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New structure on the quantum alcove model with applications
to representation theory and Schubert calculus

Takafumi Kouno, Cristian Lenart, and Satoshi Naito

Abstract. The quantum alcove model associated to a dominant weight plays an important role
in many branches of mathematics, such as combinatorial representation theory, the theory of
Macdonald polynomials, and Schubert calculus. For a dominant weight, it is proved by Lenart–
Lubovsky that the quantum alcove model does not depend on the choice of a reduced alcove
path, which is a shortest path of alcoves from the fundamental one to its translation by the given
dominant weight. This is established through quantum Yang–Baxter moves, which biject the
objects of the models associated to two such alcove paths, and can be viewed as a general-
ization of jeu de taquin slides to arbitrary root systems. The purpose of this paper is to give a
generalization of quantum Yang–Baxter moves to the quantum alcove model corresponding to
an arbitrary weight, which was used to express a general Chevalley formula for the equivariant
K-group of semi-infinite flag manifolds. The generalized quantum Yang–Baxter moves give
rise to a “sijection” (bijection between signed sets), and are shown to preserve certain important
statistics, including weights and heights. As an application, we prove that the generating func-
tion of these statistics does not depend on the choice of a reduced alcove path. Also, we obtain
an identity for the graded characters of Demazure submodules of level-zero extremal weight
modules over a quantum affine algebra, which can be thought of as a representation-theoretic
analogue of the mentioned Chevalley formula.

1. Introduction

The quantum alcove model was introduced in [12]. In [17] it was proved to be a
uniform model for tensor products of single-column Kirillov–Reshetikhin crystals of
quantum affine algebras, and its relevance to the theory of Macdonald polynomials
was also discussed. Crystals are colored directed graphs encoding the structure of
quantum algebra representations when the quantum parameter q goes to 0 (see [7]).
The quantum alcove model generalizes the alcove model in [19], which has a similar
representation-theoretic application [20].
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Let � be a dominant weight for a fixed finite-type root system �, which is irre-
ducible or of type A1 �A1, and let � be a reduced �-chain (of roots), or equivalently,
a shortest path of alcoves from the fundamental one to its translation by � (see [19]).
One associates to � (viewed as a sequence) a certain family A.�/ of subsets of its
indices, called admissible subsets. Here we remark that there are two or more reduced
�-chains in general, and therefore the model is not uniquely determined (for the fixed
dominant weight �). However, for any two reduced �-chains �1 and �2, there exists a
bijection between A.�1/ and A.�2/ which preserves the corresponding crystal oper-
ators, as well as some important statistics: wt.�/, height.�/, down.�/, and end.�/; the
precise definitions of these statistics are given in Section 2.3. The construction of this
bijection was given in [13] in terms of the so-called quantum Yang–Baxter moves,
which are explicitly described by reduction to the rank 2 root systems. The main idea
is the following: given �1 and �2 as above (and, in fact, for arbitrary �), it is known
from [19] that �2 is obtained from �1 by repeated application of a certain procedure
called a “Yang–Baxter transformation”, see Section 3.1; hence it suffices to construct
a bijection (i.e., a quantum Yang–Baxter move) between A.�1/ and A.�2/ when �1
and �2 are related by a Yang–Baxter transformation.

The quantum Yang–Baxter moves generalize the Yang–Baxter moves for the al-
cove model, which were defined and studied in [11]. It is pointed out in [13] that the
quantum Yang–Baxter moves realize the combinatorialR-matrix, namely the (unique)
affine crystal isomorphism permuting factors in a tensor product of single-column
Kirillov–Reshetikhin crystals. It is also explained that these moves can be viewed as
a generalization of jeu de taquin slides (for semi-standard Young tableaux, relevant to
type A) to arbitrary root systems.

For an arbitrary (not necessarily dominant) weight �, we also consider a (not
necessarily reduced) �-chain � (of not necessarily positive roots). For an arbitrary ele-
mentw of the finite Weyl groupW , let A.w;�/ denote the collection ofw-admissible
subsets. This generalization is introduced in [14,15] to describe the Chevalley formula
for the equivariant K-group of semi-infinite flag manifolds, and for the equivariant
quantum K-theory of flag manifolds G=B (both of arbitrary type), cf. also [8, 21].
We also define statistics wt.A/, height.A/, down.A/, end.A/ for A 2 A.w; �/ in the
same way as for A 2 A.�/ D A.e; �/ with � dominant, where e 2 W is the identity;
in addition, we define n.A/ 2 Z�0.

Our main result is the existence of a very good map from A.w; �1/ to A.w; �2/

which preserves the statistics above, where �2 is obtained from �1 by a Yang–Baxter
transformation.

Theorem 1 (Theorems 3.2 and 3.4). Let A.w; �1/ and A.w; �2/ be quantum alcove
models associated to the same weight such that �2 is obtained from �1 by a Yang–
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Baxter transformation. Then, there exist subsets

A0.w; �1/ � A.w; �1/ and A0.w; �2/ � A.w; �2/;

which satisfy the following.

(1) There exists a “sign-preserving” bijection Y WA0.w;�1/! A0.w;�2/, which
also preserves the statistics wt.�/, height.�/, down.�/, and end.�/.

(2) If we set

AC
0 .w; �1/ WD A.w; �1/ n A0.w; �1/;

AC
0 .w; �2/ WD A.w; �2/ n A0.w; �2/;

then there exists a “sign-reversing” involution I1 (resp., I2) on AC
0 .w; �1/

(resp., AC
0 .w; �2/), which preserves the statistics wt.�/, height.�/, down.�/,

and end.�/.

Here we should mention that, in contrast to the case of dominant weights, there
does not necessarily exist a bijection from the whole of A.w; �1/ onto the whole of
A.w;�2/. Indeed, the cardinalities of the sets A.w;�1/ and A.w;�2/ are, in general,
different; for details, see Example 3.1.

The map Y in Theorem 1 can be regarded as a generalization of the bijection
described in terms of quantum Yang–Baxter moves when � is a dominant weight.
Although the map Y is not a bijection from the whole of A.w; �1/ onto the whole of
A.w; �2/, there exist nice involutions I1, I2 outside the domain of Y and outside the
image of Y . If we regard A.w; �i /, i D 1; 2, as a signed set equipped with the sign
function A 7! .�1/n.A/, then the collection .I1; I2; Y / of maps is a “sijection” (i.e.,
a signed bijection) A.w; �1/ ) A.w; �2/ which preserves wt.�/, height.�/, down.�/,
and end.�/; the notion of a sijection was introduced in [4, Section 2].

Recall that an element of the affine Weyl group Waf can be written as x D wt� ,
with w in the finite Weyl group W and � in the coroot lattice Q_. For A.w; �/,
with � a (not necessarily reduced) �-chain for an arbitrary weight �, and x D wt�
in Waf, we define a generating function G�.x/ of the statistics wt.�/, end.�/, height.�/,
and down.�/ as follows:

G�.x/ WD

X
A2A.w;�/

.�1/n.A/q� height.A/�h�;�iewt.A/ end.A/t�Cdown.A/:

We also think of G� as a linear function on the group algebra of Waf with the coef-
ficients introduced above. In the case that � is a dominant weight and x D e, this
function is a refinement of the specialization at t D 0 of the symmetric Macdonald
polynomial P�.q; t/, since we know from [17, Theorem 7.9] that

P�.q; 0/ D

X
A2A.�/

qheight.A/ewt.A/:
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There is a similar relationship in the case of nonsymmetric Macdonald polynomi-
als [18].

The existence of our generalized quantum Yang–Baxter moves implies the inde-
pendence of the generating function G�.x/, and thus of the quantum alcove model
for an arbitrary weight, from the associated chain of roots � . Here we need � to be
“weakly reduced,” which means that it does not contain both a simple root and its
negative.

Theorem 2 (Theorem 5.6). Let � be an arbitrary weight, and x 2 Waf. Given weakly
reduced �-chains �1 and �2, we have G�1

.x/ D G�2
.x/.

We will now discuss several applications of Theorem 2 and, implicitly, of the
generalized quantum Yang–Baxter moves underlying it.

We give a combinatorial realization of the symmetry of the general Chevalley for-
mula in [14, 15] coming from commutativity in equivariant K-group. Indeed, given
arbitrary weights �, �, we can successively apply the Chevalley formula for the mul-
tiplication by the classes of the line bundles corresponding to them, in either order.
The fact that the result is the same is expressed by the following identity, where �1 is
a �-chain, �2 is a �-chain, and ı indicates composition:

G�1
ı G�2

.x/ D G�2
ı G�1

.x/: (1.1)

It will be shown that (1.1) is realized combinatorially via successive application of
the sijection in Theorem 1, assuming that the concatenation of �1 and �2 is weakly
reduced.

On another hand, we use Theorem 2 to obtain an identity for the graded charac-
ters of Demazure submodules of level-zero extremal weight modules over a quantum
affine algebra, which can be viewed as a representation-theoretic analogue of the gen-
eral Chevalley formula in [14, 15]. For a dominant weight � and an element x of
the affine Weyl group, let V �

x .�/ denote the Demazure submodule of the level-zero
extremal weight module V.�/ of extremal weight � over a quantum affine algebra.
For an arbitrary weight �, let Par.�/ denote the set of certain tuples � of partitions
bounded by �, to which we assign the quantities j�j and �.�/; for the definitions of
Par.�/, j�j, and �.�/, see (5.3) and (5.4) in Section 5.3.

Theorem 3 (Theorem 5.16). Let � be a dominant weight, and x D wt� 2 Waf. Take
an arbitrary weight � such that �C � is dominant, and let � be a reduced �-chain.
Then we have

gchV �
x .�C �/

D

X
A2A.w;�/

X
�2Par.�/

.�1/n.A/q� height.A/�h�;�i�j�jewt.A/ gchV �
end.A/t�Cdown.A/C�.�/

.�/:
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The right-hand side of the above formula is proved to be identical to zero if
�C � … PC, see Appendix B. In the case � D 0, this proof provides a combinatorial
analogue of the vanishing of the 0-th cohomology of the semi-infinite flag manifold
for line bundles associated to weights that are not dominant, see [8,21] and the details
in Appendix B.

Here we should mention that, in [3], an identity for generalized Weyl modules
similar to the one in Theorem 3 is obtained in the case that � is a fundamental
weight $i , i 2 I ; a generalized Weyl module can be viewed as the q D 1 limit of a
certain finite-dimensional quotient of a Demazure submodule of a level-zero extremal
weight module over the quantum affine algebra Uq.gaf/ associated to the affine Lie
algebra gaf (see [22] for an explicit relation between the graded characters of these
modules).

The proof of the general Chevalley formula for semi-infinite flag manifolds in [14,
15] can be considerably simplified by using Theorem 2, in a way similar to the proof
of Theorem 3; for a sketch of the combinatorial derivation of the general Chevalley
formula, see [10, Section 4, Proof of Theorem 10]. Alternatively, the general Cheval-
ley formula can be deduced from Theorem 3 by exactly the same argument as that
in [8] and [21]. Conversely, the general Chevalley formula implies Theorem 3 for �
sufficiently dominant, but not for an arbitrary dominant �; in particular, we cannot set
� D 0. In this sense, Theorem 3 and the corresponding vanishing mentioned above
are slightly stronger than the general Chevalley formula.

In conclusion, the generalized quantum Yang–Baxter moves add very useful struc-
ture to the quantum alcove model for an arbitrary weight.

This paper is organized as follows. In Section 2, we fix our basic notation, and
recall the definitions and some properties of the quantum Bruhat graph and the quan-
tum alcove model. In Section 3, we state our main results precisely; the proofs are
given in Section 4. Finally, we prove the equality between the generating functions
associated to two reduced �-chains, and derive the identity above for the graded char-
acters of (level-zero) Demazure submodules in Section 5.

2. Preliminaries

We fix our basic notation in this paper. Also, we recall the definitions and some prop-
erties of the quantum Bruhat graph and the quantum alcove model.
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2.1. Basic notation

Throughout this paper, let g be a complex simple Lie algebra or the complex Lie alge-
bra of type A1 � A1, with Cartan subalgebra h � g. We denote by h�; �i the canonical
pairing of h and h� WD HomC.h;C/.

Let� denote the root system of g, with�C �� the set of all positive roots. Let I
be the set of indices of the Dynkin diagram of g, and let ˛i , i 2 I , be the simple roots
of �. For ˛ 2 �, we define sgn.˛/ 2 ¹1;�1º and j˛j 2 �C by

sgn.˛/ WD

´
1 if ˛ 2 �C;

�1 if ˛ 2 ��C;

j˛j WD sgn.˛/˛:

We set
Q WD

X
i2I

Z˛i and Q_
WD

X
i2I

Z˛_
i ;

where ˛_ is the coroot of ˛ 2 �; also, we set

Q_;C
WD

X
i2I

Z�0˛
_
i :

Let W D hsi j i 2 I i be the Weyl group of g, with length function `WW ! Z�0

and the longest element wı 2 W ; here, for ˛ 2 �C, s˛ 2 W denotes the reflection
corresponding to ˛, and si D s˛i

is the simple reflection for i 2 I .
For each i 2 I , let $i denote the fundamental weight corresponding to ˛i . Let

P WD

X
i2I

Z$i

be the weight lattice of g, with

PC
WD

X
i2I

Z�0$i

the set of dominant weights; also, we set h�
R WD P ˝Z R.

2.2. The quantum Bruhat graph

We recall the definition of the quantum Bruhat graph, introduced in [1]. We set

� WD
1

2

X
˛2�C

˛:
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Definition 2.1 ([1, Definition 6.1]). The quantum Bruhat graph QBG.W / is the
�C-labeled directed graph whose vertices are the elements of W and whose edges
are of the following form: x

˛
�! y, with x;y 2W and ˛ 2�C, such that y D xs˛ and

either of the following (B) or (Q) holds:

(B) `.y/ D `.x/C 1;

(Q) `.y/ D `.x/ � 2h�; ˛_i C 1.

If (B) (resp., (Q)) holds, then the edge x
˛
�! y is called a Bruhat edge (resp., quantum

edge).

Let pWw0
ˇ1
�! w1

ˇ2
�! � � �

ˇr
�! wr be a directed path in QBG.W /. We set

`.p/ WD r;

end.p/ WD wr ;

wt.p/ WD

X
k2¹1;:::;rº

wk�1

ˇk

�! wk is a quantum edge

ˇ_
k :

Definition 2.2 ([2, (2.2)]). A total order C on �C is a reflection order if for all
˛; ˇ 2 �C such that ˛ C ˇ 2 �C, either ˛ C ˛ C ˇ C ˇ or ˇ C ˛ C ˇ C ˛ holds.

Let C be a reflection order on �C. A directed path p in QBG.W / of the form:

pWw0
ˇ1
�! w1

ˇ2
�! � � �

ˇr
�! wr ;

with ˇ1 C � � � C ˇr , is called a label-increasing directed path with respect to C.

Theorem 2.3 ([1, Theorem 6.4]). Let C be a reflection order on�C. For all v;w2W ,
there exists a unique label-increasing directed path from v to w in QBG.W / with
respect to C. Moreover, the unique label-increasing directed path from v to w has the
minimum length.

The property of QBG.W / in Theorem 2.3 is called shellability.
For all v;w 2W , there exists at least one shortest directed path p from v to w; we

set
`.v ) w/ WD `.p/; wt.v ) w/ WD wt.p/:

Note that by [23, Lemma 1 (2)] or [16, Proposition 8.1], wt.v ) w/ is well defined.
We consider a “generalization” of label-increasing directed paths in QBG.W /. Let

… D .
1; : : : ; 
r/ be a sequence of roots, i.e., 
1; : : : ; 
r 2 �; assume that 
1; : : : ; 
r
are distinct. Then we say that a directed path p is…-compatible if p is of the following
form:

p W w0
j
j1

j

���! w1
j
j2

j

���! � � �
j
jp j

���! wp;



T. Kouno, C. Lenart, and S. Naito 354

with 1 � j1 < � � � < jp � r . For w 2 W , we denote by P .w;…/ the set of all …-
compatible directed paths in QBG.W / which start at w.

