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a b s t r a c t

We propose a robust model predictive control (MPC) method for discrete-time linear systems with
polytopic model uncertainty and additive disturbances. Optimizing over linear time-varying (LTV)
state feedback controllers has been successfully used for robust MPC when only additive disturbances
are present. However, it is challenging to design LTV state feedback controllers in the face of model
uncertainty whose effects are difficult to bound. To address this issue, we propose a novel approach to
over-approximate the effects of both model uncertainty and additive disturbances by a filtered additive
disturbance signal. Using the System Level Synthesis framework, we jointly search for robust LTV state
feedback controllers and the bounds on the effects of uncertainty online, which allows us to reduce
the conservatism and minimize an upper bound on the worst-case cost in robust MPC. We provide
a comprehensive numerical comparison of our method and representative robust MPC methods from
the literature. Numerical examples demonstrate that our proposed method can significantly reduce
the conservatism over a wide range of uncertainty parameters with comparable computational effort
as the baseline methods.

© 2023 Published by Elsevier Ltd.

1. Introduction

In model predictive control (MPC), a finite time constrained
optimal control problem (OCP) is solved at each time step and the
first optimal control input is applied. When the system dynamics
is uncertain, robust model predictive control explicitly takes the
uncertainty into account by solving a robust OCP at each time
step to guarantee that the state and control input constraints
are robustly satisfied for the closed-loop system. Although dy-
namic programming (Borrelli et al., 2017, Chapter 15) can exactly
solve the robust OCP, it suffers from prohibitive computational
complexity and is impractical to use. This has motivated the
development of alternative solutions to the robust OCP which
aim to reach a reasonable compromise between conservatism
as measured by the size of the set of feasible initial states, and
computational complexity.
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Robust MPC with additive disturbances: For uncertain linear
time-invariant (LTI) systems with the only uncertainty arising
from additive disturbances, a variety of closed-loop methods have
been proposed to solve the robust OCP with feedback policies as
decision variables. The use of feedback policies does not suffer
from the conservatism of open-loop strategies in the presence of
uncertainty (Mayne, 2014). To maintain computational tractabil-
ity, closed-loop methods only search over control policies that
admit a finite-dimensional parameterization. Tube-based MPC
is a widely used class of robust MPC methods where a tube
(normally a sequence of polytopes) is constructed such that it
contains all possible system trajectories under uncertainty. Dif-
ferent designs of tube MPC such as rigid (Mayne et al., 2005),
homothetic (Rakovi¢ et al., 2012b), and elastic (Rakovi¢ et al.,
2016) tube MPC have been proposed with increasing flexibility
in the parameterization of the tube and the associated control
policy. One limitation of most tube-based MPC methods (see the
introduction of Rakovi¢ et al. (2012a)) is the offline design of the
tube cross-sections and the associated control law, e.g., by pre-
fixing the shape of the cross-section and the feedback gain of the
controller (Rakovi¢ et al., 2012b), which can be conservative.

Compared with tube-based MPC, state feedback MPC (Goulart
et al., 2006; Lofberg, 2003) optimizes the state feedback or the
equivalent disturbance feedback gains online (Goulart et al., 2006),
resulting in reduced conservatism at the cost of increased com-
putational complexity. In fact, the number of decision variables
scales linearly in the horizon for tube-based MPC using an offline
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design, and quadratically in the horizon for state/disturbance
feedback MPC. A conservatism improvement together with the
quadratic complexity is also achieved by the parameterized tube
MPC (Rakovi¢ et al., 2012a) which adopts online optimization
over both the tube and the control policies. Sieber et al. (2021)
propose to search over state feedback gains online through the
framework of System Level Synthesis (SLS) (Anderson et al., 2019)
with structural restrictions such that the number of variables is
linear in the horizon.

Robust MPC with model uncertainty: When model uncer-
tainty is present, robust MPC becomes significantly more chal-
lenging since the perturbation to the nominal predicted trajectory
directly depends on the states and control inputs and hence on
both the uncertainty and the controller parameters.

For polytopic model uncertainty, robust MPC methods based
on linear matrix inequalities (LMI) are presented in Kothare et al.
(1996), Kouvaritakis et al. (2000), Muñoz-Carpintero et al. (2015)
and Schuurmans and Rossiter (2000) where affine state feedback
policies for a min–max cost function over an infinite horizon are
considered. The LMI-based methods do not require much offline
parameter design, but their computational complexity tends to
scale badly with the system dimension because of the use of
semidefinite programming (Gesser et al., 2018). In addition, the
ellipsoidal inner approximation of polyhedral state and control
input constraints (Kothare et al., 1996) can be conservative.

The application of tube-based MPC to handle model uncer-
tainty can be found in Fleming et al. (2014), Köhler et al. (2019),
Langson et al. (2004) and Lu and Cannon (2019). Langson et al.
(2004) utilize a homothetic tube to bound the system trajectories
and parameterize a feedback control policy associated with each
vertex of the tube cross-section. Fleming et al. (2014), Köhler et al.
(2019) and Lu and Cannon (2019) apply an offline-designed tube
and a control policy ut = Kxt + vt with a pre-stabilizing feedback
gain K to guarantee robust constraint satisfaction. Similar to tube
MPC in the disturbance-only scenario, the offline design of either
the tube or the associated control policy can be conservative.

Recent works by Bujarbaruah et al. (2021, 2022) use LTV
state feedback controllers for robust MPC under model uncer-
tainty. Because the LTV state feedback controller has more de-
grees of freedom, the analysis of the effects of uncertainty is
more complex and guaranteeing robust constraint satisfaction
is more challenging. Therefore, a simplified, conservative uncer-
tainty over-approximation is needed to solve the robust OCP in
a numerically efficient manner. Bujarbaruah et al. (2021) adopt
a simple approach that globally over-approximates the effects
of model uncertainty by additive disturbances with fixed norm
bounds and reduces the robust OCP to the disturbance-only case
discussed above. Although easily implementable, this method
suffers from the inherent conservatism induced by the global un-
certainty over-approximation which fails to utilize the structure
of the model uncertainty. In Bujarbaruah et al. (2022), the effects
of model uncertainty are first bounded offline as a function of the
control inputs, and an LTV state feedback controller is optimized
online afterward. We denote this class of methods as uncertainty
over-approximation-based MPC to highlight the main challenge of
bounding the uncertainty when an LTV state feedback controller
is considered.

1.1. Contributions

In this work, we propose a robust MPC method which op-
timizes over LTV state feedback controllers online for systems
subject to polytopic model uncertainty and additive disturbances.
Inspired by Bujarbaruah et al. (2021), we describe the uncertain
system dynamics as the sum of the nominal dynamics and the
lumped uncertainty that captures the deviation from the nominal

predicted state at each time instant. Unlike (Bujarbaruah et al.,
2021) who simply over-approximate the lumped uncertainty uni-
formly by a sufficiently large additive disturbance signal, our
method exactly characterizes how the lumped uncertainty de-
pends on the model uncertainty and controller parameters by
leveraging the framework of System Level Synthesis, which es-
tablishes the equivalence between the optimization of LTV state
feedback controllers and closed-loop system responses. To guar-
antee robust constraint satisfaction, we propose a novel method
that employs a parameterized filtered additive disturbance signal
to over-approximate the lumped uncertainty at each time step.
Importantly, our method retains the dependence of the uncer-
tainty over-approximation on the controller parameters and thus
allows joint optimization of the uncertainty over-approximation
parameters and the controller in a convex manner.

We denote the proposed method as SLS MPC since our robust
OCP formulation is derived in the space of system responses
made possible by SLS. By construction, SLS MPC considers a
more flexible controller class than the tube-based MPC meth-
ods (Fleming et al., 2014; Köhler et al., 2019; Lu & Cannon,
2019) which use a fixed pre-stabilizing controller. Compared
with methods (Bujarbaruah et al., 2021, 2022) that also apply
LTV state feedback controllers, SLS MPC handles the uncertainty
over-approximation problem using a novel approach, the effec-
tiveness of which is demonstrated by numerical examples. Our
contributions are summarized as follows.

(1) We propose a novel robust MPC method, SLS MPC, for
uncertain LTI systems with polytopic model uncertainty
and additive disturbances. The method solves the robust
OCP by jointly optimizing LTV state feedback controllers
and uncertainty over-approximation parameters through
a convex quadratic program. In addition to the typical
nominal cost (Bujarbaruah et al., 2022; Fleming et al., 2014;
Köhler et al., 2019; Langson et al., 2004), our method allows
minimizing upper bounds over the worst-case costs with
respect to the model uncertainty in robust MPC.

