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ABSTRACT

Monitoring chlorine concentrations (CCs) plays an essential role in water quality management of water distribution networks (WDNs). However, placing water
quality sensors at every junction is infeasible due to their high costs. Consequently, sensors are typically placed at a subset of junctions, which challenges the pursuit
of a comprehensive assessment of chlorine concentrations throughout the network, which is necessary to ensure a safe water supply to end users. In this study, we
tackle this challenge by introducing a framework for water quality state estimation (WQSE) using Graph Neural Networks (GNNs). WQSE reconstructs unmeasured
CCs throughout the network based on measurements from a limited number of sensors distributed across the WDN. This study developed two GNN models to estimate
CCs at all junctions. In the first model, a GNN model is trained to conduct Static Prediction (SP) of CCs based on data collected from a specific sensor network design
(i.e., sensor placement configuration). In the second model, a GNN model is trained using data from various sensor designs to produce a generalized GNN model
capable of conducting Dynamic Prediction (DP) of CCs. That is, the model can reconstruct CCs throughout the WDN based on data collected from any sensor network,
even if different from those it was trained. The two models were applied to the C-Town benchmark network, considering that only 3% of the junctions were equipped
with sensors. The results of the two models highlighted their ability to produce accurate predictions for intermediate junctions while struggling to predict CCs at
dead-end junctions. The SP model outperformed the DP model in terms of accuracy. In addition, the SP model was shown to be robust against noisy measurements
and produced better predictions than the physical model. The DP model stood out for its flexibility in being applicable to different sensor network designs.
Furthermore, the DP model accuracy was shown to be highly dependent on the input sensor design, allowing for its implementation in sensor placement
optimization.

In order to achieve the balance between effective disinfection and
avoiding the formation of harmful byproducts, monitoring and con-
trolling CCs is an integral part of WDNs management (Aisopou et al.,
2012). The monitoring process involves continuous measurement of CCs
throughout the network, which are then analyzed to determine if an
intervention is needed to control these concentrations, such as injecting
more chlorine through booster stations (Drewa and Brdys, 2007).
Recently, technological advancements allowed operators to remotely
measure CCs and other water quality parameters, such as pH and dis-
solved oxygen, through water quality sensors (Suresh et al., 2014).
However, the high cost of the sensor makes it infeasible to place a sensor
at every junction, limiting the ubiquitous monitoring of CCs throughout
the network (Rajakumar et al., 2019). Similar limitations are encoun-
tered in monitoring various systems, such as power and transportation
systems.

To tackle this issue, a State Estimation (SE) approach is commonly

1. Introduction

Water distribution networks (WDNs) are crucial infrastructures that
sustain the well-being of communities by providing reliable conveyance
of treated water. Due to various factors, including pipe corrosion, the
formation of biofilms, and the potential for contaminant intrusion, water
quality notably declines throughout WDNs (Garcia-Avila et al., 2021).
To preserve satisfactory water quality all the way to demand locations,
chlorine is typically employed as a disinfectant (Hallam et al., 2003).
This is achieved by maintaining a minimum free chlorine residual to
allow the chlorine to inhibit microbial growth and prevent waterborne
diseases effectively (Garcia-Avila et al., 2021). Failing to uphold the
chlorine concentrations (CCs) above the minimum threshold poses a
health hazard to consumers (Monteiro et al., 2020). On the other hand,
excessive chlorine can lead to the formation of harmful disinfection . . o
byproducts (Islam et al., 2017). For this reason, CCs are typically rec- used to estimate the unmeasured variables based on limited measure-

ommended to be below a maximum concentration of 4 mg/L as set by ments provided by available sensors (Yu and Powell, 1994). Imple-
(USEPA, 1998) menting the SE approach is vital, as obtaining a precise estimation of a
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Abbreviations

CCs Chlorine Concentrations
DMAs District Meter Areas

DP Dynamic Prediction

GAT Graph Attention Networks
GCN Graph Convolutional Networks

GNNs Graph Neural Networks

MAPE  Mean Absolute Percentage Error

PE Percentage Error

SD Standard Deviation

SE State Estimation

SP Static Prediction

TAGCN Topology Adaptive Graph Convolution Networks
WDNs  Water Distribution Networks