Remark 2.4. If ¹
1; : : : ; 
rº � �C, and if there exists a reflection order C on �C

such that 
1 C � � � C 
r , then a …-compatible directed path in QBG.W / is a label-
increasing directed path with respect to C.

Let … D .
1; : : : ; 
r/ be a sequence of roots, with 
1; : : : ; 
r not necessarily
distinct. For a directed path p of the form:

pWw0
j
j1

j

���! w1
j
j2

j

���! � � �
j
jp j

���! wp;

with 1 � j1 < � � � < jp � r , we define neg.p/ by

neg.p/ WD #¹k 2 ¹1; : : : ; pº j 
jk
2 ��C

º:

2.3. The quantum alcove model

We briefly review the quantum alcove model, introduced in [12].
First, we recall from [19] the definition of alcove paths. For ˛ 2 � and k 2 Z,

we set H˛;k WD ¹� 2 h�
R j h�; ˛_i D kº; H˛;k is a hyperplane in h�

R. Also, for ˛ 2 �

and k 2 Z, we denote by s˛;k the reflection with respect toH˛;k . Note that s˛;k.�/ D

� � .h�; ˛_i � k/˛ for � 2 h�
R. Each connected component of the space

h�
R n

[
˛2�C;k2Z

H˛;k

is called an alcove. If two alcoves A and B have a common wall, then we say that A
and B are adjacent. For adjacent alcoves A and B , we write A

ˇ
�! B , ˇ 2 �, if the

common wall of A and B is contained in Hˇ;k for some k 2 Z, and ˇ points in the
direction from A to B .

Definition 2.5 ([19, Definition 5.2]). A sequence .A0; : : : ; Ar/ of alcoves is called
an alcove path if Ai�1 and Ai are adjacent for all i D 1; : : : ; r . If the length r of an
alcove path .A0; : : : ; Ar/ is minimal among all alcove paths from A0 to Ar , we say
that .A0; : : : ; Ar/ is reduced.

The fundamental alcove Aı is defined by

Aı WD ¹� 2 h�
R j 0 < h�; ˛_

i < 1 for all ˛ 2 �C
º:

Also, for � 2 P , we define A� by

A� WD Aı C � D ¹� C � j � 2 Aıº:
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Definition 2.6 ([19, Definition 5.4]). Let � 2 P . A sequence .ˇ1; : : : ; ˇr/ of roots
ˇ1; : : : ; ˇr 2 � is called a �-chain if there exists an alcove path .A0; : : : ; Ar/, with
A0 D Aı and Ar D A��, such that

Aı D A0
�ˇ1
��! A1

�ˇ2
��! � � �

�ˇr
��! Ar D A��:

If such an alcove path .A0; : : : ;Ar/ is reduced, then we also say that the corresponding
�-chain .ˇ1; : : : ; ˇr/ is reduced.

Now, following [14, Section 3.2], we review the quantum alcove model.

Definition 2.7 ([14, Definition 17]). Let �2P , and let � D .ˇ1; : : : ;ˇr/ be a �-chain.
Fix w 2 W . A subset A D ¹j1 < � � � < jpº � ¹1; : : : ; rº is said to be w-admissible if

p.A/Ww D w0
j ǰ1

j

���! w1
j ǰ2

j

���! � � �
j ǰp j

���! wp

is a directed path in QBG.W /. Let A.w;�/ denote the set of allw-admissible subsets
of ¹1; : : : ; rº.

Remark 2.8. The original definition of admissible subsets in [12] is only for w D

e 2 W . The notion of w-admissible subsets for an arbitrary w 2 W is introduced
in [14].

Let � 2 P , and let � D .ˇ1; : : : ; ˇr/ be a �-chain. By the definition of �-chains,
there exists an alcove path .Aı D A0; : : : ; Ar D A��/ such that

Aı D A0
�ˇ1
��! A1

�ˇ2
��! � � �

�ˇr
��! Ar D A��:

For k D 1; : : : ; r , we take lk 2 Z such that Hˇk ;�lk contains the common wall of
Ak�1 and Ak , and set zlk WD h�; ˇ_

k
i � lk .

Fix w 2 W . For A D ¹j1 < � � � < jpº 2 A.w; �/, we set

end.A/ WD wsj ǰ1
j � � � sj ǰp j; wt.A/ WD �ws

ǰ1
;�lj1

� � � s
ǰp ;�ljp

.��/I

we call wt.A/ the weight of A. Also, we define a subset A� � A by

A�
WD

°
jk 2 A

ˇ̌
wsj ǰ1

j � � � sj ǰk�1
j

j ǰk
j

���! wsj ǰ1
j � � � sj ǰk

j is a quantum edge
±
;

and set
down.A/ WD

X
j2A�

j ǰ j
_; height.A/ WD

X
j2A�

sgn. ǰ /zlj I

note that end.A/ D end.p.A// and down.A/ D wt.p.A//. In addition, we define
n.A/ 2 Z�0 by n.A/ WD #¹j 2 A j ǰ 2 ��Cº; note that n.A/ D neg.p.A//.
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Remark 2.9. In [18, (31)], an additional statistic, called coheight, is introduced. Let
us assume that � 2 PC and w D e. For A 2 A.e; �/, coheight.A/ 2 Z�0 is defined
by

coheight.A/ WD

X
j2A�

lj :

The coheight is used in [18] to describe the specialization at t D 0 of nonsymmetric
Macdonald polynomials in terms of the quantum alcove model (see [18, Theorems 29
and 31]).

3. Generalization of quantum Yang–Baxter moves

Quantum Yang–Baxter moves for a dominant weight are introduced in [13].

3.1. Yang–Baxter transformation of �-chains

Before defining Yang–Baxter transformations, we mention some basic facts about
rank 2 root subsystems of �. For each ˛; ˇ 2 � with h˛; ˇ_i � 0 and ˛ ¤ �ˇ, the
subgroup xW of W generated by s˛ and sˇ is a dihedral group with simple reflections
¹s˛; sˇ º. Also, let �˛;ˇ be the root subsystem of � generated by ˛ and ˇ. Then �˛;ˇ
is a root system of rank 2. More precisely, we see that �˛;ˇ is isomorphic to the
root system of type A1 � A1, A2, C2, or G2. Let m be the order of s˛sˇ 2 xW . Then
s˛sˇ s˛sˇ � � �„ ƒ‚ …

m factors

is the longest element of xW . Hence if m is even (resp., odd), then

.
1; 
2; : : : ; 
q/ D .˛; s˛.ˇ/; s˛sˇ .˛/; : : : ; s˛sˇ s˛sˇ � � � s˛„ ƒ‚ …
m� 1 factors

.ˇ//;

resp.,
.
1; 
2; : : : ; 
q/ D .˛; s˛.ˇ/; s˛sˇ .˛/; : : : ; s˛sˇ s˛sˇ � � � sˇ„ ƒ‚ …

m� 1 factors

.˛//;

forms a sequence of all the (distinct) positive roots of �˛;ˇ such that 
q D ˇ.
Let � 2 P , and let � D .ˇ1; : : : ; ˇr/ be a �-chain (of roots). The following pro-

cedure (YB) is called the Yang–Baxter transformation:
(YB) Take a segment .ˇtC1; : : : ; ˇtCq/ of � of the form

.ˇtC1; : : : ; ˇtCq/ D .˛; s˛.ˇ/; s˛sˇ .˛/; : : : ; sˇ .˛/; ˇ/

for some ˛; ˇ 2 � with h˛; ˇ_i � 0, or equivalently hˇ; ˛_i � 0, and ˛ ¤ �ˇ, and
set

� 0
WD .ˇ1; ˇ2; : : : ; ˇt ; ˇtCq; ˇtCq�1; : : : ; ˇtC1; ˇtCqC1; ˇtCqC2; : : : ; ˇr/;

i.e., reverse the segment .ˇtC1; : : : ; ˇtCq/ of � .
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Also, we define a procedure (D), called deletion, as follows:
(D) Take a segment .ˇtC1; ˇtC2/ of � of the form .ˇtC1; ˇtC2/ D .ˇ;�ˇ/ for

some ˇ 2 �, and set

� 0
D .ˇ1; : : : ; ˇt ; ˇtC3; : : : ; ˇq/;

i.e., delete the segment .ˇtC1; ˇtC2/ of � .
Note the procedures (YB) and (D) produce �-chains; i.e., resulting sequences � 0

above are also �-chains. In fact, it is known that every �-chain can be transformed into
an arbitrary reduced �-chain by repeated application of the procedures (YB) and (D)
(see [14, Remark 40], or [19, Lemma 9.3]).

3.2. Quantum Yang–Baxter moves

Let � 2 PC be a dominant weight, and let �1, �2 be �-chains such that �2 is obtained
from �1 by the Yang–Baxter transformation (YB). Quantum Yang–Baxter moves,
introduced in [13, Section 3.1], give a bijection A.e;�1/! A.e;�2/which preserves
weights and heights.

Our main result is the existence of a generalization of quantum Yang–Baxter
moves for an arbitrary (not necessarily dominant) weight � 2 P and an arbitrary
w 2 W .

Let � 2 P be an arbitrary weight, and �1, �2 �-chains such that �2 is obtained
from �1 by the Yang–Baxter transformation (YB). If we write �1 D .ˇ1; : : : ; ˇr/ and
�2 D .ˇ0

1; : : : ; ˇ
0
r/, then there exists 1 � t � r such that

• .ˇtC1; : : : ; ˇtCq/ D .˛; s˛.ˇ/; s˛sˇ .˛/; : : : ; sˇ .˛/; ˇ/ for some q � 1 and some
˛; ˇ 2 � with h˛; ˇ_i � 0 and ˛ ¤ �ˇ,

• �2 D .ˇ0
1; : : : ; ˇ

0
r/

D .ˇ1; ˇ2; : : : ; ˇt ; ˇtCq; ˇtCq�1; : : : ; ˇtC1; ˇtCqC1; ˇtCqC2; : : : ; ˇr/:

We take the alcove path .Aı D A0; : : : ; Ar D A��/ corresponding to �1, and
take integers lk 2 Z for k D 1; : : : ; r such that for each k D 1; : : : ; r , the hyperplane
Hˇk ;�lk contains the common wall of Ak�1 and Ak . Also, we take the alcove path

.Aı D A0
0; : : : ; A

0
r D A��/

corresponding to �2, and we take integers l 0
k

2 Z for k D 1; : : : ; r such that for each
k D 1; : : : ; r , the hyperplane Hˇ 0

k
;�l 0

k
contains the common wall of A0

k�1
and A0

k
.

Then it follows that A0
k

D Ak and l 0
k

D lk for k D 1; : : : ; t; t C q C 1; : : : ; r , and that
l 0tCp D ltCqC1�p for p D 1; : : : ; q.
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Now, we divide �1 into three parts �.1/1 , �.2/1 , and �.3/1 as follows:

�
.1/
1 WD .ˇ1; : : : ; ˇt /;

�
.2/
1 WD .ˇtC1; : : : ; ˇtCq/; �

.3/
1 WD .ˇtCqC1; : : : ; ˇr/:

(3.1)

Also, we divide �2 into three parts �.1/2 , �.2/2 , and �.3/2 as follows:

�
.1/
2 WD .ˇ0

1; : : : ; ˇ
0
t /;

�
.2/
2 WD .ˇ0

tC1; : : : ; ˇ
0
tCq/; �

.3/
2 WD .ˇ0

tCqC1; : : : ; ˇ
0
r/:

(3.2)

Note that �.1/1 D �
.1/
2 and �.3/1 D �

.3/
2 ; in addition, ˇtC1; : : : ; ˇtCq are distinct. Next,

let w 2 W . For a w-admissible subset A 2 A.w; �1/, we define A.1/, A.2/, and A.3/

by

A.1/ WD A \ ¹1; : : : ; tº;

A.2/ WD A \ ¹t C 1; : : : ; t C qº; A.3/ WD A \ ¹t C q C 1; : : : ; rº:
(3.3)

Also, for B 2 A.w; �2/, we define B.1/, B.2/, and B.3/ by

B.1/ WD B \ ¹1; : : : ; tº;

B.2/ WD B \ ¹t C 1; : : : ; t C qº; B.3/ WD B \ ¹t C q C 1; : : : ; rº:
(3.4)

Unlike the case where � is dominant, there does not exist a bijection between
A.w; �1/ and A.w; �2/ in general.

Example 3.1. Assume that g is of type A2. We set �1 WD .˛2;�˛1;��;�˛1/ and
�2 WD .��;�˛1; ˛2;�˛1/, where � D ˛1 C ˛2. Then we see that �1 and �2 are
.�2$1 C $2/-chains such that �2 is obtained from �1 by a Yang–Baxter transfor-
mation (YB). Let w D s2. By direct calculation, we have

A.w; �1/ D ¹;; ¹1º; ¹2º; ¹3º; ¹4º; ¹1; 2º; ¹1; 4º;

¹2; 4º; ¹3; 4º; ¹1; 2; 3º; ¹1; 2; 4º; ¹1; 2; 3; 4ºº;

A.w; �2/ D ¹;; ¹1º; ¹2º; ¹3º; ¹4º; ¹1; 2º; ¹1; 3º; ¹1; 4º; ¹2; 3º;

¹2; 4º; ¹3; 4º; ¹1; 2; 3º; ¹1; 2; 4º; ¹1; 3; 4º; ¹2; 3; 4º; ¹1; 2; 3; 4ºº:

Hence we have #A.w; �1/ D 12, while #A.w; �2/ D 16. This shows that there does
not exist a bijection A.w; �1/ ! A.w; �2/.

Thus, towards a generalization of quantum Yang–Baxter moves, we need to give
up using bijections and take a new approach. The following theorem is our main
result; the proof is given in the next section.



New structure on the quantum alcove model 359

Theorem 3.2. There exist subsets A0.w;�1/�A.w;�1/ and A0.w;�2/�A.w;�2/

which satisfy the following:

(1) There exists a bijection Y W A0.w; �1/ ! A0.w; �2/ such that for all A 2

A0.w; �1/, it holds that

• .Y.A//.1/ D A.1/, end..Y.A//.2// D end.A.2//, .Y.A//.3/ D A.3/,

• down.Y.A// D down.A/, and

• .�1/n.Y.A// D .�1/n.A/.

(2) For k D 1; 2, we set AC
0 .w;�k/ WD A.w;�k/ n A0.w;�k/. Then, there exists

an involution Ik on AC
0 .w;�k/ such that for all A 2 AC

0 .w;�k/, it holds that

• .Ik.A//
.1/ D A.1/, end..Ik.A//.2// D end.A.2//, .Ik.A//.3/ D A.3/,

• down.Ik.A// D down.A/, and

• .�1/n.Ik.A// D �.�1/n.A/.

Remark 3.3. In order to explain our maps Y , I1, and I2 in Theorem 3.2, we have
a useful notion, called a sijection, introduced in [4]; for the definition of sijections,
see [4, Section 2]. For sets S , T equipped with sign functions S ! ¹˙1º, T ! ¹˙1º,
a sijection from S to T is the collection .�S ; �T ; '/ of a sign-reversing involution �S
on a subset S0 of S , a sign-reversing involution �T on a subset T0 of T , and a sign-
preserving bijection ' from S n S0 to T n T0 (see [4, p. 9]). In this terminology, our
collection .I1; I2; Y / in Theorem 3.2 is a sijection from A.w; �1/ to A.w; �2/. This
sijection can be thought of as a generalization of quantum Yang–Baxter moves.

