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1. Introduction

Y.-P. Lee defined the (small) quantum K-theory of a smooth projective variety X, 
denoted by QK(X) (see [13], and also [8]). This is a deformation of the ordinary K-ring 
of X, analogous to the relation between quantum cohomology and ordinary cohomology. 
The deformed product is defined in terms of certain generalizations of Gromov-Witten 
invariants (i.e., the structure constants in quantum cohomology), called quantum K-
invariants of Gromov-Witten type.

Given a simply-connected simple algebraic group G over C, with Borel subgroup B, 
and maximal torus T ⊂ B, we consider the corresponding flag manifold G/B, the T -
equivariant K-theory KT (G/B), and the T -equivariant quantum K-ring QKT (G/B) :=
KT (G/B) ⊗Z[Λ]Z[Λ]�Q�, where Z[Λ]�Q� is the ring of formal power series with coefficients 
in Z[Λ] in the (Novikov) variables Qi = Qα∨

i , i ∈ I, with I the index set for the simple 
roots αi of G; QKT (G/B) has a Z[Λ]�Q�-basis given by the classes [Ow] of the structure 
sheaves of the (opposite) Schubert varieties Xw ⊂ G/B indexed by the elements w

of the Weyl group W = 〈si := sαi
| i ∈ I〉 of G. Also, given a (standard) parabolic 

subgroup PJ ⊃ B corresponding to a subset J , we also consider the partial flag manifold 
G/PJ , the T -equivariant K-theory KT (G/PJ), and the T -equivariant quantum K-ring 
QKT (G/PJ) := KT (G/PJ) ⊗Z[Λ]Z[Λ]�QK�, where Z[Λ]�QK� is the ring of formal power 
series with coefficients in Z[Λ] in the (Novikov) variables Qk, k ∈ K := I\J ; QKT (G/PJ)
has a Z[Λ]�QK�-basis given by the (opposite) Schubert classes [Oy

J ], for y ∈ W J , where 
W J denotes the set of minimal-length coset representatives for the cosets in W/WJ , 
where WJ := 〈sj | j ∈ J〉 ⊂ W . A Chevalley formula (in cohomology, K-theory, or 
their quantum versions) expresses the Schubert basis expansion of the product between 
an arbitrary Schubert class and the class of a line bundle, or a Schubert class indexed 
by a simple reflection (i.e., a divisor class). Having an explicit Chevalley formula in 
the quantum K-ring of an arbitrary flag manifold is important because this algebra 
is uniquely determined by products with divisor classes [4], together with its KT (pt)-
module structure; here, KT (pt) = R(T ), the representation ring of T , is identified with 
the group algebra Z[Λ] of the weight lattice Λ of G.

A cancellation-free Chevalley formula in the T -equivariant quantum K-theory of G/B

was recently given in [19] (see also [20]); cf. the related conjecture in [22]. This formula is 
expressed in terms of the so-called quantum alcove model, which was introduced in [17]. 
It generalizes the formula in the T -equivariant K-theory of G/B in [22], which can easily 
be restricted to the partial flag manifold G/PJ for J ⊂ I. However, such a restriction 
does not work in quantum K-theory, because of the lack of functoriality. In contrast, 
we know (see [10]) that for a subset J ⊂ I, the (Z[Λ]-linear) push-forward (πJ)∗ :
KT (G/B) → KT (G/PJ), induced by the natural projection πJ : G/B → G/PJ with 
PJ the (standard) parabolic subgroup of G corresponding to J , yields a surjective Z[Λ]-
module homomorphism from QKpoly

T (G/B) := KT (G/B) ⊗Z[Λ] Z[Λ][Q] ⊂ QKT (G/B)
onto QKpoly

T (G/PJ) := KT (G/PJ) ⊗Z[Λ] Z[Λ][QK ] such that
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ΦJ([Ow] · [OG/B(−�k)]) = [O�w�
J ] · [OG/PJ

(−�k)]

for w ∈ W and k ∈ K := I \ J , where OG/B(−�k) (resp., OG/PJ
(−�k)) denotes the G-

equivariant line bundle G ×BC�k
over G/B (resp., G ×PJ C�k

over G/PJ) corresponding 
to the one-dimensional representation C�k

of B (resp., PJ) of weight �k, and 	w
 denotes 
the minimal-length coset representative for the coset wWJ in W/WJ ; here, Z[Λ][Q] (resp., 
Z[Λ][QK ]) is the polynomial ring with coefficients in Z[Λ] in the (Novikov) variables Qi, 
i ∈ I, (resp., Qk, k ∈ K = I \ J).

