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New structure on the quantum alcove model with applications
to representation theory and Schubert calculus

Takafumi Kouno, Cristian Lenart, and Satoshi Naito

Abstract. The quantum alcove model associated to a dominant weight plays an important role
in many branches of mathematics, such as combinatorial representation theory, the theory of
Macdonald polynomials, and Schubert calculus. For a dominant weight, it is proved by Lenart—
Lubovsky that the quantum alcove model does not depend on the choice of a reduced alcove
path, which is a shortest path of alcoves from the fundamental one to its translation by the given
dominant weight. This is established through quantum Yang-Baxter moves, which biject the
objects of the models associated to two such alcove paths, and can be viewed as a general-
ization of jeu de taquin slides to arbitrary root systems. The purpose of this paper is to give a
generalization of quantum Yang—Baxter moves to the quantum alcove model corresponding to
an arbitrary weight, which was used to express a general Chevalley formula for the equivariant
K-group of semi-infinite flag manifolds. The generalized quantum Yang-Baxter moves give
rise to a “sijection” (bijection between signed sets), and are shown to preserve certain important
statistics, including weights and heights. As an application, we prove that the generating func-
tion of these statistics does not depend on the choice of a reduced alcove path. Also, we obtain
an identity for the graded characters of Demazure submodules of level-zero extremal weight
modules over a quantum affine algebra, which can be thought of as a representation-theoretic
analogue of the mentioned Chevalley formula.

1. Introduction

The quantum alcove model was introduced in [12]. In [17] it was proved to be a
uniform model for tensor products of single-column Kirillov—Reshetikhin crystals of
quantum affine algebras, and its relevance to the theory of Macdonald polynomials
was also discussed. Crystals are colored directed graphs encoding the structure of
quantum algebra representations when the quantum parameter q goes to 0 (see [7]).
The quantum alcove model generalizes the alcove model in [19], which has a similar
representation-theoretic application [20].
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Let A be a dominant weight for a fixed finite-type root system A, which is irre-
ducible or of type A; x Ay, and let I" be a reduced A-chain (of roots), or equivalently,
a shortest path of alcoves from the fundamental one to its translation by A (see [19]).
One associates to I" (viewed as a sequence) a certain family A (I") of subsets of its
indices, called admissible subsets. Here we remark that there are two or more reduced
A-chains in general, and therefore the model is not uniquely determined (for the fixed
dominant weight A). However, for any two reduced A-chains I'; and I';, there exists a
bijection between 4 (I'1) and 4 (I"2) which preserves the corresponding crystal oper-
ators, as well as some important statistics: wt(-), height(-), down(-), and end(-); the
precise definitions of these statistics are given in Section 2.3. The construction of this
bijection was given in [13] in terms of the so-called quantum Yang—Baxter moves,
which are explicitly described by reduction to the rank 2 root systems. The main idea
is the following: given I'; and I', as above (and, in fact, for arbitrary 1), it is known
from [19] that I'; is obtained from I'y by repeated application of a certain procedure
called a “Yang—Baxter transformation”, see Section 3.1; hence it suffices to construct
a bijection (i.e., a quantum Yang—Baxter move) between 4 (') and +A(I'2) when I';
and T, are related by a Yang—Baxter transformation.

The quantum Yang—Baxter moves generalize the Yang—Baxter moves for the al-
cove model, which were defined and studied in [11]. It is pointed out in [13] that the
quantum Yang—Baxter moves realize the combinatorial R-matrix, namely the (unique)
affine crystal isomorphism permuting factors in a tensor product of single-column
Kirillov—Reshetikhin crystals. It is also explained that these moves can be viewed as
a generalization of jeu de taquin slides (for semi-standard Young tableaux, relevant to
type A) to arbitrary root systems.

For an arbitrary (not necessarily dominant) weight A, we also consider a (not
necessarily reduced) A-chain I" (of not necessarily positive roots). For an arbitrary ele-
ment w of the finite Weyl group W, let A(w, I') denote the collection of w-admissible
subsets. This generalization is introduced in [14, 15] to describe the Chevalley formula
for the equivariant K-group of semi-infinite flag manifolds, and for the equivariant
quantum K-theory of flag manifolds G/B (both of arbitrary type), cf. also [8,21].
We also define statistics wt(A4), height(A4), down(A), end(A) for A € A(w, I') in the
same way as for A € A(I') = A(e, ') with A dominant, where e € W is the identity;
in addition, we define n(A) € Zx.

Our main result is the existence of a very good map from A(w, ['1) to A(w, ['2)
which preserves the statistics above, where I'; is obtained from I'y by a Yang—Baxter
transformation.

Theorem 1 (Theorems 3.2 and 3.4). Let A(w, I'1) and A(w, I'y) be quantum alcove
models associated to the same weight such that ' is obtained from 'y by a Yang—
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Baxter transformation. Then, there exist subsets
Ao(w,T'1) C Aw,T1) and  Ao(w,T2) C Aw, I>),

which satisfy the following.

(1) There exists a “sign-preserving” bijection Y : Ao(w, 1) — Ao(w, 2), which
also preserves the statistics wt(-), height(-), down(-), and end(-).

) Ifwe set
A§ (. T1) = AW, T1) \ sAo(w, T),
AS (w,T2) := A(w, T) \ so(w, Ta),

then there exists a ‘“‘sign-reversing” involution I (resp., 1) on Ag (w, T'y)
(resp., Ag (w, T'2)), which preserves the statistics wt(-), height(-), down(-),
and end(-).

Here we should mention that, in contrast to the case of dominant weights, there
does not necessarily exist a bijection from the whole of #A(w, I'1) onto the whole of
A(w, ). Indeed, the cardinalities of the sets A (w, I'1) and A(w, I'y) are, in general,
different; for details, see Example 3.1.

The map Y in Theorem 1 can be regarded as a generalization of the bijection
described in terms of quantum Yang-Baxter moves when A is a dominant weight.
Although the map Y is not a bijection from the whole of 4 (w, I'1) onto the whole of
A(w, I'y), there exist nice involutions /1, I, outside the domain of Y and outside the
image of Y. If we regard A(w, I;),i = 1,2, as a signed set equipped with the sign
function 4 > (—1)"“D| then the collection (I, I, Y) of maps is a “sijection” (i.e.,
a signed bijection) A(w, I['1) = A(w, I'y) which preserves wt(-), height(-), down(-),
and end(+); the notion of a sijection was introduced in [4, Section 2].

Recall that an element of the affine Weyl group Wy can be written as x = wig,
with w in the finite Weyl group W and £ in the coroot lattice QV. For A(w, '),
with I" a (not necessarily reduced) A-chain for an arbitrary weight A, and x = wt;
in Wy¢, we define a generating function Gr(x) of the statistics wt(-), end(-), height(-),
and down(-) as follows:

Gr(x):= Y (=1)"Wg =08 M end(A)tg. gounca).
AeA(w,T)
We also think of Gr as a linear function on the group algebra of W,s with the coef-
ficients introduced above. In the case that A is a dominant weight and x = e, this

function is a refinement of the specialization at ¢ = 0 of the symmetric Macdonald
polynomial Py (q,t), since we know from [17, Theorem 7.9] that

P)(q,0) = Z gheieht () pw(4).
AeA(T)
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There is a similar relationship in the case of nonsymmetric Macdonald polynomi-
als [18].

The existence of our generalized quantum Yang—Baxter moves implies the inde-
pendence of the generating function Gr(x), and thus of the quantum alcove model
for an arbitrary weight, from the associated chain of roots I'. Here we need I" to be
“weakly reduced,” which means that it does not contain both a simple root and its
negative.

Theorem 2 (Theorem 5.6). Let A be an arbitrary weight, and x € Wy Given weakly
reduced A-chains I'y and ', we have Gr, (x) = Gr, (x).

We will now discuss several applications of Theorem 2 and, implicitly, of the
generalized quantum Yang-Baxter moves underlying it.

We give a combinatorial realization of the symmetry of the general Chevalley for-
mula in [14, 15] coming from commutativity in equivariant K-group. Indeed, given
arbitrary weights w, v, we can successively apply the Chevalley formula for the mul-
tiplication by the classes of the line bundles corresponding to them, in either order.
The fact that the result is the same is expressed by the following identity, where I'; is
a p-chain, I'; is a v-chain, and o indicates composition:

GF] o GFz(x) = GFZ © GI‘1 (X) (11)

It will be shown that (1.1) is realized combinatorially via successive application of
the sijection in Theorem 1, assuming that the concatenation of I'; and I'; is weakly
reduced.

On another hand, we use Theorem 2 to obtain an identity for the graded charac-
ters of Demazure submodules of level-zero extremal weight modules over a quantum
affine algebra, which can be viewed as a representation-theoretic analogue of the gen-
eral Chevalley formula in [14, 15]. For a dominant weight © and an element x of
the affine Weyl group, let V" (u) denote the Demazure submodule of the level-zero
extremal weight module V(i) of extremal weight p over a quantum affine algebra.
For an arbitrary weight A, let Par(1) denote the set of certain tuples y of partitions
bounded by A, to which we assign the quantities | x| and ¢(x); for the definitions of
Par(1), | x|, and ¢(x), see (5.3) and (5.4) in Section 5.3.

Theorem 3 (Theorem 5.16). Let u be a dominant weight, and x = wtg € Wy. Take
an arbitrary weight A such that u + A is dominant, and let I be a reduced A-chain.
Then we have

geh V(i + )

A) ,—height(4)—(A,&)— wt(A4 -
_ Z 2: (_l)n( )q eight(4)—(4,£) 1 x| ,wt( )gch end(A)tg+down(A)+L(x)(M)'
AeA(w,I") yePar(1)
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The right-hand side of the above formula is proved to be identical to zero if
w+ A ¢ P, see Appendix B. In the case y = 0, this proof provides a combinatorial
analogue of the vanishing of the 0-th cohomology of the semi-infinite flag manifold
for line bundles associated to weights that are not dominant, see [8,21] and the details
in Appendix B.

Here we should mention that, in [3], an identity for generalized Weyl modules
similar to the one in Theorem 3 is obtained in the case that A is a fundamental
weight w;, i € I; a generalized Weyl module can be viewed as the q = 1 limit of a
certain finite-dimensional quotient of a Demazure submodule of a level-zero extremal
weight module over the quantum affine algebra Uy(gar) associated to the affine Lie
algebra g,¢ (see [22] for an explicit relation between the graded characters of these
modules).

The proof of the general Chevalley formula for semi-infinite flag manifolds in [14,
15] can be considerably simplified by using Theorem 2, in a way similar to the proof
of Theorem 3; for a sketch of the combinatorial derivation of the general Chevalley
formula, see [10, Section 4, Proof of Theorem 10]. Alternatively, the general Cheval-
ley formula can be deduced from Theorem 3 by exactly the same argument as that
in [8] and [21]. Conversely, the general Chevalley formula implies Theorem 3 for p
sufficiently dominant, but not for an arbitrary dominant y; in particular, we cannot set
@ = 0. In this sense, Theorem 3 and the corresponding vanishing mentioned above
are slightly stronger than the general Chevalley formula.

In conclusion, the generalized quantum Yang—Baxter moves add very useful struc-
ture to the quantum alcove model for an arbitrary weight.

This paper is organized as follows. In Section 2, we fix our basic notation, and
recall the definitions and some properties of the quantum Bruhat graph and the quan-
tum alcove model. In Section 3, we state our main results precisely; the proofs are
given in Section 4. Finally, we prove the equality between the generating functions
associated to two reduced A-chains, and derive the identity above for the graded char-
acters of (level-zero) Demazure submodules in Section 5.

2. Preliminaries

We fix our basic notation in this paper. Also, we recall the definitions and some prop-
erties of the quantum Bruhat graph and the quantum alcove model.



T. Kouno, C. Lenart, and S. Naito 352

2.1. Basic notation

Throughout this paper, let g be a complex simple Lie algebra or the complex Lie alge-
bra of type A7 x A;, with Cartan subalgebra ) C g. We denote by (-, -) the canonical
pairing of §) and h* := Homc (§, C).

Let A denote the root system of g, with AT C A the set of all positive roots. Let /
be the set of indices of the Dynkin diagram of g, and let «;, i € I, be the simple roots
of A. Fora € A, we define sgn(a) € {1,—1} and || € AT by

' 1 ifaeAT,
O =1 e —At,

|| := sgn(a)c.

We set

Q::ZZO{,- and QV::ZZa,-V,

iel iel
where oV is the coroot of o € A; also, we set
oVt = ZZzoaiV.
iel

Let W = (s; | i € I) be the Weyl group of g, with length function £: W — Zx
and the longest element w, € W; here, for o € AT, s, € W denotes the reflection
corresponding to c, and s; = Sy, is the simple reflection fori € 1.

For each i € I, let w; denote the fundamental weight corresponding to ;. Let

P = ZZZD‘,‘

iel
be the weight lattice of g, with

Pt =3 "7 0w,

iel

the set of dominant weights; also, we set by := P ®z R.

2.2. The quantum Bruhat graph
We recall the definition of the quantum Bruhat graph, introduced in [1]. We set

b=y Y«

acAt
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Definition 2.1 ([1, Definition 6.1]). The quantum Bruhat graph QBG(W) is the
AT -labeled directed graph whose vertices are the elements of W and whose edges
are of the following form: x % y,withx,y € Wando € AT, such that y = xSy and
either of the following (B) or (Q) holds:

B) £(y) =4L(x) + 1;
Q) &(y) = £(x) —2(p, ") + 1.