As in the case that � is dominant, we can prove that the maps Y , I1, and I2
preserve weights and heights.

Theorem 3.4. The following hold:

(1) For all A 2 A0.w; �1/, it holds that wt.Y.A// D wt.A/ and height.Y.A// D

height.A/.

(2) Let k D 1; 2. For all A 2 AC
0 .w; �k/, it holds that wt.Ik.A// D wt.A/ and

height.Ik.A// D height.A/.

4. Proofs of the main results

We prove Theorems 3.2 and 3.4 in this section. The proofs are based on a property
analogous to shellability of QBG.W / for the rank 2 root systems (Proposition 4.3).
In the proof of this shellability-like property, we take a rank 2 root subsystem of �,
which is denoted by �˛;ˇ in Section 4.2, and calculate explicitly certain products of
the so-called quantum Bruhat operators for �˛;ˇ (see Proposition 4.4). In this paper,
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we omit the explicit calculations in the case that �˛;ˇ is of type G2. However, the
calculations in type G2 is needed only in the case that� is of type G2; this is because
if the simple Lie algebra g is not of type G2, then the root system � of g does not
contain a root subsystem of type G2. Hence Propositions 4.3 and 4.4 are sufficient in
order to establish Theorems 3.2 and 3.4 for the root system � of a complex simple
Lie algebra g which is not of type G2.

Although the shellability-like property in type G2 seems to be slightly different
from that in types A1 � A1, A2, and C2, we can prove it by explicit calculations
similar to those in type C2 given in Section 4.4. Furthermore, based on this property,
we can also establish Theorems 3.2 and 3.4 in type G2. The interested reader can see
the precise statement of the shellability-like property and the explicit calculations in
type G2 in our preprint [9] on arXiv.

In the rest of this paper, we assume that � is not of type G2.

4.1. Quantum Bruhat operators

LetK be a field which contains the ring CJQ_;CK WD CJQi j i 2 I K of formal power
series, where Qi , i 2 I , are variables, and set

Q�
WD

Y
i2I

Q
mi

i

for � D
P
i2I mi˛

_
i 2 Q_;C. For 
 2 �C, following [1], we define the (K-linear)

quantum Bruhat operator Q
 on the group algebra KŒW � of W by

Q
v WD

8̂̂<̂
:̂
vs
 if v



�! vs
 is a Bruhat edge,

Q
_

vs
 if v


�! vs
 is a quantum edge,

0 otherwise

for v 2 W . We set Q�
 WD �Q
 for 
 2 �C, and then R
 WD 1C Q
 for 
 2 �. The
operators ¹R
 j 
 2�º satisfy the Yang–Baxter equation: for ˛;ˇ 2� (not necessarily
positive roots) such that h˛; ˇ_i � 0 and ˛ ¤ �ˇ, it holds that

R˛Rs˛.ˇ/Rs˛sˇ.˛/ � � � Rsˇ.˛/Rˇ D RˇRsˇ.˛/ � � � Rs˛sˇ.˛/Rs˛.ˇ/R˛I (4.1)

the proof of this equation is the same as that of [14, Proposition 38].
Next, we give some properties of quantum Bruhat operators.
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Lemma 4.1. Let … D .ˇ1; : : : ; ˇr/ be a sequence of roots such that ˇ1; : : : ; ˇr are
distinct.

(1) For v 2 W , we have

Rˇr
Rˇr�1

� � � Rˇ1
v D

X
p2P .v;…/

.�1/neg.p/Qwt.p/ end.p/:

(2) For v 2 W , we have

Rjˇr jRjˇr�1j � � � Rjˇ1jv D

X
p2P .v;…/

Qwt.p/ end.p/:

Proof. For J � ¹1; : : : ; rº, we set neg.J / WD ¹j 2 J j ǰ 2 ��Cº. We see that

Rˇr
Rˇr�1

� � � Rˇ1
D .1C Qˇr

/.1C Qˇr�1
/ � � � .1C Qˇ1

/

D

X
¹j1<���<jsº�¹1;:::;rº

Q
ǰs
Q

ǰs�1
� � �Q

ǰ1

D

X
¹j1<���<jsº�¹1;:::;rº

.sgn. ǰs
/Qj ǰs j/.sgn. ǰs�1

/Qj ǰs�1
j/ � � � .sgn. ǰ1

/Qj ǰ1
j/

D

X
JD¹j1<���<jsº�¹1;:::;rº

.�1/neg.J /Qj ǰs jQj ǰs�1
j � � �Qj ǰ1

j: (4.2)

Similarly, we see that

Rjˇr jRjˇr�1j � � � Rjˇ1j D

X
¹j1<���<jsº�¹1;:::;rº

Qj ǰs jQj ǰs�1
j � � �Qj ǰ1

j: (4.3)

For J D ¹j1; : : : ; jsº � ¹1; : : : ; rº, if we have the edge

vsj ǰ1
j � � � sj ǰa�1

j

j ǰa j

���! vsj ǰ1
j � � � sj ǰa j

in QBG.W / for all 1 � a � s, then we set ı.J / WD 1, and define a directed path p.J /
in QBG.W / by

p.J /W v
j ǰ1

j

���! vsj ǰ1
j

j ǰ2
j

���! � � �
j ǰs j

���! vsj ǰ1
j � � � sj ǰs jI

otherwise, we set ı.J / WD 0. By the definition of quantum Bruhat operators, we have

Qj ǰs jQj ǰs�1
j � � �Qj ǰ1

jv D

´
Qwt.p.J // end.p.J // if ı.J / D 1;

0 if ı.J / D 0:
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If ı.J / D 1, then we have neg.J / D neg.p.J //. Therefore, by (4.2), we deduce that

Rˇr
Rˇr�1

� � � Rˇ1
v D

X
JD¹j1<���<jsº�¹1;:::;rº

.�1/neg.J /Qj ǰs jQj ǰs�1
j � � �Qj ǰ1

jv

D

X
J�¹1;:::;rº

ı.J /D1

.�1/neg.p.J //Qwt.p.J // end.p.J //

D

X
p2P .v;…/

.�1/neg.p/Qwt.p/ end.p/;

as desired. This proves part (1) of the lemma.
Also, we see from (4.3) that

Rjˇr jRjˇr�1j � � � Rjˇ1jv D

X
¹j1<���<jsº�¹1;:::;rº

Qj ǰs jQj ǰs�1
j � � �Qj ǰ1

jv

D

X
J�¹1;:::;rº

ı.J /D1

Qwt.p.J // end.p.J //

D

X
p2P .v;…/

Qwt.p/ end.p/:

This proves part (2) of the lemma.

Remark 4.2. If we set P .v;…Iw; �/ WD ¹p 2 P .v;…/ j end.p/D w;wt.p/D �º for
v;w 2 W and � 2 Q_;C, then by Lemma 4.1 (1), we deduce that

Rˇr
� � � Rˇ1

v D

X
w2W

X
�2Q_;C

� X
p2P .v;…Iw;�/

.�1/neg.p/
�
Q�w: (4.4)

Also, if we set cv
�;w

WD #P .v;…Iw; �/ for v;w 2 W and � 2 Q_;C, then we deduce
from Lemma 4.1 (2) that

Rjˇr jRjˇr�1j � � � Rjˇ1jv D

X
w2W

X
�2Q_;C

cv�;wQ
�w: (4.5)

4.2. Key propositions to a generalization of quantum Yang–Baxter moves

We prove a certain property of QBG.W /, which plays an important role in the proof of
Theorem 3.2. Let ˛;ˇ 2� be such that h˛;ˇ_i � 0 and ˛¤ �ˇ. We define sequences
of roots …, …0 by

… D .
1; : : : ; 
q/ WD .˛; s˛.ˇ/; s˛sˇ .˛/; : : : ; sˇ .˛/; ˇ/;

…0
D .
 0

1; : : : ; 

0
q/ WD .ˇ; sˇ .˛/; : : : ; s˛sˇ .˛/; s˛.ˇ/; ˛/ D .
q; : : : ; 
2; 
1/I
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again note that 
1; : : : ; 
q are distinct. Also, we recall from the beginning of Section 4
that the root subsystem �˛;ˇ of � generated by ˛ and ˇ is isomorphic to the root
system of type A1 � A1, A2, or C2. Note that �˛;ˇ is not of type G2; this is because
we are assuming that� is not of typeG2. We can prove the following property, which
can be thought of as a generalization of shellability of QBG.W / (Theorem 2.3) for
the rank 2 root systems.

Proposition 4.3. Let v 2 W , and let p be a …-compatible directed path in QBG.W /
which starts at v, i.e., p 2 P .v;…/. Then only one of the following occurs.

(1) There exists a unique p0 2 P .v; …/ n ¹pº such that end.p0/ D end.p/ and
wt.p0/ D wt.p/. This p0 satisfies .�1/neg.p0/ D �.�1/neg.p/. Moreover, there
does not exist a path q 2 P .v;…0/ such that end.q/ D end.p/ and wt.q/ D

wt.p/.

(2) There exists a unique p0 2 P .v;…0/ such that end.p0/D end.p/ and wt.p0/D

wt.p/. This p0 satisfies .�1/neg.p0/ D .�1/neg.p/. Moreover, there does not exist
a path q 2 P .v;…/ n ¹pº such that end.q/ D end.p/ and wt.q/ D wt.p/.

The proof of this proposition can be reduced to the case that � is a root system
of rank 2; in Appendix A, we explain how to construct the explicit correspondence
p 7! p0 through an example. Now we assume that� is a root system of type A1 �A1,
A2, or C2. Since it is sufficient to consider the case�D�˛;ˇ , we assume additionally
that h˛;ˇ_i ¤ 0 if� is of type C2; if h˛;ˇ_i D 0, then the corresponding root system
� D �˛;ˇ can be thought of as being of type A1 � A1. Then we see that there exists
some kD 1; : : : ; q such that j
kj and j
kC1j are the simple roots of� (for convenience
of notation, we set 
qC1 WD 
1). If we set

.ˇ1; : : : ; ˇq/ WD .j
kj; j
k�1j; : : : ; j
1j; j
qj; : : : ; j
kC1j/; (4.6)

then we have

.ˇ1; : : : ; ˇq/ D .ˇ1; sˇ1
.ˇq/; sˇ1

sˇq
.ˇ1/; : : : ; sˇq

.ˇ1/; ˇq/:

Also, if we set

…˙
WD .�ˇk;�ˇk�1; : : : ;�ˇ1;˙ˇq;˙ˇq�1; : : : ;˙ˇkC1/;

then…D…C or…D…�. Note that the total order � on ¹ˇ1; : : : ; ˇqº D�C defined
by

ˇ1 � ˇ2 � � � � � ˇq (4.7)

is a reflection order; the total order �0 defined by

ˇq �
0 ˇq�1 �

0
� � � �

0 ˇ1 (4.8)
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is also a reflection order. We consider the following operators for k D 0; 1; : : : ; q:

T˙
k WD R˙ˇkC1

� � � R˙ˇq
R�ˇ1

� � � R�ˇk
;

Sk WD RˇkC1
� � � Rˇq

Rˇ1
� � � Rˇk

;

S0
k WD Rˇk

� � � Rˇ1
Rˇq

� � � RˇkC1
I

note that Sq D S0 and S0
q D S0

0 by the definitions.
In the following proposition, the matrices of operators on KŒW � are the represen-

tation matrices with respect to the basisW ofKŒW �. Note that for aK-linear operator
TWKŒW � ! KŒW �, the matrix of T is defined by .cv;w/v;w2W if Tw D

P
v2W cv;wv,

cv;w 2 K.

Proposition 4.4. The following hold:

(1) All the entries of the matrix of Sk , kD0;1; : : : ;q, are of the form
Pr
jD1mjQ

�j,
where all �j 2 Q_;C are distinct, and mj 2 ¹1; 2º.

(2) Let v; w 2 W . Assume that the .v; w/-entry of the matrix of Sk is of the formPr
jD1mjQ

�j as in (1). Also, assume that the .v;w/-entry of the matrix of T˙
k

is of the form
P
�2Q_;C n˙

�
Q� . For j D 1; : : : ; r , if mj D 2, then n˙

�j
D 0,

and ifmj D 1, then n˙
�j

2 ¹1;�1º. Moreover, for � 2 Q_;C n ¹�1; : : : ; �rº, we

have n˙
�

D 0.

(3) Let v; w 2 W . Assume that the .v; w/-entry of the matrix of Sk is of the formPr
jD1mjQ

�j as in (1). Also, assume that the .v;w/-entry of the matrix of S0
k

is of the form
P
�2Q_;C n�Q

� . For j D 1; : : : ; r , ifmj D 2, then n�j D 0, and
if mj D 1, then n�j D 1.

The proof of Proposition 4.4 is based on direct calculations, which we give later.

Proof of Proposition 4.3. First, we show the proposition for the root system� of type
A1 � A1, A2, or C2. As in (4.6), we take the sequence

.ˇ1; : : : ; ˇq/ WD .j
kj; j
k�1j; : : : ; j
1j; j
qj; : : : ; j
kC1j/

of roots. Recall from (4.5) that

Skv D

X
w2W

X
�2Q_;C

cvw;�Q
�w;

where cv
w;�

D #P .v;…Iw; �/. By Proposition 4.4 (1), we have cv
w;�

2 ¹0; 1; 2º. Also,
again from (4.5), we see that

S0
kv D

X
w2W

X
�2Q_;C

.cvw;�/
0Q�w;

where .cv
w;�
/0 D #P .v;…0Iw; �/.
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We write
T˙
k v D

X
w2W

X
�2Q_;C

d
v;˙
w;�

Q�w;

where d v;˙
w;�

2 Z. By (4.4), if … D …C, then

d
v;C
w;�

D

X
q2P .v;…Iw;�/

.�1/neg.q/; d
v;�
w;�

D

X
q2P .v;…Iw;�/

.�1/`.q/�neg.q/
I (4.9)

if … D …�, then

d
v;C
w;�

D

X
q2P .v;…Iw;�/

.�1/`.q/�neg.q/; d
v;�
w;�

D

X
q2P .v;…Iw;�/

.�1/neg.q/: (4.10)

We set w WD end.p/ and � WD wt.p/. Since p 2 P .v;…Iw; �/, we have cv
w;�

¤ 0.
First, assume that cv

w;�
D 2. Then there exists a unique p0 2 P .v; …Iw; �/ n ¹pº,

i.e., there exists a unique p0 2 P .v; …/ n ¹pº such that end.p0/ D end.p/ D w and
wt.p0/ D wt.p/ D � . By Proposition 4.4 (2), we have d v;˙

w;�
D 0. Hence, by (4.9) and

(4.10), we obtain X
q2P .v;…Iw;�/

.�1/neg.q/
D .�1/neg.p/

C .�1/neg.p0/
D 0:

This shows that .�1/neg.p0/ D �.�1/neg.p/. Here, by Proposition 4.4 (3), we deduce
that .cv

w;�
/0 D 0. Hence there does not exist a q 2 P .v; …0/ such that end.q/ D

end.p/D w and wt.q/D wt.p/D � . This shows the proposition in the case cv
w;�

D 2.
Next, assume that cv

w;�
D 1. In this case, there does not exist a q 2 P .v;…/ n ¹pº

such that end.q/ D end.p/ D w and wt.q/ D wt.p/ D � , since P .v;…Iw; �/ D ¹pº.
We set

.T˙
k /

0
WD R�ˇk

� � � R�ˇ1
R˙ˇq

� � � R˙ˇkC1
:

Then, by the Yang–Baxter equation (4.1), we have .T˙
k
/0 D T˙

k
. Hence, if we write

.T˙
k /

0v D

X
w2W

X
�2Q_;C

.d
v;˙
w;�

/0Q�w;

with .d v;˙
w;�

/0 2 Z, then we see that .d v;˙
w;�

/0 D d
v;˙
w;�

. Here, by Proposition 4.4 (2), we
deduce that

.d
v;˙
w;�

/0 D d
v;˙
w;�

2 ¹1;�1º:

Again, by Proposition 4.4 (2) (by replacing (ˇ1; : : : ;ˇq) with .ˇq; : : : ;ˇ1/), we deduce
that .cv

w;�
/0 D 1. Hence there exists a unique p0 2 P .v; …0Iw; �/, i.e., there exists

a unique p0 2 P .v; …0/ such that end.p0/ D end.p/ D w and wt.p0/ D wt.p/ D � .