Originally, in [10], the fact above was proved by using the relationship between the T -
equivariant K-group of a (full or partial) semi-infinite flag manifold and the T -equivariant 
quantum K-theory of a (full or partial) flag manifold. Here we should mention that 
the existence of the surjective Z[Λ]-algebra homomorphism ΦJ can also be verified by 
using the K-theoretic analog, conjectured in [18], of the Peterson homomorphism (K-
Peterson homomorphism for short), which is a homomorphism of Z[Λ]-algebras from the 
K-homology of the affine Grassmannian to (the localization, with respect to the positive 
part Q∨,+ of the coroot lattice Q∨, of) the quantum K-ring of G/PJ ; a (new) proof of 
the existence of the K-Peterson homomorphism has been given recently by [6]. Indeed, 
as stated in the proof of [6, Lemma 2.12], under the K-Peterson homomorphism (which 
is a Z[Λ]-algebra homomorphism) in the case of the Borel subgroup B, the classes of 
the structure sheaves of Schubert varieties in the affine Grassmannian indexed by the 
minimal-length coset representatives for Waf/W , with Waf the affine Weyl group and 
W the finite Weyl group, are sent injectively to the corresponding (opposite) Schubert 
classes in QKT (G/B) multiplied by explicit monomials in the Novikov variables corre-
sponding to anti-dominant coroots in −Q∨,+. Hence, by composing the inverse of the 
K-Peterson homomorphism in the case of B with the K-Peterson homomorphism (which 
is also a Z[Λ]-algebra homomorphism) in the case of PJ ⊃ B, we obtain the desired sur-
jective Z[Λ]-algebra homomorphism ΦJ ; here we use the fact that all the (opposite) 
Schubert classes will lie in the image of the K-Peterson homomorphism in the case of B
if we multiply them by a monomial in the Novikov variables corresponding to a (fixed) 
regular anti-dominant coroot in −Q∨,+. The details of these arguments are explained in 
Appendix A.

In this paper, on the basis of the fact above, we derive cancellation-free Chevalley 
formulas in the T -equivariant quantum K-ring QKT (G/PJ) of the partial flag manifold 
G/PJ , where PJ ⊃ B is the (standard) parabolic subgroup of G corresponding to J ⊂ I

in the following two cases: (i) G is of type A or C and J = I\{k} for k ∈ I; (ii) G is of type 
A and J = I \{k1, k2} for k1, k2 ∈ I with k1 �= k2. More precisely, the mentioned Cheval-
ley formulas express the quantum multiplication in QKT (G/PJ) with the class of the line 
bundle associated to the anti-dominant fundamental weight −�k for k ∈ I \J . Our strat-
egy is the following: start with the Chevalley formula for QKpoly

T (G/B) ⊂ QKT (G/B)
in [19]; apply the Z[Λ]-module surjection ΦJ : QKpoly

T (G/B) → QKpoly
T (G/PJ) (which 

respects quantum multiplications) above; perform all cancellations, which arise via a 
sign-reversing involution. In addition, as an application of our Chevalley formulas, we 
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prove the positivity property of certain structure constants of the quantum K-ring of a 
Grassmannian of type C and that of a two-step flag manifold of type A, as well as that 
for an arbitrary full flag manifold.

The resulting Chevalley formulas for Grassmannians of types A and C and also those 
for two-step flag manifolds of type A are no longer uniform, and they might also involve 
several cases. This fact validates our approach of deriving them from the uniform formula 
for G/B. Note that, in many cases, the opposite approach works better, namely the 
formulas for Grassmannians are obtained first, because they are easier.