(2) We provide a comprehensive comparison of tube-based
(Köhler et al., 2019; Langson et al., 2004; Lorenzen et al.,
2019; Lu & Cannon, 2019) and uncertainty over-
approximation-based (Bujarbaruah et al., 2021, 2022) ro-
bust MPC methods, including SLS MPC, through numerical
examples. We demonstrate that SLS MPC can significantly
reduce conservatism compared with all other methods
over a wide range of uncertainty parameters.

The rest of the paper is organized as follows. The uncertain
LTI system and the problem formulation are introduced in Sec-
tion 2. In Section 3, we introduce System Level Synthesis and
use it to characterize the effects of model uncertainty, which are
over-approximated in Section 4 by a filtered disturbance signal.
Section 5 presents the proposed SLS MPC method, derives upper
bounds on the worst-case costs, and discusses the closed-loop
properties of SLS MPC. Extensive simulation is given in Section 6
to compare SLS MPC with representative baseline methods. Sec-
tion 7 concludes the paper. A preliminary version of this work,
which was specialized to time-delay systems, was published in
Chen et al. (2022).

Notation: For a dynamical system, we denote the system state
at time k by x(k) and the t-step prediction of the state in an MPC
loop by xt . For two vectors x and y, x  y denotes element-wise
comparison. For a symmetric matrix Q , Q ⌫ 0 denotes that Q
is positive semidefinite. The notation xi:j is shorthand for the set
{xi, xi+1, . . . , xj}. For a vector d 2 Rn, S = diag(d) denotes a n⇥ n
dimensional diagonal matrix with d being the diagonal vector.
For a sequence of matrices S1, . . . , SN , S = blkdiag(S1, . . . , SN )
denotes that S is a block diagonal matrix whose diagonal blocks
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are S1, . . . , SN arranged in the order. We represent a linear, causal
operator R defined over a horizon T by the block-lower-triangular
matrix

R =

2

6664

R0,0

R1,1 R1,0

...
. . .

. . .

RT ,T · · · RT ,1 RT ,0

3

7775
(1)

where Ri,j 2 Rp⇥q is a matrix of compatible dimensions. The
set of such matrices is denoted by LT ,p⇥q

TV and we will drop the
superscript T or p ⇥ q when it is clear from the context. Let
R(i, :) denote the ith block row of R, and R(:, j) denote the jth
block column of R, both indexing from 0 .8 The support function
of a non-empty, closed convex set X is defined as hX (c) =

max{c>x s.t. x 2 X }.

2. Problem formulation

Consider a discrete-time linear system with uncertain dynam-
ics

x(k + 1) = (Â + �A)x(k) + (B̂ + �B)u(k) + w(k) (2)

for k � 0 where x(k) 2 Rnx is the state, u(k) 2 Rnu is the control
input, w(k) 2 Rnx is the additive disturbance, and (Â, B̂) are the
known nominal dynamics. The matrices (�A, �B) denote additive
model uncertainty and belong to a polytopic set comprising M
vertices

(�A, �B) 2 Conv{(�A,1, �B,1), . . . , (�A,M , �B,M )} (3)

with Conv denoting the convex hull. For simplicity, we denote the
polytopic model uncertainty set defined in (3) as P .9 The additive
disturbance w(k) is assumed to lie in a polytopic set, i.e, w(k) 2 W
where W is a polytope.

In robust MPC, at each time instant k, we solve a finite time
robust OCP which aims to synthesize a feedback controller that
guarantees the robust satisfaction of state and input constraints.
The first control input in the optimal solution is applied to drive
the system to the next state, and this process is repeated. In
this paper, we focus on solving the following robust OCP with
polytopic model uncertainty and additive disturbances.

Problem 1. Solve the following finite time constrained robust
OCP with horizon T :
J⇤T = minf⇡ JT (⇡ )

s.t. xt+1 = (Â + �A)xt + (B̂ + �B)ut + wt

ut = ⇡t (x0:t )
xt 2 X , ut 2 U, xT 2 XT , t = 0, 1, . . . , T � 1
8(�A, �B) 2 P, 8wt 2 W, t = 0, 1, . . . , T � 1
x0 = x(k)

(4)

where the search is over causal LTV state feedback control policies
⇡ = ⇡0:T�1 and JT (⇡ ) denotes the nominal cost function as is

8 In this paper, we refer to a block matrix in a block-lower-triangular matrix
R using its superscripts shown in Eq. (1). If we let R(i, j) denote the block matrix
in the ith row and jth column, then we have R(i, j) = Ri,i�j with (i, j) indexing
from 0.
9 While in this work we focus on solving the robust MPC problem, our

proposed method can be easily incorporated into the adaptive MPC framework
where the uncertainty parameters (�A, �B) are assumed time-invariant and the
polytopic model uncertainty set P is updated online as shown by Köhler et al.
(2019) and Lu and Cannon (2019).

typical in the robust MPC literature10:

JT (⇡ ) =
PT�1

t=0 (x̂
>
t Q x̂t + u>

t Rut ) + x̂>

T QT x̂T
s.t. x̂t+1 = Âx̂t + B̂ut , ut = ⇡t (x̂0:t )

x̂0 = x(k), 8t = 0, 1, . . . , T � 1,
(5)

where x̂0:T denotes the nominal trajectory, and Q ⌫ 0, R � 0,
QT ⌫ 0 denote the state, input, and terminal weight matrices,
respectively. The sets X ,U , and XT are the polytopic state, input,
and terminal constraints, defined as
X = {x 2 Rnx | Fxx  bx}, U = {u 2 Rnu | Fuu  bu},
XT = {x 2 Rnx | FT x  bT }.

We assume that the sets X ,U , and XT are compact and contain
the origin in their interior.

As shown by Borrelli et al. (2017, Chapter 15), the robust
OCP (4) can be solved exactly by dynamic programming which
has a high computational cost. For numerical tractability, a finite-
dimensional, parameterized controller ⇡t has to be considered
in (4) and the state and input constraints are tightened to guar-
antee robust constraint satisfaction. In this work, we consider
searching over causal LTV state feedback controllers represented
by ut =

Pt
i=0 K

t,t�ixi for t = 0, . . . , T � 1 with Kt,t�i being
our design parameters. Our approach to Problem (4) relies on
over-approximating the effects of uncertainties in the space of
closed-loop system responses as shown in the following sections.

3. Characterization of effects of uncertainty

In the robust OCP, the system dynamics can be decomposed
as the sum of nominal dynamics and uncertainty-related terms:

xt+1 = Âxt + B̂ut + �Axt + �But + wt| {z }
⌘t

= Âxt + B̂ut + ⌘t

(6)

where we define ⌘t := �Axt+�But+wt as the lumped uncertainty
which models the perturbation to the nominal dynamics at each
time step. To find a feasible solution to (4) with minimal con-
servatism, a proper characterization of ⌘t is required. However,
this is challenging since the lumped uncertainty depends on both
the uncertainty parameters and the feedback controller to be
designed. In this section, we show that SLS allows us to exactly
characterize the dynamics of the lumped uncertainty ⌘t as a
function of both the uncertainty and the controller parameters.

3.1. Finite-horizon system level synthesis

To apply SLS, we first stack all relevant state, control input,
and uncertainty variables over horizon T as

x = [x>

0 · · · x>

T ]
>, u = [u>

0 · · · u>

T ]
>,

⌘ = [x>

0 ⌘>

0 · · · ⌘>

T�1]
>, w = [x>

0 w>

0 · · · w>

T�1]
>.

(7)

Note that the initial state x0 is set as the first component in ⌘
and w, and x0 can be interpreted as a known disturbance from
the origin in this case. The vectors in (7) can be interpreted
as finite horizon signals. The parameterization of the LTV state
feedback controller K 2 LT ,nu⇥nx

TV is represented by the block-
lower-triangular matrix (1) with entries Kt,t�i. The controller K
can be interpreted as a time-varying linear operator and the state
feedback controller is given by u = Kx. Similarly, we stack the
dynamics matrices and uncertainty matrices as

Â = blkdiag(Â, . . . , Â), B̂ = blkdiag(B̂, . . . , B̂),
�A = blkdiag(�A, . . . , �A),�B = blkdiag(�B, . . . , �B),

(8)

10 The worst-case cost function is considered in Section 5.2.
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which all belong to LT
TV . With this compact notation, the open-

loop dynamics of the system (6) can be written as

x = Z Âx + Z B̂u + ⌘, (9)

and the closed-loop dynamics under u = Kx follows as

x = Z(Â + B̂K)x + ⌘, (10)

where Z is a block-downshift operator with the first block sub-
diagonal filled with identity matrices and zeros everywhere else.
Note that the lumped uncertainty ⌘ depends on K and x as will
be shown in the next subsection.