If (B) (resp., (Q)) holds, then the edge x % y is called a Bruhat edge (resp., quantum
edge).

Let p: wo i wq 2 ﬂ w, be a directed path in QBG(W). We set
L(p) =,
end(p) := wy,
wi(p) := Z Bi -

ke{l,...r}

Bi .
Wk—1 — Wk is a quantum edge

Definition 2.2 ([2, (2.2)]). A total order <1 on A" is a reflection order if for all
o, B € AT suchthata + B € AT, eithera <t + B <t Bor B <a + B <« holds.

Let < be a reflection order on A*. A directed path p in QBG(W) of the form:

. B1 B2 Br
P:Wo — Wy —> - —> Wy,

with 81 < --- <1 B, is called a label-increasing directed path with respect to <.

Theorem 2.3 ([1, Theorem 6.4]). Let <1 be a reflection order on A™. Forallv,w €W,
there exists a unique label-increasing directed path from v to w in QBG(W) with
respect to <. Moreover, the unique label-increasing directed path from v to w has the
minimum length.

The property of QBG(W) in Theorem 2.3 is called shellability.
For all v, w € W, there exists at least one shortest directed path p from v to w; we
set
Lv=w):=4L(p), wtlv = w):=wt(p).

Note that by [23, Lemma 1 (2)] or [16, Proposition 8.1], wt(v = w) is well defined.
We consider a “generalization” of label-increasing directed paths in QBG(W). Let

IT = (y1,...,yr) be asequence of roots, i.e., y1,...,Yr € A; assume that y1, ..., yr

are distinct. Then we say that a directed path p is [1-compatible if p is of the following

form:
7)1 1751 17y
p T Wo w1 “ee

Wp,
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with 1 < j; <--- < j, <r.For w € W, we denote by P (w, IT) the set of all IT-
compatible directed paths in QBG(W') which start at w.

Remark 2.4. If {y;,...,y,} C AT, and if there exists a reflection order <t on AT
such that y; <1 --- <1 y,, then a IT-compatible directed path in QBG(W) is a label-
increasing directed path with respect to <.

Let IT = (y1, ..., yr) be a sequence of roots, with y1, ..., Y not necessarily
distinct. For a directed path p of the form:

v, 17| vipl
p: w() wl e wp’

with 1 < j; <--- < jp, <r, we define neg(p) by

neg(p) :=#k € {1,...,p} | y;, € =A™}

2.3. The quantum alcove model

We briefly review the quantum alcove model, introduced in [12].

First, we recall from [19] the definition of alcove paths. For « € A and k € Z,
we set Hy i :={v € by | (v,a") = k}; Hyx is a hyperplane in h. Also, fora € A
and k € Z, we denote by s, x the reflection with respect to Hy k. Note that s, (V) =
v — ((v,a¥) — k)a for v € h. Each connected component of the space

f)])lk& \ U Hoc,k
a€AT keZ

is called an alcove. If two alcoves A and B have a common wall, then we say that A
and B are adjacent. For adjacent alcoves A and B, we write A — B, B € A, if the
common wall of A and B is contained in Hpg j for some k € Z, and B points in the
direction from A to B.

Definition 2.5 ([19, Definition 5.2]). A sequence (Ao, ..., A,) of alcoves is called
an alcove path if A;_1 and A; are adjacent for alli = 1, ..., r. If the length r of an

alcove path (Ao, ..., A;) is minimal among all alcove paths from Ag to A,, we say
that (Ao, ..., Ay) is reduced.

The fundamental alcove A, is defined by
Ao:={vebyr|0< (va¥)<lforalla € AT}
Also, for A € P, we define A, by

Ay = Ao+ A={v+A1|ve A}
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Definition 2.6 ([19, Definition 5.4]). Let A € P. A sequence (81, ..., ;) of roots
Bi1,...,Br € Ais called a A-chain if there exists an alcove path (Ao, ..., 4), with
A9 = Ao and A, = A_,, such that

Ay = Ao —Bi A —B2 —Br A, = A,

If such an alcove path (Ay, ..., A;) is reduced, then we also say that the corresponding
A-chain (B4, ..., Br) is reduced.

Now, following [14, Section 3.2], we review the quantum alcove model.

Definition 2.7 ([14, Definition 17]). Let A € P,andletI" = (f84,..., ;) be a A-chain.
Fix w e W.Asubset A = {j; <--- < jp} C{l,...,r}is said to be w-admissible if

1B/, 1B, 1Bjp|
p(A):w = wy ! w1 2,

Wp

is a directed path in QBG(W). Let A(w, I') denote the set of all w-admissible subsets
of {I,...,r}.

Remark 2.8. The original definition of admissible subsets in [12] is only for w =
e € W. The notion of w-admissible subsets for an arbitrary w € W is introduced
in [14].

LetA € P,andlet ' = (B4, ..., B,) be a A-chain. By the definition of A-chains,
there exists an alcove path (A, = Ay, ..., A, = A_}) such that

dom Ay a4

For k =1,...,r, we take [y € Z such that Hg,_ _;, contains the common wall of
Ag—y and Ay, and set [ := (A, B)) — Ik.

Fixwe W.For 4 ={j1 <--- < jp} € A(w, '), we set

_lk

end(A) = WS|g; |+ SIBs, Is wt(A) := —WSB, 1, SRy, 1, (—A);

we call wt(A) the weight of A. Also, we define a subset A~ C A by

- . 1B .
A" = {Jk €A | WS|g; |+ S|, | > WS|; | "SI, | 1S @ quantum edge},

and set

down(4) := Y [B;|¥. height(4) := Y sgn(B))l;;

jeEA™ jeA™
note that end(4) = end(p(A)) and down(A4) = wt(p(A)). In addition, we define
n(A) € Zso by n(A) :=#{j € A| B; € —AT}; note that n(A) = neg(p(A)).
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Remark 2.9. In [18, (31)], an additional statistic, called coheight, is introduced. Let
us assume that A € P+ and w = e. For 4 € A(e, '), coheight(A) € Z is defined
by
coheight(A4) := Z l;.
JEA™

The coheight is used in [18] to describe the specialization at 1 = 0 of nonsymmetric
Macdonald polynomials in terms of the quantum alcove model (see [18, Theorems 29
and 31)).

3. Generalization of quantum Yang-Baxter moves

Quantum Yang—Baxter moves for a dominant weight are introduced in [13].

3.1. Yang-Baxter transformation of A-chains

Before defining Yang—Baxter transformations, we mention some basic facts about
rank 2 root subsystems of A. For each «, 8 € A with (&, V) < 0 and @ # —8, the
subgroup W of W generated by s and s g is a dihedral group with simple reflections
{Sa,5p}. Also, let A, g be the root subsystem of A generated by o and B. Then A, g
is a root system of rank 2. More precisely, we see that Ay g is isomorphic to the
root system of type Ay x Ay, Az, Cs, or G,. Let m be the order of 5458 € W . Then
SqSgSesg - -+ is the longest element of W . Hence if m is even (resp., odd), then
_

m factors
1,72, vq) = (o, 50(B), Sasp (@), ..., SaSBSaSB -+ Sa(B)),
N——
resp m — 1 factors

V1 V25 -2 V) = (a0, 5a(B), SaS(0t), ..., SaSpSasg ---sg(@)),
~—— ——
m — 1 factors
forms a sequence of all the (distinct) positive roots of A, g such that y, = B.
Let A € P,andletI" = (B4,..., B;) be a A-chain (of roots). The following pro-
cedure (YB) is called the Yang—Baxter transformation:

(YB) Take a segment (B;41., ..., Br+q) of I of the form
(13t+1’ R ﬂt-i—q) = (Ol,Sa(ﬁ),SaSﬂ(Ol), CR ’Sﬁ(a)9 :3)

for some «, B € A with {«, BY) < 0, or equivalently (8,«) <0, and & # —p, and
set

.= (B1, B2, - - -,ﬂt,ﬂt—i-qvﬂt-i-q—l? s ﬂt+1’ﬂt+q+lvﬂt+q+2’ B,

i.e., reverse the segment (Bs41,...,Br+q) of I'.
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Also, we define a procedure (D), called deletion, as follows:

(D) Take a segment (B¢+1, Br+2) of T of the form (B;+1, Br+2) = (B, —B) for
some B € A, and set

"= (B1.....Be. Bra3s- .. Bg).

i.e., delete the segment (8,41, Br+2) of .

Note the procedures (YB) and (D) produce A-chains; i.e., resulting sequences I'
above are also A-chains. In fact, it is known that every A-chain can be transformed into
an arbitrary reduced A-chain by repeated application of the procedures (YB) and (D)
(see [14, Remark 40], or [19, Lemma 9.3]).

3.2. Quantum Yang-Baxter moves

Let A € P be a dominant weight, and let I'y, ', be A-chains such that I'; is obtained
from I'; by the Yang—Baxter transformation (YB). Quantum Yang—Baxter moves,
introduced in [13, Section 3.1], give a bijection A(e, 1) — (e, ['2) which preserves
weights and heights.

Our main result is the existence of a generalization of quantum Yang—Baxter
moves for an arbitrary (not necessarily dominant) weight A € P and an arbitrary
wew.

Let A € P be an arbitrary weight, and I"y, I'; A-chains such that I"; is obtained
from I'y by the Yang—Baxter transformation (YB). If we write I'; = (81, ..., 8,) and
' = (BY,....B)), then there exists 1 < ¢ < r such that

* (Bists--  Birg) = (a0, 5¢(B), sasp(), ..., sp(ct), B) for some ¢ > 1 and some
o, € A with (@, 8Y) <0and @ # —8,
« Do=(B1.....8)

= (ﬂl» ﬂ2, s ﬂzv ﬂz—i—q’ IBt—I—q—h cees /3t+1’ ﬂt+q+1vﬂt+q+2’ s 7,3r)-
We take the alcove path (4, = Ao, ..., A, = A_}) corresponding to I'y, and
take integers [ € Z fork = 1,...,r such that foreach k = 1, ..., r, the hyperplane
Hg, _j, contains the common wall of A;_; and Ag. Also, we take the alcove path

(Ao = Ah.... AL = A_y)

corresponding to I';, and we take integers /;_ € Z for k = 1,...,r such that for each
k =1,...,r, the hyperplane H g} —1; contains the common wall of A, _, and Aj.
ThenitfollowsthatA;C =Arand!l, =l fork=1,...,t,t +q+1,...,r,and that
liip =litgr1—pforp=1,....q.
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Now, we divide I'; into three parts Ffl), Ffz), and Ff3) as follows:

T = (B1,.... Bo),

3.1
F(z) Bi+1s---2Bi+q), F?) = (Br4g+1.---.Br).
Also, we divide I'; into three parts Fél), ng)’ and Ff) as follows:
(1) ’
Iy’ = (... ),
Bis---s B 32)

2 3
() (ﬁt+1,,..,ﬂ,+q), 1“5) (5t+q+1,...,ﬁ;).

Note that Ffl) = I‘él) and I'f3) = F(S) in addition, B¢41,. .., Bs+q are distinct. Next,
let w € W. For a w-admissible subset A € A(w, I'1), we define AD, 4@ and 4A®
by

AW = An{1,..., 1),

(3.3)
AP = ANt +1,....t4q), AP =An{t+qg+1,....r}.
Also, for B € A(w, T';), we define B, B® and B® by
BW = Bn{l,....1},
(3.4)

BP =Bn{t+1,....t4q}, B®:=Bn{t+q+1,....r).

Unlike the case where A is dominant, there does not exist a bijection between
A(w, 1) and A(w, ') in general.

Example 3.1. Assume that g is of type A,. We set '} := (ap, —a1, —0, —aq) and
I := (-0, —ayq, ap, —1), where 6 = o7 + @3. Then we see that I'y and I', are
(—2w@ + @,)-chains such that ['; is obtained from 'y by a Yang-Baxter transfor-
mation (YB). Let w = s,. By direct calculation, we have

‘A’(w’ l—‘1) = {ﬂ’ {1}1 {2}’ {3}’ {4}’ {1’ 2}, {11 4}’
{2,4},1{3,4},{1,2,3},{1,2,4},{1,2,3,4}},

Aw, I2) = {0, {1}, {2}, {3}. {4}, {1.2}.{1. 3}, {1, 4}.{2. 3},
{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}.

Hence we have #A(w, I'1) = 12, while #A(w, [';) = 16. This shows that there does
not exist a bijection A(w, 1) — A(w, I'2).