WNTR  Water Network Tool for Resilience

WQSE Water Quality State Estimation

particular system variable (CC in our case) assists in making informed
decisions and accordingly, effectively managing the system of concern.
For instance, determining the optimal locations and injection rates for
chlorine booster stations requires a comprehensive understanding of
chlorine levels throughout the network. These decisions are critical as
they impact both the initial and operational costs of WDNs and ensure
the safety of the water supplied to consumers. Generally, SE approach
was applied in the field of WDNs to estimate flows, pressures, and water
quality parameters (Ashraf et al., 2023; D’Souza and Kumar, 2010; Xing
and Sela, 2022). SE was also used as an optimization metric in solving
the sensor placement problem to enhance the observability of the water
quality dynamics (Taha et al., 2021).

Several techniques have been proposed to solve the SE problem in
various systems, which can be broadly classified into either model-based
or data-driven SE approaches. A comprehensive review of SE approaches
proposed for WDNs can be found in (Tshehla et al., 2017). For the ma-
jority of model-based approaches, the SE problem is typically formu-
lated as an inverse modeling problem in which an optimization
algorithm is implemented to estimate the unmeasured variables that
minimize the differences between the measurements and the predictions
at sensor locations (Andersen and Powell, 2000; Preis et al., 2011).
However, this optimization requires conducting numerous evaluations
of computationally expensive numerical models, which prohibits
real-time SE. Other model-based studies attempted to get around this
issue by mathematically formulating the numerical solution of the par-
tial differential equations describing the WDN dynamics into a system of
equations (Vrachimis et al., 2021; Wang et al., 2022). Nevertheless, such
approaches are limited to simplified systems and are incapable of fully
capturing the complexity of WDN dynamics.

On the other hand, data-driven SE approaches typically rely on
machine learning methods to learn the patterns exhibited by the vari-
able of concern at various WDN junctions (D’Souza and Kumar, 2010;
May et al., 2008; Soyupak et al., 2011). While data-driven SE approaches
do not require numerous computations at the prediction stage, they can
only be trained to conduct predictions based on a specific sensor design.
That is, they are incapable of producing predictions based on data
collected from sensor designs other than that on which they were
trained. This can be attributed to the fact that data-driven approaches
merely learn the relationship between the inputs and outputs, without
developing a representation of the topological structure (i.e.,
junction-pipe connectivity) of the underlying WDN.

Recently, Graph Neural Networks (GNNs) were introduced as an
innovative technique to operate on complex graph-structured data. GNN
was essentially introduced to perform social network analysis and
recommender systems. However, the GNN’s ability to learn the
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underlying relationships between the graph’s nodes and edges contrib-
uted to expanding the GNN applications in various fields, this includes
medicine to predict drug-drug interaction (Wang et al., 2021), eco-
nomics to predict economic growth (Hui et al., 2020) and engineering to
predict power flow (Donon et al., 2020), and traffic flow (Bao et al.,
2024; Huang et al., 2024). In the field of water distribution, GNNs were
applied for estimating head and flow in WDNs considering supervised
and semi-supervised approaches (Xing and Sela, 2022), estimating nodal
pressure in WDNs (Ashraf et al., 2023), and estimating water loss in
WDNs (Fu et al., 2024).

Despite the superiority of GNNs over other neural networks in
handling graph-structured data, it has only been used by (Li et al., 2024)
to perform CC predictions, in which a static prediction (SP) model was
developed to predict CCs for a specific sensor placement configuration.
Building on the previous work, which applied an SP GNN model for CC
state estimation (i.e., considering fixed sensor configuration), this study
proposes a dynamic prediction (DP) GNN model for estimating chlorine
concentrations in water distribution networks, adaptable to any sensor
placement. We begin by developing an SP GNN model to predict con-
centrations at unobserved junctions for a specific sensor design, serving
as a proof of concept. We then evaluate the model’s robustness against
noisy data. Next, we introduce the DP GNN model that can perform CC
state estimation for any sensor design, thereby extending the applica-
bility of GNN in chlorine state estimation and paving the way for sensor
placement optimization using GNN. In this study, we thoroughly
analyzed and compared the performance, advantages, and limitations of
both models.