From (10), the mapping from the lumped uncertainty to the
state and control input under the feedback controller is given by

x
u

�
=


(I � Z(Â + B̂K))�1

K(I � Z(Â + B̂K))�1

�
⌘. (11)

Because of the block-downshift operator Z , we know that the
matrix inverse in (11) exists and has a block-lower-triangular
structure. The maps from ⌘ to (x,u) in (11) are called system
responses, and we denote them by �x 2 LT ,nx⇥nx

TV , �u 2 LT ,nu⇥nx
TV

such that
x
u

�
=


�x
�u

�
⌘. (12)

The relationship between the LTV state feedback controller K and
the system responses (�x,�u) can be written explicitly as:

�x = (I � Z(Â + B̂K))�1,

�u = K(I � Z(Â + B̂K))�1.
(13)

The following theorem allows us to transform the design of the
feedback controller K into the design of the system responses
{�x,�u} without explicitly using the nonlinear map (11).

Theorem 1 (Anderson et al., 2019, Theorem 2.1). Over the horizon
t = 0, 1, . . . , T , for the system dynamics (6) with the block-lower-
triangular state feedback control law K 2 LT ,nu⇥nx

TV defining the
control action as u = Kx, we have:

(1) The affine subspace defined by
⇥
I � Z Â �Z B̂

⇤ 
�x
�u

�
= I, �x,�u 2 LT

TV (14)

parameterizes all possible system responses (12).
(2) For any block-lower-triangular matrices {�x,�u} 2 LT

TV
satisfying (14), the controller K = �u�

�1
x 2 LT

TV achieves
the desired responses (12).

Theorem 1 shows the equivalence between system responses
and LTV state feedback controllers through the affine constraint
(14). Therefore, we can refer to either K or {�x,�u} as the con-
troller parameters. With constraint (14), an optimization problem
originally in K can be transformed into one on {�x,�u}. Such
a transformation may result in a convex problem in {�x,�u}
while the original one is not. It provides a direct description
of the effects of the lumped uncertainty ⌘ on the states and
control inputs. More importantly, as will be shown next, this
transformation can reveal additional structural properties of the
robust OCP in the space of system responses that can be exploited
to reduce the conservatism of the solution.

3.2. Dynamics of lumped uncertainty

By the definition of lumped uncertainty (6) and the compact
notations from (7), (8), we have

⌘ = Z
⇥
�A �B

⇤ 
x
u

�
+ w. (15)

The system responses (12) allow an explicit characterization of
the dynamics of ⌘t under the controller K as

⌘ = Z
⇥
�A �B

⇤ 
�x
�u

�
⌘ + w (16)

which can be decomposed into the following set of equations11

⌘t = �A(� t,t
x x0 +

tX

i=1

� t,t�i
x ⌘i�1)+

�B(� t,t
u x0 +

tX

i=1

� t,t�i
u ⌘i�1) + wt

(17)

for t = 0, . . . , T � 1. Since ⌘t only depends on ⌘i with i  t � 1,
i.e., the lumped uncertainty before time t , it follows that the
values of ⌘t are uniquely determined by the uncertainty parame-
ters {�A,�B,w} and the closed-loop system responses {�x,�u}.
Therefore, we can treat ⌘ as a function of the uncertainty and
controller parameters.

When (�A, �B) and wt are unknown, the values of ⌘t become
uncertain. Under the uncertainty assumptions in Section 2, we
denote by R(⌘; {�x,�u}) the set of all possible values of ⌘ under
a given controller K = �u�

�1
x :

R(⌘; {�x,�u}) :={⌘ | 9wt 2 W, 0  t  T � 1,
and (�A, �B) 2 P, s.t. (17) holds}.

(18)

We call R(⌘; {�x,�u}) the reachable set of ⌘ under the con-
troller K = �u�

�1
x . The second argument {�x,�u} highlights

the dependence of the reachable set on the controller parame-
ters. Despite being exact, Eq. (16) or the derived reachable set
R(⌘; {�x,�u}) is too complex to use for directly solving the
robust OCP (4). To address this issue, in the next section, we
over-approximate R(⌘; {�x,�u}) by an uncertainty set with a
simpler structure while retaining the dependence on the system
responses {�x,�u}.

4. Uncertainty over-approximation

To over-approximate R(⌘; {�x,�u}), we design a disturbance
signal represented by ⌃ew where ⌃ 2 LT ,nx⇥nx

TV is a filter operating
on a normalized unit norm-bounded virtual disturbance signal

ew = [x>

0 w̃>

0 · · · w̃>

T�1]
> with kw̃tk1  1. (19)

We denote the set of ew satisfying the unit norm bound con-
straint (19) as Wew, and define the reachable set of the filtered
disturbance ⌃ew as

R(⌃ew) := {⌃ew | ew 2 Wew} (20)

When parameterizing ⌃, we require ⌃0,0 = I such that the
first component of ⌃ew is x0. Our goal is to over-approximate the
reachable set of the lumped uncertainty R(⌘; {�x,�u}) by that
of the filtered disturbances R(⌃ew), i.e., R(⌘; {�x,�u}) ✓ R(⌃ew),
such that it suffices to consider the dynamical system

x = Z Âx + Z B̂u + ⌃ew (21)

with the surrogate disturbances ⌃ew for solving the robust OCP.
The unit norm-bounded assumption on the virtual disturbances
w̃t simplifies the constraint tightening of the robust OCP (4),
while the filter ⌃, which is our design parameter, controls the
complexity of R(⌃ew) such that it can over-approximate
R(⌘; {�x,�u}) with minimal conservatism. Next, we discuss the
parameterization of the filter ⌃ and formulate a set of linear
constraints on ⌃ and {�x,�u} such that R(⌘; {�x,�u}) ✓ R(⌃ew)
holds.

11 We adopt the convention that when t = 0, the summation terms in (17)
vanish.
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Fig. 1. Blue: reachable set of the lumped uncertainty ⌘t . Green: uncertainty
over-approximation by the filtered disturbance signal �t w̃t with the block
diagonal parameterization of the filter ⌃. The norm ball (left) and hyperrectangle
(right) over-approximations are demonstrated.

4.1. Parameterization of the filter

To motivate the use of the filtered disturbance signal ⌃ew
for lumped uncertainty over-approximation, we first consider
two special block diagonal parameterizations of ⌃, i.e., only the
matrices ⌃ t,0 on the diagonal of ⌃ 2 LTV are non-zero. Note
that we always have ⌃0,0 = I . For t = 1, . . . , T , the first
parameterization is given by ⌃ t,0 = �t�1I with �t�1 > 0, while
the second parameterization is given by ⌃ t,0 = diag(dt�1) with
dt�1 2 Rnx and dt�1 > 0. In the first case, ⌃ew represents the
Cartesian product of `1 norm balls with radii �t�1 > 0; in the
second case, it represents the Cartesian product of hyperrectan-
gles whose edge lengths are given by the entries in dt�1 times
2. We want to search the filter parameters �t or dt such that at
time t , the reachable set of the lumped uncertainty ⌘t is bounded
by the simple geometric sets as shown in Fig. 1. Then, we can
tighten the constraints of the robust OCP (4) efficiently using the
surrogate uncertain linear dynamics (21) which only has additive
disturbances.

As shown in Fig. 1, bounding the reachable set of the lumped
uncertainty ⌘ by the reachable set of the additive disturbances
⌃ew necessarily introduces conservatism (indicated by the gap
between the blue and green regions in Fig. 1). To reduce the con-
servatism in uncertainty over-approximation while maintaining
numerical tractability, in this work, we parameterize the filter ⌃

as follows: the sub-diagonal blocks ⌃ t,t�i are non-zero, and the
diagonal blocks are parameterized by ⌃0,0 = I, ⌃ t,0 = diag(dt�1)
for 1  t  T where dt�1 2 Rnx and dt�1 > 0. We refer to
this parameterization as the full parameterization of the filter. It
has the following features: (a) By construction, ⌃ is invertible.
(b) It contains the aforementioned diagonal parameterization as
special cases. (c) It utilizes most of the degrees of freedom offered
by the block-lower-triangular parameterization of ⌃ since all off-
diagonal matrices are free variables. A numerical comparison of
the full and diagonal parameterizations of the filter is given in
Section 6.3.4. With the full parameterization of the filter, we
are now ready to find sufficient conditions for R(⌘; {�x,�u}) ✓

R(⌃ew).

4.2. Reachable set over-approximation problem

The reachable set over-approximation problem can be stated
as finding {�x,�u,⌃} such that

R(⌘; {�x,�u}) ✓ R(⌃ew) (22)

for all (�A, �B) 2 P and wt 2 W . The following lemma gives a
rigorous formulation of constraint (22), and its proof is given in
Appendix A.1.