Thus, towards a generalization of quantum Yang—Baxter moves, we need to give
up using bijections and take a new approach. The following theorem is our main
result; the proof is given in the next section.
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Theorem 3.2. There exist subsets A¢(w, 1) CA(w, 1) and Ag(w, Tz) CA(w, )
which satisfy the following:
(1) There exists a bijection Y: Ag(w, I'1) — Ao(w, I'2) such that for all A €
Ao(w, I'1), it holds that
© (YYD = AW, end((Y(4))P) = end(4?), (Y(4))® = 4O,
e down(Y(A)) = down(A), and
o (=T = (—1)n(D,

(2) Fork = 1,2, we set Ag (w,Tx) == A(w, Tp) \ Ao(w, Tx). Then, there exists
an involution I on Ag (w, ') such that for all A € Ag (w, T'y), it holds that
© T (A)D = AW, end((1x(4)P) = end(A®), (It (4)D = A,
e down(/x(A)) = down(A), and
o (—1)"Uk() = _ (1)),

Remark 3.3. In order to explain our maps Y, I;, and I, in Theorem 3.2, we have
a useful notion, called a sijection, introduced in [4]; for the definition of sijections,
see [4, Section 2]. For sets S, T equipped with sign functions § — {1}, T — {£1},
a sijection from S to T is the collection (ts, (T, ¢) of a sign-reversing involution tg
on a subset Sy of S, a sign-reversing involution t7 on a subset Ty of T, and a sign-
preserving bijection ¢ from S \ Sg to T\ Ty (see [4, p.9]). In this terminology, our
collection (/1, I, Y) in Theorem 3.2 is a sijection from A(w, I'1) to A(w, I'2). This
sijection can be thought of as a generalization of quantum Yang—Baxter moves.

As in the case that A is dominant, we can prove that the maps Y, /1, and I,
preserve weights and heights.

Theorem 3.4. The following hold:
(1) Forall A € Aog(w, I'y), it holds that wt(Y (A)) = wt(A) and height(Y(A)) =
height(A4).
(2) Letk = 1,2. Forall A € AOC (w, Tx), it holds that wt(I(A)) = wt(A) and
height(/;(A)) = height(A).

4. Proofs of the main results

We prove Theorems 3.2 and 3.4 in this section. The proofs are based on a property
analogous to shellability of QBG(W) for the rank 2 root systems (Proposition 4.3).
In the proof of this shellability-like property, we take a rank 2 root subsystem of A,
which is denoted by A, g in Section 4.2, and calculate explicitly certain products of
the so-called quantum Bruhat operators for A, g (see Proposition 4.4). In this paper,
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we omit the explicit calculations in the case that A, g is of type G,. However, the
calculations in type G, is needed only in the case that A is of type G»; this is because
if the simple Lie algebra g is not of type G, then the root system A of g does not
contain a root subsystem of type G,. Hence Propositions 4.3 and 4.4 are sufficient in
order to establish Theorems 3.2 and 3.4 for the root system A of a complex simple
Lie algebra g which is not of type G».

Although the shellability-like property in type G, seems to be slightly different
from that in types Ay x Ay, Az, and C,, we can prove it by explicit calculations
similar to those in type C, given in Section 4.4. Furthermore, based on this property,
we can also establish Theorems 3.2 and 3.4 in type G». The interested reader can see
the precise statement of the shellability-like property and the explicit calculations in
type G, in our preprint [9] on arXiv.

In the rest of this paper, we assume that A is not of type G5.

4.1. Quantum Bruhat operators

Let K be a field which contains the ring C[QY:"] := C[Q; | i € I] of formal power
series, where Q;, i € I, are variables, and set

of =[]o"
iel

for § = Y ;o miey € QV-T. For y € AT, following [1], we define the (K-linear)
quantum Bruhat operator Q,, on the group algebra K[W] of W by

N .
vsy if v — vs, is a Bruhat edge,
o v . Y .
Qyu:= 4 Q¥ vs, ifv— vs, isaquantum edge,
0 otherwise

forv e W.WesetQ_, := —Q, fory € A*,and thenR, := 1+ Q, fory € A. The
operators {Ry | y € A} satisfy the Yang—Baxter equation: for o, B € A (not necessarily
positive roots) such that (&, 8Y) < 0 and a # —p, it holds that

RaRse (B)Rsass(@) " Rsg@RB = RBRsz(@) *** Rsgsp(@)Rsq (B)Ra 4.1

the proof of this equation is the same as that of [ 14, Proposition 38].
Next, we give some properties of quantum Bruhat operators.
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Lemma 4.1. Let I1 = (B1,..., Br) be a sequence of roots such that By, ..., B, are
distinct.

(1) Forv € W, we have

Rg,Rg,_ - -Rpv =Y (=1)"e®Q"® end(p).
peP (v,I1)

(2) Forv € W, we have

Rig, Rig, | Rigyv = Y 0" ®end(p).
peP (v,II)

Proof. For J C {1,...,r},wesetneg(J) :={j € J | B; € —AT}. We see that

Rg,Rg,_,-*Rg, = (1 +Qp,)(1 +Qp,_,)--- (1 +Qp)
= Z Qﬂjs Qﬂjs_1 o Q,le

{1<-<ijs}c{L,...r}

= > (sgn(Bj,)Qig,, ) (sen(Bj,_)Qip; 1)+~ (sgn(B)Qig;, 1)

{j1<=<js}C{l,...,r}

= > (=)™ Qup, Qg 1+ Qg - @2

J={j1<<js}c{1,....,r}

Similarly, we see that

Rig, RIg,_11 " Rigy| = > Qg 1By, 17 Q1 (43)
{j1<<Jjs}c{1,...,r}

For J = {j1,...,js} C{l,...,r},if we have the edge

1B
U8, 1 SIB), | T USIB; | 81,

in QBG(W) forall 1 <a < s, then we set §(J) := 1, and define a directed path p(J)
in QBG(W) by

. 1Bj, 1B, 1 1Bj | )
P(J):v —— vS|p; | ——> - > US|, | SIBs 1

otherwise, we set §(J) := 0. By the definition of quantum Bruhat operators, we have

B OV U end(p(J)) if8(J) = 1,
QB 1By 1 by 1V = {o if §(J) = 0.
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If §(J) = 1, then we have neg(J) = neg(p(J)). Therefore, by (4.2), we deduce that

J
Rg,Rg,_, **Rg, v = > (=)™ Qup, Qg 1+ Qg v
J={jt<<Js} {1t}

= Z (= 1)@ oW end(p(J))

JC{1,...,r}
§(J)=1

— Z (_l)neg(p)th(p) end(p),

pEP (v,11)

as desired. This proves part (1) of the lemma.
Also, we see from (4.3) that

Rig IRIB—11 " Ripyjv = > QB 1B, 1 Qs 1V

{r<-<ijsicf{l,..r}

= Y 0"tWend(p(/))

Jc{1,...,r}
§(J)=1

= ) 0"Pend(p).

pe? (v,I1)
This proves part (2) of the lemma. |

Remark 4.2. If we set P (v, IT; w, §) := {p € P (v, 1) | end(p) = w, wt(p) = &} for
v,w € W and § € OV, then by Lemma 4.1 (1), we deduce that

Rp, ---Rg, v = Z Z ( Z (_1)neg(p))Q€w_ (4.4)

weW eVt N pef(v,Iw,§)

Also, if we set cé’,w =#P (v, IM;w, &) forv,w € W and £ € QT then we deduce

from Lemma 4.1 (2) that

Rig Rig, 1| Rigiv = D Y ¢, 0w (4.5)

weW geQV.+

4.2. Key propositions to a generalization of quantum Yang-Baxter moves

We prove a certain property of QBG(W'), which plays an important role in the proof of
Theorem 3.2. Let o, 8 € A be such that (@, 8Y) < 0 and a # —S. We define sequences
of roots IT, IT’ by

M= y1.....7q) = (@ 5a(B). Sasp(@). ..., (). B),
= (V{,’V;) = (,B,Sﬂ(Ol),...,SaSﬁ(a),Sa(ﬂ),Ol) = (VQ""7)/2a )/1),
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again note that y1, . .., y, are distinct. Also, we recall from the beginning of Section 4
that the root subsystem A, g of A generated by o and B is isomorphic to the root
system of type A1 X Ay, A2, or C;. Note that A, g is not of type G»; this is because
we are assuming that A is not of type G,. We can prove the following property, which
can be thought of as a generalization of shellability of QBG(W) (Theorem 2.3) for
the rank 2 root systems.

Proposition 4.3. Let v € W, and let p be a I1-compatible directed path in QBG(W)
which starts at v, i.e., p € P (v, I1). Then only one of the following occurs.

(1) There exists a unique p’ € P (v, IT) \ {p} such that end(p’) = end(p) and
wt(p') = wt(p). This p’ satisfies (—1)"e®) = —(—1)2¢®)_ Moreover; there
does not exist a path q € P (v, I1') such that end(q) = end(p) and wt(q) =
wt(p).

(2) There exists a unique p' € P (v, I1') such that end(p’) = end(p) and wt(p’) =
wt(p). This p’ satisfies (—1)"€®) = (—1)"e®)_ Moreover, there does not exist
a path q € P (v, IT) \ {p} such that end(q) = end(p) and wt(q) = wt(p).

The proof of this proposition can be reduced to the case that A is a root system
of rank 2; in Appendix A, we explain how to construct the explicit correspondence
p — p’ through an example. Now we assume that A is a root system of type Ay X Aq,
A», or C,. Since it is sufficient to consider the case A = A, g, we assume additionally
that («, BY) # 0if A is of type Ca; if (o, V) = 0, then the corresponding root system
A = A4 g can be thought of as being of type A; x A;. Then we see that there exists
somek =1,...,q such that |y, | and | yx 41| are the simple roots of A (for convenience
of notation, we set y,41 := y1). If we set

Br.-- . Bg) = vkl [ve—1l. - [val gl - ykea D (4.6)

then we have

(B1,---5Bg) = (B1.5p, (Bg)sp,58,(B1)s - -, 58,(B1), Bg)-

Also, if we set

* := (FBr, FBi—1---» FP1. £B4. £ha—1, - - - £Br+1),

then IT = IT* or IT = I1™. Note that the total order < on {B1,..., B4} = AT defined
by
B1 < B2 << By 4.7

is a reflection order; the total order <’ defined by

By < Bg—1 << By (4.8)



T. Kouno, C. Lenart, and S. Naito 364

is also a reflection order. We consider the following operators for k = 0,1,...,¢g:

Ti =Ry, - Rag,Rep, - Repy.
Sk = Rpyiy - Rp,Rp, -~ Rpy.,
S;c ‘=Rp ~-RgRg, = Rpiyys
note that S; = So and S, = S;, by the definitions.
In the following proposition, the matrices of operators on K [W] are the represen-
tation matrices with respect to the basis W of K[W]. Note that for a K -linear operator

T: K[W] — K[W], the matrix of T is defined by (¢y,w)v,wew if Tw = D, e Co,w?,
v € K.

Proposition 4.4. The following hold:

(1) All the entries of the matrix of S, k=0,1,...,q, are of the form er‘=1 mj Q‘E-/,
where all §; € QY- are distinct, and m; € {1,2}.

(2) Let v, w € W. Assume that the (v, w)-entry of the matrix of Sg. is of the form
Z]r-zl mj st as in (1). Also, assume that the (v, w)-entry of the matrix of T,f
is of the form ZserHr n;:QS, For j =1,...,r, ifm; =2, then ngtj =0,
and ifm; =1, then ngi] € {1,—1}. Moreover, for £ € QV>T\ {&1,....& ), we
have ngt =0.

(3) Letv,w € W. Assume that the (v, w)-entry of the matrix of Sg is of the form
er'=1 m; Q% as in (1). Also, assume that the (v, w)-entry of the matrix of S,
is of the form ZseQV~+ ngQS. Forj=1,...,r,ifmj =2, thenng; =0, and
ifmj =1, thenngj = 1.

The proof of Proposition 4.4 is based on direct calculations, which we give later.

Proof of Proposition 4.3. First, we show the proposition for the root system A of type
A1 X Ay, Aa, or C;. As in (4.6), we take the sequence

Brs -5 Bg) = vkl i—1l, - vl lvgls oo [vke+1D)
of roots. Recall from (4.5) that

Skv = c? QSU),
D 2 cu

weW gecQV.+

where CZJ,E = #P (v, I1; w, £). By Proposition 4.4 (1), we have CZJ,E € {0,1,2}. Also,
again from (4.5), we see that

Ssv= Y D (ch ) Qfw,

weW geQV.t
where (¢} é)/ =#P W, I w,§).
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We write

Tev= Y Y dy;0%w,

weW geQV.+

where d:;:; € Z.By (4.4),if I1 = I, then

dzZ’,;_ _ Z (_l)neg(q)’ d:ff,; — Z (_I)Z(q)—neg(q); 4.9)

q€P (v, IL;w,£) qe? (v, IT;w,&)

if IT = I1~, then

dif= ) (pfome@ gro— N @ (40)

qeP (v, IL;w,&) qeP (v,I;w,§)

We set w := end(p) and £ := wt(p). Since p € P (v, [T; w, £), we have c:j}’g #0.
First, assume that C::;,g = 2. Then there exists a unique p’ € P (v, IT; w, &) \ {p},
i.e., there exists a unique p’ € £ (v, IT) \ {p} such that end(p’) = end(p) = w and
wt(p’) = wt(p) = £. By Proposition 4.4 (2), we have a’:)jsIE = 0. Hence, by (4.9) and
(4.10), we obtain

Z (—1)"ee@ = (—q)nee® 4 (_1yree®) =
q€P (v, ILw.§)

This shows that (—l)neg(l’/) = —(—=1)"2® Here, by Proposition 4.4 (3), we deduce
that (c}j)’s)’ = 0. Hence there does not exist a q € &£ (v, IT") such that end(q) =
end(p) = w and wt(q) = wt(p) = &. This shows the proposition in the case c:j),E =2.
Next, assume that c;’),g = 1. In this case, there does not exista q € £ (v, IT) \ {p}
such that end(q) = end(p) = w and wt(q) = wt(p) = &, since P (v, I1; w, §) = {p}.
We set
(Te) 1= Rep R Rep, -+ Rapy -

Then, by the Yang—Baxter equation (4.1), we have (T]:—’)’ = T,f. Hence, if we write

Tv=3 > (dy)ofw,

weW geQV-+

with (d;’,:;)’ € 7, then we see that (d;’)’,:;)’ = d;’):; Here, by Proposition 4.4 (2), we
deduce that
S+ =+
@25y = dvE e (1,-1).