We now compare our work with two related papers. In [12], a quantum K-theory 
Chevalley formula is given in QKT (G/PJ), where J = I \ {k}, for the line bundle 
associated to −�k, assuming that �k is a minuscule fundamental weight in type A, D, 
E, or B. The formulas are expressed in terms of the quantum Bruhat graph (on which 
the quantum alcove model is based). The approach in the present paper is simpler, and 
has the advantage of being easier to be extended to other partial flag manifolds; in fact, 
we also obtain a quantum K-theory Chevalley formula for two-step flag manifolds of 
type A. On another hand, the Chevalley formulas in [4] for cominuscule varieties are of a 
different nature than the corresponding cases of the formulas in this paper. Indeed, the 
role of the quantum Bruhat graph is not transparent in [4].
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2. Background

Consider a simply-connected simple algebraic group G over C, with Borel subgroup B, 
and maximal torus T . Let g be the corresponding finite-dimensional simple Lie algebra 
over C, and W its Weyl group, with length function denoted by �(·). Let Φ, Φ+, and Φ−

be the set of roots, positive roots, and negative roots of g, respectively, and let Λ be the 
corresponding weight lattice. Let αi, i ∈ I, be the simple roots, Δ := {αi | i ∈ I} the set 
of all simple roots, θ the highest root, and α∨ the coroot associated to the root α. The 
reflection corresponding to α is denoted, as usual, by sα, and we let si := sαi

, i ∈ I, be 
the simple reflections. Set ρ := (1/2) 

∑
α∈Φ+ α.

Let J be a subset of I. We denote by WJ := 〈si | i ∈ J〉 the parabolic subgroup of W
corresponding to J , and we identify W/WJ with the corresponding set of minimal coset 
representatives, denoted by W J ; note that if J = ∅, then W J = W ∅ is identical to W . 
For w ∈ W , we denote by 	w
 = 	w
J ∈ W J the minimal coset representative for the 
coset wWJ in W/WJ .



T. Kouno et al. / Journal of Algebra 645 (2024) 1–53 5
2.1. The quantum Bruhat graph

We start with the definition of this graph, which plays a fundamental role in our 
combinatorial model.

Definition 1. The quantum Bruhat graph QB(W ) is the Φ+-labeled directed graph whose 

vertices are the elements of W , and whose directed edges are of the form: w β−→ v for 
w, v ∈ W and β ∈ Φ+ such that v = wsβ , and such that either of the following holds: 
(i) �(v) = �(w) + 1; (ii) �(v) = �(w) + 1 − 2〈ρ, β∨〉. An edge satisfying (i) (resp., (ii)) is 
called a Bruhat (resp., quantum) edge.

In [5], it is proved that the quantum Bruhat graph QB(W ) has the following property 
(called the shellability): for all x, y ∈ W , there exists a unique directed path from in 
QB(W ) from x to y whose edge labels are increasing with respect to an arbitrarily fixed 
reflection order on Φ+.

We recall an explicit description of the edges of the quantum Bruhat graphs of types 
A and C. These results generalize the well-known criteria for covers of the Bruhat order 
in these cases [3].

In type An−1, the Weyl group elements (i.e., permutations) w ∈ W (An−1) = Sn

are written in one-line notation w = [w(1), . . . , w(n)]. For simplicity, we use the same 
notation (i, j) with 1 ≤ i < j ≤ n for the root αij and the reflection sαij

, which is the 
transposition tij of i and j. We have θ = (1, n). We recall a criterion for the edges of the 
type An−1 quantum Bruhat graph. We need the circular order ≺i on [n] starting at i, 
namely i ≺i i + 1 ≺i · · · ≺i n ≺i 1 ≺i · · · ≺i i − 1. It is convenient to think of this order 
in terms of the numbers 1, . . . , n arranged clockwise on a circle, in this order. We make 
the convention that, whenever we write a ≺ b ≺ c ≺ · · · ; i.e., the leftmost of the chain 
a ≺ b ≺ c ≺ · · · we are writing is a, we refer to the circular order ≺=≺a.

Proposition 2 ([15]). For w ∈ Sn and 1 ≤ i < j ≤ n, we have an edge w
(i,j)−→ w(i, j) if 

and only if there is no k such that i < k < j and w(i) ≺ w(k) ≺ w(j).

If there is a position k as above, we say that the transposition of w(i) and w(j)
straddles w(k). We also let w[i, j] := [w(i), w(i + 1), · · · , w(j)]. We continue to use this 
terminology and notation for the other classical types.