2. Methodology

In this study, we aim to estimate CCs at every junction in the WDN,
leveraging CC data at any subset of junctions (i.e., sensors), considering
steady state conditions and a single species model. To attain this goal,
we introduce two distinct GNN models: i) SP and ii) DP GNN models.
GNN was employed in this study as it is the only efficient way to estimate
CC knowing information from any subset of junctions. This is due to its
ability to represent graph-structured data and understand node con-
nectivity. In contrast, other traditional models, such as Multilayer Per-
ceptron Neural Networks, would only be applicable when the spatial
relationship between sensor and non-sensor junctions is constant. This
highlights the necessity of using GNN in this context. Furthermore, one
can’t practically compare the GNN results to those of traditional models
as doing so would necessitate training a vast number of independent
models, each trained to perform predictions considering a specific
sensor design.

As illustrated in Fig. 1, the development of the SP and DP models
encompasses two stages: i) the pre-processing stage and ii) the GNN
training and testing stage. This section provides a detailed explanation
of these stages, while a pseudocode outlines the processes within these
stages can be found in the supplemental materials.

2.1. GNN model formulation

The primary objective of a GNN model is to capture latent node
representations of a given graph. These representations are intended to
comprehensively encapsulate the underlying information and complex
relationships presented in the graph to proficiently make a graph or
nodal-level predictions. In the context of this research, the WDN is
represented as a graph G = (V,E, X, Z), where V = {v1,v2,Vs, ..., Vn} is
the set of the N nodes (i.e., junctions), E = {e,,| Vve V,ue N(v)} is the
set of M edges (i.e., pipes), X € RV*P is the set of node features with D
dimensions (e.g., junction demand, CC), Z = RM*L is the set of edge
features with L dimensions (e.g., pipe length, diameter). Since water
flows through pipes in both directions, WDNs are presented as undi-
rected graphs, in which the junctions’ connectivity is represented by a
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Fig. 1. The workflow of the proposed framework.

bidirectional (i.e., symmetrical) edge adjacency matrix (A). In this
study, GNN is used to perform node-level predictions to predict CCs
employing the features of the neighboring junctions while utilizing the
junctions’ connectivity.

2.1.1. GNN model variants

Two GNN models are proposed in this study, the SP model and the DP
model. In the SP model, GNN is utilized to predict CCs considering a
fixed set of sensors, where the junctions with available CC information
(i.e., sensors) are constant across all events (i.e., graphs). In this model,
the user defines the IDs of the sensors, while the CCs of all other junc-
tions are considered unknown and are sought to be predicted by the
GNN model. In comparison, the DP model is trained to make predictions
based on measurements collected from any set of sensors, such as the
case of mobile water quality sensors. This is done by employing a
random set of sensors to train the GNN model. Furthermore, the number
and locations of the sensors used in the prediction are dynamic. This is
achieved by training the model to make predictions based on a range of
sensor-to-non-sensor ratios defined to the model. This ratio is then
randomly converted by the model to a certain sensor design (specific

addition, the DP model allows the user to assign a specific set of junc-
tions to either sensors or non-sensor junctions, which gives flexibility to
account for fixed sensors.

2.1.2. Dataset generation

The training and testing of the GNN models necessitate a dataset of a
large number of events (i.e., graphs); vital to this process is the incor-
poration of a diverse array of events in this dataset, empowering the
model to predict unforeseen events accurately. In this study, two key
aspects distinguish each individual event within the dataset: i) junctions’
demands (d(n)): controlled by the demand parameters which define the
total demand (D) and the range of how many junctions in the network
with demand (2min, Zmax), i) chlorine injection rates (I(n)): controlled by
the injection parameters which define the injection locations (m), and
the range of injection rates at these locations (imin, imax). The determi-
nation of the number, location, and demand allocation for the network
junctions in addition to the determination of the injection rates at the
injection location follow a random selection process according to the
user-defined parameters as shown in Eq. (1), and Eq. (2).