T. Kouno, C. Lenart, and S. Naito 366

If … D …C, then

.�1/neg.p/
D d

v;C
w;�

D .d
v;C
w;�

/0 D .�1/neg.p0/
I

if … D …�, then

.�1/neg.p/
D d

v;�
w;�

D .d
v;�
w;�
/0 D .�1/neg.p0/:

This shows that .�1/neg.p0/ D .�1/neg.p/, as desired. This completes the proof of the
proposition for the root system � of type A1 � A1, A2, or C2.

Now, assume that the root system � is of an arbitrary type (except G2), not nec-
essarily of rank 2. Let xW be the Weyl group of �˛;ˇ . Note that xW is a (dihedral)
subgroup ofW ; the quantum Bruhat graph (denoted by QBG. xW /) of xW is no longer a
subgraph of QBG.W /. By [13, Proposition 5.1 and Remarks 5.2 (2)], for each u 2W ,
there exist uniquely buc 2 u xW and xu 2 xW such that

• u D bucxu, and

• for a positive root 
 of �˛;ˇ , we have `.xu/ < `.xus
 / if and only if `.bucxu/ <

`.bucxus
 /.

We set w WD end.p/ and � WD wt.p/. Suppose, for a contradiction, that there exist
two or more directed paths q 2 P .v;…Iw; �/ n ¹pº. Then we see that

#P .v;…;w; �/ � 3:

By [13, Theorem 5.3], there exists an injection

P .v;…Iw; �/ ,! P .xv;…I xw; 
/;

where P .xv;…I xw; 
/ is the set of all…-compatible directed paths in QBG. xW / which
starts at xv, ends at xw, and has weight � , where … is considered to be a sequence
of roots in the root system �˛;ˇ . Hence, we have #P .xv;…I xw; �/ � 3. This contra-
dicts the proposition for the rank 2 root systems, shown above. Hence we conclude
that there exists at most one directed path q 2 P .v; …Iw; �/ and with q ¤ p. If
such a q exists, then, by the proposition for the rank 2 root systems and [13, Theo-
rem 5.3], we have .�1/neg.q/ D �.�1/neg.p/. Also, a similar argument shows that there
exists at most one directed path r 2 P .v;…0Iw; �/. If such an r exists, then we have
.�1/neg.r/ D .�1/neg.p/.

We show that at least one of the directed paths q and r exists. We write

R
q
� � � R
1

v D

X
w2W

X
�2Q_;C

d vw;�Q
�w;

R
1
� � � R
q

v D

X
w2W

X
�2Q_;C

.d vw;�/
0Q�w:
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If there does not exist a directed path q 2 P .v;…Iw; �/ n ¹pº, then by (4.4), we have
d v
w;�

D ˙1. By the Yang–Baxter equation (4.1), we deduce that .d v
w;�
/0 D d v

w;�
D ˙1.

By (4.4), we see that P .v;…0Iw; �/ ¤ ;. Therefore, we conclude that there exists a
directed path r 2 P .v;…0Iw; �/ in this case, as desired.

Finally, suppose, for a contradiction, that both q and r exist at the same time.
Then, by [13, Theorem 5.3], we have

#P .xv;…I xw; �/ � 2 and #P .xv;…0
I xw; �/ � 1:

This contradicts the proposition for the rank 2 root systems, shown above.
This completes the proof of Proposition 4.3.

Thus it remains to prove Proposition 4.4. We assume temporarily that� is of type
A1 � A1, A2, or C2 with h˛; ˇ_i ¤ 0. If � is of type A2 (resp., A1 � A1, C2), then
we have q D 3 (resp., q D 2; 4). By shellability of QBG.W /, there exists a unique
label-increasing directed path (with respect to � or �0, defined by (4.7) and (4.8))
from v to w in QBG.W / for all v;w 2 W . Hence, we have

TC
0 v D T�

q v D S0v D S0
0v D Sqv D S0

qv D

X
w2W

Qwt.v)w/w;

T�
0 v D TC

q v D

X
w2W

.�1/`.v)w/Qwt.v)w/w

for all v 2 W . Therefore, the proposition is obvious in the case k D 0; q. Hence it
suffices to prove the proposition in the case k D 1; q � 1 for all types, and in the case
k D 2 for type C2.

4.3. Proof of Proposition 4.4: k D 1; q � 1

We prove Proposition 4.4 in the case k D 1; q � 1; recall that ˇ1 and ˇq are the simple
roots of �. By (4.4), for all v 2 W , we have

TC
1 v D Rˇ2

� � � Rˇq
.R�ˇ1

v/

D Rˇ2
� � � Rˇq

..1 � Qˇ1
/v/

D Rˇ2
� � � Rˇq

.v �Qwt.v!vsˇ1
/vsˇ1

/

D

X
q2P .v;.ˇq ;:::;ˇ2//

Qwt.q/ end.q/ �

X
q2P .vsˇ1

;.ˇq ;:::;ˇ2//

Qwt.v!vsˇ1
/Cwt.q/ end.q/:

Recall that the total order �0 on �C D ¹ˇ1; : : : ; ˇqº, defined by (4.8), is a reflection
order. Hence, by shellability of QBG.W /, for all w 2 W , there exists at most one
directed path q 2 P .v; .ˇq; : : : ; ˇ2// such that end.q/ D w. For such a q, we have

wt.q/ D wt.v ) w/
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since q is a shortest directed path from v to w. The same argument shows that for all
w 2 W , there exists at most one directed path q 2 P .vsˇ1

; .ˇq; : : : ; ˇ2// such that

end.q/ D w and wt.q/ D wt.vsˇ1
) w/:

Hence, if we set

ıv;w WD

´
1 if there exists q 2 P .v; .ˇq; : : : ; ˇ2// such that end.q/ D w;

0 otherwise

for v;w 2 W , then we have

TC
1 v D

X
w2W

ıv;wQ
wt.v)w/w �

X
w2W

ıvsˇ1
;wQ

wt.v!vsˇ1
/Cwt.vsˇ1

)w/w

D

X
w2W

�
ıv;wQ

wt.v)w/
� ıvsˇ1

;wQ
wt.v!vsˇ1

/Cwt.vsˇ1
)w/

�
w: (4.11)

Also, by the same argument, we see that

T�
1 v D

X
w2W

.�1/`.v)w/
�
ıv;wQ

wt.v)w/
� ıvsˇ1

;wQ
wt.v!vsˇ1

/Cwt.vsˇ1
)w/

�
wI

(4.12)
note that for a directed path q from vsˇ1

to w, it follows that

.�1/`.q/ D .�1/`.vsˇ1
)w/;

and hence

.�1/`.vsˇ1
)w/

D .�1/`.vsˇ1
)v/C`.v)w/

D .�1/1C`.v)w/
D �.�1/`.v)w/:

Let us consider S1. By the same argument as for TC
1 , we deduce that

S1v D

X
q2P .v;.ˇq ;:::;ˇ2//

Qwt.q/ end.q/

C

X
q2P .vsˇ1

;.ˇq ;:::;ˇ2//

Qwt.v!vsˇ1
/Cwt.q/ end.q/

D

X
w2W

�
ıv;wQ

wt.v)w/
C ıvsˇ1

;wQ
wt.v!vsˇ1

/Cwt.vsˇ1
)w/

�
w: (4.13)

Hence equations (4.11), (4.12), and (4.13) imply Proposition 4.4 (1), (2) in the case
k D 1, as desired.
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Next, we consider the case kD q � 1; recall that ˇq is a simple root of�. By (4.4),
we have

TC
q�1v D Rˇq

.R�ˇ1
� � � R�ˇq�1

v/

D Rˇq

� X
q2P .v;.�ˇq�1;:::;�ˇ1//

.�1/`.q/Qwt.q/ end.q/
�

D

X
q2P .v;.�ˇq�1;:::;�ˇ1//

.�1/`.q/

�
�
Qwt.q/ end.q/CQwt.q/Cwt.end.q/!end.q/sˇq / end.q/sˇq

�
:

Hence, if we set

ı0
v;w WD

´
1 if there exists q 2 P .v; .�ˇq�1; : : : ;�ˇ1// such that end.q/ D w;

0 otherwise

for v;w 2 W , then we have

TC
q�1v D

X
w2W

.�1/`.v)w/
�
ı0
v;wQ

wt.v)w/
� ı0

v;wsˇq
Qwt.v)wsˇq /Cwt.wsˇq !w/

�
w:

(4.14)
Similarly, we have

T�
q�1v D

X
w2W

�
ı0
v;wQ

wt.v)w/
� ı0

v;wsˇq
Qwt.v)wsˇq /Cwt.wsˇq !w/

�
w: (4.15)

Also, we see that

Sq�1v D

X
w2W

�
ı0
v;wQ

wt.v)w/
C ı0

v;wsˇq
Qwt.v)wsˇq /Cwt.wsˇq !w/

�
w: (4.16)

Hence equations (4.14), (4.15), and (4.16) imply Proposition 4.4 (1), (2) in the case
k D q � 1.

It remains to prove Proposition 4.4 (3) in the case k D 1; q � 1. It suffices to
prove it in the case k D 1; indeed, if we replace .ˇ1; : : : ; ˇq/ with .ˇq; : : : ; ˇ1/ and
consider the case k D 1, then we obtain the proposition in the case k D q � 1. Recall
equation (4.13). By the same argument, we see that

S0
1v D

X
w2W

�
"v;wQ

wt.v)w/
C "v;wsˇ1

Qwt.v)wsˇ1
/Cwt.wsˇ1

!w/
�
w;

where

"v;w WD

´
1 if there exists q 2 P .v; .ˇ2; : : : ; ˇq// such that end.q/ D w;

0 otherwise
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for v;w 2 W . Assume that cv
w;�

D 2 for some v;w 2 W and � 2 Q_;C. It suffices to
show that .cv

w;�
/0 D 0. In this case, we deduce from (4.13) that

ıv;w D ıvsˇ1
;w D 1; (4.17)

wt.v ) w/ D wt.v ! vsˇ1
/C wt.vsˇ1

) w/ D �: (4.18)

By (4.18), the concatenation of the edge v ! vsˇ1
with any shortest directed path

from vsˇ1
tow in QBG.W / is a shortest directed path from v tow (cf. [1, Lemma 6.7],

[23, Lemma 1 (2)], and [16, Proposition 8.1]). Now, take the (unique) label-increasing
directed path r0 from vsˇ1

to w in QBG.W / with respect to � defined by (4.7), and
let r be the concatenation of the edge v ! vsˇ1

with the path r0. Note that r0 is short-
est, and hence r is also shortest. We claim that r0 2 P .v; .ˇ2; : : : ; ˇq//; otherwise,
the concatenation

rW v
ˇ1
�! vsˇ1

ˇ1
�! � � � ! w„ ƒ‚ …

r0

cannot be shortest. Hence r is the label-increasing directed path from v to w in
QBG.W / such that r … P .v; .ˇ2; : : : ; ˇq//. By the uniqueness of a label-increasing
directed path, we conclude that "v;w D 0.

Since ıv;w D 1 by (4.17), there exists r1 2 P .v; .ˇq; : : : ; ˇ2// such that

end.r1/ D w:

Then the concatenation of the path r1 with the edge w ! wsˇ1
is label-increasing

with respect to �0, defined by (4.8), and hence this concatenation is shortest. Also,
since ıvsˇ1

;w D 1 by (4.17), there exists r2 2 P .vsˇ1
; .ˇq; : : : ; ˇ2// such that

end.r2/ D w:

Similarly, the concatenation of the path r2 with the edgew!wsˇ1
is label-increasing

with respect to �0, and hence this concatenation is shortest. Since the concatenation
of the edge v ! vsˇ1

with any shortest directed path from vsˇ1
to w is shortest, we

obtain:

`.v ) wsˇ1
/ D `.v ) w/„ ƒ‚ …

D`.r1/

C`.w ! wsˇ1
/

D `.v ! vsˇ1
/C `.vsˇ1

) w/„ ƒ‚ …
D`.r2/

C`.w ! wsˇ1
/

D `.v ! vsˇ1
/C `.vsˇ1

) wsˇ1
/:

Hence the concatenation of the edge v ! vsˇ1
with any shortest directed path from

vsˇ1
towsˇ1

is shortest. Take the (unique) label-increasing directed path r3 from vsˇ1
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to wsˇ1
in QBG.W / with respect to �. We deduce that r3 2 P .vsˇ1

; .ˇ2; : : : ; ˇq//;
otherwise, the concatenation

v
ˇ1
�! vsˇ1

ˇ1
�! � � � ! wsˇ1„ ƒ‚ …

r3

cannot be shortest. Hence we conclude that "v;wsˇ1
D 0. This completes the proof

that .cv
w;�
/0 D 0.

It remains to show that if cv
w;�

D 1, then .cv
w;�
/0 D 1. Assume that cv

w;�
D 1. By the

above argument (i.e., Proposition 4.4 (2) in the case k D 1), we have

d
v;C
w;�

D ˙1:

By the Yang–Baxter equation (4.1), we see that

.d
v;C
w;�

/0 D d
v;C
w;�

D ˙1:

Hence we deduce again from the above argument (i.e., Proposition 4.4 (2) in the case
k D 1, with .ˇ1; : : : ; ˇq/ replaced by .ˇq; : : : ; ˇ1/) that .cv

w;�
/0 D 1.

This completes the proof of Proposition 4.4 in the case k D 1; q � 1.