Lemma 1. Let the uncertainty assumption (�A, �B) 2 P and
wt 2 W hold for all 0  t  T � 1. For a filter ⌃ and LTV state
feedback controller K with induced system responses {�x,�u}, the
following two conditions are equivalent:

(1) R(⌘; {�x,�u}) ✓ R(⌃ew).
(2) The following system of equations

Z
⇥
�A �B

⇤ 
�x
�u

�
⌃ew + w = ⌃ew (23)

has a solution ew⇤ 2 Wew for all possible realizations of the
uncertainty parameters {�A,�B,w}.

With the help of Lemma 1, our goal is to find sufficient
conditions on {�x,�u} and ⌃ such that (23) is robustly feasible.
However, the presence of bilinear terms �x⌃ and �u⌃ in (23)
makes it challenging. To resolve this issue, we apply the change
of variables

e�x = �x⌃, e�u = �u⌃ (24)

where ⌃ is invertible and e�x,e�u 2 LTV . In this case, guaranteeing
robust feasibility of (23) is equivalent to finding (e�x,e�u,⌃) such
that

Z
⇥
�A �B

⇤ 
e�x
e�u

�
ew + w = ⌃ew, ew 2 Wew (25)

is feasible for all (�A, �B) 2 P and wt 2 W . It can be easily
verified that all achievable {e�x,e�u} are parameterized by the
following affine constraint
⇥
I � Z Â �Z B̂

⇤ 
e�x
e�u

�
= ⌃, e�x,e�u 2 LTV , (26)

which directly follows from the affine constraint (14) that param-
eterizes all achievable system responses {�x,�u} for system (6).
Note that constraint (26) is jointly affine in {e�x,e�u,⌃}. The
invertibility of the filter guarantees the equivalence of search-
ing {�x,�u,⌃} under constraint (14) and searching {e�x,e�u,⌃}

under constraint (26) for R(⌘; {�x,�u}) ✓ R(⌃ew) to hold.
As shown in the following corollary, {e�x,e�u} can be inter-

preted as system responses mapping ew to (x,u) for the system
x = Z Âx + Z B̂u + ⌃ew in closed-loop with u = Kx. The proof is
given in Appendix A.2.

Corollary 1. Let ⌃ 2 LT ,nx⇥nx
TV be invertible and K 2 LT ,nu⇥nx

TV be a
state feedback controller. Then, for the closed-loop dynamics

x = Z(Â + B̂K)x + ⌃ew (27)

over the horizon t = 0, . . . , T , we have

(1) The affine subspace defined by (26) parameterizes all achiev-
able system responses x = e�xew,u = e�uew for system (27).

(2) For any block-lower-triangular matrices {e�x,e�u} satisfying
(26), the controller K = e�ue��1

x achieves the desired response.

4.3. Convex over-approximation constraints

We now present sufficient conditions on {e�x,e�u,⌃} such that
the robust feasibility of (25) is guaranteed. The block-downshift
operator Z makes it possible to decompose and analyze the
equality constraints in (25) for t = 0, . . . , T � 1 sequentially.

4.3.1. Case t = 0
For bounding ⌘0 at t = 0, we have the following constraint

from (25):

�Ax0 + �B�̃
0,0
u x0 + w0 = ⌃1,1x0 + ⌃1,0w̃0 (28)

5
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where we have used �̃0,0
x = I as a result of (26) and ⌃0,0 = I . The

above constraint is robustly feasible with a solution kw̃0k1  1
if and only if

k⌃1,0�1(�Ax0 + �B�̃
0,0
u x0 � ⌃1,1x0 + w0)k1  1 (29)

for all (�A, �B) 2 P and w0 2 W . Constraint (29) is non-convex
in ⌃1,0, but with our diagonal matrix parameterization ⌃1,0 =

diag(d0) (see Section 4.1) it can be rewritten as

|e>

i (�Ax0 + �B�̃
0,0
u x0 � ⌃1,1x0 + w0)|  d0,i (30)

for i = 1, . . . , nx where d0,i denotes the ith entry of d0 and ei is
the ith standard basis. We compute offline12

�w,i = max{hW (ei), hW (�ei)}, i = 1, . . . , nx (31)

where hW (·) is the support function of W . Then, the following
constraints

|e>

i (�Ax0 + �B�̃
0,0
u x0 � ⌃1,1x0)| + �w,i  d0,i,

8(�A, �B) 2 Vert(P), i = 1, . . . , nx
(32)

guarantee that (30) is robustly feasible, where Vert(P) :=

{(�A,j, �B,j), j = 1, . . . ,M} denotes the set of vertices of P . To
prove this, we can show that the left-hand-side (LHS) of (32) is an
upper bound on the LHS of (30) by using the triangle inequality
of the absolute value |·|, the definition of �w,i in (31), and the
fact that the LHS of (30) is convex in (�A, �B) and the maximum
of a convex function over a convex polytope is achieved at the
vertices (Boyd et al., 2004).

Constraint (32) is convex in the design parameters �̃0,0
u , ⌃1,1

and d1. It guarantees that for all possible realizations of
(�A, �B, w0) and the generated lumped uncertainty ⌘0, we can
always find w̃⇤

0 such that ⌘0 = ⌃1,1x0+⌃1,0w̃⇤

0 with kw̃⇤

0k1  1.
We fix w̃⇤

0 as the w̃0-component of the solution ew⇤ to (25).

4.3.2. Case: t = 1
Similarly, to bound ⌘1, we can write the relevant equality

constraints from (25) as

�A(�̃1,1
x x0 + �̃1,0

x w̃⇤

0) + �B(�̃1,1
u x0 + �̃1,0

u w̃⇤

0) + w1

= ⌃2,2x0 + ⌃2,1w̃⇤

0 + ⌃2,0w̃1
(33)

where w̃⇤

0 is the solution from the previous time step and cap-
tures the effects of ⌘0 on future perturbations ⌘t for t � 1. Since
⌃2,0 = diag(d1) is a diagonal matrix, following the same steps as
in the case t = 0 and grouping the terms in (33) by x0, w̃⇤

0 , and
w̃1, we conclude if the inequalities

|e>

i (�A�̃
1,1
x + �B�̃

1,1
u � ⌃2,2)x0|+

|e>

i (�A�̃
1,0
x + �B�̃

1,0
u � ⌃2,1)w̃⇤

0 | + |e>

i w1|  d1,i
(34)

for 1  i  nx hold robustly, then the robust feasibility of (33)
is guaranteed. However, the exact value of w̃⇤

0 is unknown to us
since it depends on (�A, �B, w0). To address this issue, we treat
w̃⇤

0 as uncertainty satisfying kw̃⇤

0k1  1 and further tighten the
constraint (34) as

|e>

i (�A�̃
1,1
x + �B�̃

1,1
u � ⌃2,2)x0|+

ke>

i (�A�̃
1,0
x + �B�̃

1,0
u � ⌃2,1)k1 + �w,i  d1,i,

8(�A, �B) 2 Vert(P), i = 1, . . . , nx

(35)

by applying the Hölder’s inequality |a>w̃⇤

0 |  kak1kw̃
⇤

0k1  kak1
and using the fact that |e>

i w1|  �w,i.

12 The parameters �w,i for i = 1, . . . , nx only need to be computed once by
solving 2nx simple linear programs. Afterward they are used for solving the
robust OCP (4) for all time steps.

4.3.3. General case
We repeat this process from t = 0 to t = T �1 to obtain a set

of convex constraints on {e�x,e�u,⌃}:

|e>

i (�A�̃
t,t
x + �B�̃

t,t
u � ⌃ t+1,t+1)x0| + �w,i+

tX

i=1

ke>

i (�A�̃
t,t�i
x + �B�̃

t,t�i
u � ⌃ t+1,t+1�i)k1  dt,i,

8(�A, �B) 2 Vert(P), i = 1, . . . , nx, t = 0, . . . , T � 1.

(36)

In fact, the constraints in (36) can be translated into an equivalent
set of linear constraints on (e�x,e�u,⌃).

By the derivation of (36), any feasible solution (e�x,e�u,⌃)
to (36) guarantees the robust feasibility of (25). By Lemma 1,
they also guarantee that R(⌘; {�x,�u}) ✓ R(⌃ew). In this case, it
suffices to consider the uncertain dynamical system (21) with the
surrogate additive disturbance ⌃ew for solving the robust OCP (4).
The synthesized controller K = e�ue��1

x = �u�
�1
x guarantees

robust constraint satisfaction for the original uncertain dynamical
system (6). We summarize all the steps of solving the robust OCP
in the next section.