Again, by Proposition 4.4 (2) (by replacing (81, .. ., B4) with (B4, . . ., B1)), we deduce
that (c;, é)/ = 1. Hence there exists a unique p’ € P (v, IT"; w, §), i.e., there exists
a unique p’ € £ (v, IT") such that end(p’) = end(p) = w and wt(p') = wt(p) = &.
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If [T = I1t, then
(_l)neg(p) — d:;”; — (dlzl)),’-si-)/ _ (_l)neg(p');
if IT = I17, then

(_1)neg(p) — d;))g — (d:;:g)/ — (_1)neg(p’)‘
This shows that (—1)"®) = (—1)"e®) 45 desired. This completes the proof of the
proposition for the root system A of type A1 x Ay, Az, or C;.

Now, assume that the root system A is of an arbitrary type (except G,), not nec-
essarily of rank 2. Let W be the Weyl group of Ag,g- Note that W is a (dihedral)
subgroup of W ; the quantum Bruhat graph (denoted by QBG(W)) of W is no longer a
subgraph of QBG(W). By [13, Proposition 5.1 and Remarks 5.2 (2)], foreachu € W,
there exist uniquely [u] € uW and & € W such that

e u = |ulu,and
 for a positive root y of Ay g, we have £(u) < £(us,) if and only if £(|u|u) <
L(lu]usy).
We set w := end(p) and & := wt(p). Suppose, for a contradiction, that there exist
two or more directed paths q € P (v, IT; w, &) \ {p}. Then we see that

#P (v, I, w, &) > 3.
By [13, Theorem 5.3], there exists an injection
P, ;w,§) — P, I1;w,y),

where P (v, I1; W, y) is the set of all IT-compatible directed paths in QBG(W) which
starts at v, ends at w, and has weight &, where IT is considered to be a sequence
of roots in the root system A, g. Hence, we have # (v, IT; w, §) > 3. This contra-
dicts the proposition for the rank 2 root systems, shown above. Hence we conclude
that there exists at most one directed path q € P (v, I1; w, §) and with q # p. If
such a q exists, then, by the proposition for the rank 2 root systems and [13, Theo-
rem 5.3], we have (—1)"2@ = —(—1)"e®)_Also, a similar argument shows that there
exists at most one directed path r € L (v, IT’; w, §). If such an r exists, then we have
(—1)ree® = (—1)neet@)

We show that at least one of the directed paths q and r exists. We write

Ryg =Ry v = Z Z dilf),g:QEw’

weW geQV.+

Ry, Ryv =Y > (d))0%w.

weW geQV:+
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If there does not exist a directed path q € P (v, IT; w, §) \ {p}, then by (4.4), we have
dﬁ;,é = £1. By the Yang-Baxter equation (4.1), we deduce that (d;’)’é)/ = dzZ,E =41.
By (4.4), we see that P (v, IT'; w, §) # @. Therefore, we conclude that there exists a
directed path r € 2 (v, IT"; w, §) in this case, as desired.

Finally, suppose, for a contradiction, that both q and r exist at the same time.
Then, by [13, Theorem 5.3], we have

#P U, I;w,£) >2 and #P (@, w,£) > 1.

This contradicts the proposition for the rank 2 root systems, shown above.
This completes the proof of Proposition 4.3. |

Thus it remains to prove Proposition 4.4. We assume temporarily that A is of type
A1 X Ay, Az, or Cy with («, BY) # 0. If A is of type A, (resp., A1 X Ay, C3), then
we have ¢ = 3 (resp., ¢ = 2, 4). By shellability of QBG(W), there exists a unique
label-increasing directed path (with respect to < or </, defined by (4.7) and (4.8))
from v to w in QBG(W) for all v, w € W. Hence, we have

Tgv =T, v =Sov =Spu =S,v =S, v = Z QMW= wly)
wew

TO_U = T;_v = Z (_I)Z(U:Nl))th(v:nu)w
wew

for all v € W. Therefore, the proposition is obvious in the case k = 0, g. Hence it
suffices to prove the proposition in the case k = 1, ¢ — 1 for all types, and in the case
k = 2 for type Cs.

4.3. Proof of Proposition 4.4: k =1,q — 1

We prove Proposition 4.4 in the case k = 1,¢g — 1; recall that 8; and B, are the simple
roots of A. By (4.4), for all v € W, we have
T{v = Rg, *Rg, (R_p,v)

= Rg, -+-Rp, (1 = Qp,)v)

= Rg, -+ Rg, (v — Q™7 )ugg))

— Z th(q) end(q) _ Z th(v—ws/ql)-‘rwt(q) end(q).

q€P (v,(Bg;-.B2)) q€P (vsg,(Bgs--,B2))

Recall that the total order <" on A1 = {By,..., B4}, defined by (4.8), is a reflection
order. Hence, by shellability of QBG(W), for all w € W, there exists at most one
directed path q € 2 (v, (B4. . ... B2)) such that end(q) = w. For such a q, we have

wt(q) = wt(v = w)
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since q is a shortest directed path from v to w. The same argument shows that for all
w € W, there exists at most one directed path q € £ (vsg,, (Bg. ..., B2)) such that

end(q) = w and wt(q) = wt(vsg, = w).
Hence, if we set

PR 1 if there exists q € P (v, (By, - .., B2)) such that end(q) = w,
Y10 otherwise

for v, w € W, then we have

TTU = Z Sv,w th(v=>w)w - Z 5vs,31,w QWt(U_)vsﬁl)+Wt(vsB1=>w)w

wew wew
= D (Bow QM7 =By QUOTVIITHEIH Ty @)
wew

Also, by the same argument, we see that

Tl_v — Z (_1)€(v=>w)(8v’wat(v=>w) . Svslgl w th(v—>vs51)+wt(vsB1:>w))w;

wew
4.12)

note that for a directed path q from vsg, to w, it follows that

(_l)e(q) — (_I)K(USBI =w) ,

and hence

(_l)f(vsBl =w) — (_I)K(USBIZNJ)-FZ(I):}w) — (_l)l-l-f(v:}w) — _(_l)ﬁ(v:>w)'

Let us consider S;. By the same argument as for T}, we deduce that

Siv = Z 0 wil@ end(q)

QE?(U,(ﬂqw-aﬁﬁ)
+ Z th(v—ws,g])—i-wt(q) end(q)
q€P (vsg, (Bgs---.B2))

Z (Sv,w th(v:>w) + 5”/31 w QWt(U-)US/jl)JFWt(USﬁI :w))w. (4.13)
wew

Hence equations (4.11), (4.12), and (4.13) imply Proposition 4.4 (1), (2) in the case
k = 1, as desired.
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Next, we consider the case k = g — 1; recall that B, is a simple root of A. By (4.4),
we have

+
Tg—1v =Rg,(Rg, ---Rp,_,v)

= Rg, ( > ()@@ end(q))

q€P (v,(—Bg—1,--,—B1))
— Z (_l)f(q)
q€P (v,(—Bg—1,--—B1))
% (th(q) end(q) + QWt(q)+wt(end(q)—>end(q)s5q) end(q)s/; )
)

Hence, if we set

5 { 1 if there exists q € P (v, (—B4—1....,—PB1)) such that end(q) = w,
v,w *

0 otherwise

for v, w € W, then we have

T;L_lv — Z (_1)€(v=>w)(5;’w th(v=>w) _g th(v:wsﬁq)+wt(wsﬁq—>w))w_

v,ws,gq
weW

(4.14)
Similarly, we have

T;_lv — Z (Sg,wat(v:Nu) -5 QW[(U:>ﬂ)Sﬁq)+Wl(U)SBq—)w))w. (4'15)

V,WSB,
wew

Also, we see that

S0 = D (50 0T 8y, QTR @16)
wew
Hence equations (4.14), (4.15), and (4.16) imply Proposition 4.4 (1), (2) in the case
k=qg—1.

It remains to prove Proposition 4.4 (3) in the case k = 1, g — 1. It suffices to
prove it in the case k = 1; indeed, if we replace (81, ..., B4) with (B4, ..., B1) and
consider the case k = 1, then we obtain the proposition in the case k = g — 1. Recall
equation (4.13). By the same argument, we see that

S'lv — Z (Sv,wat(v:w) + gv,wslgl th(véwsm)-‘rwt(ws/ql —>w))w,
weWw

where

1 if there exists q € P (v, (B2. ..., Bg)) such thatend(q) = w,
Eyw i=
oY 0 otherwise
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forv,w € W. Assume that ¢, £ = 2 for some v,w € W and £ € QY. It suffices to
show that (c;’) E)/ = 0. In this case, we deduce from (4.13) that

8v,w = Svsm,w =1, “4.17)
wt(v = w) = wt(v — vsg,) + wt(vsg, = w) = &. (4.18)

By (4.18), the concatenation of the edge v — vsg, with any shortest directed path
from vsg, to w in QBG(W) is a shortest directed path from v to w (cf. [1, Lemma 6.7],
[23, Lemma 1 (2)], and [16, Proposition 8.1]). Now, take the (unique) label-increasing
directed path ro from vsg, to w in QBG(W) with respect to < defined by (4.7), and
let r be the concatenation of the edge v — vsg, with the path ry. Note that rg is short-
est, and hence r is also shortest. We claim that ry € P (v, (B2. ..., B4)); otherwise,
the concatenation

B1 B1
v — vsg —> - —> W

ro
cannot be shortest. Hence r is the label-increasing directed path from v to w in
QBG(W) such that r ¢ (v, (B2, ..., Bq)). By the uniqueness of a label-increasing
directed path, we conclude that &, 4, = 0.
Since 8y, = 1 by (4.17), there exists r; € P (v, (By. ..., B2)) such that

end(ry) = w.

Then the concatenation of the path r; with the edge w — wsg, is label-increasing
with respect to <’, defined by (4.8), and hence this concatenation is shortest. Also,
since 8”561 .w = 1 by (4.17), there exists ry € P (vsg,, (Byg.- .., B2)) such that

end(r;) = w.

Similarly, the concatenation of the path r, with the edge w — wsg, is label-increasing
with respect to <’, and hence this concatenation is shortest. Since the concatenation
of the edge v — vsg, with any shortest directed path from vsg, to w is shortest, we
obtain:

Lv = wsg) =L(v=w)+(w— wsg,)
—————
={(r1)
=L(v — vsg,) + L(vsg, = w) +H(w — wsg,)
(S —
={(r2)
=L(v — vsg,) + L(vsg, = wsg,).

Hence the concatenation of the edge v — vsg, with any shortest directed path from
vsg, to wsg, is shortest. Take the (unique) label-increasing directed path r3 from vsg,
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to wsg, in QBG(W) with respect to <. We deduce that r3 € P (vsg,, (B2, ..., Bq));
otherwise, the concatenation

B1 B1
vV —> vsg, —> ++r —> Wsg,

r3

cannot be shortest. Hence we conclude that e 4, sp, = 0. This completes the proof
that (¢, g)/ =0.

It remains to show that if C::;,s =1, then (Cﬁ;,g)’ = 1. Assume that c;’)’s = 1. By the
above argument (i.e., Proposition 4.4 (2) in the case k = 1), we have

dvt =41,

w,§

By the Yang—Baxter equation (4.1), we see that
v,+\ vt
(dw,g) = dw,g = =*1.

Hence we deduce again from the above argument (i.e., Proposition 4.4 (2) in the case

k =1, with (B1..... Bq) replaced by (Bg. .... 1)) that (c;, )" = 1.
This completes the proof of Proposition 4.4 in the case k = 1,4 — 1.

4.4. Proof of Proposition 4.4: The case of type C;

We consider the root system A of type C,. We know that g = 4, and

(ﬂlaﬂz’ﬂ37ﬁ4) = (alvzal +a25al +a23a2)

or

(B1. B2, B3, Ba) = (a2, a1 + a2, 201 + @2, a1).