4.4. Proof of Proposition 4.4: The case of type C2

We consider the root system � of type C2. We know that q D 4, and

.ˇ1; ˇ2; ˇ3; ˇ4/ D .˛1; 2˛1 C ˛2; ˛1 C ˛2; ˛2/

or

.ˇ1; ˇ2; ˇ3; ˇ4/ D .˛2; ˛1 C ˛2; 2˛1 C ˛2; ˛1/:

Since only the case k D 2 is remaining, it suffices to calculate the matrices (with
respect to the basis W D ¹e; s1; s2; s1s2; s2s1; s1s2s1; s2s1s2; wıº of KŒW �) of the
following four operators:

(1) R˛1C˛2
R˛2

R�˛1
R�2˛1�˛2

D R�2˛1�˛2
R�˛1

R˛2
R˛1C˛2

;

(2) R2˛1C˛2
R˛1

R�˛2
R�˛1�˛2

D R�˛1�˛2
R�˛2

R˛1
R2˛1C˛2

;

(3) R˛1C˛2
R˛2

R˛1
R2˛1C˛2

; and

(4) R2˛1C˛2
R˛1

R˛2
R˛1C˛2

,

where the equalities in (1) and (2) follow from the Yang–Baxter equation (4.1).
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The following are the matrices (with respect to the basis W ) of operators Q
 ,

 2 �C D ¹˛1; 2˛1 C ˛2; ˛1 C ˛2; ˛2º (cf. [13, Figure 2 (B)]):

Q˛1
D

0BBBBBBBBBBB@

0 Q1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 Q1 0 0 0

0 0 0 0 0 Q1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 Q1

0 0 0 0 0 0 1 0

1CCCCCCCCCCCA
I

Q2˛1C˛2
D

0BBBBBBBBBBB@

0 0 0 0 0 Q1Q2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 Q1Q2

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

1CCCCCCCCCCCA
I

Q˛1C˛2
D

0BBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1CCCCCCCCCCCA
I

Q˛2
D

0BBBBBBBBBBB@

0 0 Q2 0 0 0 0 0

0 0 0 Q2 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 Q2 0

0 0 0 0 0 0 0 Q2

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1CCCCCCCCCCCA
:



New structure on the quantum alcove model 373

By explicit calculations (by using, e.g., SageMath [24]), we obtain

R˛1C˛2
R˛2

R�˛1
R�2˛1�˛2

D

0BBBBBBB@

1 Q1Q2 �Q1 Q2 0 �Q1Q2 �Q1Q2 0 �Q1Q
2
2

�1 1 0 Q2 0 0 0 0

1 0 1 0 �Q1 �Q1Q2 0 �Q1Q2

0 1 1 1 �Q1 �Q1 0 �Q1Q2

0 �1 �1 �Q2 1 0 Q2 0

0 �1 �1 �1 1 1 0 Q2

0 �1 �1 �1 1 0 1 Q1Q2 �Q1

0 0 0 0 0 1 �1 1

1CCCCCCCA;
R2˛1C˛2

R˛1
R�˛2

R�˛1�˛2

D

0BBBBBBB@

1 �Q1Q2 CQ1 �Q2 0 �Q1Q2 Q1Q2 0 �Q1Q
2
2

1 1 0 �Q2 0 0 0 0

�1 0 1 0 Q1 �Q1Q2 0 Q1Q2

0 �1 �1 1 �Q1 Q1 0 �Q1Q2

0 1 1 �Q2 1 0 �Q2 0

0 �1 �1 1 �1 1 0 �Q2

0 �1 �1 1 �1 0 1 �Q1Q2 CQ1

0 0 0 0 0 �1 1 1

1CCCCCCCA:

Also, we obtain

R˛1C˛2
R˛2

R˛1
R2˛1C˛2

D

0BBBBBBB@

1 Q1Q2 CQ1 Q2 0 Q1Q2 Q1Q2 0 Q1Q
2
2

1 1 0 Q2 0 2Q1Q2 0 0

1 2Q1 1 0 Q1 Q1Q2 0 Q1Q2

2 2Q1 C 1 1 1 Q1 2Q1Q2 CQ1 0 Q1Q2

0 1 1 Q2 1 0 Q2 2Q1Q2

0 1 1 2Q2 C 1 1 1 2Q2 2Q1Q2 CQ2

0 1 1 1 1 0 1 Q1Q2 CQ1

0 0 0 2 0 1 1 1

1CCCCCCCA;
R2˛1C˛2

R˛1
R˛2

R˛1C˛2

D

0BBBBBBB@

1 Q1Q2 CQ1 2Q1Q2 CQ2 2Q1Q2 Q1Q2 Q1Q2 0 Q1Q
2
2

1 1 2Q2 Q2 0 0 0 0

1 0 1 0 2Q1Q2 CQ1 Q1Q2 2Q1Q2 Q1Q2

0 1 1 1 Q1 Q1 0 Q1Q2

2 1 2Q2 C 1 Q2 1 0 Q2 0

0 1 1 1 1 1 0 Q2

0 1 1 1 2Q1 C 1 2Q1 1 Q1Q2 CQ1

0 0 0 0 2 1 1 1

1CCCCCCCA:

This proves the proposition by direct examination of these matrices.

4.5. Proof of Theorem 3.2

Based on Proposition 4.3, we can prove the existence of a generalization of quantum
Yang–Baxter moves. In the same way as in (3.3), we divide p.A/ for A 2 A.w; �1/
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into three parts p.A/.1/, p.A/.2/, p.A/.3/. If we write A D ¹a1; : : : ; alº, then p.A/ is
of the form:

p.A/Ww D w0
jˇa1

j

���! � � �
jˇal

j

���! wl ;

with a1 < � � � < al ; we set a0 WD 0. Let 0 � i1 � l be maximal such that ai1 � t , and
0 � i2 � l maximal such that ai2 � t C q. Then, we set

p.A/.1/Ww D w0
jˇa1

j

���! � � �

jˇai1
j

����! wai1
;

p.A/.2/Wwai1

jˇai1C1
j

�����! � � �

jˇai2
j

����! wai2
;

p.A/.3/Wwai2

jˇai2C1
j

�����! � � �
jˇal

j

���! wal
:

Note that the concatenation of p.A/.1/, p.A/.2/, and p.A/.3/ coincides with p.A/.
Also, in the same way as in (3.4), we divide p.B/ for each B 2 A.w; �2/ into

three parts p.B/.1/, p.B/.2/, p.B/.3/. If we write B D ¹b1; : : : ; bmº, then p.B/ is of
the form:

p.B/Ww D w0

jˇ 0
b1

j

���! � � �

jˇ 0
bm

j

���! wm;

with b1 < � � � < bm; we set b0 WD 0. Let 0 � i1 � m be maximal such that bi1 � t ,
and 0 � i2 � m maximal such that bi2 � t C q. Then, we set

p.B/.1/Ww D w0

jˇ 0
b1

j

���! � � �

jˇ 0
bi1

j

����! wbi1
;

p.B/.2/Wwbi1

jˇ 0
bi1C1

j

�����! � � �

jˇ 0
bi2

j

����! wbi2
;

p.B/.3/Wwbi2

jˇ 0
bi2C1

j

�����! � � �

jˇ 0
bm

j

���! wbm
:

Note that the concatenation of p.B/.1/, p.B/.2/, and p.B/.3/ coincides with p.B/.

Proof of Theorem 3.2. First we recall that � is assumed not to be of type G2. Let
A 2 A.w; �1/. Then, by Proposition 4.3 with … D �

.2/
1 and …0 D �

.2/
2 , we see that

only one of the following occurs:

(1) there exists a directed path r0 2 P .end.p.A/.1//; �.2/1 / n ¹p.A/.2/º such that
end.r0/ D end.p.A/.2// and wt.r0/ D wt.p.A/.2//;

(2) there exists a directed path r0 2 P .end.p.A/.1//; �.2/2 / such that end.r0/ D

end.p.A/.2// and wt.r0/ D wt.p.A/.2//.

For convenience of explanation, we set

'.A/ WD

´
1 if (1) of the above holds,

2 if (2) of the above holds.
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We define a set A0.w; �1/ � A.w; �1/ by

A0.w; �1/ WD ¹A 2 A.w; �1/ j '.A/ D 2º:

Then we have

AC
0 .w; �1/ D A.w; �1/ n A0.w; �1/ D ¹A 2 A.w; �1/ j '.A/ D 1º:

Let us define a map Y W A0.w; �1/ ! A.w; �2/. Let A 2 A0.w; �1/. Then, by
applying Proposition 4.3 with … D �

.2/
1 and …0 D �

.2/
2 , there exists a unique r0 2

P .end.p.A/.1//; �.2/2 / such that end.r0/ D end.p.A/.2// and wt.r0/ D wt.p.A/.2//.
We write the r0 as:

r0W end.p.A/.1// D x0

jˇ 0
j1

j

���! � � �

jˇ 0
jp

j

���! xp:

Since r0 is �.2/2 -compatible, it follows that t C 1 � j1 < � � � < jp � t C q. Now, we
set B.2/ WD ¹j1; : : : ; jpº, and define Y.A/ by Y.A/ WD A.1/ t B.2/ t A.3/; note that
Y.A/ 2 A.w; �2/. We define a set A0.w; �2/ by

A0.w; �2/ WD ¹Y.A/ j A 2 A0.w; �1/º:

We claim that Y defines a bijection Y W A0.w;�1/! A0.w;�2/. To verify this claim,
it suffices to show that Y is injective.

LetA1;A2 2 A0.w;�1/, and assume that Y.A1/DY.A2/. We show thatA1 DA2.
First, we see that

A
.1/
1 D .Y.A1//

.1/
D .Y.A2//

.1/
D A

.1/
2 ;

and
A
.3/
1 D .Y.A1//

.3/
D .Y.A2//

.3/
D A

.3/
2 :

Hence it remains to show that A.2/1 D A
.2/
2 . By the definition of the map Y , we have

end.p.Y.A1//.2// D end.p.A1/.2// and wt.p.Y.A1//.2// D wt.p.A1/.2//:

Also, we have

end.p.Y.A2//.2// D end.p.A2/.2// and wt.p.Y.A2//.2// D wt.p.A2/.2//:

Since p.Y.A1//.2/ D p.Y.A2//.2/, the uniqueness in Proposition 4.3 (2) (with … D

�
.2/
2 and…0 D �

.2/
1 ) implies that p.A1/.2/ D p.A2/.2/, from which we obtain A.2/1 D

A
.2/
2 , as desired. This shows the injectivity of Y .
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To prove that Y satisfies the condition of Theorem 3.2 (1), it remains to show that
end.Y.A// D end.A/, down.Y.A// D down.A/, and .�1/n.Y.A// D .�1/n.A/. The
first equation is obvious, since

end.Y.A// D end.p.Y.A/// D end.p.Y.A//.3//

D end.p.A/.3// D end.p.A// D end.A/:

The second equation is shown as follows:

down.Y.A// D wt.p.Y.A///

D wt.p.Y.A//.1//C wt.p.Y.A//.2//C wt.p.Y.A//.3//

D wt.p.A/.1//C wt.p.Y.A//.2//C wt.p.A/.3//

D wt.p.A/.1//C wt.p.A/.2//C wt.p.A/.3//
D wt.p.A//
D down.A/:

Since .�1/neg.p.Y.A//.2// D .�1/neg.p.A/.2// by Proposition 4.3 (2), the remaining equa-
tion is shown as follows:

.�1/n.Y.A// D .�1/neg.p.Y.A///

D .�1/neg.p.Y.A//.1//.�1/neg.p.Y.A//.2//.�1/neg.p.Y.A//.3//

D .�1/neg.p.A/.1//.�1/neg.p.Y.A//.2//.�1/neg.p.A/.3//

D .�1/neg.p.A/.1//.�1/neg.p.A/.2//.�1/neg.p.A/.3//

D .�1/neg.p.A//

D .�1/n.A/:

Next, we construct an involution I1 which satisfies the condition of Theorem 3.2 (2).
Let A 2 AC

0 .w; �1/. Then, by applying Proposition 4.3 with … D �
.2/
1 , we see that

there exists a unique r0 2 P .end.p.A/.1//; �.2/1 / n ¹p.A/.2/º such that

end.r0/ D end.p.A/.2// and wt.r0/ D wt.p.A/.2//:

We write the r0 as:

r0W end.p.A/.1// D x0
j ǰ1

j

���! � � �
j ǰp j

���! xp:

Since r0 is �.2/1 -compatible, it follows that t C 1 � j1 < � � � < jp � t C q. Now, we
set B.2/ WD ¹j1; : : : ; jpº, and define I1.A/ by

I1.A/ WD A.1/ t B.2/ t A.3/I
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note also that I1.A/ 2 A.w;�1/. Since p.A/.2/ 2 P .end.p.I1.A//.1//;�.2/1 / satisfies
the condition of Proposition 4.3 (1), with p D p.I1.A//.2/, we deduce that I1.A/ 2

AC
0 .w; �1/, and that

I1.I1.A// D I1.A
.1/

t B.2/ t A.3// D A.1/ t A.2/ t A.3/ D A

by the definition of I1. This shows that I1 is an involution. Hence it remains to show
that end.I1.A//D end.A/, down.I1.A//D down.A/, and .�1/n.I1.A// D �.�1/n.A/,
which can be shown by the same argument as that for Y . This completes the construc-
tion of I1.

Finally, we show the existence of an involution I2 on AC
0 .w; �2/. To do this, we

examine the set AC
0 .w;�2/ in detail. Let B 2 A.w;�2/. Then, in the same way as for

A 2 A.w; �1/, we see by Proposition 4.3, with … D �
.2/
2 and …0 D �

.2/
1 , that only

one of the following occurs:

(1)0 there exists a directed path r0 2 P .end.p.B/.1//; �.2/2 / n ¹p.B/.2/º such that
end.r0/ D end.p.B/.2// and wt.r0/ D wt.p.B/.2//;

(2)0 there exists a directed path r0 2 P .end.p.B/.1//; �.2/1 / such that end.r0/ D

end.p.B/.2// and wt.r0/ D wt.p.B/.2//.

For convenience of explanation, we set

'0.B/ D

´
1 if (1)0 of the above holds,

2 if (2)0 of the above holds.

We claim that
A0.w; �2/ D ¹B 2 A.w; �2/ j '0.B/ D 2º: (4.19)

If this equation is shown, then the following holds:

AC
0 .w; �2/ WD A.w; �2/ n A0.w; �2/ D ¹B 2 A.w; �2/ j '0.B/ D 1º:

First, we take B 2 A0.w; �2/. Then, by the definition of A0.w; �2/, there exists
A 2 A0.w;�1/ such that Y.A/D B . Since p.A/.2/ 2 P .end.p.A/.1//; �.2/1 / satisfies
the condition of Proposition 4.3 (2), with… D �

.2/
2 ,…0 D �

.2/
1 , and p D p.B/.2/, we

have
'0.B/ D 2:

Next, we take B 2 A.w;�2/ such that '0.B/ D 2. Then, by the definition of '0, there
exists r0 2 P .end.p.B/.1//; �.2/1 / such that end.r0/ D end.p.B/.2// and wt.r0/ D

wt.p.B/.2//. We write the r0 as:

r0W end.p.B/.1// D x0
j ǰ1

j

���! � � �
j ǰp j

���! xp:
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Then, we have
t C 1 � j1 < � � � < jp � t C q:

SetA.2/ WD ¹j1; : : : ; jpº, and thenA WDB.1/ tA.2/ tB.3/. We see thatA2A0.w;�1/

and Y.A/ D B , and hence B 2 A0.w; �2/. Thus, equation (4.19) is shown. Hence
the existence of the desired involution I2 on AC

0 .w; �2/ can be shown by the same
argument as that for the involution I1 on AC

0 .w; �1/. This completes the proof of
Theorem 3.2 (for � not of type G2).