sensors’ number and location) on an event basis, allowing for a different d(n)= Ty D,r, U(0,1),n € Lc{1,2,..., N} | IL| = Ulznin, Zmax) (@]
. .. . L. St 0,n¢Lc{l,2,....N} | |L| = U(Zmin: Zmax)
sensor design for each training event. A comparison of the training and
prediction stages of the SP and DP models is visualized in Fig. 2. In
® Non-sensor junction
" [ ®  /\ Sensor junction
a)
A Lo A
Training:  Prediction: / el
=
0 [ ] | ]
b) " '[[
A% Do A% A Ao AS
Training: : Prediction:
4l‘=q : l;
L1y v A\/

Fig. 2. A comparison of the training and prediction stages of the a) SP and the b) DP models.
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I(n) = U(imin, imax),n € mc{1,2,...,N}
0,n¢mc{1,2,...N}

Once d(n) and I(n) are defined for all events, the Python interface of
EPANET (WNTR) is employed to perform the hydraulic and water
quality simulation of these events and to extract CCs at all network
junctions (Klise et al., 2017). Subsequently, a masking process is
implemented to remove the CC values of certain junctions. In the SP
model, all the CC values are masked in all events except for sensor
junctions defined by the user. On the other hand, in the DP model,
different sets of junctions are masked in each event, and this masking
process is performed randomly based on the sensor-to-non-sensor ratio
range defined by the user (50% of junctions are masked at 0.5 ratio). In
addition, the user can enforce a set of junctions to be sensors or
non-sensors across all events in the DP model. A sample database rep-
resenting the data generation process step by step for a small network
covering both the SP and DP models is provided in the supplemental
materials.

2.1.3. GNN model architecture

In this study, the Topology Adaptive Graph Convolution Networks
(TAGCN) was used as the GNN model architecture (Du et al., 2017).
TAGCN was chosen due to its superiority over other GNN architectures
such as the Graph Convolutional Networks (GCN) and the Graph
Attention Networks (GAT). Unlike GCN, TAGCN incorporates filters that
act as attention coefficients that tailor the contributions of neighboring
nodes during the aggregation process to effectively capture distinctive
node features and prevent over-smoothing. Although GAT was intro-
duced to address the same GCN limitation, it is not well-suited for
large-scale graphs (Du et al., 2017). In contrast, TAGCN showed to scale
well while allowing for dynamic adjustment of aggregation parameters
on a local scale within each graph region. TAGCN effectively models
complex relationships within diverse graphs by learning K number of
graph filters as in Eq. (3), then it uses these graph filters along with
learnable bias to perform predictions as in Eq. (4). The process begins by
representing the WDN as a graph G = (V,E, X, Z), where all junctions in
the network are mapped to nodes (V), junction features to node features
(X), junction IDs to edge indices (E), and pipe features to edge features
(2). In the next step, the graph is input into a dense layer to transform X
for all junctions. The output of this dense layer is then combined with
the edge adjacency matrix (A) to reconstruct G with transformed fea-

tures. Subsequently, G is processed through multiple layers of TAGCN,
and the output from the TAGCN is passed through another dense layer to
predict the CCs for all junctions. The proposed model workflow is pre-
sented in Fig. 3.

K
Gl = g A" @)
k=0
X
Y =0 ( darx0+ bf1N> “
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where G}/X) is the f™ graph filter applied to the x" feature in the /" layer;

k and K are the filter index and the total number of filters; g}ﬁk is the

graph filter polynomial coefficients (i.e., learnable weights); A* is a
matrix that represents all length-k paths between all graph vertices (e.g.,

length-4 paths between node 1 to node 2); Y}/) is the f™ output feature of

the /™ layer; o denotes a rectified linear unit (ReLU); x)(‘/) is the input
data of the /% layer for all nodes for x feature; by is a learnable bias, and
1y is a unity vector of size N. Fig. 4 visualizes the main processes and
equations employed in the TAGCN model. A detailed explanation of the
TAGCN mathematical model can be found in Du et al., 2017.

The primary input of a TAGCN GNN model is the adjacency matrix
(A) that is used to calculate the A term in Eq. (4). The adjacency matrix
(A) represents the network’s topology and is equal to [ai,-}NXN with a;
equals 1 if node i is connected to node j, and 0 otherwise. Additionally, a
TAGCN GNN model incorporates node features, which in this study were
composed of flows, CCs, and junction indicators. Positive flow values
represent junction demands, whereas negative values indicate supply
from source junctions (e.g., reservoirs). For CCs, the CC values are used
wherever this information is available (e.g., at sensors), and O is held
elsewhere. For the junction indicator, a value of 1 was used for junctions
with known CC (i.e., a sensor), and 0 for junctions with unknown CC.
The resulting junction input vector is [Q, CC, Jingicaror |- Despite the
TAGCN GNN model’s exclusion of edge features, their inclusion would
not have added value due to their consistency across different events.