Since only the case k = 2 is remaining, it suffices to calculate the matrices (with
respect to the basis W = {e, 51, 52, 5152, 5251, $15251, §25152, Wo} of K[W]) of the
following four operators:

(1 Ry 4o Ras R—ay R—20i —ay = R—20;—as Rty Ry Ry + 5

(2) Raa;+asRa R-ayR—a;—a; = R—a;—a;R—asRa Roa; 45}

(3) Rai +a Rap Ray Roay +ass and

(4) R2a1 +an Roq Ra2 Ral +as»
where the equalities in (1) and (2) follow from the Yang—Baxter equation (4.1).
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The following are the matrices (with respect to the basis W) of operators Q,,

y € A* = {01,201 + aa. 001 + 2. 2} (cf. [13, Figure 2 (B)]):

N
- @Y «
—
o o oo S e oo e o o oo Qo
@Y
© ©c oo < coocoocococ oo o o OOJOO
~ Scocoocoocoo
o o g o o ~
o o oo oo
01~000000000000000
o S o o o Q coococoocoococo 99 SEES
CoocCcocO0CcOoO0 COCOoO0 —~0 O Q
- o o o - cqooocoo
cCoococ oo ~0 cooc oo o oo
o o o —~ o ~
coocococoocooco coo—~ococoo QF ceee
Qe e e Coo o ~0Cc 00 CoO0COo0OocOo0cOo oo — o o o
o o oo o CoCcococo000 OO0 o000 OC OO oo oo
I I I I
— o o o
5 8 $ 8
o + + (@3
S
(e
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By explicit calculations (by using, e.g., SageMath [24]), we obtain

Ral +a Ra2 R—Otl R—2a1 —an

1 010:-01 0> 0 —-010> —-010> 0 -0,03
-1 1 0 0> 0 0 0 0
1 0 1 0 -0 -0:10> 0 —010>
_lo 1 1 1 -0 -0 0 —0:10>
0 —1 -1 —-0> 1 0 (o2 0 ’
0 —1 -1 -1 1 1 0 [oF)
0 -1 -1 -1 1 0 1 010:-0:
0 0 0 0 0 1 —1 1
R2L¥1 “+ar Ral R—O(z R—Otl—az
I —-0102+01 —-0» 0 —010> 0102 0 —0,03%
1 1 0 —0> 0 0 0 0
-1 0 1 0 0 -010> 0 010>
_] o -1 -1 1 -0 01 0 -010>
0 1 1 -0, 1 0 -0 0
0 —1 —1 1 —1 1 0 —0>
0 -1 -1 1 -1 0 1 —010>+ 01
0 0 0 0 0 —1 1 1
Also, we obtain
Ron +an Raz Ral R2a1 +oo
1 010>+01 0> 0 010> 010> 0 0,03
1 1 0 0- 0 20,05 0 0
1 20, 1 0 0 010> 0 010>
I 201 +1 1 1 0 20102+ 0 0 010>
N K 1 1 0> 1 0 0> 20102 ’
0 1 1 20,+1 1 1 20> 20102+ 0>
0 1 1 1 1 0 1 010>+ 01
0 0 0 2 0 1 1 1
R20£1 +ap RO(] Raz Ral +oo
1 010>+01 20:10:+0> 20102 010> 010> 0 003
1 1 20> [oF) 0 0 0 0
1 0 1 0 2010+ 01 0102 20102 0102
1o 1 1 1 [ 0 0 010>
2 1 20> +1 0> 1 0 0> 0
0 1 1 1 1 1 0 [P
0 1 1 1 201 +1 20, 1 010>+ 0
0 0 0 0 2 1 1 1

This proves the proposition by direct examination of these matrices.

4.5. Proof of Theorem 3.2

Based on Proposition 4.3, we can prove the existence of a generalization of quantum
Yang-Baxter moves. In the same way as in (3.3), we divide p(A) for 4 € A(w, ')
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into three parts p(4)(V, p(4)@, p(4)®. If we write A = {a;, ..., a;}, then p(A) is

of the form:

Byl 1Ba]
p(A):w = wg —> -+ —> wy,

witha; <--- <aj;wesetag := 0.Let 0 <i; </ be maximal such that a;, <, and
0 <ip <[ maximal such that a;, <t + ¢. Then, we set

.. 1Bay | Baj, |
pAYVw =wyg —> - —— Wa;, »
1Ba; 41! 1Ba,., |
p(A)P:w,, ——— - —> wg,
Baj, 4] 1By |
p(A)(3):wa,»2 2 e 1 Wa, .

Note that the concatenation of p(A4)™, p(4)®, and p(4)® coincides with p(4).

Also, in the same way as in (3.4), we divide p(B) for each B € A(w, I'5) into
three parts p(B)(", p(B)®, p(B)®. If we write B = {by, ..., b}, then p(B) is of
the form:

By, 18},
P(B):w = wyg —> -+ ——> Wy,

with by < -+ < by; we set bp := 0. Let 0 < i; < m be maximal such that b;, <¢,
and 0 < i, < m maximal such that b;, <t + q. Then, we set

W Byl 1By
pBYVw=wg —> - —— W, -
8, 1 1B |
i1+1 i
p(B)@:wp, ——— - —> wp,
185, .| 18, |
ir+1 bm
p(B)®:wp, ——— -+ Wh,,.

Note that the concatenation of p(B)("), p(B)?®, and p(B)® coincides with p(B).

Proof of Theorem 3.2. First we recall that A is assumed not to be of type G,. Let
A € A(w, T'1). Then, by Proposition 4.3 with IT = Ffz) and IT' = Féz), we see that
only one of the following occurs:
(1) there exists a directed path ry € £ (end(p(4)M), Fl(z)) \ {p(4)@} such that
end(ro) = end(p(4)®) and wt(ro) = wt(p(4)®);
(2) there exists a directed path ry € 2 (end(p(4)1), 1";2)) such that end(rg) =
end(p(A4)@) and wt(rg) = wt(p(4)?@).

For convenience of explanation, we set

1 if (1) of the above holds,

p(A) :=
{ 2 if (2) of the above holds.
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We define a set Ag(w, 1) C A(w, 1) by
Ao(w. ') := {4 € Aw.T1) | ¢(4) = 2}.
Then we have
AG (w,T1) = AW, T1) \ Ag(w, T1) = {4 € Aw,T1) | ¢(4) = 1}.

Let us define a map Y: Ag(w, I'1) = A(w, ). Let A € Ag(w, I'y). Then, by
applying Proposition 4.3 with IT = Ffz) and IT" = Féz), there exists a unique ry €
P (end(p(4)D), T$?) such that end(re) = end(p(4)@) and wi(rg) = wi(p(4)@).
We write the rg as:

18} 1 187 |
ro:end(p(4)®) = x LN Xp.

Since ry is I‘éz)-compatible, it follows thatt +1 < j; <--- < j, <t 4 g. Now, we
set B? :={j;,..., j,}, and define Y(A4) by Y(4) := AV 1 B® 1 A®; note that
Y(A) € A(w, T'2). We define a set Ag(w, ) by

Ao(w. ) :={Y(4) | A € Ao(w, 1)}

We claim that Y defines a bijection Y : Ag(w, I'1) = A¢(w, I'2). To verify this claim,
it suffices to show that Y is injective.

Let A1, A3 € Ao(w, 1), and assume that Y (A1) = Y(A;). We show that A1 = A5.
First, we see that

AP = (r(A)® = Y (4 = 4P,

and
AP = (r(4))? = (¥(42)) = 4P

Hence it remains to show that A(lz) = Agz)' By the definition of the map Y, we have
end(p(Y(41))®) = end(p(41)®) and  wt(p(Y(41)®) = wi(p(41)?).
Also, we have
end(p(¥(42))?) = end(p(42)®) and  wi(p(Y(42))?) = wi(p(42)?).
Since p(Y(4;))® = p(Y(4,))@, the uniqueness in Proposition 4.3 (2) (with IT =
2 and TI' = Ffz)) implies that p(41)@® = p(A4,)®, from which we obtain Agz) =

r
A%zz), as desired. This shows the injectivity of Y.
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To prove that Y satisfies the condition of Theorem 3.2 (1), it remains to show that
end(Y(4)) = end(4), down(Y(A4)) = down(A), and (—1)"FA) = (—1)"(4D The
first equation is obvious, since

end(Y(4)) = end(p(Y(4))) = end(p(Y (4))?)
= end(p(4)®) = end(p(A)) = end(A).
The second equation is shown as follows:
down(Y (4)) = wt(p(Y(4)))
= wi(p(Y(4) D) + wi(p(Y (4))?) + wi(p(Y(4)®)
= wit(p(A)P) + wip(Y (4))®) + wi(p(4)®)
= wi(p(A)D) + wt(p(4) @) + wi(p(4)®)
= wi(p(4))
= down(A).
Since (— l)neg(p(Y(A))(z)) = (- l)neg(P(A)(z)) by Proposition 4.3 (2), the remaining equa-
tion is shown as follows:
(_1)n(Y(A)) — (_l)neg(p(Y(A)))
- (_1)Heg(p(Y(A))“))(_1)neg(p(Y(A))(2))(_1)neg(p(Y(A))(3))
= (—1)nee@ADD) (ynee®F () 2) (1 yneep(4))
— (_l)neg(p(A)“))(_1)neg(p(A)(2))(_1)neg(p(A)(3))
— (_l)neg(p(A))
= (=",
Next, we construct an involution /; which satisfies the condition of Theorem 3.2 (2).

Let A € AS (w, T'y). Then, by applying Proposition 4.3 with IT = Fl(z), we see that
there exists a unique ro € £ (end(p(4)™D), Ffz)) \ {p(A)@} such that

end(rg) = end(p(4)@) and wt(ry) = wt(p(4)?).

We write the rg as:

1Biy] 1Bl
ro:end(p(A)?) = xg — -+ —2> x,,.

Since ry is Fl(z)—compatible, itfollows thatt +1 < j; <--- < j, <t + ¢g. Now, we
set B® :={ji,..., j,}, and define I;(A4) by

I(A) = AV U B® 1y A®);
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note also that I; (A) € A(w, T'y). Since p(4)@® € P (end(p(I;(4))D), Ffz)) satisfies
the condition of Proposition 4.3 (1), with p = p(I1(4))®, we deduce that I;(A) €
Ag (w, T'1), and that

L(I1(A) = LAY UB® 1 A®) = AD 4@ 1 4® = 4

by the definition of 7;. This shows that /; is an involution. Hence it remains to show
that end(/; (4)) = end(A), down(/; (A)) = down(A), and (—1)"V1 (D) = _ (1)),
which can be shown by the same argument as that for Y. This completes the construc-
tion of 7.

Finally, we show the existence of an involution I, on Ag (w, I'z). To do this, we
examine the set Ag (w, I'z) in detail. Let B € A(w, I';). Then, in the same way as for
A € A(w, I'1), we see by Proposition 4.3, with IT = Féz) and IT" = Ffz), that only
one of the following occurs:

(1) there exists a directed path ro € £ (end(p(B)™"), Féz)) \ {p(B)@} such that

end(ro) = end(p(B)@) and wt(rg) = wt(p(B)?®);

(2) there exists a directed path ry € £ (end(p(B)"), Ffz)) such that end(rg) =

end(p(B)@) and wt(rg) = wt(p(B)?@).

For convenience of explanation, we set

1 if (1) of the above holds,

¢'(B) = o
2 if (2) of the above holds.

We claim that
Ao(w, T2) = {B € Aw,T2) | ¢'(B) =2}. (4.19)

If this equation is shown, then the following holds:
Ag(w,Fz) = A(w, T2) \ Ag(w, T2) = {B € A(w,T2) | ¢'(B) = 1}.

First, we take B € #Ag(w, ['2). Then, by the definition of Ag(w, I'2), there exists
A € Ag(w, 1) such that Y(A) = B. Since p(4)@ e P (end(p(4)™D), Ffz)) satisfies
the condition of Proposition 4.3 (2), with TT = T\, TI’ = T'® | and p = p(B)@, we
have

¢'(B) = 2.

Next, we take B € 4 (w, I'2) such that ¢’(B) = 2. Then, by the definition of ¢’, there
exists ro € P (end(p(B)MV), Fl(z)) such that end(rg) = end(p(B)®) and wt(ry) =
wt(p(B)®). We write the ry as:

Byl 1B,
ro:end(p(B)V) = xo — -+ —2> x,,.
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Then, we have
r+1=<j1<---<jp=t+gq.

Set A® :={jy,..., jp},and then 4 := B 1 AP 1 B®), We see that A€ Ag(w,T;)
and Y(A) = B, and hence B € A¢(w, 7). Thus, equation (4.19) is shown. Hence
the existence of the desired involution /, on Ag (w, I';) can be shown by the same
argument as that for the involution /; on Ag (w, I'1). This completes the proof of
Theorem 3.2 (for A not of type G»). ]

4.6. Proof of Theorem 3.4

We will prove that the maps Y, /1 and I, preserve weights and heights.

For this purpose, we need additional notation. Let ¥ = (y/1,. .., ¥, ) be a sequence
ofroots Yry,...,¥p € A,k = (ki,...,kp) asequence of integers k1,...,k, € Z, and
w € W.Forasubset J = {j; <--- < jg} C{l,..., p}such that

¥, W), | 1Wjq
W= WSy, | = " > WSy | Sy, |

is a directed path in QBG(W) (note that if W is a A-chain for some A € P, then J is
a w-admissible subset), we define heighty y (w, J) by

heighty g (w, J) := Z sgn(y;)k;,
jeJ—

where
— . ;| .
Jo={jied | WS|yy, | S|y, | T WS|yy, | " S|y, | 18 @ quantum edge}.

