Algorithm 2) is evaluated using 5-
fold cross-validation, as indicated by KFold (n_splits=5).
In other words, our dataset (see Section IV-A) is divided
into 5 parts, and in each iteration, 4 parts are used for
training while 1 part is used for validation. In this context,
the learning algorithm is trained and evaluated five times,
each time using a different fold as the validation set and the
remaining folds as the training set. The process is repeated 5
times, ensuring each fold serves as a validation set once. The
data is shuffled (shuffle = True) before splitting, and the
setting of random_state = 42 ensures reproducibility of the
splits. The purpose of using 5-fold cross-validation is to obtain
a more robust estimate of the model’s performance by reducing
the impact of the specific subset used for validation. This also
helps to ensure that the model’s performance is representative
across different portions of the dataset.
Hyperparameter Tuning: The hyperparameters of the Gra-
dient Boosting Regressor (see Algorithm 2) are optimized
using a grid search. This means that the model will be trained
and validated on every possible combination of the provided
hyperparameters in param_grid. These hyperparameters are
chosen to achieve a balance between making the model com-
plex enough to capture underlying patterns and relationships in
the data (low bias), but not so complex that it fits to noise and
peculiarities of the training data (high variance). Once the grid
search completes, the best hyperparameters are extracted with
grid_search.best_params, and the best model (with the optimal
hyperparameters) is extracted with grid_search.best_estimator.
We use Root Mean Squared Error (RMSE) as the scoring
metric in the grid search as defined by Equation 4.

RMSE = \/Z?—1(Krue,i - pred,i)2
n

“4)



Where Y, are the true values, Yjeq; are the predicted
values, and n is the number of samples.

In our imitation learning approach, RMSE is most suited
for CNT image characterization due to its focus on error
magnitude, which is crucial for accurately estimating features
such as zoom, focus, and contrast. The error magnitude is also
essential because it provides significance to larger errors, en-
suring that substantial deviations in predicting features are ap-
propriately considered in evaluating the model’s performance.
In contrast, metrics such as mean absolute error (MAE),
R-squared, mean squared error (MSE), and Percentage of
Variance Explained may not adequately capture the importance
of error magnitudes or align with the specific requirements of
CNT image parameter prediction. For example, MAE treats
all errors equally, R-squared prioritizes explaining variance
over error magnitudes, MSLE is designed for proportional pre-
dictions, and Percentage of Variance Explained may be more
suitable for elucidating variability rather than the accuracy of
specific predictions.

2) IL-based Instrument Control

The Algorithm 2 outlines the process of training an agent
(Gradient Boosting Regressor model) using a given set of input
features (the independent variables) and predicting multiple
target variables (the dependent variables) from given input
features. Since IL is a form of Supervised Learning [18], it is
trained as in the case of any Supervised Learning algorithm.
The algorithm displayed is for predicting any one target
variable at a time, for example Zoom, but the same algorithm
with different hyperparameters as mentioned in Table II can
be used to predict Focus and/or Contrast.

Algorithm 2: Gradient Boosting Regression

Input: Orientation_Loss, Edge_Coverage, Average_Thickness,
Average_Separation, Distance_Entropy

Output: Zoom

X < Input

Y < Output

model < GradientBoostingRegressor(random_state = 0)

wrapper < MultiOutputRegressor(model)

kfold + KFold(n_splits = 5, shuf fle =
True, random_state = 42)

param_grid < {...}

grid_search < GridSearchCV(wrapper, param_grid, cv =
kfold,...)

grid_search fit(X,Y)

best_params <— grid_search.best_params_

best_model < grid_search.best_estimator_

Y _pred < best_model.predict(X _test)

mse < mean_squared_error(Y _test, Y _pred, multioutput =’
raw_values’)

rmse <— np.sqrt(mse)

The algorithm begins by loading and preprocessing the input
data, including features such as Orientation Loss, Edge Cov-
erage, Average Thickness, Average Separation, and Distance
Entropy. The data is then split into training and testing sets.
The input features and target variables are normalized to en-
sure stable convergence during training. A Gradient Boosting
Regressor model is constructed and compiled, followed by
training using the normalized training data. The model is
evaluated on the test set, and the RMSE values are used as the
evaluation metric. Predictions are made on the test set using

the trained model, and the predicted probabilities are inverse-
transformed to their original scale using a scaler. The final
step involves returning the predicted values for Zoom, Focus,
and Contrast. Our IL agent code is available here [19].