The Weyl group of type Cn is the group of signed permutations. These are bijections w
from [n] := {1 < 2 < · · · < n < n < n − 1 < · · · < 1} to [n] satisfying w(ı) = w(i). Here 
ı is viewed as −i, so ı = i, |ı| = i, and sign(ı) = −1. We use both the window notation 
w = [w(1), . . . , w(n)] and the full one-line notation w = [w(1), . . . , w(n), w(n), . . . , w(1)]
for signed permutations. For simplicity, given 1 ≤ i < j ≤ n, we denote by (i, j) the 
root εi − εj and the corresponding reflection, which is identified with the composition 
of transpositions tijtjı. Similarly, for 1 ≤ i < j ≤ n, we denote by (i, j) = (j, ı) the 
root εi + εj and the corresponding reflection, which is identified with the composition 
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of transpositions tijtjı. Finally, we denote by (i, ı) the root 2εi and the corresponding 
reflection, which is identified with the transposition tiı. We have θ = (1, 1).

We now recall the criterion for the edges of the type Cn quantum Bruhat graph. We 
need the circular order ≺i on [n] starting at i, which is defined similarly to the circular 
order on [n], by thinking of the numbers 1, 2, . . . , n, n, n − 1, . . . , 1 arranged clockwise on 
a circle, in this order. We make the same convention as above that, whenever we write 
a ≺ b ≺ c ≺ · · · , we refer to the circular order ≺=≺a.

Proposition 3 ([15]). Let w ∈ W (Cn) be a signed permutation.

(1) Given 1 ≤ i < j ≤ n, we have an edge w
(i,j)−→ w(i, j) if and only if there is no k such 

that i < k < j and w(i) ≺ w(k) ≺ w(j).
(2) Given 1 ≤ i < j ≤ n, we have an edge w

(i,j)−→ if and only if w(i) < w(j), sign(w(i)) =
sign(w(j)), and there is no k such that i < k < j and w(i) < w(k) < w(j).

(3) Given 1 ≤ i ≤ n, we have an edge w
(i,ı)−→ w(i, ı) if and only if there is no k such that 

i < k < ı (or, equivalently, i < k ≤ n) and w(i) ≺ w(k) ≺ w(ı).

2.2. The quantum alcove model

We need basic notions related to the combinatorial model known as the alcove model, 
which was defined in [22]. In particular, we need the notion of a λ-chain of roots, where 
λ is a weight. In this section, we recall definitions of these notions from [22].

Let Λ be the weight lattice of G and set h∗
R := Λ ⊗ZR. For α ∈ Φ and k ∈ Z, we define 

a hyperplane Hα,k by Hα,k := {ξ ∈ h∗
R | 〈ξ, α∨〉 = k}. We denote by sβ,k, β ∈ Φ and 

k ∈ Z, the reflection with respect to Hα,k. Then, an alcove is defined to be a connected 
component of the space

h∗
R \

⋃
α∈Φ, k∈Z

Hα,k.

If two alcoves A and B have a common wall, then A and B are said to be adjacent. Let 
us take adjacent alcoves A and B. If the common wall of A and B is contained in a 
hyperplane Hα,k for some α ∈ Φ and k ∈ Z, and the vector α points a direction from 
A to B, then we write A α−→ B. We define a specific alcove A◦, called the fundamental 
alcove, by

A◦ := {ξ ∈ h∗
R | 〈ξ, α∨〉 ≥ 0 for all α ∈ Φ+}.

In addition, for λ ∈ Λ, we define an alcove Aλ by Aλ := A◦ + λ = {ξ + λ | ξ ∈ A◦}.

Definition 4 ([22, Definitions 5.2 and 5.4]).
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(1) An alcove path is a sequence (A0, A1, . . . , Am) of alcoves such that for each 0 ≤ k ≤
m − 1, Ak and Ak+1 are adjacent. If an alcove path Π = (A0, . . . , Am) is shortest 
among all alcove paths from A0 to Am, we say that Π is reduced.