5. Formulation of SLS MPC

In this section, we present our solution to the robust OCP (4)
and discuss the closed-loop properties of the proposed robust
MPC method.

5.1. Constraint tightening of robust OCP

Recall that under constraints (26) and (36), it suffices to con-
sider the uncertain dynamics x = Z Âx+Z B̂u+⌃ew with kw̃tk1 

1 for guaranteeing robust constraint satisfaction of the synthe-
sized controller K = e�ue��1

x since the filtered disturbance signal
⌃ew can realize all possible values of the lumped uncertainty ⌘.

Let us take the state constraint tightening of xt 2 X as an
example. The state constraint is a polyhedral set X = {x 2

Rnx | Fxx  bx}. Denote the number of linear constraints in
defining X as nX and facet(X ) = {(Fx(:, i), bx(i)) | i = 1, . . . , nX }

as the set of all linear constraint parameters of X . For the dy-
namical system (21) with filtered disturbance ⌃ew, the affine
constraint (26) parameterizes all achievable closed-loop system
responses (e�x,e�u) such that x = e�xew,u = e�uew under an LTV
state feedback controller u = Kx (see Corollary 1). Using xt =

�̃ t,t
x x0+

Pt
i=1 �̃ t,t�i

x w̃i�1, the following tightened state constraints

f >e� t,t
x x0 +

tX

i=1

kf >e� t,t�i
x k1  b,

8(f , b) 2 facet(X ), t = 0, . . . , T � 1

(37)

guarantee f >xt  b for all (f , b) 2 facet(X ) robustly under the
controller K = e�ue��1

x . This follows from a direct application of
the Hölder’s inequality on f >xt and the fact kw̃tk1  1. Similarly,
we can tighten the terminal constraint as

f >e�T ,T
x x0 +

TX

i=1

kf >e�T ,T�i
x k1  b, 8(f , b) 2 facet(XT ), (38)

and tighten the control input constraints as

f >e� t,t
u x0 +

tX

i=1

kf >e� t,t�i
u k1  b,

8(f , b) 2 facet(U), t = 0, . . . , T � 1.

(39)

Again, constraints (37), (38), (39) can be easily expressed as linear
constraints on {e�x,e�u}.

6
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5.2. Convex tightening of the robust OCP

Summarizing all the aforementioned steps, we can synthesize
a robust LTV state feedback controller K as shown in the following
theorem.

Theorem 2. Consider the convex quadratic program

J̃⇤T = min
e�x,e�u,⌃

J̃T (e�x,e�u)

s.t. affine constraint (26)
over-approximation constraint (36)
tightened constraints (37), (38), (39)
x0 = x(k)

(40)

where e�x 2 LT ,nx⇥nx
TV , e�u 2 LT ,nu⇥nx

TV , ⌃ 2 LT ,nx⇥nx
TV is parameterized

in Section 4.1, and the cost function is given by

J̃T (e�x,e�u) =

���

Q1/2

R1/2

�
e�x(:, 0)
e�u(:, 0)

�
x0

���
2

2
(41)

with Q = blkdiag(Q , . . . ,Q ,QT ), R = blkdiag(R, . . . , R, 0). We
have:

(1) For any feasible solution {e�x,e�u,⌃} of Problem (40), the LTV
state feedback controller K = e�ue��1

x is feasible for the robust
OCP (4).

(2) With the additional structural constraint ⌃ t,t = 0, t =

1, . . . , T on the filter ⌃, the optimal cost in (40) is an upper
bound on the optimal cost of the robust OCP (4).

Proof. The proof of the first point follows directly from our
derivation of the constraints in (40) from the previous sections. To
prove the second point, denote J⇤T the optimal cost of Problem (4)
and J̃⇤T the optimal cost of Problem (40). With the constraint
⌃ t,t = 0, t = 1, . . . , T , the nominal dynamics of the surrogate
system (21), i.e., when w̃t = 0 for t = 0, . . . , T �1, equals that of
the actual uncertain system (6). Since the set of feasible solutions
e�x,e�u to Problem (40) only constitutes a subset of all robust LTV
state feedback controllers for the robust OCP (4), we have J̃⇤T � J⇤T .

Note that since each entry of dt is lower bounded by �w > 0
from (36), any feasible ⌃ of Problem (40) is invertible. Theorem 2
shows that by solving the quadratic program (40), we can search
for robust LTV state feedback controllers while minimizing an
upper bound on J⇤T . Using the surrogate dynamics (21), we can
further extend our framework to minimize an upper bound on
the worst-case costs of the robust OCP (4).

Corollary 2. Consider the worst-case cost in the robust OCP (4) :

J⇤T ,w = min
⇡0:T�1

max
(�A,�B)2P

wt2W,0tT�1

���

Q1/2

R1/2

�
x
u

� ���
1

. (42)

Let J̃⇤T ,w be the optimal cost of Problem (40) with

J̃T (e�x,e�u) =

���

Q1/2

R1/2

�
e�x(:, 0)
e�u(:, 0)

�
x0

���
1

+

���

Q1/2

R1/2

�
e�x(:, 1 : T )
e�u(:, 1 : T )

� ���
1

.

(43)

Then, we have J̃⇤T ,w � J⇤T ,w .

Proof. Through the triangle inequality and the multiplicativity of
the `1 norm, we have that J̃T (e�x,e�u) defined in (43) is an upper
bound on

max
kw̃t k11,
0tT�1

���

Q1/2

R1/2

�
e�x
e�u

�
ew

���
1

, (44)

which is the worst-case cost for the surrogate system (21) under
the controller K = e�ue��1

x . For any feasible solution {e�x,e�u,⌃}

to Problem (40), the filtered disturbance ⌃ew in the surrogate
dynamics (21) over-approximates the lumped uncertainty in the
actual uncertain system (6). Therefore, Eq. (44) is an upper bound
on J⇤T ,w and we have J̃T (e�x,e�u) � J⇤T ,w . Taking the minimum over
all feasible {e�x,e�u,⌃} gives J̃⇤T ,w � J⇤T ,w .

Remark 1. When the `2 norm is used to define the worst-
case cost J⇤T ,w in (42), we can assume the virtual disturbances
w̃t are bounded in `2 norm rather than `1 norm to simplify
the derivation of an upper bound on J⇤T ,w . With kw̃tk2  1, the
derivation of constraints (36) to (39) follows similarly as in the
`1 case.13 Then, define J̃T (e�x,e�u) as in (43) but with the `1 and
`1-induced norms replaced by their `2 counterparts, and let J̃⇤T ,w
denote the corresponding optimal cost of Problem (40). Following
the proof of Corollary 2, we have J̃⇤T ,w � J⇤T ,w .

5.3. Closed-loop properties

SLS MPC solves the OCP (40) at each time instant and applies
the first optimal control input to drive the system (2) to the next
state. However, as in the uncertainty over-approximation-based
methods (Bujarbaruah et al., 2021, 2022), it is challenging to show
that the OCP (40) is recursively feasible with a fixed horizon T . To
illustrate this, let ⌘t|k denote the predicted lumped uncertainty at
time t in the robust OCP with the initial state x(k). We note that
the constraints in (40) are time-varying, which means the con-
straints on bounding ⌘t|k and ⌘t|k+1 are different, defying the use
of the standard shifting argument (Borrelli et al., 2017, Chapter
12) in the space of system responses to prove recursive feasibility.
On the other hand, the use of the conservative uncertainty over-
approximation (36) implies that the search space of (40) does
not include all robustly feasible LTV state feedback controllers
u = Kx. Therefore, the shifting argument in the controller space
cannot be used either.

To provide closed-loop guarantee of constraint satisfaction and
Input-to-State Stability (ISS), we can equip SLS MPC with the
shrinking horizon strategy shown in Bujarbaruah et al. (2022).
In short, at time k = 0, we solve Problem (40) with horizon
T = N and a robust forward invariant set XT as the terminal
set. We can use the feasible solution at k = 0 to construct a
safe backup policy u = Kx which guarantees that we can drive
the system state into XT in at most N steps. Specifically, at time
0 < k < N , we can apply the controller u(k) =

Pk
i=0 K

k,k�ix(i)
where Kk,k�i are the corresponding matrices drawn from backup
policy K. Then, at time k = N,N + 1, . . ., the robust OCP (4)
rather than Problem (40) is solved exactly with horizon T = 1,
i.e., no conservative uncertainty over-approximation is used, by
enumerating the vertices of the model uncertainty set. Due to
the robust forward invariance of XT , the robust OCP (4) with
horizon T = 1 is always feasible and the closed-loop trajectory
will remain inside XT while observing all the state and input
constraints for k > N . We refer the readers to Bujarbaruah et al.
(2022) for the details of this strategy and the proof of robust
constraint satisfaction and ISS of the closed-loop system.