4.6. Proof of Theorem 3.4

We will prove that the maps Y , I1 and I2 preserve weights and heights.
For this purpose, we need additional notation. Let‰D . 1; : : : ; p/ be a sequence

of roots  1; : : : ; p 2�, k D .k1; : : : ; kp/ a sequence of integers k1; : : : ; kp 2 Z, and
w 2 W . For a subset J D ¹j1 < � � � < jaº � ¹1; : : : ; pº such that

w
j j1

j

���! wsj j1
j

j j2
j

���! � � �
j ja j

���! wsj j1
j � � � sj ja j

is a directed path in QBG.W / (note that if ‰ is a �-chain for some � 2 P , then J is
a w-admissible subset), we define heightk;‰.w; J / by

heightk;‰.w; J / WD

X
j2J�

sgn. j /kj ;

where

J�
D

®
ji 2 J

ˇ̌
wsj j1

j � � � sj ji�1
j

j ji
j

���! wsj j1
j � � � sj ji

j is a quantum edge
¯
:

Also, we generalize the definition of down:

down‰.w; J / WD

X
j2J�

j j j
_:

Note that if ‰ D �1, k D .zl1; : : : ; zlr/, w 2 W , and J D A 2 A.w; �1/, then we have

down‰.w;A/ D down.A/; heightk;‰.w;A/ D height.A/I

if‰ D �2, k D .zl 01; : : : ;
zl 0r/D .zl1; : : : ; zlt ; eltCq; : : : ;eltC1;BltCqC1; : : : ; zlr/, w 2W , and

J D B 2 A.w; �2/, then we have

down‰.w;B/ D down.B/; heightk;‰.w;B/ D height.B/:
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In addition, for A 2 A.w; �1/, it follows that

down.A/ D down
�

.1/
1

.w;A.1//

C down
�

.2/
1

.end.p.A/.1//; A.2//C down
�

.3/
1

.end.p.A/.2//; A.3//;

and that

height.A/ D height
.zl1;:::;zlt /;�

.1/
1

.w;A.1//

C height
.eltC1;:::;eltCq/;�

.2/
1

.end.p.A/.1//; A.2//

C height
.AltCqC1;:::;zlr /;�

.3/
1

.end.p.A/.2//; A.3//I (4.20)

for B 2 A.w; �2/, it follows that

down.B/ D down
�

.1/
2

.w;B.1//

C down
�

.2/
2

.end.p.B/.1//; B.2//C down
�

.3/
2

.end.p.B/.2//; B.3//;

and that

height.B/ D height
.zl 0

1
;:::;zl 0t /;�

.1/
2

.w;B.1//

C height
.el 0

tC1
;:::;el 0

tCq
/;�

.2/
2

.end.p.B/.1//; B.2//

C height
.Al 0

tCqC1
;:::;zl 0r /;�

.3/
2

.end.p.B/.2//; B.3//

D height
.zl1;:::;zlt /;�

.1/
2

.w;B.1//

C height
.eltCq ;:::;eltC1/;�

.2/
2

.end.p.B/.1//; B.2//

C height
.AltCqC1;:::;zlr /;�

.3/
2

.end.p.B/.2//; B.3//: (4.21)

Next, we consider weights. For the above J , we set

yrk;‰.J / WD s j1
;�kj1

� � � s ja ;�kja
:

Then, for A 2 A.w; �1/, we have

wt.A/ D �yr.l1;:::;lr /;�1
.A/.��/

D �yr
.l1;:::;lt /;�

.1/
1

.A.1//yr
.ltC1;:::;ltCq/;�

.2/
1

.A.2//

� yr
.ltCqC1;:::;lr /;�

.3/
1

.A.3//.��/I (4.22)
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for B 2 A.w; �2/, we have

wt.B/ D �yr.l 0
1
;:::;l 0r /;�2

.B/.��/

D �yr.l1;:::;lt ;ltCq ;:::;ltC1;ltCqC1;:::;lr /;�2
.B/.��/

D �yr
.l1;:::;lt /;�

.1/
2

.B.1//yr
.ltCq ;:::;ltC1/;�

.2/
2

.B.2//

� yr
.ltCqC1;:::;lr /;�

.3/
2

.B.3//.��/: (4.23)

Proof of Theorem 3.4. First, we consider heights. For A 2 A.w; �1/, we see that

height
.eltC1;:::;eltCq/;�

.2/
1

.end.p.A/.1//; A.2//

D

X
j2.A.2//�

sgn. ǰ /.h�; ˇ
_
j i � lj /

D

X
j2.A.2//�

sgn. ǰ /h�; ˇ
_
j i � height

.ltC1;:::;ltCq/;�
.2/
1

.end.p.A/.1//; A.2//

D

�
�;

X
j2.A.2//�

sgn. ǰ /ˇ
_
j

�
� height

.ltC1;:::;ltCq/;�
.2/
1

.end.p.A/.1//; A.2//

D h�; down
�

.2/
1

.end.p.A/.1//; A.2//i

� height
.ltC1;:::;ltCq/;�

.2/
1

.end.p.A/.1//; A.2//: (4.24)

Let us assume that A 2 A0.w; �1/, and set B WD Y.A/. Then we have

height
.eltCq ;:::;eltC1/;�

.2/
2

.end.p.B/.1//; B.2//

D h�; down
�

.2/
2

.end.p.B/.1//; B.2//i

� height
.ltCq ;:::;ltC1/;�

.2/
2

.end.p.B/.1//; B.2//: (4.25)

Here, since down.Y.A// D down.A/, it follows that

down
�

.2/
2

.end.p.B/.1//; B.2// D down
�

.2/
1

.end.p.A/.1//; A.2//:

Also, by [13, Lemma 3.5], we know that

tCq\
kDtC1

Hˇk ;�lk ¤ ;:

Therefore, by [14, Lemma 46], we have

height
.ltCq ;:::;ltC1/;�

.2/
2

.end.p.B/.1//; B.2//

D height
.ltC1;:::;ltCq/;�

.2/
1

.end.p.A/.1//; A.2//;
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and hence by (4.24) and (4.25), we obtain

height
.eltCq ;:::;eltC1/;�

.2/
2

.end.p.B/.1//; B.2//

D height
.eltC1;:::;eltCq/;�

.2/
1

.end.p.A/.1//; A.2//:

Now, by (4.20) and (4.21), we deduce that height.B/ D height.A/, as desired.
Assume that A 2 AC

0 .w; �1/, and set B WD I1.A/. As in (4.24), we have

height
.eltC1;:::;eltCq/;�

.2/
1

.end.p.B/.1//; B.2//

D h�; down
�

.2/
1

.end.p.B/.1//; B.2//i

� height
.ltC1;:::;ltCq/;�

.2/
1

.end.p.B/.1//; B.2//:

Again, by the definition of I1 and [14, Lemma 46], we have

height
.eltC1;:::;eltCq/;�

.2/
1

.end.p.B/.1//; B.2//

D h�; down
�

.2/
1

.end.p.B/.1//; B.2//i � height
.ltC1;:::;ltCq/;�

.2/
1

.end.p.B/.1//; B.2//

D h�; down
�

.2/
1

.end.p.A/.1//; A.2//i � height
.ltC1;:::;ltCq/;�

.2/
1

.end.p.A/.1//; A.2//

D height
.eltC1;:::;eltCq/;�

.2/
1

.end.p.A/.1//; A.2//;

and hence obtain height.B/ D height.A/, as desired. Now, the assertion for I2 is
shown by the same argument as for I1.

It remains to consider weights. Again, by [13, Lemma 3.5], we can take � 2 h�
R

such that

� 2

tCq\
kDtC1

Hˇk ;�lk ¤ ;:

Note that h�; ˇ_
k

i D �lk for k D t C 1; : : : ; t C q.
LetA 2 A0.w;�1/, and setB WD Y.A/. Recall that end.p.B/.2//D end.p.A/.2//.

For simplicity of notation, we set

v WD end.p.A/.1// D end.p.B/.1//:

For � 2 h�
R, we denote by t� the translation by �, i.e., we define t� W h�

R ! h�
R by

t�.�/ WD � C �. We see that for � 2 h�
R and 
 2 �C,

s
 t� D ts
 .�/s
 ;

and for �1; �2 2 h�
R,

t�1
t�2

D t�1C�2
:
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Also, for 
 2 � and k 2 Z, we have tk
sj
 j D s
;k . If we write A.2/ D ¹j1; : : : ; jaº,
then we have

t�v�1 end.p.A.2///t�� D t�v�1.vsj ǰ1
j � � � sj ǰa j/t��

D .t�sj ǰ1
jt��/ � � � .t�sj ǰa jt��/

D .t�tsj ǰ1
j.��/sj ǰ1

j/ � � � .t�tsj ǰa
j.��/sj ǰa j/

D .th�;j ǰ1
j_ij ǰ1

jsj ǰ1
j/ � � � .th�;j ǰa j_ij ǰa jsj ǰa j/

D .th�;ˇ_
j1

i ǰ1
sj ǰ1

j/ � � � .th�;ˇ_
ja

i ǰa
sj ǰa j/

D .t�lj1 ǰ1
sj ǰ1

j/ � � � .t�lja ǰa
sj ǰa j/

D s
ǰ1
;�lj1

� � � s
ǰa ;�lja

D yr
.ltC1;:::;ltCq/;�

.2/
1

.A.2//: (4.26)

By the same calculation, we have

t�v�1 end.p.B.2///t�� D yr
.ltCq ;:::;ltC1/;�

.2/
2

.B.2//:

Since end.p.B/.2// D end.p.A/.2//, it follows that

yr
.ltCq ;:::;ltC1/;�

.2/
2

.B.2// D yr
.ltC1;:::;ltCq/;�

.2/
1

.A.2//:

Hence, by (4.22) and (4.23), we obtain wt.B/ D wt.A/, as desired.
Next, assume that A 2 AC

0 .w; �1/, and set B WD I1.A/. By the same calculation
as for (4.26), we have

t�v�1 end.p.B.2///t�� D yr
.ltC1;:::;ltCq/;�

.2/
1

.B.2//:

Hence, from the equality end.p.B/.2// D end.p.A/.2//, we deduce that

yr
.ltC1;:::;ltCq/;�

.2/
1

.B.2// D yr
.ltC1;:::;ltCq/;�

.2/
1

.A.2//:

Therefore, we conclude by (4.22) and (4.23) that wt.B/ D wt.A/, as desired.
The assertion for I2 is shown by the same argument as for I1. This completes the

proof of the theorem.

5. Generating functions of certain statistics

We consider a generating function of the statistics associated to the quantum alcove
model. We describe the relationship between the generating functions associated to
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two alcove paths which are related by the procedures (YB) and (D). We also investi-
gate the composition of generating functions. As an application, we derive an identity
of “Chevalley type” for the graded characters of Demazure submodules of (level-zero)
extremal weight modules over a quantum affine algebra.

5.1. Generating functions

Take an indeterminate q, and consider the ringR WD ZŒq;q�1� of Laurent polynomials
in q. Recall that an element of the affine Weyl group Waf can be written as x D wt� ,
with w in the finite Weyl group W and � in the coroot lattice Q_.

Definition 5.1. For each �-chain � and x D wt� 2 Waf, we define a generating func-
tion G�.x/ 2 RŒP �ŒWaf� associated to the set A.w; �/ of w-admissible subsets by

G�.x/ WD

X
A2A.w;�/

.�1/n.A/q� height.A/�h�;�iewt.A/ end.A/t�Cdown.A/: (5.1)

We also think of G� as a linear function onRŒP �ŒWaf� byRŒP �-linearly extending the
above assignment x 7! G�.x/.

Let � 2 P , and take �-chains �1, �2. We consider the relation of the two generat-
ing functions G�1

.x/ and G�2
.x/ for x D wt� 2 Waf.

First, we consider the case in which �2 is obtained from �1 by the procedure (YB).
As a corollary of Theorems 3.2 and 3.4, we obtain the equality between the two gen-
erating functions.

Proposition 5.2. Assume that �2 is obtained from �1 by (YB). Then we have

G�1
.x/ D G�2

.x/:

Proof. As in Theorem 3.2, we take subsets A0.w;�1/;A
C
0 .w;�1/ of A.w;�1/. Also,

we take subsets A0.w; �2/;A
C
0 .w; �2/ of A.w; �2/. Then we have the maps Y , I1,

I2 as in Theorem 3.2. Note that by Theorem 3.4, Y , I1, and I2 preserve weights and
heights.

Since I1 is a sign-reversing involution which preserves weights, heights, and down
statistics, we haveX

A2AC
0
.w;�1/

.�1/n.A/q� height.A/�h�;�iewt.A/ end.A/t�Cdown.A/ D 0;

and hence

G�1
.x/ D

X
A2A0.w;�1/

.�1/n.A/q� height.A/�h�;�iewt.A/ end.A/t�Cdown.A/:
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We derive the similar result for G�2
.x/ via the sign-reversing involution I2. Using the

map Y given by a generalization of quantum Yang–Baxter moves, we deduce that

G�1
.x/ D

X
A2A0.w;�1/

.�1/n.Y.A//q� height.Y.A//�h�;�iewt.Y.A// end.Y.A//t�Cdown.Y.A//

D G�2
.x/:

This concludes the proof.

Next, we consider the case in which �2 is obtained from �1 by the procedure (D).

Proposition 5.3. Assume that �2 is obtained from �1 by the procedure (D), which
deletes the segment .˙ˇ;�ˇ/ of �1, where ˇ is not a simple root. Then we have

G�1
.x/ D G�2

.x/:

Proof. We write �1 D .ˇ1; : : : ;ˇr/. By the assumption, there exists u 2 ¹1; : : : ; r � 2º

such that

• ˇuC2 D �ˇuC1,

• ˇuC1 and ˇuC2 are not simple roots, and

• �2 D .ˇ1; : : : ; ˇu; ˇuC3; : : : ; ˇr/.

Set ˇ WD jˇuC1j D jˇuC2j. Since ˇ is not a simple root, there does not exist any path
of the form

v
jˇuC1jDˇ
������! v0

jˇuC2jDˇ
������! v00

D v:

Hence, for A 2 A.w; �1/, we have A \ ¹uC 1; uC 2º ¤ ¹uC 1; uC 2º. We define
a subset A;.w; �1/ � A.w; �1/ by

A;.w; �1/ WD ¹A 2 A.w; �1/ j A \ ¹uC 1; uC 2º D ;º:

Also, we define a subset AC
;
.w; �1/ � A.w; �1/ by

AC
; .w; �1/ WD A.w; �1/ n A;.w; �1/

D ¹A 2 A.w; �1/ j A \ ¹uC 1; uC 2º D ¹uC 1º; ¹uC 2ºº:

We define a map IDWAC
;
.w;�1/! AC

;
.w;�1/ as follows. IfA 2 AC

;
.w;�1/ satisfies

A \ ¹uC 1; uC 2º D ¹uC 1º, then we set

ID.A/ WD .A \ ¹1; : : : ; uº/ t ¹uC 2º t .A \ ¹uC 3; : : : ; rº/I

if A 2 AC
;
.w; �1/ satisfies A \ ¹uC 1; uC 2º D ¹uC 2º, then we set

ID.A/ WD .A \ ¹1; : : : ; uº/ t ¹uC 1º t .A \ ¹uC 3; : : : ; rº/:
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We see that for all A 2 AC
;
.w; �1/, we have ID.A/ 2 AC

;
.w; �1/. Also, we see that

ID.ID.A// D A. Hence ID defines an involution on AC
;
.w; �1/, and it is easy to see

that it preserves the statistics down.�/, end.�/, height.�/, and wt.�/. Also, it is easy to
verify that ID negates the sign .�1/n.�/. Therefore, we obtainX

A2AC
;
.w;�1/

.�1/n.A/q� height.A/�h�;�iewt.A/ end.A/t�Cdown.A/ D 0:

Now, we define a bijection D W A;.w; �1/ ! A.w; �2/ by

D.A/ WD .A \ ¹1; : : : ; uº/ t ¹j � 2 j j 2 A \ ¹uC 3; : : : ; rºº:

It is again easy to see that this bijection preserves all the statistics. Therefore, we
deduce that

G�1
.x/ D

X
A2A.w;�1/

.�1/n.A/q� height.A/�h�;�iewt.A/ end.A/t�Cdown.A/

D

X
A2A;.w;�1/

.�1/n.A/q� height.A/�h�;�iewt.A/ end.A/t�Cdown.A/

D

X
A2A;.w;�1/

.�1/n.D.A//q� height.D.A//�h�;�iewt.D.A// end.D.A//t�Cdown.D.A//

D G�2
.x/;

as desired. This concludes the proof.

Remark 5.4. In the setting of Proposition 5.3, assume that ˇ is a simple root such
that ˙ˇ appears in positions u C 1 and u C 2 in �1. Then the equality G�1

.x/ D

G�2
.x/ does not hold. This is because there exists a directed path of the form

v
ˇ
�! v0

ˇ
�! v

for all v 2 W , in contrast to the case that ˇ is not a simple root. In fact, in A.w; �1/,
we can pair each A for which A\ ¹uC 1;uC 2º D ; with A0 WD At ¹uC 1;uC 2º.
Let h 2 Z be the contribution of (one of the) positions u C 1, u C 2 to height.A0/;
note that this is independent of A. By using the above pairing, as well as the map D
and the cancellations given by the involution ID in the proof of Proposition 5.3, we
derive

G�1
.x/ D G�2

.x/.1 � q�htˇ_/:

We need the following weaker version of the notion of a reduced �-chain.