Also, we generalize the definition of down:

downg(w, J) := Z 2

jeJ—
Note thatif ¢ =Ty, k = (71, ... ,Tr), weW,andJ = A € A(w, T'1), then we have
downg(w, A) = down(4), heighty y(w, A) = height(4);

ifW =Ty k==, ....00=1....0..Ies g Trs 1. lirgits- - 1p), w € W, and
J = B € A(w, I'2), then we have

downg(w, B) = down(B), heighty y(w, B) = height(B).
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In addition, for A € A(w, I'1), it follows that
down(A) = downa) (w, AWM
1
+ down 2 (end(p(4) ™), A®) + down_.3 (end(p(4) @), 4®),
1 1

and that

height(A) = height A F(1)(w, AW

+ height — o (end(p()™), 4@)

Urg15e- lr+q), 1

+ height (end(p(A4)?), A®); (4.20)

(lz+q+1, lr),FfB)

for B € A(w, '), it follows that
down(B) = down_ ) (w, BY)
2
+ down) (end(p(B)V), B@) + down ) (end(p(B)@), B®),
2 2
and that

height(B) = heightg, 7 ro)(w. BY)

+ height ;~ o (end(p(3)?), B®)
(e ,t+q)1“

+ height @ (end(p(B)?), B®)
(g g1l )TS

= height; 7, 1ﬂm(w, BW)
A (end(p(B)"). B®)

(end(p(B)@), B®). (4.21)

+ helght(lﬂrq

+height, — 3 ).rY

Next, we consider weights. For the above J, we set

rk,\I’(J) = Slﬁjl,—kjl Sy, kg

Then, for A € A(w, I'1), we have

wt(A) = —7q,,...1),1; (A)(=1)

=T i, I~(1>(A 7 2 (4@)

Ue415slt44):T

3 (_1)-
X Ty s gitndyr® AT (A (4.22)
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for B € A(w, I'2), we have

..... 1), (B)(—=4)

= Py odidygosdi 1.l g1 sl T2 (B) (1)
B(Z))

Wt(B) = —?(li

A (1) ~
Pyt e BT e (

7 @)y(_
T sgirmdr (B (EA). (4.23)

Proof of Theorem 3.4. First, we consider heights. For A € A(w, I'1), we see that

height ;— 1.0 (end(p(4)"), 4?)
= > san(B)ABY) 1))
je@®n-
= 2 sen(B)(A.BY) —heighty e (end(p(4)). 4@)
JEA@)~
= <)L, Z sgn(,Bj)ﬁ}/> — height(lﬂr],...,l,ﬂ),l“iz) (end(p(4)D), 4?)
JE(A@)—

= (A.down,.c) (end(p(4)D), 4®))

@ (end(p(4) V), 4®). (4.24)

— helght(lt_,’_l ..... li4q)Ty

Let us assume that 4 € Aq(w, I'1), and set B := Y(A). Then we have
(v lt+l),F§2)(end(P(B)(l))’B(Z))
= (A, downc (end(p(B)™"), B®))
2
1y e (€nd@(B) 1), B2). (4.25)

height —

— helght(l,+q,...,

Here, since down(Y (A4)) = down(A), it follows that
downp2) (end(p(B)(l)), B(z)) = downp (end(p(A)(l)), A(z)).
2 1

Also, by [13, Lemma 3.5], we know that

t+q

ﬂ Hg, 1, # 9.

k=t+1

Therefore, by [14, Lemma 46], we have

height(1,+q ,,,, lt—‘,—l):réZ) (end(p(B)(l))’ B(Z))
o My 4@
= helght(lH_l,...,l,+q),F§2) (end(p(A4)*), A7),
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and hence by (4.24) and (4.25), we obtain

e End@B)®), B)

ro (end(p(4) ), 4).

helght(l,+q

= helght(lt% qu)

Now, by (4.20) and (4.21), we deduce that height(B) = height(A), as desired.
Assume that A € Ag (w, 1), and set B := I;(A). As in (4.24), we have

height, — (end(p(B)V), B®)

Urt1seolitg )F(z)
= (A.downc) (end(p(B)"), B®))

— height r® (end(p(B)V), B?®).

Urt1seolitq)s
Again, by the definition of /; and [14, Lemma 46], we have

(i end®(B) ), B)

= (A, downc (end(p(B)), B?)) — height
1

height —

(Urrrds s gyr (end(p(B) 1), BP)

= (A, down_e (end(p(A)™M), A®)) — height o (end(p(4)1), 4?)
r li4+q),T)

Ut 4150

Lo (end(p(4) M), 4@,

= heigh
eight 7= i

and hence obtain height(B) = height(A4), as desired. Now, the assertion for I, is
shown by the same argument as for 7.
It remains to consider weights. Again, by [13, Lemma 3.5], we can take u € E)ikx

such that
t+q

JINS m Hg, . #9.
k=t+1

Note that (u, B)) = —lx fork =t +1,....t +q.
Let A € Ag(w, '), and set B := Y(A). Recall that end(p(B)®) = end(p(4)?®).
For simplicity of notation, we set

v := end(p(4)V) = end(p(B)D).

For v € b, we denote by t, the translation by v, i.e., we define t,: b — by by
ty(§) := & + v. We see that for v € b and y € AT,

syty = tsy(,,)sy ,

and for vy, v, € by,

tvl tV2 = tvl +vy-
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Also, for y € A and k € Z, we have t,s|,| = s,x. If we write A®) = {j1,..., ja},
then we have
tuv_l end(p(A(z)))t_M = t,,dv_l(vswj1 |+ 818, Dt
= (twsig;, 1t—) -~ (tusig;, 1t-u)
= Mutsys, 108185, (s (=051, 1)
= (tu18), 1187, 1187, 1)+ (Cuas181, 1V)1B)4 1518, 1)
= ()85, 518, 1) (183,080 51870 1)
= (s 8,518, 0 (e B, 91851)

= SBj Ly SBia

I )
= Ugrsdip ) TP (A). (4.26)
By the same calculation, we have
-1 @) _ )
tyv™ end(p(B')t_, = M ptgrdio) I (B*).

Since end(p(B)?®) = end(p(4)@), it follows that
» @y — 5 2)
" ggomsli 1), T (B™) = PUigt i) T2 (A™7).

Hence, by (4.22) and (4.23), we obtain wt(B) = wt(A), as desired.
Next, assume that 4 € Ag (w, '), and set B := I;1(A). By the same calculation
as for (4.26), we have

t,v Yend(p(B@)t_, =7 B®).

Uttt lt+,,),r}2’(
Hence, from the equality end(p(B)®) = end(p(4)®), we deduce that

~ @)y _ =~ @)
Frsrodis ) T2 BT =T by r@ (A

Therefore, we conclude by (4.22) and (4.23) that wt(B) = wt(A), as desired.
The assertion for I is shown by the same argument as for /. This completes the
proof of the theorem. =

5. Generating functions of certain statistics

We consider a generating function of the statistics associated to the quantum alcove
model. We describe the relationship between the generating functions associated to
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two alcove paths which are related by the procedures (YB) and (D). We also investi-
gate the composition of generating functions. As an application, we derive an identity
of “Chevalley type” for the graded characters of Demazure submodules of (level-zero)
extremal weight modules over a quantum affine algebra.

5.1. Generating functions

Take an indeterminate ¢, and consider the ring R := Z[q,q~!] of Laurent polynomials
in g. Recall that an element of the affine Weyl group Wy can be written as x = wfg,
with w in the finite Weyl group W and £ in the coroot lattice QV.

Definition 5.1. For each A-chain I' and x = wtg € Wy, we define a generating func-
tion Gr(x) € R[P][Was] associated to the set A(w, I') of w-admissible subsets by

Gr(x)i= Y (—1)y"Wg =GO end(A) gy ggunay. (5.1)
AeA(w,I')

We also think of Gr as a linear function on R[P][Wy] by R[P]-linearly extending the
above assignment x — Gr(x).

Let A € P, and take A-chains I'y, I';. We consider the relation of the two generat-
ing functions Gr, (x) and Gr, (x) for x = wtg € Wy.

First, we consider the case in which I'; is obtained from I'; by the procedure (YB).
As a corollary of Theorems 3.2 and 3.4, we obtain the equality between the two gen-
erating functions.

Proposition 5.2. Assume that "5 is obtained from I'y by (YB). Then we have
Gr, (x) = G, (x).

Proof. Asin Theorem 3.2, we take subsets g (w, 1), AOC (w, ') of A(w, 7). Also,
we take subsets g (w, I'2), AOC (w, T'p) of A(w, I';). Then we have the maps Y, I,
I as in Theorem 3.2. Note that by Theorem 3.4, Y, I, and I, preserve weights and
heights.

Since /; is a sign-reversing involution which preserves weights, heights, and down
statistics, we have

Z (— 1y (A) = height(4)—(4,8) ywi(4)

AeAS w,I')

end(A)té-f—down(A) =0,

and hence

Gr,(x) = Y (=1 Wg A8 end(A) e 4 gowna)-
AE.AO (w ,Fl)
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We derive the similar result for Gr, (x) via the sign-reversing involution /,. Using the
map Y given by a generalization of quantum Yang—Baxter moves, we deduce that

Gr,(x) = Z (_l)n(Y(A))q—height(Y(A))—(A,E)ewt(Y(A)) end(Y (4)) e+ down(r(4))
AEer(w,Fl)
= Gr, (x).
This concludes the proof. =

Next, we consider the case in which I'; is obtained from I';y by the procedure (D).

Proposition 5.3. Assume that Ty is obtained from T'y by the procedure (D), which
deletes the segment (£8, FB) of T'1, where B is not a simple root. Then we have

Gl"l (x) = GFz (x).

Proof. We write I'y = (B4, ..., ;). By the assumption, there exists u € {1,...,r —2}
such that

* Butz = —Bu+1,

*  Bu+1 and By, 42 are not simple roots, and

° F2:(ﬂl»---’ﬂuvﬂu+3»~-’ﬂr)'

Set B := |Bu+1] = |Bu+2]- Since B is not a simple root, there does not exist any path

of the form
But1l=B , 1But2l=B
v v v

= V.

Hence, for A € A(w, 1), we have A N {u + 1,u + 2} # {u + 1,u + 2}. We define
a subset Ag(w, 1) C A(w, 1) by

Ag(w, ) :={d e Aw,T1) | AN{u+1,u+2} =0}
Also, we define a subset Ag (w,I'1) C A(w, ') by

Ag (W, T1) 1= Aw, T) \ Ag(w, ')
={AcAw T | AN{u+1Lu+2)={u+1}{u+2}).

We define amap Ip: Ag (w, ') — A@C(w, I'1) as follows. If A € Ag(w, I'y) satisfies
AN{u+1,u+ 2} = {u + 1}, then we set

Ip(A) =ANn{l,...,up) U{u+2yuAN{u+3,...,r});
if A e Ag(w,Fl) satisfies A N {u + 1,u + 2} = {u + 2}, then we set

Ip(A):=(AN{l,.... u)Ufu+ DU AN{u+3.....r}).
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We see that for all A € Ag (w, T'1), we have Ip(A) € A@C (w, I'y). Also, we see that
Ip(Ip(A)) = A. Hence Ip defines an involution on Ag (w, T'1), and it is easy to see
that it preserves the statistics down(-), end(-), height(-), and wt(-). Also, it is easy to
verify that Ip negates the sign (—1)"(). Therefore, we obtain

Z (_l)n(A)q—height(A)—()L,E)ewt(A)

A€AS (w,I')

end(A)tS-‘rdown(A) = 0.

Now, we define a bijection D : Ag(w, I'1) — A(w, ['2) by
DA):=AN{l,...,upuU{j—-2]jedAn{u+3,...,r}}.

It is again easy to see that this bijection preserves all the statistics. Therefore, we
deduce that

Gr,(x) = Y (=1)"WgreientD=8 e end(A) e 4 goun(a)
AeA(w,I)

_ Z (1)) g~ height(A)—(1.) wi(4)
AcAg(w,I1)

=Y (1) PN~ e DA ~(3.8) (D)
AcAg(w,T1)

= Gr, (x),

end(A)l“;'-‘rdown(A)

end(D(A))te +down(D(4))

as desired. This concludes the proof. ]

Remark 5.4. In the setting of Proposition 5.3, assume that § is a simple root such
that =8 appears in positions u + 1 and u + 2 in I';. Then the equality Gr,(x) =
Gr, (x) does not hold. This is because there exists a directed path of the form

for all v € W, in contrast to the case that 8 is not a simple root. In fact, in A(w, I'y),
we can pair each A forwhich AN {u+ 1, u +2} =@ with A" := AU {u+ 1,u +2}.
Let i € Z be the contribution of (one of the) positions u + 1, u + 2 to height(A4’);
note that this is independent of A. By using the above pairing, as well as the map D
and the cancellations given by the involution /p in the proof of Proposition 5.3, we
derive
Gr, (x) = Gr, (x)(1 — g "1pv).
We need the following weaker version of the notion of a reduced A-chain.

Definition 5.5. A A-chain is weakly reduced if it does not contain both a simple root
and its negative.
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Now let us consider arbitrary weakly reduced A-chains I'; and I'>. Then there
exists a sequence I'y = Wy, ¥q,..., W, = I'T of A-chains such that I'}" is reduced,
and each Wy is obtained from Wy _; by one of the procedure (YB) or (D). In a similar
way, we relate I', to a reduced A-chain I'J. Finally, we relate I'}" to '}’ by successively
applying the procedure (YB). The weakly reduced property of I'y and I'; implies that,
in the above process, the procedure (D) never deletes a segment (£, F8), where
is a simple root. By Propositions 5.2 and 5.3, we derive the following theorem.

Theorem 5.6. For arbitrary weakly reduced A-chains T'y and T'», we have

Gl"l (x) = GFz (x).

5.2. Combinatorial realization of commutativity

In this section we realize combinatorially the symmetry of the general Chevalley for-
mula in [14,15] coming from commutativity of line bundle multiplication in equivari-
ant K-theory. As explained in the Introduction, this realization involves commutativ-
ity of the composition of two functions Gr, and Gr,, and is based on the generalized
quantum Yang—Baxter moves. The main result here will also play an important role
in the proof of the character identity in Section 5.3.