6. Numerical comparison

In this section, we compare the proposed SLS MPC with ex-
isting robust MPC methods in terms of conservatism (measured

13 With kw̃tk2  1, the diagonal blocks of the filter ⌃ now can only be
parameterized as ⌃ t,0 = �t�1I rather than ⌃ t,0 = diag(dt�1). This allows
rewriting constraints like (29) as convex ones even when the `2 norm is used.
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Table 1
Tube-based MPC methods.
Method Controller Tube Vertex enumeration of tube
Tube-A (Langson et al., 2004) Barycentric Homothetic Yes
Tube-B (Lorenzen et al., 2019) Kxt + vt Homothetic Yes
Tube-C (Köhler et al., 2019) Kxt + vt Homothetic No
Tube-D (Lu & Cannon, 2019) Kxt + vt Hyperplane No

Table 2
Uncertainty over-approximation-based MPC methods.
Method Features
Lumped-Disturbance-MPC

(Bujarbaruah et al., 2021)
Over-approximate lumped
uncertainty globally by a
norm-bounded additive disturbance
signal.

Offline-Tightening-MPC

(Bujarbaruah et al., 2022)
Compute constraint tightening
margins offline. Search controller
online.

SLS-MPC (our method) Search lumped uncertainty
over-approximation and controller
jointly in the space of system
responses.

by the size of the feasible domain) and computational com-
plexity (measured by solver time) through extensive simula-
tion. Two classes of baselines, i.e., the tube-based (Köhler et al.,
2019; Langson et al., 2004; Lorenzen et al., 2019; Lu & Cannon,
2019) and uncertainty over-approximation-based methods (Bu-
jarbaruah et al., 2021, 2022), are considered. The main features
of each method are summarized in Tables 1 and 2. Through the
numerical examples, we demonstrate that

(1) Conservatism (measured by the size of the feasible do-
main): SLS MPC consistently outperforms all baseline
methods and by a large margin in the face of large un-
certainty. Under varying uncertainty parameters, the fea-
sible domain of SLS MPC is always more than 90% of
the maximal robust control invariant set (the theoretically
largest feasible domain for any robust MPC method) in the
tested examples while the baseline methods become overly
conservative quickly as the uncertainty becomes large.

(2) Computational complexity: SLS MPC achieves comparable
solver time as the baselines. Specifically, it has the same
level of complexity as the uncertainty over-approximation-
based methods.

6.1. Interpretation of the results

SLS MPC achieves significant improvement in conservatism
thanks to (a) the LTV state feedback controller parameterization
u = Kx, and (b) the novel uncertainty over-approximation
method (see Section 4). We note that there is naturally a tension
between controller parameterization and constraint tightening
in solving the robust OCP (4), since considering a more com-
plex controller class necessarily makes it harder to guarantee
robust satisfaction of constraints. The performance of SLS MPC is
attributed to balancing both aspects in a desirable manner.

Conservatism: As shown in Table 1, existing tube-based meth-
ods are mainly restricted to using a relatively simple controller
parameterization ut = Kxt + vt where the time-invariant pre-
stabilizing feedback gain K is chosen offline instead of optimized
online. In contrast, SLS MPC utilizes the LTV state feedback con-
troller u = Kx which contains ut = Kxt + vt as a subclass
and searches for K online. Compared with the uncertainty over-
approximation-based methods (Bujarbaruah et al., 2021, 2022)

shown in Table 2, SLS MPC adopts a novel constraint tighten-
ing approach that simultaneously over-approximates the lumped
uncertainty by a virtual filtered additive disturbance signal and
searches for the controller.

Computational complexity: The use of LTV state feedback
controllers necessarily leads to the quadratic growth of the num-
ber of decision variables in the horizon. This holds true for
the uncertainty over-approximation-based methods (Bujarbaruah
et al., 2021, 2022) and SLS MPC. In contrast, the number of
decision variables is often linear in the horizon in tube-based
MPC. Therefore, we expect the solver time of the uncertainty
over-approximation-based methods, including SLS MPC, to be
larger than that of tube-based MPC. Fig. 7 supports our analysis,
but it also suggests that SLS MPC may even be preferable to some
tube-based methods when the uncertainty is large.

We provide a detailed explanation of both tube-based and un-
certainty over-approximation-based baseline methods and their
implementation in Appendix A.3. We note that to the best of
our knowledge, such a comprehensive numerical comparison
and evaluation of existing robust MPC methods have not been
done before. We make our codes for implementing SLS MPC
and all listed baselines publicly available at https://github.com/
ShaoruChen/Polytopic-SLSMPC. All the experiments in this sec-
tion were implemented in MATLAB R2019b with YALMIP (Lof-
berg, 2004) and MOSEK (ApS, 2019) on an Intel i7-6700K CPU.

6.2. Test example

We evaluate the conservatism of SLS MPC and other baseline
methods on a 2-dimensional system adapted from Bujarbaruah
et al. (2022) in Section 6.3.1. The only difference from the exam-
ple in Bujarbaruah et al. (2022) is that we use a different model
uncertainty assumption, i.e., we only consider uncertainty in one
entry of the dynamics matrices A and B, to allow varying the
uncertainty levels in a wide range and highlight the differences
between the tested methods. In Section 6.3.2, randomly gener-
ated systems are used for conservatism comparison. Experiments
on the original example in Bujarbaruah et al. (2022) are shown in
Appendix A.4.

The system nominal dynamics and problem constraints are
given as

Â =


1 0.15
0.1 1

�
, B̂ =


0.1
1.1

�
,

X =

n
x 2 R2

|


�8
�8

�
 x 


8
8

�o
,

U = {u 2 R| � 4  u  4}.

(45)

We consider the following polytopic model uncertainty:

�A 2 Conv
n

✏A 0
0 0

�
,


�✏A 0
0 0

�o
,

�B 2 Conv
n

0
✏B

�
,


0

�✏B

�o (46)

and the norm bounded additive disturbances kwtk1  �w for
robust MPC.14 The uncertainty parameters ✏A, ✏B and �w are to be
specified. The cost weights are chosen as Q = 10I, R = 1,QT =

10I .

14 In this case, according to (31), we have �w,i = �w for i = 1, . . . , nx.

8



S. Chen, V.M. Preciado, M. Morari et al. Automatica 162 (2024) 111431

6.3. Conservatism comparison

6.3.1. Feasible domain comparison
We compare the conservatism of our proposed method SLS-

MPC using the full filter parameterization and the baseline ro-
bust MPC methods for varying values of (✏A, ✏B, �w) and the
horizon. For each fixed (✏A, ✏B, �w), we first apply an iterative
algorithm (Grieder et al., 2003) to find the maximal robust control
invariant set and use it as the terminal set XT . By construction, XT
gives the largest feasible domain for any robust MPC algorithm
and can be achieved by the exact yet computationally expensive
dynamic programming approach (Borrelli et al., 2017, Chapter
15). We carry out a 10 ⇥ 10 uniform grid search of initial con-
ditions x0 over XT and solve all robust MPC formulations with
the sampled x0 using horizon T = 3 and T = 10. The coverage
of the feasible domain of each MPC method is given by the ratio
of sampled feasible initial conditions and a coverage close to 1
indicates minimal conservatism of the method even compared
with dynamic programming. In Fig. 2, we plot the coverages of the
aforementioned robust MPC methods under varying (✏A, ✏B, �w)
values for horizon T = 3 and T = 10, respectively. In Fig. 3, we
plot the feasible domain of each robust MPC method under the
parameter ✏A = 0.4, ✏B = 0.1, �w = 0.1 and horizon T = 3
on a 20 ⇥ 20 grid of initial conditions. The feasible domain is
estimated as the convex hull of the feasible initial conditions of
each method.

Fig. 2 shows that SLS-MPC consistently outperforms all other
methods for a wide range of uncertainty parameters and Fig. 3
provides a visual illustration. In all cases SLS-MPC achieves a
coverage greater than 90%. Importantly, from Fig. 2 we observe
that the conservatism of SLS-MPC remains almost unaffected
as the horizon increases from T = 3 to T = 10 while there
is clear conservatism deterioration for all other methods. For
example, the coverage of Offline-Tightening-MPC is similar
to those of the tube-based methods with horizon T = 3 but drops
considerably with horizon T = 10 (see Appendix A.3.2.2 for a
detailed explanation).

Remark 2. Although we do not provide a recursive feasibility
guarantee with a fixed horizon for SLS-MPC, Figs. 2 and 3 suggest
that in practice the feasible domain of SLS-MPC with a fixed hori-
zon can be large enough to overcome the effect of the shrinking
horizon strategy discussed in Section 5.3.