Definition 5.5. A �-chain is weakly reduced if it does not contain both a simple root
and its negative.
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Now let us consider arbitrary weakly reduced �-chains �1 and �2. Then there
exists a sequence �1 D ‰0; ‰1; : : : ; ‰p D ��

1 of �-chains such that ��
1 is reduced,

and each ‰k is obtained from ‰k�1 by one of the procedure (YB) or (D). In a similar
way, we relate �2 to a reduced �-chain ��

2 . Finally, we relate ��
1 to ��

2 by successively
applying the procedure (YB). The weakly reduced property of �1 and �2 implies that,
in the above process, the procedure (D) never deletes a segment .˙ˇ;�ˇ/, where ˇ
is a simple root. By Propositions 5.2 and 5.3, we derive the following theorem.

Theorem 5.6. For arbitrary weakly reduced �-chains �1 and �2, we have

G�1
.x/ D G�2

.x/:

5.2. Combinatorial realization of commutativity

In this section we realize combinatorially the symmetry of the general Chevalley for-
mula in [14,15] coming from commutativity of line bundle multiplication in equivari-
ant K-theory. As explained in the Introduction, this realization involves commutativ-
ity of the composition of two functions G�1

and G�2
, and is based on the generalized

quantum Yang–Baxter moves. The main result here will also play an important role
in the proof of the character identity in Section 5.3.

We start by developing the notion of a weakly reduced chain of roots in Defi-
nition 5.5. Consider an arbitrary weight � and an arbitrary decomposition of it � D

�1 C � � � C �p . Let �j D
P
i2I mij$i .

Definition 5.7. The weight decomposition � D �1 C � � � C �p is cancellation-free if,
for any i 2 I , all the nonzero coefficients among mi1; : : : ; mip have the same sign.

Given the above weight decomposition, consider �j -chains of roots �j , for j D

1; : : : ; p. Their concatenation, defined in the obvious way and denoted by

� D �1 � � � � � �p;

is clearly a �-chain. Note that the alcove path corresponding to � is obtained by
considering the shift of the alcove path for �j by �1 C � � � C �j�1, for j D 1; : : : ; p,
and by concatenating them in this order.

Proposition 5.8. The �-chain � is a weakly reduced if and only if the weight decom-
position � D �1 C � � � C �p is cancellation-free and each �j -chain �j is weakly
reduced.

Proof. The result is easily derived from the following general fact about a (not nec-
essarily reduced) �-chain � D .ˇ1; : : : ; ˇr/, for an arbitrary weight � and a positive
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root ˛ (see, e.g., [19, Lemma 5.3]):

h�; ˛_
i D #¹j j ǰ D ˛º � #¹j j ǰ D �˛º:

This fact is applied to a simple root ˛ D ˛i , by noting that h�; ˛_
i i is the coefficient

of $i in the expansion of �.

Let us now consider a cancellation-free weight decomposition � D � C �, and
weakly reduced chains of roots �1 and �2 corresponding to � and �, respectively.
Then, by Proposition 5.8, we have the weakly reduced �-chain � WD �1 ��2. Observe
that there exists a natural bijection

¹.A;B/ j A 2 A.w; �1/; B 2 A.end.A/; �2/º ! A.w; �/I (5.2)

let A � B 2 A.w; �/ denote the image of .A; B/ under this bijection. The follow-
ing lemma relates the statistics of interest under the bijection; its proof is based on
arguments completely similar to those in the proof of [14, Theorem 48].

Lemma 5.9 ([14]). For A 2 A.w; �1/ and B 2 A.end.A/; �2/, the following hold:

(1) n.A � B/ D n.A/C n.B/;

(2) end.A � B/ D end.B/;

(3) down.A � B/ D down.A/C down.B/;

(4) height.A � B/ D height.A/C height.B/C h�; down.A/i;

(5) wt.A � B/ D wt.A/C wt.B/.

We are now ready to prove the main result of this section.

Theorem 5.10. Given the above setup and any x D wt� 2 Waf, we have

G�1
ı G�2

.x/ D G�2
ı G�1

.x/ D G�.x/:

These identities are realized combinatorially via the bijection (5.2) and the general-
ized quantum Yang–Baxter moves.

Proof. It suffices to prove the second equality. Indeed, this would imply that

G�1
ı G�2

.x/ D G�0.x/;

where � 0 WD �2 � �1. The proof is then concluded by using Theorem 5.6 to show
that G�.x/ D G�0.x/. Recall that the mentioned theorem is proved by applying the
generalized quantum Yang–Baxter moves.
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By iterating the definition (5.1), we obtain

G�2
ı G�1

.x/

D

X
A2A.w;�1/

.�1/n.A/q� height.A/�h�;�iewt.A/G�2
.end.A/t�Cdown.A//

D

X
A2A.w;�1/

X
B2A.end.A/;�2/

.�1/n.A/Cn.B/q� height.A/�h�;�i�height.B/�h�;�Cdown.A/i

� ewt.A/Cwt.B/ end.B/t�Cdown.A/Cdown.B/

D

X
A2A.w;�1/

X
B2A.end.A/;�2/

.�1/n.A�B/q� height.A�B/�h�;�i

� ewt.A�B/ end.A � B/t�Cdown.A�B/

D G�.x/:

The last two equalities are based on the bijection (5.2) and Lemma 5.9.

Theorem 5.10 immediately implies the following corollary involving a compo-
sition of more than two functions G�i

. Here we use the corresponding setup that
was defined above. Namely, we consider the cancellation-free weight decomposition
� D �1 C � � � C �p , the weakly reduced �j -chains of roots �j , for j D 1; : : : ; p, and
their concatenation � D �1 � � � � � �p .

Corollary 5.11. In the above setup, the composite of generating functions G�1
ı � � � ı

G�p
.x/ is invariant under permuting the maps G��

, and coincides with G�.x/.

We now generalize the function G� on RŒP �ŒWaf� by defining the function yG� ,
which expresses the general K-theory Chevalley formula for semi-infinite flag mani-
folds in [14, 15]. In order to do this, we need some notation for partitions. Let � 2 P

and write it as � D
P
i2I mi$i . We define the set Par.�/ by

Par.�/ WD

²
� D .�.i//i2I

ˇ̌̌̌
�.i/ is a partition whose length is
less than or equal to max¹mi ; 0º

³
: (5.3)

For �D .�.i//i2I 2 Par.�/, we write it as �.i/ D .�
.i/
1 � �

.i/
2 � � � � � �

.i/

li
> 0/, where

0 � li � max¹mi ; 0º and �.i/1 ; : : : ; �
.i/

li
2 Z, and set

j�j WD

X
i2I

liX
kD1

�
.i/

k
; �.�/ WD

X
i2I

�
.i/
1 ˛

_
i I (5.4)

if �.i/ D ;, then we understand that li D 0 and �.i/1 D 0.
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Definition 5.12. For each �-chain � and x 2 Waf, we define

yG�.x/ WD

X
�2Par.�/

q�j�jG�.x/t�.�/: (5.5)

Like above, we now consider a cancellation-free weight decomposition �D�C�,
weakly reduced chains of roots �1 and �2 corresponding to � and �, respectively, and
the weakly reduced �-chain � WD�1 ��2. Let�D

P
i2I mi1$i and �D

P
i2I mi2$i ,

so � D
P
i2I mi$i with mi D mi1 Cmi2. We will show that there exists a natural

bijection
Par.�/ � Par.�/ ! Par.�/; . ;!/ 7! � WD  �!; (5.6)

which is compatible with the corresponding statistics. The above map is constructed
by defining the partition �.i/ in terms of the partitions  .i/ and !.i/, for each i 2 I ;
we will identify a partition with its Young diagram. We may assume thatmi1;mi2 � 0,
and at least one is positive; indeed, otherwise mi1; mi2 � 0, so  .i/ D !.i/ D ;, and
we let �.i/ WD ;. In the nontrivial case, we consider a rectangular partition with mi2
rows of size  .i/1 ; then �.i/ is defined as the result of attaching !.i/ at the right of
the rectangle (top justified) and  .i/ at the bottom of the rectangle (left justified). It is
easy to verify that the result is indeed a partition of length at most mi , as needed, as
well as the fact that this map is invertible.

Lemma 5.13. For  2 Par.�/ and ! 2 Par.�/, the following hold:

(1) �. �!/ D �. /C �.!/;

(2) j �!j D j j C j!j C h�; �. /i.

Proof. We use the above notation, in particular � WD  � !, as well as the fact that
the weight decomposition � D � C � is cancellation-free. The first relation is clear
by construction. The second one follows from the fact that

h�; �. /i D

X
i2I

mi2 
.i/
1 D

X
i2I

max¹mi2; 0º 
.i/
1 I

here we note that mi2 
.i/
1 is the size of the rectangle used to construct �.i/ in the

nontrivial case.

Theorem 5.14. Given the above setup and any x D wt� 2 Waf, we have

yG�1
ı yG�2

.x/ D yG�2
ı yG�1

.x/ D yG�.x/:

These identities are realized combinatorially via the bijections (5.2), (5.6), and the
generalized quantum Yang–Baxter moves.
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Proof. As in the proof of Theorem 5.10, it suffices to prove the second equality. By
iterating the definition (5.5) and by also using (5.1), we obtain

yG�2
ı yG�1

.x/

D

X
 2Par.�/

X
A2A.w;�1/

.�1/n.A/q�h�;�i�height.A/�j j

� ewt.A/ yG�2
.end.A/t�Cdown.A/C�. //

D

X
 2Par.�/

X
!2Par.�/

X
A2A.w;�1/

.�1/n.A/q�h�;�i�height.A/�j j�j!j

� ewt.A/G�2
.end.A/t�Cdown.A/C�. //t�.!/

D

X
 2Par.�/

X
!2Par.�/

q�j j�j!j�h�;�. /i
X

A2A.w;�1/

.�1/n.A/q�h�;�i�height.A/

� ewt.A/G�2
.end.A/t�Cdown.A//t�. /C�.!/

D

X
 2Par.�/

X
!2Par.�/

q�j j�j!j�h�;�. /iG�2
ı G�1

.wt�/t�. /C�.!/

D

X
 2Par.�/

X
!2Par.�/

q�j �!jG�.wt�/t�. �!/

D yG�.x/:

The last two equalities are based on the bijection (5.6), Lemma 5.13, and Theo-
rem 5.10.

Remarks 5.15. A few words are in order:

(1) Theorem 5.14 exhibits a combinatorial realization of the symmetry of the
general Chevalley formula [14, Theorem 33] coming from commutativity in
equivariant K-theory.

(2) Corollary 5.11 can be extended to the setup of Theorem 5.14.

5.3. Identity of Chevalley type for graded characters

As an application of the results in Sections 5.1 and 5.2, we obtain an identity of
“Chevalley type” for the graded characters of Demazure submodules of (level-zero)
extremal weight modules over a quantum affine algebra.

Let gaf be the untwisted affine Lie algebra whose underlying finite-dimensional
simple Lie algebra is g, and let Uq.gaf/ denote the quantum affine algebra associated
to gaf with Chevalley generator Ei ; Fi 2 Uq.gaf/, i 2 Iaf D I t ¹0º, where q is an
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indeterminate. We denote by

U�
q .gaf/ WD hFi ii2Iaf � Uq.gaf/

the subalgebra of Uq.gaf/ generated by ¹Fi j i 2 Iafº. Also, let

Waf D W Ë ¹t� j � 2 Q_
º ' W ËQ_

be the (affine) Weyl group of gaf, where t� , � 2 Q_, denotes the translation by �
(see [6, Proposition 6.5]).

For each �2PC (regarded as a level-zero affine weight), denote by V.�/ the level-
zero extremal weight module of extremal weight � over Uq.gaf/, which is equipped
with a family ¹vxºx2Waf �V.�/ of extremal weight vectors, where vx 2V.�/, x 2Waf,
is an extremal weight vector of weight x� (see [7, Proposition 8.2.2]). For x 2 Waf

and � 2 PC, the Demazure submodule V �
x .�/ is defined by

V �
x .�/ WD U�

q .gaf/vx :

We denote by gch V �
x .�/ the graded character of V �

x .�/ (see [8, Section 2.4]). If
xDwt� withw 2W and � 2Q_, then we know that gchV �

x .�/2 ZŒP �Jq�1Kq�h�;�i;
in fact, we know that gchV �

w .�/ 2 ZJq�1KŒP � for w 2 W .
We will prove the following identity for the graded characters of Demazure sub-

modules, which is a representation-theoretic analogue of the general Chevalley for-
mula for the equivariant K-group of semi-infinite flag manifolds ([14, Theorem 33]).

Theorem 5.16. Let � 2 PC and x 2 Waf. We write x as x D wt� , with w 2 W and
� 2Q_. Take �2P such that�C�2PC, and let � be an arbitrary reduced �-chain.
Then we have

gchV �
x .�C �/ D

X
A2A.w;�/

X
�2Par.�/

.�1/n.A/q� height.A/�h�;�i�j�jewt.A/

� gchV �
end.A/t�Cdown.A/C�.�/

.�/: (5.7)

Remark 5.17. The right-hand side of (5.7) is identical to zero if � C � … PC; the
proof is given in Appendix B.

Although Theorem 5.16 can be proved in a parallel way to [14, Theorem 33], we
show that it follows immediately from the results in Sections 5.1 and 5.2.

Now we recall two special cases of Theorem 5.16, i.e., the cases that � is dominant
or anti-dominant. The following theorem gives the identity for dominant weights; this
is a restatement of [21, Corollary C.1] in terms of the quantum alcove model, which
is given by exactly the same argument as for [14, Theorem 29]. Here, for a dominant
weight � 2 PC, the lex �-chain is a �-chain constructed in [20, Proposition 4.2].
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Theorem 5.18 (cf. [14, Theorem 29] and [21, Corollary C.1]; see also [8, Proposi-
tion D.1]). Let �; � 2 PC, and x D wt� 2 Waf with w 2 W and � 2 Q_. Let � be
the lex �-chain. Then we have

gchV �
x .�C �/ D

X
A2A.w;�/

X
�2Par.�/

q� height.A/�h�;�i�j�jewt.A/

� gchV �
end.A/t�Cdown.A/C�.�/

.�/:

Also, the following theorem gives the identity for anti-dominant weights; this is
a restatement of [21, Corollary 3.15] in terms of the quantum alcove model, which
is given by exactly the same argument as for [14, Theorem 32]. Here, following [14,
Section 4.2], the lex �-chain for an anti-dominant weight � 2 �PC is defined to
be the reverse of the lex .��/-chain with all roots negated in the lex .��/-chain;
namely, for the given lex .��/-chain .ˇ1; : : : ; ˇr/, the lex �-chain is defined to be
.�ˇr ; : : : ;�ˇ1/.

Theorem 5.19 (cf. [14, Theorem 32] and [21, Corollary 3.15]; see also [8, Proposi-
tion D.1]). Let � 2 PC, and x D wt� 2Waf withw 2W and � 2Q_. Take � 2 �PC

such that �C � 2 PC, and let � be the lex �-chain. Then we have

gchV �
x .�C �/ D

X
A2A.w;�/

.�1/jAjq� height.A/�h�;�iewt.A/ gchV �
end.A/t�Cdown.A/

.�/:

Proof of Theorem 5.16. Let �; �; x and � be as in the statement of Theorem 5.16.
Write � D �C C ��, with �C 2 PC and �� 2 �PC given by

�C
WD

X
i2I

max¹h�; ˛_
i i; 0º$i ; ��

WD

X
i2I

min¹h�; ˛_
i i; 0º$i :

Note that the weight decomposition � D �C C �� is cancellation-free. Take lex �C-
chain (resp., lex ��-chain) �C (resp., ��). Note that the two chains of roots are
reduced, and �C consists of positive roots, while �� consists of negative roots. Define
a �-chain �0 as the concatenation �C � ��, which is weakly reduced by Proposi-
tion 5.8.