During the training process, the GNN model utilizes a loss function to
predict CCs based on some inputs. In this study, this loss function was
defined as the normalized root mean square error (nRMSE), as presented
in Eq. (5). The nRMSE effectively encapsulates the overall CC prediction
performance across all junctions and events. However, an additional
error metric becomes necessary to assess individual junction prediction
errors across various events. Hence, the percentage error (PE) and mean
absolute percentage error (MAPE) presented in Eq. (6) and Eq. (7) were
used to evaluate these particular prediction errors.

¢ N Az 1/2
; Zl (Cu— Cn)*/N
nRMSE=L"—"— ©)
(£ o)
g=1 n=1
Cn— Cn ) ) .
PE,= x 100 - C,>0.01;PE, is undefined otherwise 6)
G
; |PE, |,
MAPE, :*T x 100 @)

where nRMSE is the normalized root mean square error; C, and E‘n are
the actual and predicted chlorine concentrations; n is the junction index

Feature

Node
(X) O () e CCs

O

Dense Layer
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Fig. 3. The proposed model workflow.
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Fig. 4. Overview of the main processes and equations involved in the TAGCN model.

out of the N total number of junctions; g is the graph index out of G total
number of graphs.

3. Case study

The C-town benchmark network was used to test the performance of
the developed GNN model due to its extensive use in WDN-related
studies (Brahmbhatt et al., 2023; Ostfeld et al., 2012; Rajabi and
Tabesh, 2024; Tornyeviadzi et al., 2024). The network has 5 district
meter areas (DMAs), each with a pumping system, with a monthly
average total demand of 175 L/s. The network consists of 388 junctions,
429 pipes, four valves, one reservoir, and seven tanks (Fig. S2). The
C-town network model has multiple controls to manage the value op-
erations based on the tank status (i.e., filling or emptying). Since the
steady-state condition is assumed in this study, the tanks and the asso-
ciated controls were eliminated. The C-Town network was employed in
this study to generate a synthetic dataset for training and testing the
proposed GNN models. To accomplish this, it is assumed that chlorine is
being introduced to the network at the main water source (i.e., reser-
voir) with a minimum and maximum concentration of 1 mg/L and 4
mg/L, respectively. The actual value of the chlorine injection varies from
event to another and is selected randomly as previously explained in the
dataset generation section. For the chlorine reaction kinetics, a
first-order decay rate is assumed with global bulk and wall coefficients
of 0.55 day~! and 0.3 m/day respectively (Rossman et al., 1994).

3.1. Test scenarios

In this study, four different investigations were conducted to (i)
establish the performance of the SP model for CC state estimation by
comparing its predictions to the actual chlorine concentrations, (ii)
check the influence of measurement noise on the performance of the SP
model by introducing normally distributed noise, (iii) examine the
performance of the DP model by comparing its predictions to that of the
SP model, (iv) test the sensitivity of the DP model to the input sensor
design and its applicability in performing sensor optimization by
comparing the DP model predictions of three different sensor designs.

3.2. Sensor designs

The SP model requires a prior definition of the sensors’ number and
location, integrating this data as its input. On the other hand, the DP
model can undergo training without this information. Nevertheless, it is

important to adopt an effective strategy for positioning water quality
sensors, as sensor placement significantly impacts the performance of
chlorine concentration state estimation. Although sensor optimization
does not fall within the primary focus of this study, we aimed to employ
a decent sensor design that ensures good representation for all junctions.
This was achieved by utilizing the Spectral Clustering approach (Von
Luxburg, 2007) to produce sensor design A, in which the junctions were
grouped into 9 clusters, and then, a sensor was placed in the center of
each cluster, while the 10th sensor was placed at the injection source. By
relating the resulting sensor design to the network district meter areas
(Fig. 5), we observe that at least one sensor was placed in each DMA,
which provides the desired spread.