6.3.2. Randomly generated examples
Following the problem setup in Section 6.2 with the horizon

T = 10, we fix the uncertainty parameters ✏A = 0.2, ✏B =

0.1, �w = 0.2. Then, we randomly generate nominal dynamics
Â, B̂ by sampling their entries uniformly from a bounded interval
and scaling the spectral radius of Â to a random number in
[0.5, 2.5]. In Fig. 4 we plot the coverages of different robust MPC
methods over 130 randomly generated examples, arranged in an
ascending order of the coverages of SLS-MPC. We observe that
SLS-MPC achieves the best coverage in almost all examples while
no method can consistently achieve the second-best coverage. For
a large portion of the randomly generated examples, the coverage
gap between SLS-MPC and the second-best method is significant.

8 The feasible domain of Lumped-Disturbance-MPC is empty in this
example and therefore is not plotted.

Fig. 2. Coverage comparison of different robust MPC methods with different
uncertainty parameters and horizons (Left: horizon = 3. Right: horizon = 10).
SLS-MPC consistently outperforms all other baselines and achieves coverages
over 90%.

Fig. 3. Feasible domain comparison of robust MPC methods with uncertainty
parameters ✏A = 0.4, ✏B = 0.1, �w = 0.1, and horizon T = 3. The gray dots
denote the initial states sampled from a 20 ⇥ 20 grid.8
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Fig. 4. Coverage comparison of robust MPC methods with horizon T = 10 on
randomly generated examples.

6.3.3. Effects of tube cross-sections
In our experiments, we note that the design of the tube cross-

section can significantly affect the performance of tube-based
MPC. Therefore, for each problem setup, we solved tube-based
MPC with three common choices of tube cross-sections in the
literature: the minimal robust forward invariant set (Kouramas
et al., 2005), the maximal robust forward invariant set (Pluymers
et al., 2005), the �-contractive set (Rakovi¢, 2016, Chapter 5.6).
These methods require first computing a robustly stabilizing con-
troller ut = Kxt for the uncertain system xt+1 = (Â+�A)xt + (B̂+

�B)ut with (�A, �B) 2 P , which can be achieved by solving an
SDP (Boyd et al., 1994). We choose such K as the pre-stabilizing
feedback gain for tube-based MPC and use it to find the tube
cross-section.

Fig. 5 demonstrates the dependence of the conservatism of
tube-based robust MPC methods on the choice of the tube cross-
section. We observe that (i) the choice of the cross-section can
greatly affect the conservatism, and (ii) there is no particular
choice that consistently performs better than the others for differ-
ent levels of uncertainties. Importantly, improperly chosen tube
cross-sections may cause tube-based MPC to be overly conserva-
tive even when the uncertainty level is small, as demonstrated
by the cases of ✏A = 0.1 in Fig. 5(d) and ✏A = 0.25 in Fig. 5(b).
Therefore, in practice it requires manual tuning to figure out
which cross-section to use, and the computation of the aforemen-
tioned tube cross-sections can be challenging when the system
dimension increases. In the feasible domain comparison shown
in Figs. 2 and 4, for each tube-based method, we report the best
coverage out of all three tube cross-sections.

6.3.4. Evaluation of filter parameterization in SLS-MPC
We now investigate how the parameterization of the filter ⌃

affects the conservatism of SLS-MPC. With the full parameteri-
zation, the filter ⌃ is a block-lower triangular matrix while with
the diagonal parameterization, all off-diagonal blocks are set zero.
Fig. 6 shows that the full parameterization of the filter reduces
the conservatism of SLS-MPC. When either the model uncertainty
or the additive disturbance becomes large, the diagonal parame-
terization of the filter is not sufficient to mitigate the effects of
uncertainties. The average solver time of SLS-MPC with the full
(diagonal) parameterization is 0.0703(0.0601) seconds in Fig. 6(a)
and 0.0764(0.0685) seconds in Fig. 6(b).

6.4. Solver time comparison

In Fig. 7, we plot the average solver time of each robust MPC
method in the conservatism comparison experiment shown in
Section 6.3.1 with varying uncertainty parameters9 and horizon
T = 10. Data is left blank if a robust MPC method was not feasible
on any sampled initial conditions. We observe that the solver
time of Tube-C and Tube-D is normally an order of magnitude
smaller than that of the other methods. The average solver times
of the uncertainty over-approximation-based methods SLS-MPC,
Lumped-Disturbance-MPC, Offline-Tightening-MPC are
close since these methods all search for an LTV state feed-
back controller. We observe that the solver time of robust MPC
methods can significantly increase when a challenging prob-
lem instance (e.g., those with large uncertainty parameters) is
encountered.

7. Conclusion

We proposed a novel robust MPC method for uncertain linear
systems subject to both polytopic model uncertainty and additive
disturbances. Using System Level Synthesis, our method searches
for a robust LTV state feedback controller in the space of closed-
loop system responses which allows efficient over-approximation
of the effects of uncertainty and optimization over upper bounds
on the worst-case costs with respect to the model uncertainty.
Numerical examples demonstrate that our method can signif-
icantly reduce the conservatism compared with a wide range
of tube-based and uncertainty over-approximation-based robust
MPC methods.

Appendix

A.1. Proof of Lemma 1

As commented in Section 3.2, for any realization of
{�A,�B,w}, the values of the lumped uncertainty ⌘ are given
by (16) and uniquely defined. We first assume Eq. (22),
i.e., R(⌘; {�x,�u}) ✓ R(⌃ew) holds. This means for any realiza-
tion of uncertainty and the induced lumped uncertainty values
⌘?, we can always find ew? 2 Wew such that ⌘? = ⌃ew?. Plugging
ew? into (16) readily gives that ew? is a solution to (23). Therefore,
condition (22) indicates that Eq. (23) holds robustly.

Next, we assume Eq. (23) holds robustly. For any realization
of {�A,�B,w}, let ew? denote the solution to (23) and define
⇠?

= ⌃ew?. Let ⌘? denote the solution to (16) with the same
uncertainty parameters. Due to the uniqueness of the solution,
we have ⌘? = ⇠?

= ⌃ew?. Therefore, for any ⌘? 2 R(⌘; {�x,�u}),
we can find ew? 2 Wew such that ⌘? = ⌃ew?, and hence (22) holds.

A.2. Proof of Corollary 1

1. For a given controller K, similar to (11), the system re-
sponses from ew to (x,u) are given by e�x = (I � Z(Â + B̂K))�1⌃,
e�u = K(I � Z(Â + B̂K))�1⌃ and satisfy the affine constraint (26).

2. First note that the block diagonal of e�x and ⌃ are equal
according to (26). Then, ⌃ being invertible indicates that e��1

x
exists. For any {e�x,e�u} satisfying (26), we synthesize the state
feedback controller as K = e�ue��1

x which satisfies I�Z Â�Z B̂K =

⌃e��1
x by multiplying Eq. (26) with e��1

x from right. Then we have
(I � Z(Â+ B̂K))�1⌃ = e�x⌃

�1⌃ = e�x and K(I � Z(Â+ B̂K))�1⌃ =

e�ue��1
x e�x = e�u.

9 For tube-based MPC, the cross-section that gives the best coverage is used
to generate this figure.
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Fig. 5. The coverage of tube-based robust MPC methods with different choices of the tube cross-section. The tube cross-section can be chosen as the minimal
nominal forward invariant set (min-inv), maximal robust forward invariant set (robust-foward-inv), or the maximal robust contractive set (robust-contractive). See
Section 6.3.3 for details. The coverage is reported for ✏B = 0.1, �w = 0.1 and varying sizes of ✏A .

Fig. 6. Feasible domain coverage of SLS-MPC using the full (blue) and diagonal
(orange) parameterization of the filter for different uncertainty parameters.

Fig. 7. Average solver time of different robust MPC methods with horizon
T = 10 in the coverage evaluation (see Fig. 2) under different uncertainty
parameters.

A.3. Robust MPC baselines

Here we explain the features and implementation of the ro-
bust MPC baselines used in Section 6. These methods mainly vary
in (i) how to parameterize the control policy ⇡t and (ii) how
to handle the polytopic model uncertainty such that the state
and input constraints are robustly satisfied under the synthesized
policy ⇡t .