By Theorems 5.14 and 5.6, for x 2 Waf we have

yG�� ı yG�C.x/ D yG�0
.x/ D yG�.x/: (5.8)

Now consider the correspondence x 7! gch V �
x .�/ for x 2 Waf, which defines

an RŒP �-module homomorphism RŒP �ŒWaf� ! Z..q�1//ŒP �. Under this homomor-
phism, yG�.x/ is mapped to the right-hand side of (5.7). By (5.8), we obtain the same
result by applying the homomorphism to yG�� ı yG�C.x/. We observe that doing this
parallels the process of expanding

gchV �
x .�C �/ D gchV �

x ..�C ��/C �C/
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in terms of gch V �
y .� C ��/ by Theorem 5.18, followed by expanding the result

in terms of gch V �
y .�/ by Theorem 5.19; here we use the fact that � C � 2 PC

implies �C �� 2 PC. The mentioned observation proves that by applying the above
homomorphism to yG�� ı yG�C.x/, we obtain gchV �

x .�C �/. We conclude that the
right-hand side of (5.7) coincides with gchV �

x .�C �/.

Remark 5.20. Theorem 5.16 can also be proved by using the �-chain ��
0 WD�� ��C

instead of �0.

5.4. Towards a signed crystal structure on the quantum alcove model for an
arbitrary weight

Crystals are colored directed graphs encoding the structure of representations of the
quantum algebra Uq.g/ in the limit q ! 0, where g is a symmetrizable Kac–Moody
algebra. The vertices B of the crystal correspond to the elements of the crystal basis
for the representation, and the edges correspond to the action of the Chevalley gener-
ators ei , fi in the above limit. Formally, we define the crystal operators

zei ; zfi WB ! B t ¹0º;

where the value 0 corresponds to the operators being undefined, and zei is a partial
inverse to zfi . These operators are subject to several conditions; see, e.g., [5] for all
the background information on crystals.

We define a signed crystal simply as a crystal together with a sign function on
the vertex set B; note that we do not require the crystal operators to preserve signs.
An isomorphism of signed crystals B and B 0 is a sijection between B and B 0 which
commutes with the crystal operators.

Given a dominant weight � and a reduced �-chain � , an affine crystal structure
was constructed on A.e; �/ in [12], which was then shown in [17] to uniformly
describe tensor products of single-column Kirillov–Reshetikhin crystals of quantum
affine algebras; note that for all w 2 W , the set A.w; �/ can be equipped with an
affine crystal structure through the bijection with the affine crystal A.e; �/, which
is afforded by [14, Proposition 28] and quantum Yang–Baxter moves. Also, for an
anti-dominant weight �0 and a reduced �0-chain � 0, an argument similar to that in the
proof of [19, Theorem 8.6] yields a signed crystal structure on the set

A.� 0; w/ WD ¹A 2 A.� 0/ j end.A/ D wº with A.� 0/ WD

G
w2W

A.w; � 0/;

which is in bijective correspondence with A.wwı; .�
0/�/, where .� 0/� is a reduced

wı.�
0/-chain of roots dual to � 0. In both the dominant and anti-dominant cases, as
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well as in general (below), we use the same sign function as throughout the paper; in
particular, in the dominant case the sign function is identically 1.

We now propose the construction of a (partial) signed crystal structure on

A.�/ WD

G
w2W

A.w; �/;

where � is a reduced chain of roots corresponding to an arbitrary weight �. We use
the same objects and facts as in Sections 5.2 and 5.3, namely � D �C C ��, the
lex �C-chain (resp., lex ��-chain) �C (resp., ��), their concatenation ��

0 (not �0),
and the bijection (5.2). Based on these facts, we can define a signed crystal structure
on A.��

0 / by decomposing it as

A.��
0 / D

G
w2W

.A.��; w/ � A.w; �C//;

where
A.��; w/ WD ¹A 2 A.��/ j end.A/ D wº

for w 2W ; note that the concatenation A.��;w/ � A.w;�C/ is a well-defined crys-
tal for all w 2 W . On another hand, we know that ��

0 can be related to the reduced
�-chain � by the procedures (YB) and (D). By propagating the signed crystal struc-
tures through the corresponding generalized quantum Yang–Baxter moves, we end up
with a (partial) signed crystal structure on A.�/, that is, a signed crystal structure for
which crystal operators are defined only on a subset of A.�/.

We state the following conjecture.

Conjecture 5.21. For each reduced chain of roots � corresponding to an arbitrary
weight �, there exists a signed crystal structure on the whole of A.�/, which extends
the (partial) crystal structure defined above. Moreover, the sijection .I1; I2; Y / defin-
ing a generalized quantum Yang–Baxter move in Theorem 3.2 commutes with the
crystal operators defined on A.�/.

A. An example of quantum Yang–Baxter moves in type C2

Based on Proposition 4.3, we explain how to construct quantum Yang–Baxter moves
explicitly in a specific case. We assume that g is of type C2. Let …, …0 be the
sequences of roots introduced in Section 4.2. We consider the case that v D s2 and
…D .�2˛1 � ˛2;�˛1; ˛2; ˛1 C ˛2/. Note that…0 D .˛1 C ˛2; ˛2;�˛1;�2˛1 � ˛2/.
Let us construct an explicit matching between a certain subset of P .v;…/ and that of
P .v;…0/, and also sign-reversing involutions outside of those subsets.
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p 2 P .v;…/ end.p/ down.p/

p1 e ˛_
2

p2 s2 0

p3 s1s2 0

p4 s2s1 0

p5 s1s2s1 0

p6 s2s1s2 0

Table 1. Statistics of elements p 2 P .v;…/.

q 2 P .v;…0/ end.q/ down.q/

q1 e ˛_
1 C ˛_

2

q2 e ˛_
1 C ˛_

2

q3 e ˛_
2

q4 s1 ˛_
2

q5 s1 ˛_
2

q6 s2 0

q7 s1s2 0

q8 s2s1 ˛_
2

q9 s2s1 ˛_
2

q10 s2s1 0

q11 s1s2s1 0

q12 s2s1s2 0

Table 2. Statistics of elements q 2 P .v;…0/.

Recall the matrices of the operators R˛1C˛2
R˛2

R˛1
R2˛1C˛2

;R2˛1C˛2
R˛1

R˛2
R˛1C˛2

calculated in Section 4.4. In particular, the v-column of the matrix of the opera-
tor R˛1C˛2

R˛2
R˛1

R2˛1C˛2
(resp., R2˛1C˛2

R˛1
R˛2

R˛1C˛2
) is t .Q2; 0; 1; 1; 1; 1; 1; 0/

(resp., t .2Q1Q2 C Q2; 2Q2; 1; 1; 2Q2 C 1; 1; 1; 0/). For example, the .e; v/-entry
of the matrix of the operator R2˛1C˛2

R˛1
R˛2

R˛1C˛2
is 2Q1Q2 CQ2. Therefore, we

deduce from equation (4.3) that there exist exactly three…0-compatible directed paths
r.1/; r.2/; r.3/ such that

• r.j / starts at v D s2 for j D 1; 2; 3,

• end.r.j // D e, j D 1; 2; 3,

• down.r.j // D ˛_
1 C ˛_

2 , j D 1; 2, and

• down.r.3// D ˛_
2 ;

remark that Q˛_
1

C˛_
2 D Q1Q2 and Q˛_

2 D Q2. Similarly, we see that there exist six
…-compatible directed paths p1; : : : ;p6 such that

P .v;…/ D ¹p1; : : : ;p6º:

Also, there exist twelve …0-compatible directed paths q1; : : : ;q12 such that

P .v;…0/ D ¹q1; : : : ;q12º:

For p 2 P .v;…/ (resp., q 2 P .v;…0/), the statistics end.p/, down.p/ (resp., end.q/,
down.q/) are given in Tables 1, 2.
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Note that p 2 P .v;…/ and q 2 P .v;…0/ are explicitly written as follows:

p1W s2
˛2
�! eI p2W s2 (the trivial directed path)I

p3W s2
˛1C˛2
����! s1s2I p4W s2

˛1
�! s2s1I

p5W s2
˛1
�! s2s1

˛1C˛2
����! s1s2s1I p6W s2

˛1
�! s2s1

˛2
�! s2s1s2I

q1W s2
˛1C˛2
����! s1s2

˛2
�! s1

˛1
�! eI q2W s2

˛1C˛2
����! s1s2

˛1
�! s1s2s1

2˛1C˛2
�����! eI

q3W s2
˛2
�! eI q4W s2

˛1C˛2
����! s1s2

˛2
�! s1I

q5W s2
˛2
�! e

˛1
�! s1I q6W s2 (the trivial directed path)I

q7W s2
˛1C˛2
����! s1s2I q8W s2

˛1C˛2
����! s1s2

˛2
�! s1

2˛1C˛2
�����! s2s1I

q9W s2
˛2
�! e

˛1
�! s1

2˛1C˛2
�����! s2s1I q10W s2

˛1
�! s2s1I

q11W s2
˛1C˛2
����! s1s2

˛1
�! s1s2s1I q12W s2

˛1C˛2
����! s1s2

2˛1C˛2
�����! s2s1s2:

Thus, if we set

P0.v;…/ WD P .v;…/;

P0.v;…
0/ WD ¹q3;q6;q7;q10;q11;q12º � P .v;…0/;

PC
0 .v;…

0/ WD ¹q1;q2;q4;q5;q8;q9º D P .v;…0/ n P0.v;…
0/;

then we obtain the following bijection Y v;…W P0.v; …/ ! P0.v; …
0/ and involu-

tion I v;…
0

2 on PC
0 .v;…

0/ which preserve end.�/ and down.�/:

Y v;…W p1 7! q3; p2 7! q6; p3 7! q7; p4 7! q10; p5 7! q11; p6 7! q12I

I
v;…0

2 W q1 7! q2; q2 7! q1; q4 7! q5; q5 7! q4; q8 7! q9; q9 7! q8:

These maps give the correspondence p 7! p0 in Proposition 4.3.
Now, let us give an example of generalized quantum Yang–Baxter moves. Let

� 2 P . Take �-chains �1 and �2 such that �2 is obtained from �1 by the Yang–Baxter
transformation (YB). Let w 2 W . As in equations (3.1) and (3.2), we take �.k/1 , �.k/2 ,
kD 1;2;3. Also, as in equations (3.3) and (3.4), we takeA.k/ (resp.,B.k/), kD 1;2;3,
for A 2 A.w; �1/ (resp., B 2 A.w; �2/). In this example, we consider the case that

�
.2/
1 D … and �

.2/
2 D …0:

By the consideration above, we can give an explicit description of quantum Yang–
Baxter moves for A 2 A.w; �1/ (resp., B 2 A.w; �2/) such that end.A.1// D s2

(resp., end.B.1// D s2), as given in Tables 3, 4.
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A.2/ p.A.2// p.Y.A/.2// D Y v;….p.A.2/// Y.A/.2/

; p2 q6 ;

¹t C 2º p4 q10 ¹t C 3º

¹t C 3º p1 q3 ¹t C 2º

¹t C 4º p3 q7 ¹t C 1º

¹t C 2; t C 3º p6 q12 ¹t C 1; t C 4º

¹t C 2; t C 4º p5 q11 ¹t C 1; t C 3º

Table 3. List of Y.A/ for A 2 A0.w; �1/ such that end.A.1// D s2.

B.2/ p.B.2// p.I2.B/.2//DI v;…
0

2 .p.B.2/// I2.B/
.2/

¹t C 1; t C 2º q4 q5 ¹t C 2; t C 3º

¹t C 2; t C 3º q5 q4 ¹t C 1; t C 2º

¹t C 1; t C 2; t C 3º q1 q2 ¹t C 1; t C 3; t C 4º

¹t C 1; t C 2; t C 4º q8 q9 ¹t C 2; t C 3; t C 4º

¹t C 1; t C 3; t C 4º q2 q1 ¹t C 1; t C 2; t C 3º

¹t C 2; t C 3; t C 4º q9 q8 ¹t C 1; t C 2; t C 4º

Table 4. List of I2.B/ for B 2 AC
0
.w; �2/ such that end.B.1// D s2.

B. The right-hand side of the identity of Chevalley type for graded
characters

We show that the right-hand side of (5.7) is identical to zero if �C � … PC.

Proposition B.1. Let � 2 PC, and x D wt� 2 Waf with w 2 W and � 2 Q_. Take
� 2 P such that �C � … PC, and let � be an arbitrary reduced �-chain. Then we
haveX
A2A.w;�/

X
�2Par.�/

.�1/n.A/q� height.A/�h�;�i�j�jewt.A/ gchV �
end.A/t�Cdown.A/C�.�/

.�/D 0:

In the proof of Proposition B.1, we make use of the following equalities for graded
characters.

Proposition B.2 ([8, Proposition D.1]). For each x 2 Waf, � 2 Q_, and � 2 PC, we
have

gchV �
xt�
.�/ D q�h�;�i gchV �

x .�/:
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Proposition B.3 (cf. [21, Appendix B]). Let � 2 PC and x 2 W . Take � 2 �PC

such that �C � … PC, and let � be the lex �-chain. Then we haveX
A2A.x;�/

.�1/jAjq� height.A/ewt.A/ gchV �
end.A/tdown.A/

.�/ D 0:

Remark B.4. In [21], Proposition B.3 is stated and proved in terms of semi-infinite
Lakshmibai–Seshadri paths.

Proof of Proposition B.1. By considering �˙, �˙, �0, and by using Theorems 5.14
and 5.6 as in the proof of Theorem 5.16 (cf. (5.8)), we obtain:X
A2A.w;�/

X
�2Par.�/

.�1/n.A/q� height.A/�h�;�i�j�jewt.A/ gchV �
end.A/t�Cdown.A/C�.�/

.�/

D

X
A2A.w;�0/

X
�2Par.�/

.�1/n.A/q� height.A/�h�;�i�j�jewt.A/ gchV �
end.A/t�Cdown.A/C�.�/

.�/

D

X
A2A.w;�C/

X
B2A.end.A/;��/

X
�2Par.�C/

.�1/jBj

� q� height.A/�height.B/�h��;down.A/C�.�/i�h�;�i�j�j

� ewt.A/Cwt.B/ gchV �
end.B/t�Cdown.A/Cdown.B/C�.�/

.�/

D

X
A2A.w;�C/

X
B2A.end.A/;��/

X
�2Par.�C/

.�1/jBj

� q� height.A/�height.B/�h��;down.A/C�.�/i�h�;�i�j�j

� q�h�;�Cdown.A/C�.�/iewt.A/Cwt.B/ gchV �
end.B/tdown.B/

.�/

D q�h�C�;�i
X

A2A.w;�C/

X
�2Par.�C/

q� height.A/�h��C�;down.A/C�.�/i�j�jewt.A/

�

X
B2A.end.A/;��/

.�1/jBjq� height.B/ewt.B/ gchV �
end.B/tdown.B/

.�/I (B.1)

here the third equality follows by Proposition B.2. Since �C � … PC, it follows that
�C �� … PC. Therefore, we deduce by Proposition B.3 thatX

B2A.end.A/;��/

.�1/jBjq� height.B/ewt.B/ gchV �
end.B/tdown.B/

.�/ D 0

for each A 2 A.w; �C/, and hence that (B.1) is identical to zero, as needed.
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