Sensor designs B and C were also introduced to test the DP model
sensitivity to different sensor designs. The objective in these two designs
was to achieve better monitoring at localized DMA (e.g., 1 and 2,
respectively) by concentrating the sensors at these DMAs. Fig. 5 shows
the location of the different sensor designs with respect to the DMAs. All
taken together, sensor design A will be used to train the SP model and
will be applied along with sensor designs B and C to test the DP model.

3.3. Used parameters

As elaborated in section 2.1.2, a substantial volume of events is
essential for the creation of the training and testing datasets of the GNN
models. The parameters employed to construct these datasets are pre-
sented in Table 1. Furthermore, the GNN training is controlled by
various hyperparameters, such as the number of GNN layers and hidden
channels within each layer. Hyperparameter tuning was conducted to
find the optimal set of hyperparameters for this study. The used
hyperparameters are summarized in Table 2.

4. Results and discussion
4.1. Static prediction (SP) model

In this section, the SP model performance is presented by comparing
its predictions to the actual CCs. Fig. 6 depicts a one-to-one plot
featuring this comparison for (a) sensors and (b) non-sensor junctions,
with the actual CC on the x-axis and the predicted CC on the y-axis, along
with the 45-degree line which symbolizes a perfect match. The SP model
predictions almost perfectly matched the actual CCs for the sensor
junctions (Fig. 6a) with a nRMSE of 0.007. This very high accuracy can
be attributed to the availability of actual CC data at these junctions,
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Fig. 5. Sensor designs used in this study.

Table 1
Generation and masking parameters.

Generation Parameter Value SP model Masking Parameter
Total number of events 50,000 Follows sensor designs in Figure 3
Total demand 175 L/s
Range of demand junctions’ number  [338-388] DP model Masking Parameter Value
Injection locations R1 Minimum and maximum masking ratio (0, 0.98)
Injection rates range [1,4] Forced masked/unmasked junctions None
still fairly low (nRMSE 0.029) reflecting the reliability of the SP model.
'é;]ﬁehz . The fact that CCs slightly diverged from the actual CCs at the sensor
YPEIpATamEters: junctions is also worth highlighting as it reflects a non-trivial relation-
Number of: Value Parameter Value ship between inputs and outputs within the developed GNN model. This
Dense layers 1 Learning rate 0.001 is also reflected in the predictions for the non-sensor junctions, where
TAGCN layers 4 Train/ Test split ratio 0.8 input CCs are zeros while output CCs are fairly accurate.
Filters 3 Total epochs 100 Fig. 6b shows that the SP model predictions of high CCs (e.g., the
Hidden channels 100

which was provided as input to the model. For the non-sensor junctions
(Fig. 6b), the SP model showed notably lower accuracy in predicting the
actual CCs compared to sensor junctions. Nevertheless, the error was

upper left portion of the plot) were relatively more accurate than those
with low CCs. This is because high CCs are associated with the junctions
near the injection source where the decay is not very prominent. On the
other side, the SP model predictions of zero CCs (e.g., the lower right
portion of the plot) associated with the dead-end junctions were
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Fig. 6. One-to-one plot for SP model predictions for a) sensors, and b) non-sensors.

significantly less accurate. This weak performance highlights the SP
model’s struggle to differentiate between zero demands at intermediate
junctions and dead-end junctions. In the case of dead-end junctions with
zero demands, the water is stagnant, and accordingly, the CCs are zero
(i.e., for the case of steady state), whereas for intermediate junctions
with zero demands, the water is flowing, yet CCs are non-zero, leading
the SP model to predict non-zero CCs for the dead-end junctions.
Switching from the overall performance and focusing on the inter-
junction performance among all the events by investigating the mean

O Non-Sensors

& Sensors _- - o :
— Pipes/Pumps/Valves o R0-22
- - DMAs —

absolute percentage error (MAPE), Fig. 7 shows a heatmap of the SP
model predictions MAPE for all junctions. This figure shows very small
errors were achieved for the majority of the intermediate junctions
(MAPE < 5%). Fig. 7 also shows that the MAPE is correlated to the dis-
tance to the nearby sensors, where junctions closer to the sensors tend to
have smaller errors compared to further junctions. Similar to Fig. 6b, the
SP model performed poorly at the dead-end junctions, resulting in high
MAPE.