We start by developing the notion of a weakly reduced chain of roots in Defi-
nition 5.5. Consider an arbitrary weight A and an arbitrary decomposition of it A =
A4+ lp. Letlj = Zie] m;; wij.

Definition 5.7. The weight decomposition A = A; 4 --- + A, is cancellation-free if,

for any i € I, all the nonzero coefficients among m;1, . .., m;, have the same sign.

Given the above weight decomposition, consider A;-chains of roots I';, for j =
1,..., p. Their concatenation, defined in the obvious way and denoted by

[=Ty %D,

is clearly a A-chain. Note that the alcove path corresponding to I' is obtained by
considering the shift of the alcove path for I'; by Ay + .-+ Aj_;,for j =1,..., p,
and by concatenating them in this order.

Proposition 5.8. The A-chain T is a weakly reduced if and only if the weight decom-
position A = Ay + -+ 4+ A, is cancellation-free and each Aj-chain T'; is weakly
reduced.

Proof. The result is easily derived from the following general fact about a (not nec-
essarily reduced) A-chain I' = (81, ..., B,), for an arbitrary weight A and a positive
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root « (see, e.g., [19, Lemma 5.3]):
(o) =#j | B =a}—#{j | B; = —a}.

This fact is applied to a simple root & = «;, by noting that (A, ;") is the coefficient
of @; in the expansion of A. m

Let us now consider a cancellation-free weight decomposition A = u + v, and
weakly reduced chains of roots I'y and I'; corresponding to p and v, respectively.
Then, by Proposition 5.8, we have the weakly reduced A-chain I := I'; * ['>. Observe
that there exists a natural bijection

{(A,B) | A € Aw.T}), B € A(end(4), T)} — Aw,T); (5.2)

let A * B € A(w, I') denote the image of (A, B) under this bijection. The follow-
ing lemma relates the statistics of interest under the bijection; its proof is based on
arguments completely similar to those in the proof of [14, Theorem 48].
Lemma 5.9 ([14]). For A € A(w,T'1) and B € A(end(A), I'2), the following hold:
(1) n(A* B) =n(A) +n(B);
(2) end(A * B) = end(B);
(3) down(A * B) = down(A4) + down(B);
(4) height(A * B) = height(A4) + height(B) + (v, down(A));
(5) wt(A x B) = wt(A) + wt(B).

We are now ready to prove the main result of this section.

Theorem 5.10. Given the above setup and any x = wig € Wy, we have
Gr, o Gr,(x) = Gr, o Gr, (x) = Gr(x).

These identities are realized combinatorially via the bijection (5.2) and the general-
ized quantum Yang—Baxter moves.

Proof. It suffices to prove the second equality. Indeed, this would imply that
Gr‘l ] Gr‘z (x) = G]"/(x),

where TV := T, * I'y. The proof is then concluded by using Theorem 5.6 to show
that Gr(x) = Gr/(x). Recall that the mentioned theorem is proved by applying the
generalized quantum Yang—Baxter moves.
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By iterating the definition (5.1), we obtain

GFZ o GF] (X)
= Y (1) A8 A G end(AN s ouna)
AeA(w,I')
— Z Z (_1)n(A)+n(B)q—height(A)—(/L,{-‘)—height(B)—(v,{-‘-{-down(A))

AeA(w,I'1) BeA(end(A4),I2)

X eWt(A)_I—Wt(B) end(B)lé-i-down(A) +down(B)

— Z Z (_l)n(A*B)q—height(A*B)—(l,ég')
AeA(w, ') BeA(end(A),I»)

« eWi(4*B) end(A * B)tsydown(4%B)

= Gr(x).
The last two equalities are based on the bijection (5.2) and Lemma 5.9. ]

Theorem 5.10 immediately implies the following corollary involving a compo-
sition of more than two functions Gr,. Here we use the corresponding setup that
was defined above. Namely, we consider the cancellation-free weight decomposition
A=A+ -+ Ap, the weakly reduced A ;-chains of roots I';, for j = 1,..., p, and
their concatenation I' = I'y * -+ * I,

Corollary 5.11. In the above setup, the composite of generating functions Gr, o---o
Gr, (x) is invariant under permuting the maps Gr., and coincides with Gr (x).

We now generalize the function Gr on R[P][Wy] by defining the function Gr,
which expresses the general K-theory Chevalley formula for semi-infinite flag mani-
folds in [14, 15]. In order to do this, we need some notation for partitions. Let A € P
and write itas A = Y, ; m; @;. We define the set Par(1) by

x@ is a partition whose length is

Par(h) = {x = ((Dies } 53)

less than or equal to max{m;, 0}

For x = (xV);e; € Par(1), we write it as y@ = ()(gi) > )(g) > > )(g) > (), where

0 < [; < max{m;,0} and )(gi), o, )(g) € 7, and set

=Y > xP =Y Ve (5.4)

iel k=1 iel

if y® = @, then we understand that /; = 0 and )((li) =0.
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Definition 5.12. For each A-chain I" and x € Wy, we define

Grx):= Y ¢ MGrmugy. (5.5)
X €Par(4)

Like above, we now consider a cancellation-free weight decomposition A =y +v,
weakly reduced chains of roots I'y and I"; corresponding to i and v, respectively, and
the weakly reduced A-chain ' :=T"; * I'. Let u=) ;. ;minw; andv=) ;. ; mirw;,
so A = ) .y miw; with m; = m;; + m;. We will show that there exists a natural
bijection

Par(i1) x Par(v) — Par(A), (¥, @)~ x =¥ * o, (5.6)
which is compatible with the corresponding statistics. The above map is constructed
by defining the partition x@ in terms of the partitions ¥ ) and 0@, for each i € I;
we will identify a partition with its Young diagram. We may assume that m;;,m;, > 0,
and at least one is positive; indeed, otherwise m;1, m;> < 0, so w(i) =w® = ¢, and
we let y) := @. In the nontrivial case, we consider a rectangular partition with m;,
rows of size wl(i); then y@ is defined as the result of attaching w® at the right of
the rectangle (top justified) and @) at the bottom of the rectangle (left justified). It is
easy to verify that the result is indeed a partition of length at most m;, as needed, as
well as the fact that this map is invertible.

Lemma 5.13. For ¥ € Par(u) and @ € Par(v), the following hold:
D) (¥ *w) = 1Y) + o),
@) ¥ x| =¥+ o]+ (v.c(¥)).

Proof. We use the above notation, in particular y := ¥ * @, as well as the fact that
the weight decomposition A = u + v is cancellation-free. The first relation is clear
by construction. The second one follows from the fact that

(@) = mipy?) =" max{miz, 0}yr{";

iel iel

here we note that mizl/fl(i) is the size of the rectangle used to construct )((i) in the
nontrivial case. u

Theorem 5.14. Given the above setup and any x = wtg € Wy, we have
Gr, o Gr,(x) = Gr, o Gr, (x) = Gr(x).

These identities are realized combinatorially via the bijections (5.2), (5.6), and the
generalized quantum Yang—Baxter moves.
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Proof. As in the proof of Theorem 5.10, it suffices to prove the second equality. By
iterating the definition (5.5) and by also using (5.1), we obtain

Gr, o Gr, (x)

Z Z (_1)n(A)q—(M,S)—heighl(A)—I'If\

Y PG ACAWTY o AG L, (end(A) e+ down(A)+(¥))

Z Z Z (_l)n(A)q—(M,E)—height(A)—IVfI—Iw|

Y EPar() o ePar(v) ACAMW.TD i) G (end(A) ¢ +down(A)+1(¥)) i (w)

Z Z q—lllf\—lwl—(v,t(llf)) Z (_l)n(A)q—(M,S)—height(A)

¥ €Par() @ €Par(v) AeA(w,I'y)

x " Gr, (end(A) ¢ +down(4) t(w)+1(@)

= Z Z —|¥l—le|—(v..(¥)) Gr, o Gr, (W)l (y) +1(0)

¥ €Par(11) w Par(v)

= 2 2 a"Grwiyse
¥ ePar(11) o <Par(v)

= Gr(x).

The last two equalities are based on the bijection (5.6), Lemma 5.13, and Theo-
rem 5.10. u

Remarks 5.15. A few words are in order:

(1) Theorem 5.14 exhibits a combinatorial realization of the symmetry of the
general Chevalley formula [14, Theorem 33] coming from commutativity in
equivariant K-theory.

(2) Corollary 5.11 can be extended to the setup of Theorem 5.14.

5.3. Identity of Chevalley type for graded characters

As an application of the results in Sections 5.1 and 5.2, we obtain an identity of
“Chevalley type” for the graded characters of Demazure submodules of (level-zero)
extremal weight modules over a quantum affine algebra.

Let g,¢ be the untwisted affine Lie algebra whose underlying finite-dimensional
simple Lie algebra is g, and let Uy (gar) denote the quantum affine algebra associated
to g with Chevalley generator E;, F; € Uq(gar), i € I = I U {0}, where q is an
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indeterminate. We denote by
Uy (ga) == (Fi)ier, C Uq(@ar)
the subalgebra of Ugy(gar) generated by {F; | i € ). Also, let
Wi =Wt |§€ Q) =W x QY

be the (affine) Weyl group of g.s, where ¢, £ € QV, denotes the translation by &
(see [6, Proposition 6.5]).

Foreach A € P (regarded as a level-zero affine weight), denote by V(1) the level-
zero extremal weight module of extremal weight A over U,(gar), which is equipped
with a family {vy}xew, C V(1) of extremal weight vectors, where v, € V(1), x € Wy,
is an extremal weight vector of weight xA (see [7, Proposition 8.2.2]). For x € Wy
and A € P, the Demazure submodule V(1) is defined by

Vx_(l) = Uq_(gaf)vx~

We denote by gch V(1) the graded character of V7 (L) (see [8, Section 2.4]). If
x = wtg withw € W and £ € QV, then we know that gch V= (1) € Z[P][¢ ¢~ *;
in fact, we know that gch V(1) € Z[g ][ P] forw € W.

We will prove the following identity for the graded characters of Demazure sub-
modules, which is a representation-theoretic analogue of the general Chevalley for-
mula for the equivariant K-group of semi-infinite flag manifolds ([ 14, Theorem 33]).

Theorem 5.16. Let i € P and x € Wy. We write x as x = wtg, withw € W and
g€ QV.Take A € P suchthat u + A € P, and let T be an arbitrary reduced A-chain.
Then we have

gchV(u+A) = Z Z (_1)n(A)q—height(A)—(l,S)—I)(Iewt(A)

AeA(w,I") yePar(L)

x gch (5.7)

end(A)tg+aown(A)+z<x)('u)'

Remark 5.17. The right-hand side of (5.7) is identical to zero if u + A ¢ P™T; the
proof is given in Appendix B.

Although Theorem 5.16 can be proved in a parallel way to [14, Theorem 33], we
show that it follows immediately from the results in Sections 5.1 and 5.2.

Now we recall two special cases of Theorem 5.16, i.e., the cases that A is dominant
or anti-dominant. The following theorem gives the identity for dominant weights; this
is a restatement of [21, Corollary C.1] in terms of the quantum alcove model, which
is given by exactly the same argument as for [14, Theorem 29]. Here, for a dominant
weight A € P, the lex A-chain is a A-chain constructed in [20, Proposition 4.2].
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Theorem 5.18 (cf. [14, Theorem 29] and [21, Corollary C.1]; see also [8, Proposi-
tion D.1]). Let u, A € P, and x = witg € Wy withw € W and & € QV. Let T be
the lex A-chain. Then we have

gch V(4 2) = Z Z —height(A)—(A,8)—| x| ,wi(A4)

AeA(w,T) yePar(A
xeP X geh %ﬂd(A)ts+down<A)+L(x)(M)

Also, the following theorem gives the identity for anti-dominant weights; this is
a restatement of [21, Corollary 3.15] in terms of the quantum alcove model, which
is given by exactly the same argument as for [14, Theorem 32]. Here, following [14,
Section 4.2], the lex A-chain for an anti-dominant weight A € —P ™ is defined to
be the reverse of the lex (—A)-chain with all roots negated in the lex (—A)-chain;
namely, for the given lex (—A)-chain (B4, ..., B8;), the lex A-chain is defined to be

(=Br.....=B1).

Theorem 5.19 (cf. [14, Theorem 32] and [21, Corollary 3.15]; see also [8, Proposi-
tionD.1]). Letp € P, and x = wtg € Wyewithw € W and § € QY. Take A € —P*
such that ju + A € P, and let T be the lex A-chain. Then we have

gchVy(utA)= Y (~)Hlg -8 geny (),
AeA(w,T)

Proof of Theorem 5.16. Let u, A, x and I" be as in the statement of Theorem 5.16.
Write A = At + 17, with AT € PT and A~ € —P™ given by

= max{(A. ). 0}w;. =Y min{(1. ;). 0}w;.

iel iel

Note that the weight decomposition A = A1 + A~ is cancellation-free. Take lex A -
chain (resp., lex A~-chain) 't (resp., I'"). Note that the two chains of roots are
reduced, and 't consists of positive roots, while I'™ consists of negative roots. Define
a A-chain 'y as the concatenation I'™ x '™, which is weakly reduced by Proposi-
tion 5.8.