IV. PERFORMANCE EVALUATION

In this section, we first describe our SEM CNT images data
set. Following this, we discuss the performance comparison
of the RL/IL agent based instrument control approaches in
selection of the SEM parameters for guiding the CNT image
analytics process.

A. SEM CNT Images Data Set

To conduct offline training for our RL and IL agents, we
gathered actual CNT images from the SEM, ensuring they
met the required quality standards. This dataset comprises of
images with three different Zoom magnification levels (25000,
50000, 100000), Focus values ranging from 5.8 to 8.9, and
Contrast values ranging from 58.5 to 72.9. Out of the total 236
data images, 80% are allocated for training the model, while
the remaining 20% are reserved for testing. The test dataset
comprises 48 samples, with 20 from a Zoom of 25000, 20
from a Zoom of 50000, and 8 from a Zoom of 100000. This
intentional uneven distribution ensures an optimal training-
to-testing data ratio for each Zoom category. Through CNT
segmentation, we derived five evaluation metrics (Orientation
Loss, Edge Coverage, Average Thickness, Average Separation,
and Distance Entropy). Utilizing these segmentation metrics
results, we trained our RL and IL agents to predict three SEM
setup parameters (Zoom, Focus, Contrast) with the aim of
scanning CNT images comparable in quality to the original
ones. The CNT dataset is publicly accessible at [19].

B. RL-based feedback control experiments results

Utilizing our CNT dataset, we have deployed a tailored im-
age environment designed for our RL tasks. This environment
features a multi-dimensional state space (see Algorithm 1),
capturing key image quality metrics such as Orientation Loss,
Edge Coverage, Average Thickness, Average Separation, and
Distance Entropy. These metrics emulate the settings of a
SEM, with actions corresponding to adjustments in Zoom,
Focus, and Contrast levels. To ensure meaningful training,
we have established a reward structure that incentivizes SEM
settings leading to target image quality, defined by specific
thresholds for each metric. Simultaneously, actions outside
the permissible range incur penalties. Throughout training, the
environment tracks both state and action histories, facilitating
subsequent analysis.

Through RL, our agent iteratively refines SEM settings to
attain the desired image quality. In training, the RL agent
explores the state space, takes actions, observes rewards,
leveraging this experience to enhance its policy. In our RL-
based architecture, hyperparameters, as outlined in Table I,
produce results shown in Figure 3. However, Q-learning faces
challenges in scenarios with complex exploration-exploitation
dynamics, struggling in our environment with five states and



Hyperparameter Value
Learning Rate 0.001
Discount Factor 0.999

Exploration Probability 0.1
Number of episodes 1000

TABLE I: Hyperparameters used in Algorithm 1 to tune and recommend
suitable parameters.

three actions, leading to slow convergence and suboptimal
policies despite tuning the hyperparameters along with the
reward. Additionally, the Q-learning sensitivity to hyperpa-
rameter choices further influences its performance in our
experiments.

C. IL-based feedback control experiments results

We have implemented a Gradient Boosting Regressor which
is an ensemble machine learning technique that constructs
a model by optimizing the addition of individual models,
in this case, decision trees. This model is wrapped inside a
MultiOutputRegressor (see Algorithm 2), although, in this
instance, only one target at a time is being predicted. A 5-fold
cross-validation strategy is set up using KFold with shuffling
enabled. A Grid Search is set up using the GridSearchCV
method. Grid search is used to perform hyperparameter tuning
to determine the optimal values for a given model. The scoring
metric used during the grid search is the negative mean squared
error, which means the model aims to minimize the mean
squared error during training.