A.3.1. Tube-based robust MPC
Tube-based methods, which aim to synthesize a robust con-

troller and an associated tube to contain all possible realization of

system trajectories, are popular in robust MPC. Tube-based MPC
typically follows the following scheme:

(1) Parameterize the control policy ⇡t .
(2) Parameterize the tube cross-sections Xt .
(3) Enforce the tube containment constraints inductively:

xt 2 Xt ) xt+1 2 Xt+1,

8(�A, �B) 2 P, 8wt 2 W, t = 0, . . . , T � 1.
(A.1)

and guarantee robust satisfaction of all state and input
constraints:

Xt ✓ X , ut = ⇡t (xt ) 2 U, 8xt 2 Xt , t = 0, . . . , T � 1,
x0 2 X0,XT 2 XT .

(A.2)

(4) Specify the cost function and solve a robust OCP with
constraints (A.1) and (A.2).

Steps 1 to 3 in the above scheme jointly determine the con-
servatism and computational complexity of a tube-based robust
MPC method. Next, we review all four tube-based robust MPC
baselines shown in Table 1.

A.3.1.1. Tube-A. The first method which we denote Tube-A is
from Langson et al. (2004). In Tube-A, a homothetic tube (Rakovi¢
et al., 2012b) is applied:

Xt = zt + ↵tX, t = 1, . . . , T , (A.3)

where zt 2 Rnx and ↵t � 0 is a scalar. The tube cross-sections
Xt at different time instants are restricted to be transitions and
dilations of a given polytope X.

Let nJ denote the number of vertices of X and {xj}nJj=1 denote
the vertices of X. Since Xt has the same number of vertices as X,
we can define {xjt}

nJ
j=1 as the vertices of Xt similarly. For controller

design, Tube-A associates a control input uj
t with each vertex xjt

of Xt , and parameterize the feedback policy ⇡t in a barycentric
manner:

ut = ⇡t (xt ) =

nJX

j=1

�ju
j
t ,

where �j satisfies xt =

nJX

j=1

�jx
j
t , �j � 0,

nJX

j=1

�j = 1.

(A.4)

With the homothetic tube and barycentric controller parame-
terization, constraints (A.1) and (A.2) can be enforced by only
considering the vertex states xjt and control inputs uj

t . In this
process, both the vertices of the tube cross-section Xt and the
polytopic model uncertainty set P are enumerated.

A.3.1.2. Tube-B. In Lorenzen et al. (2019), the homothetic tube
parameterization (A.3) is applied with a pre-stabilizing controller
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Table A.1
Coverage comparison of robust MPC methods with horizon T = 3 and T = 10 for the example from Bujarbaruah et al. (2022). The 3-tuple denotes the coverages of
tube-based methods using different cross-sections.
Method Tube-A Tube-B Tube-C Tube-D SLS-MPC Lumped-Disturbance Offline-Tightening

Coverage (hor. = 3) (0.66, 1, 1) (0, 1, 1) (0.12, 0.78, 0.88) (0.95, 1, 1) 0.98 0.80 0.85
Coverage (hor .= 10) (0.34, 1, 1) (0, 1, 0.88) (0, 0.39, 0.05) (0.93, 1, 0.89) 0.98 0.49 0.02

⇡t (xt ) = Kxt + vt . We denote this method as Tube-B where the
time-invariant feedback gain K is found offline by solving an SDP
such that ut = Kxt is robustly stabilizing for the uncertain sys-
tem (2) with polytopic model uncertainty. The bias terms vt of the
control inputs are optimized online together with the center zt
and scaling parameter ↵k of the cross-sections. Constraints (A.1)
and (A.2) are enforced using a dual formulation and enumeration
of the vertices of each cross-section Xt .

A.3.1.3. Tube-C. Köhler et al. (2019) propose a tube-based robust
MPC method that applies a homothetic tube (A.3) and a pre-
stabilizing feedback controller ut = Kxt + vt . Compared with
Tube-B, this method bounds the effects of uncertainty on the
dilation of the tube cross-sections offline instead of using vertex
enumeration of the tube cross-section. Furthermore, in Köhler
et al. (2019) the centers of the cross-sections Xt are chosen as
the nominal trajectory x̂t evolved according to x̂t+1 = Âx̂t +

B̂(Kx̂t + vt ); in contrast, in Tube-A and Tube-B, the centers zt of
Xt are treated as free variables. We label the robust MPC method
proposed in Köhler et al. (2019) as Tube-C.

A.3.1.4. Tube-D. We denote the robust MPC method proposed
in Lu and Cannon (2019) as Tube-D. It uses the pre-stabilizing
feedback controller ut = Kxt + vt but parameterizes the cross-
sections as Xt = {x 2 Rnx | Vx  �t}, where V 2 Rr⇥nx

denotes a fixed set of hyperplanes that define a polytope and the
hyperplane offsets �t 2 Rr are optimized online. This formulation
of Xt is more flexible than the homothetic tube (A.3), but treating
�t as optimization variables give rise to bilinear terms of the form
⇤�t in enforcing constraints (A.1) and (A.2), where ⇤ denotes
the dual variables in a Lagrangian function. To avoid numerical
intractability, the dual variables ⇤ are fixed offline by solving a
set of linear programs.

A.3.2. Uncertainty over-approximation-based MPC
For the uncertain system xt+1 = Âxt + B̂ut + wt with only

additive disturbances, Goulart et al. (2006) prove that the LTV
state feedback controller u = Lx + g is equivalent to the dis-
turbance feedback controller u = Mw + v.10 To extend the
state/disturbance feedback approach to handle both the polytopic
model uncertainty and the additive disturbances, the effects of
uncertainty have to be properly over-approximated for the robust
OCP to be numerically tractable.

A.3.2.1. Lumped-disturbance-MPC. A simple extension of state/
disturbance feedback controllers to handle model uncertainties is
to uniformly over-approximate the perturbation �Axt +�But +wt
by a norm-bounded disturbance w̄t , and apply standard
state/disturbance feedback controller design on the system xt+1 =

Âxt + B̂ut + w̄t . Since the state constraint X and input constraint
U are compact sets, an upper bound on k�Axt + �But + wtk1

can be easily obtained using the triangle inequality and sub-
multiplicativity of norms as shown in Bujarbaruah et al. (2021).
We denote this method proposed in Bujarbaruah et al. (2021) as
Lumped-Disturbance-MPC. Despite being simple, the uniform
norm-bounded uncertainty over-approximation can be conserva-
tive since it is agnostic to the current state of the system. Our

10 We refer the readers to Goulart et al. (2006) for the exact parameterization
of L, g,M, v.

proposed method, SLS MPC, resolves this issue by maintaining the
dependence of the uncertainty over-approximation on the system
states.

A.3.2.2. Offline-tightening-MPC. Bujarbaruah et al. (2022) propose
a constraint tightening method for the robust OCP (4) such that
the disturbance feedback controller parametersM and v explicitly
control the tightening margin. However, the constraint tighten-
ing parameters also heavily rely on offline computed relaxation
bounds that hold for all possible open-loop control inputs, which
could already become conservative before the disturbance feed-
back controller is plugged in. We denote this method from Bu-
jarbaruah et al. (2022) as Offline-Tightening-MPC. In the
implementation of this method, the constraint tightening margins
are computed offline using a hybrid approach of uncertainty
set vertex enumeration and norm bounds over-approximation
(see Bujarbaruah et al. (2020, Appendix A.4)). Due to the com-
binatorial complexity, we only enumerate the vertices of the
uncertainty set (46) for a truncation horizon of N = 3 and
use norm bounds over-approximation for the rest T � N predic-
tive steps. Therefore, the conservatism of such offline computed
margins increases as the MPC horizon T becomes large.

A.4. Additional conservatism comparison results

In this section, we compare the coverages of all robust MPC
methods for the example from Bujarbaruah et al. (2022) where
the model uncertainty is given by

�A 2 Conv
n

0 ±✏A
±✏A 0

�o
,

�B 2 Conv
n

0
±✏B

�
,


±✏B
0

�o
,

(A.5)

with ✏A = 0.1, ✏B = 0.1, and the additive disturbances are
bounded by kwtk1  0.1. This model uncertainty set has 16
vertices in the joint space of (�A, �B), for which the maximal
robust control invariant set becomes empty at ✏A = 0.14. This
prevents us from comparing different methods over a range of
uncertainty parameters.

In Table A.1, we report the coverages of the robust MPC
methods with horizon T = 3 and T = 10. For each tube-
based MPC method, we report the coverage by (c1, c2, c3) where
c1, c2, c3 denote the coverage obtained with the minimal robust
forward invariant set, the maximal robust forward invariant set,
and the �-contractive set as the tube cross-sections, respectively
(see Section 6.3.3 for details). The best coverage is highlighted in
boldface. We observe that the coverage of SLS-MPC is among the
best and the conservatism of the tube-based methods depends
on the cross-section used. These observations are consistent with
what was shown in Section 6.3.
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