By Theorems 5.14 and 5.6, for x € Wy we have

Gr- o Gr+ (x) = Gr, (x) = Gr(x). (5.8)

Now consider the correspondence x — gch V() for x € Wy, which defines
an R[P]-module homomorphism R[P][Wy] — Z((g~'))[P]. Under this homomor-
phism, Gr (x) is mapped to the right-hand side of (5.7). By (5.8), we obtain the same
result by applying the homomorphism to Gr- o GF+ (x). We observe that doing this
parallels the process of expanding

geh V(i +4) = geh Vo (e + A7) +47)
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in terms of gech V" (u + A7) by Theorem 5.18, followed by expanding the result
in terms of gch V(1) by Theorem 5.19; here we use the fact that u + 1 € Pt
implies i + A~ € P*. The mentioned observation proves that by applying the above
homomorphism to Gr- o GF+ (x), we obtain gch V7 (1 + A). We conclude that the
right-hand side of (5.7) coincides with gch V" (1 + A). [

Remark 5.20. Theorem 5.16 can also be proved by using the A-chain I'j :=T"" * r+
instead of T'g.

5.4. Towards a signed crystal structure on the quantum alcove model for an
arbitrary weight

Crystals are colored directed graphs encoding the structure of representations of the
quantum algebra Uy(g) in the limit g — 0, where g is a symmetrizable Kac-Moody
algebra. The vertices B of the crystal correspond to the elements of the crystal basis
for the representation, and the edges correspond to the action of the Chevalley gener-
ators e;, f; in the above limit. Formally, we define the crystal operators

%, fi: B — B U{0),

where the value 0 corresponds to the operators being undefined, and e; is a partial
inverse to ﬁ . These operators are subject to several conditions; see, e.g., [5] for all
the background information on crystals.

We define a signed crystal simply as a crystal together with a sign function on
the vertex set B; note that we do not require the crystal operators to preserve signs.
An isomorphism of signed crystals B and B’ is a sijection between B and B’ which
commutes with the crystal operators.

Given a dominant weight A and a reduced A-chain I', an affine crystal structure
was constructed on (e, I') in [12], which was then shown in [17] to uniformly
describe tensor products of single-column Kirillov—Reshetikhin crystals of quantum
affine algebras; note that for all w € W, the set A(w, ') can be equipped with an
affine crystal structure through the bijection with the affine crystal 4A(e, I'), which
is afforded by [14, Proposition 28] and quantum Yang—Baxter moves. Also, for an
anti-dominant weight A’ and a reduced A’-chain I'/, an argument similar to that in the
proof of [19, Theorem 8.6] yields a signed crystal structure on the set

A w) == {4 € AT) | end(4) = w} with AT') := | | Aw.T),
wew

which is in bijective correspondence with #A(wws., (I'")*), where (I')* is a reduced
Wo(A")-chain of roots dual to I'’. In both the dominant and anti-dominant cases, as
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well as in general (below), we use the same sign function as throughout the paper; in
particular, in the dominant case the sign function is identically 1.
We now propose the construction of a (partial) signed crystal structure on

AT) = | | Aw.T),

wew

where I is a reduced chain of roots corresponding to an arbitrary weight A. We use
the same objects and facts as in Sections 5.2 and 5.3, namely A = AT + A7, the
lex AT -chain (resp., lex A~-chain) I'" (resp., I'™), their concatenation I'g (not I'y),
and the bijection (5.2). Based on these facts, we can define a signed crystal structure
on A(I'y) by decomposing it as

AT = || (AT, w) * AW, TH)),
wew

where
AT, w) :={A e A7) |end(4) = w}

for w € W; note that the concatenation 4(I'™, w) * 4 (w, ['") is a well-defined crys-
tal for all w € W. On another hand, we know that I'j can be related to the reduced
A-chain I" by the procedures (YB) and (D). By propagating the signed crystal struc-
tures through the corresponding generalized quantum Yang—Baxter moves, we end up
with a (partial) signed crystal structure on 4(I"), that is, a signed crystal structure for
which crystal operators are defined only on a subset of A(I").

We state the following conjecture.

Conjecture 5.21. For each reduced chain of roots I' corresponding to an arbitrary
weight A, there exists a signed crystal structure on the whole of A(T"), which extends
the (partial) crystal structure defined above. Moreover, the sijection (11, I,,Y) defin-
ing a generalized quantum Yang—Baxter move in Theorem 3.2 commutes with the
crystal operators defined on A(T").

A. An example of quantum Yang-Baxter moves in type C»

Based on Proposition 4.3, we explain how to construct quantum Yang—Baxter moves
explicitly in a specific case. We assume that g is of type C,. Let TI, T’ be the
sequences of roots introduced in Section 4.2. We consider the case that v = s, and
I1 = (—20[1 — 0y, —01,0,01] + 052). Note that IT" = (Oll + on, 000, —0t1, —2001 — Olz).
Let us construct an explicit matching between a certain subset of & (v, IT) and that of
P (v, IT"), and also sign-reversing involutions outside of those subsets.
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pe P, II) end(p) down(p) qe P, IT") end(q) down(q)
p1 e oy qi e o) + oy
P2 52 0 q2 e o) + oy
pP3 5152 0 qs3 e oy
P4 5251 0 qa s1 oy
ps 515251 0 qs 51 oy
Ps 525182 0 96 2 0

q7 $152 0

qs 5251 Olzv

9o 5251 Otzv

q10 5251 0

q11 518281 0

q12 525182 0

Table 1. Statistics of elements p € P (v, [T). Table 2. Statistics of elements q € £ (v, IT).

Recall the matrices of the operators Ry, 4, Ras Raj R2arj+as sR2a i +as Raq Ras Ragtes
calculated in Section 4.4. In particular, the v-column of the matrix of the opera-
tor Ry +a; Ray Ray R2ary +ap (1€SP., Rogy a5 Ray Ray Ry +as) 18 t(QZ’ 0,1,1,1,1,1,0)
(resp., "(20105 + 05,20,,1,1,20, + 1,1, 1,0)). For example, the (e, v)-entry
of the matrix of the operator Rag; +a, Ry Ras Ry +an 15 20102 + Q2. Therefore, we
deduce from equation (4.3) that there exist exactly three IT’-compatible directed paths
rD r@ G guch that

o 1) starts at v = s, for j = 1,2,3,

e end@W)=e,j =1,2,3,

e down(r¥)) =ay +ay,j =1,2,and
« down(r®) = ay;

remark that Q% 1% = 0,0, and 0% = Q. Similarly, we see that there exist six
[T-compatible directed paths py, ..., ps such that

P, 1) = {p1.....Ps}-
Also, there exist twelve IT'-compatible directed paths qq, ..., q12 such that
5)(7.), H/) = {ql, ey (]12}.

Forp € £ (v, IT) (resp., q € P (v, [1')), the statistics end(p), down(p) (resp., end(q),
down(q)) are given in Tables 1, 2.
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Note that p € £ (v, IT) and q € P (v, IT') are explicitly written as follows:

(%) .. .
P1:s2 — e; p2:s2 (the trivial directed path);
. o] +az . . oy .
P3:S2 —> S152; P4:S2 —> §281;
o] aq+on oy
Ps5: 852 — $2851 —> S15251; Pe6:S2 — 8251 —> §28182;
o) tan o o] a)]ta 201 +an
q1:82 ——> 8152 —> §1 —> €] Q21S2—>S1S2—>51S251 — €]
o a1+
q3:852 — é¢; q4182—>S1S2—)Sl,
o o] .. .
qs: 52 — e — §1; qe: s> (the trivial directed path);
o toar aptor o) 201 tan
q7:82 — 5152, qg: Sy —> S182 —> §1 —> 5251,
%) o] 2a1 tan o]
qo:S2 —> € —> §1 ——> 8251, q10:52 — 5251;
. o) tas . a1 +an 201+
q11:82 —> 51952 —) 515281, qi12:952 5152 $25182.

Thus, if we set

Po(v, IT) := P (v, IT),
Po(v, ') := {q3, 96,97, 910, q11,q12} C P (v, 1),
PE . 1) := {q1,92. 4. 45,45, G0} = P (v, IT') \ Po(v, I1'),

then we obtain the following bijection Y ?"I: 2y (v, IT) — Py(v, IT) and involu-
tion 1, T on JPOC (v, IT") which preserve end(-) and down(-):

Yv’H'Pl = dq3, P2>4qe, P3H4q7, P4 qio, P55 dqi1, Pe = qi12;
Ivn 1= q2, @2—4q1, q4—~>4qs5, qs5—>q4, (s> q9, (9 > (Qs.
These maps give the correspondence p — p’ in Proposition 4.3.

Now, let us give an example of generalized quantum Yang—Baxter moves. Let
A € P. Take A-chains I'; and I'; such that I'; is obtained from I'y by the Yang-Baxter
transformation (YB). Let w € W. As in equations (3.1) and (3.2), we take Fl(k), Fék),
k =1,2,3. Also, as in equations (3.3) and (3.4), we take A®) (resp., B®) k=1,2,3,
for A € A(w, 1) (resp., B € A(w, I'2)). In this example, we consider the case that

r'=mn and r?=n.

By the consideration above, we can give an explicit description of quantum Yang—
Baxter moves for A € A(w, I'1) (resp., B € A(w, ['2)) such that end(4W) = s,
(resp., end(B(M) = s,), as given in Tables 3, 4.



New structure on the quantum alcove model 397

A® p(A?)  p(Y(4H@) =y>T(p(4?@)) Y(4)P

Y p2 96 0

{t+2} P4 qio {t +3}

{t +3} P1 qs {t+2}

{t +4} P3 q7 {r +1}

{t +2,t+ 3} Ps qi2 {t+1,t+4}
{t +2,t +4} ps q11 {t+1,t+3}

Table 3. List of Y (A) for A € 4o(w, I'1) such that end(4(1) = 5.

B® p(B?) p(L(B)?)=1"(p(B?)) L(B)?

{t + 1.1 +2} as as {t +2.1+3)
{t+2,t+3} qs qs {t+1,r+2}
{t+1.t4+2,t+3} qi qz {t+1,t+3,¢t+4}
{t+1,t4+2,t4+4} qs qo {t+2.t+3,t+4}
{t+1,t4+3,14+4 q qQ {t+1,t4+2,t+3)
{t+2,t4+3,t+4} qo qs {t+1,t+2,t+4)

Table 4. List of I>(B) for B € 4§ (w, I'2) such that end(B") = s».

B. The right-hand side of the identity of Chevalley type for graded
characters

We show that the right-hand side of (5.7) is identical to zeroif u + A ¢ Pt.

Proposition B.1. Let p € P, and x = witg € Wy withw € Woand § € QY. Take
A € P such that n + A ¢ P, and let T be an arbitrary reduced A-chain. Then we
have

A) —height(A)—(A,§)— A - .
Z Z (=) )q A=A g )gch Vend(A)té‘-Fdown(A)-‘rL(){)(M) =0
AeAw,T") yePar(L)

In the proof of Proposition B.1, we make use of the following equalities for graded
characters.

Proposition B.2 ([8, Proposition D.1]). Foreach x € Wy, £ € QV, and A € P, we
have
geh V(W) = ¢~ H8 geh Vo (1),
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Proposition B.3 (cf. [21, Appendix B]). Let u € P* and x € W. Take > € —P*
such that u + A ¢ P, and let T be the lex A-chain. Then we have

Z (_l)lAlq_height(A)eWt(A) gCh e;d(f‘l)tdown(/l) (M) - O
AeA(x,T")

Remark B.4. In [21], Proposition B.3 is stated and proved in terms of semi-infinite
Lakshmibai—Seshadri paths.

Proof of Proposition B.1. By considering A*, T'*, Ty, and by using Theorems 5.14
and 5.6 as in the proof of Theorem 5.16 (cf. (5.8)), we obtain:

A) _—height(4)—(A,£)— A -
Z Z (_1)"( )q cight(4)—(4.8)—lxl gwi( )gch cnd(A)tg+down(A)+L(X)(M)
AeA(w,I') yePar(L)

A) ., —height(A)—(A,&)— A -
AeAw,To) yePar(A)

-y Y3 @

AeA(w,I'T) BeA(end(4),I'~) yePar(At)

% q— height(A)—height(B)— (A~ ,down(A)+t(x))—(A.&)—| x|

wt(A)+wt(B)
xe end(B)tg +down(A)+down(B)+1(x) ()

gch

-y oy T @

AeA(w,I'T) BEA(end(4),I'~) yePar(At)
—height(A4)—height(B)— (A~ ,down(A4)+t(x))—(A,E)—| x|

xXq
% q—(u,§+down(A)+L()())ewt(A)-i—wt(B) gCh _d(B)t (/’L)
en down(B)
— q—(lﬁ-lﬁ) Z Z q—height(A)—(/l_'HI«,dOWH(A)-i-L(X))—\X|eWt(A)
AeAw,T+) yePar(At)
x ) ()PlgTrE e @ g Ve gy (0 (B

BeA(end(A),I'™)

here the third equality follows by Proposition B.2. Since  + A ¢ P, it follows that
w—+ A~ ¢ PT. Therefore, we deduce by Proposition B.3 that

__1\|B| ,—height(B) ,wt(B) - _
MX(:) )( D"™q e 8 Vo B)tgpuncmy (W) = 0
BewA(end(A),I'—

for each 4 € A(w, "), and hence that (B.1) is identical to zero, as needed. [
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