Looking at the distribution of the Percentage Error (PE) across all

MAPE

Fig. 7. Heatmap of the SP model predictions MAPE.
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tested events (10,000 events), Fig. S3 shows that 96% of the junctions
had their median PE between +3% (J144* to J27). This highlights the
consistency of the SP model prediction across different events. More-
over, only 2% of the data points (data point: junction prediction of an
event) had errors of more than +30%. Fig. 8 shows the PE distribution of
a subset of junctions, in which they are classified into three groups based
on the prediction trend; group A: represents the ordinarily predicted
junctions with median PE between +3%., group B: features overly pre-
dicted junctions with median PE < — 3%, and group C: represents
underly-predicted junctions with median PE > 3%.

All intermediate junctions were included in Group A with the ma-
jority of dead-end junctions, resulting in a total of 373 junctions,
whereas groups B and C only included eight junctions each, featuring
some of the dead-end junctions. By projecting the three groups on the
network layout in Fig. 8, it was found that the overly and underly pre-
dicted junctions form pairs, where one dead-end junction lies in group B,
and the other lies in group C. More interestingly, the SP model pre-
dictions seemed to follow a systematic over/under estimation pattern.
Fig. S4 focuses on two branching regions and shows the lengths of the
pipes connecting the dead-end junctions to the main junction, and the
one-to-one plot for these junctions. The figure shows that the SP model
systematically overestimated the CCs of the longer pipes while under-
estimating the CCs of the shorter pipes.

4.2. Noisy sensor measurements

In this section, we test the SP model robustness against noisy sensor
measurements by enforcing a normally distributed measurement noise
with a mean of 0 and a standard deviation (SD) of 0.5 mg/L in the
training data. After training the SP model, it was then tested on different
noise distributions with SD of 0, 0.2 and 0.5 mg/L to examine its per-
formance on unforeseen noise distributions.
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Fig. 9 shows the heatmaps of the SP model predictions MAPE for the
three different SD. This figure shows that accounting for noisy mea-
surements with an SD of 0.2 mg/L didn’t significantly increase the MAPE
compared to the case of zero noise. In contrast, the same figure shows
that the MAPE significantly increased when the noise SD increased to
0.5 mg/L and most of the junctions had a MAPE between 10% and 30%.
Moreover, by comparing the zero noise predictions of this SP model (i.e.,
trained on noisy data) shown in Fig. 9a to those of the previous SP model
(i.e., trained without noise) shown in Fig. 7, it was noticed that the latter
model predictions were more accurate since it was trained on non-noisy
measurements.

Considering the case with the highest noise (SD = 0.5 mg/L), the SP
model predictions were compared to the physical model results (EPA-
NET simulations). This was done by re-running the physical model
considering the noisy measurement as the injection CC at the injection
source (R1). Interestingly, the SP model predictions were more accurate
than the physical model (Fig. S5), with nRMSE of 0.162 and 0.209,
respectively. This highlights the advantage of using the SP model over
the physical model as it takes advantage of the measurements from all
sensors, unlike the physical model that only utilizes the measurement at
the injection source to predict the CCs of all network junctions.

4.3. Dynamic prediction (DP) model

In this section, the DP model predictions are compared to the actual
CCs and those of the SP model. Fig. 10 depicts a one-to-one for the
predicted and actual CCs for sensors and non-sensor junctions. This
figure shows that the DP model predictions were reasonably accurate for
both sensors and non-sensor junctions with nRMSE of 0.026 and 0.078,
respectively. Comparing the DP model to the SP model, Fig. 10a shows
that the DP model predictions for the sensors’ junctions were not as
accurate as those of the SP model (Fig. 6a). This can be attributed to the
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Fig. 9. Heatmaps of the SP model predictions for noise with SD of a) zero, b) 0.2 mg/L and c) 0.5 mg/L.

fact that the DP model was trained on different sensor designs, unlike the
SP model which was trained on the same sensor design. A similar
observation can be noticed for the non-sensor junctions (Figs. 10b and
6b).