Hyperparameters Zoom Focus Contrast

N Estimators 100, 200, 300 50, 100, 150, 200 50, 100, 150, 200

Learning Rate 0.001, 0.01, 0.05 0.01, 0.05, 0.1 0.001, 0.01, 0.05,
0.1, 0.5

Max Depth 2,3,4 3,4,5 3,45

Min Samples Split | 3, 4,5 2,4 2,4,6,8

Min Samples Leaf | 2, 3 1,2 1,2

Subsample 0.7, 0.8, 0.9 0.8, 1.0 0.5, 0.7, 0.8, 0.9,
1.0

Max Features ’sqrt’, "log2’, None | ’sqrt’, "log2’, None | ’sqrt’, log2’, None

TABLE II: Hyperparameter grid set used in Algorithm 2 to tune and
recommend suitable parameters.

The IL model was moderately able to learn the different
variations and intricacies around our current data points. For
Zoom, the number of hyperparameter combinations tested
are 1458, total fits performed are 7290 and the RMSE of
Zoom is 0.23187. For Focus, the number of hyperparameter
combinations tested are 864, total fits performed are 4320 and
the RMSE of Focus is 0.42572. For Contrast, the number
of hyperparameter combinations tested are 36000, total fits
performed are 180000 and the RMSE of Contrast is 0.77316.
The RMSE for Zoom is the best (lowest), suggesting good
model performance for predicting Zoom, followed by Focus,
followed by Contrast which has the worst (highest) RMSE,
indicating poorer predictive performance in the Contrast data
as CNTSegNet model [10] performs auto correction of contrast
or internal contrast normalization. Figure 4 shows our key
finding of how the predicted outcomes when subjected to
validation against actual results reveal that IL-based model
predictions outperform the RL-based model consistently. We

remark that the Zoom prediction faced challenges in the RL-
based model, however the IL-based model in the same case
was effective.

D. Challenges on training the RL and IL models

We obtained meaningful results using our RL and IL
approaches for determining the zoom, focus and contrast pa-
rameters by analyzing the segmentation metric of CNT images.
However, these approaches pose challenges in applying them
for our purpose. For instance, while validating our predicted
results against the actual results, it was observed that the IL
predictions gave better results compared to the RL predictions.
The prediction of Zoom was not effective using the RL-based
model, however it was handled effectively by the IL-based
model. However, the IL-based model could not perform well
with predicting Contrast, which is a limitation. Further, we
found that the IL-based model encountered was not effective in
adeptly predicting Contrast, revealing another limitation in our
approach. The RL-based model was highly ineffective with the
prediction of Zoom which was handled very effectively by the
IL-based model. Some of these results’ flaws can be attributed
to the fact that we have a limited set of images for training,
which is a factor we need to handle due to the Contrast setup
in getting more real CNT images.

V. CONCLUSION

In this paper, we compared RL and IL agent based ap-
proaches to identify the optimal learning algorithm to guide
real-time image processing tasks in CNT manufacturing on
cyber-enabled SEM instruments. The RL-based approach used
a Q-Learning based algorithm to generate recommendations
for an SEM to capture quality images while scanning. In
addition, the IL-based approach used a functional-gradient
approach to imitate an expert in action to recommendations
image scanning parameters for a SEM setup. These algorithms
were integrated into a RISE solution that allows the learning
algorithms and a chatbot-based service to enable user-Al agent
interactions. Thus, RISE allowed users to directly interface
with cyber-enabled instruments using a suite of RL and IL
agents that can be integrated as plug-ins for instrument control,
and transform time-consuming and error-prone manual CNT
manufacturing processes. Our results emphasize the success
of IL over RL in enhancing Zoom, Focus, and Contrast
predictions, with quicker convergence and reduced sample
requirements.

Future work could involve providing iterative feedback
control to predict and recommend parameters for improving
the quality of CNT images, based the characterization of
parameters of ideal CNT images. In addition, future work
could involve expanding the RISE system with web services
that integrate our RL/IL algorithms for a broader range of
image analytics applications.
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