Investigating the inter-junctions prediction errors by looking at the
MAPE heatmaps of the DP model and the SP model shown in Fig. 11, a
noticeable accuracy difference can be seen in favor of the SP model,
which aligns with the one-to-one results. However, the two models were
similar in having relatively higher errors at dead-end junctions. Looking
at the PE distribution of the DP model predictions (Fig. S6) and following
the same grouping criteria as earlier, group A (median PE between +
3%) contained 43% of the junctions, whereas group B (median PE < —
3%) and group C (median PE > 3%) contained 48% and 9% of the
junctions, respectively. These results show that the DP model pre-
dictions are less consistent across different events, featuring signifi-
cantly wider PE distribution. Moreover, no over/under estimation
pattern was observed for the DP model predictions (Fig. S7).

4.4. Effect of sensor design

Although the DP model predictions were outperformed by those of
the SP model, the DP model has the advantage of being applicable to
different sensor designs. Thus, the DP can be useful in the optimization
of sensor network design. In this section, the DP model sensitivity to the

input sensor design is tested by comparing the previous DP model pre-
dictions that utilize sensor design A (presented above) to those that
utilize sensor designs B and C (Fig. 5). Fig. 12 shows the heatmaps of the
DP model predictions MAPE after applying sensor designs B and C. Even
though the same DP model was used, significantly different error pat-
terns were realized. This highlights the impact of the sensor design on
the prediction accuracy, and proves the DP model’s ability to be used in
sensor optimization as it had different responses to the different input
designs,

Fig. 12 also shows that concentrating the sensors in one DMA has
significantly enhanced the prediction accuracy of this DMA while
deteriorating the prediction accuracy of the other DMAs. These results
show the importance of using appropriate sensor design in order to gain
an overall accurate prediction for all network junctions, such as sensor
design A (Fig. 11). Taken together, the results revealed that the DP
model is superior to the SP model in the aspect of having the flexibility to
evaluate the performance of various sensor designs, demonstrating its
applicability in the context of sensor placement optimization.

5. Conclusions
In this study, we tackle the problem of estimating CCs in WDNs by

utilizing GNNs. This was achieved by predicting CCs at all network
junctions relying solely on the information from a limited set of sensors.
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Fig. 11. Heatmaps of the MAPE for a) the SP model and b) the DP model.

Two GNN models were developed to predict CCs, namely, i) Static
Prediction (SP) model, and ii) Dynamic Prediction (DP) model. The SP
model predicts CCs at non-sensor junctions considering the information
from a specific sensor configuration (i.e., sensor design) on which it was
initially trained, and hence, it requires the sensor design to be defined in
advance. On the other hand, the DP model has the capability to predict
CCs by utilizing information from different sensor designs, omitting the
need to specify the sensor design in the training process. The perfor-
mance of the two models was tested by applying them to the C-Twon
benchmark network.

The SP model results revealed the model’s ability to accurately
predict CCs for the non-sensor junctions with minor errors. It was
evident that the SP model predictions of the intermediate junctions were
significantly more accurate than the dead-end junctions. The investi-
gation of the error distribution of each junction among all events

10

highlighted the SP model’s ability to precisely predict CCs across
different events. However, the SP model predictions were shown to
systematically overestimate dead-end junctions connected to longer
pipes and underestimate those connected to shorter pipes. Furthermore,
the SP model showed a high robustness to noisy measurements, and its
predictions were shown to be more accurate than the physical model
when high noise was implemented. In terms of accuracy and prediction
consistency, the DP model delivered fairly accurate results, although it
was outperformed by the SP model as it had higher errors and broader
error distribution. Nevertheless, the DP model stood out for its flexibility
to be applied to different sensor designs. The DP model also showed a
rational response when applied to different sensor designs, showing its
potential utilization in sensor placement optimization.

Future studies are encouraged to address the current study’s limi-
tation of steady-state conditions to better reflect WDN dynamics by
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Fig. 12. Heatmaps of the DP model predictions MAPE for sensor designs a) B, and B) C.

incorporating the variation of demands and injection concentrations
over time. Other studies can also explore future GNN architectures when
they become available and compare their performance to the one used in
this study. Finally, future research can utilize the introduced SP model in
performing multi-species water quality state estimation, in addition to
employing the DP model in evaluating the performance of different
sensor design alternatives to obtain the optimal sensor design (Salem
and Abokifa, 2024).
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