(2) Let λ ∈ Λ. A λ-chain of roots is a sequence Γ = (β1, . . . , βm) of roots such that there 
exists an alcove path Π = (A◦ = A0, . . . , Am = A−λ) such that

A0
−β1−−→ A1

−β2−−→ · · · −βm−−−→ Am.

If Π is reduced, then we also say that Γ is reduced.

Let λ ∈ Λ. Take a λ-chain Γ = (β1, . . . , βm) and corresponding alcove path 
(A0, . . . , Am). Set ri := sβi

, i = 1, . . . , m. Below, we present an explicit description 
of the chains of roots corresponding to the anti-dominant fundamental weights in the 
classical types, i.e., λ = −�k.

We also need to recall the more general quantum alcove model [17]. We refer to [19, 
Section 3.2] for more details. In the next definition, we use the following notation: for 
β ∈ Φ,

|β| :=
{

β if β ∈ Φ+,

−β if β ∈ Φ−.

Definition 5 ([17]). A subset A = {j1 < j2 < · · · < js} of [m] := {1, . . . , m} (possibly 
empty) is a w-admissible subset if we have the following directed path in the quantum 
Bruhat graph QB(W ):

Π(w, A) : w
|βj1 |−−−→ wrj1

|βj2 |−−−→ wrj1rj2

|βj3 |−−−→ · · · |βjs |−−−→ wrj1rj2 · · · rjs
=: end(w, A) .

We denote by A− the subset of A corresponding to quantum steps in Π(w, A). Let 
A(w, Γ) be the collection of all w-admissible subsets corresponding to the λ-chain Γ, and 
A�(w, Γ) its subset consisting of all those A with A− = ∅ (i.e., Π(w, A) is a saturated 
chain in Bruhat order). For convenience, we identify an admissible subset J = {j1 <

· · · < js} with the corresponding sequence of roots {βj1 , . . . , βjs
} in the λ-chain Γ (in 

case of multiple occurrences of a root in Γ, we specify which one is considered). Also, we 
define statistics down(w, A) for A ∈ A(w, Γ) as follows:

down(w, A) :=
∑

j∈A−

|βj |∨.

In addition, let Hβj ,−lj
, j = 1 . . . m, be the hyperplane containing the common wall of 

Aj−1 and Aj . Then we define wt(w, A) by

wt(w, A) := −wsβj ,−lj
· · · sjs,−lj

(−λ).

1 1 s
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We use the same notation as in Section 2.1, and we start with type An−1. It is proved 
in [22, Corollary 15.4] that, for any k = 1, . . . , n − 1, we have the following reduced 
(−�k)-chain of roots, denoted by Γ(k) (note that all the roots in this (−�k)-chain are 
negated for simplicity of notation, and hence they are all positive roots):

( (1, n), (1, n − 1), . . . , (1, k + 1) ,

(2, n), (2, n − 1), . . . , (2, k + 1) ,

. . .

(k, n), (k, n − 1), . . . , (k, k + 1) ) .

(1)

In type An−1, we have the (Dynkin) diagram automorphism

ω : [n − 1] → [n − 1], l �→ n − l.

By applying the diagram automorphism ω to Γ(n −k), we obtain another reduced (−�k)-
chain (with all the roots negated), denoted by Γ∗(k):

( (1, n), (2, n), . . . , (k, n) ,

(1, n − 1), (2, n − 1), . . . , (k, n − 1) ,

. . .

(1, k + 1), (2, k + 1), . . . , (k, k + 1) ) .

In type Cn, let

Γ(k) := Γ′
2 · · · Γ′

kΓ1(k) · · · Γk(k) , (2)

where

Γ′
j := ((1, j), (2, j), . . . , (j − 1, j)) ,

Γj(k) := ( (1, j), (2, j), . . . , (j − 1, j),
(j, k + 1), (j, k + 2), . . . , (j, n),
(j, j),
(j, n), (j, n − 1), . . . , (j, k + 1) ) .

(3)

It is proved in [14, Lemma 4.1] that Γ(k) is a reduced (−�k)-chain (with all the roots 
negated), for 1 ≤ k ≤ n.

2.3. The quantum K-theory of flag manifolds

In order to describe the (small) T -equivariant quantum K-ring QKT (G/B), for the 
finite-dimensional flag manifold G/B, we associate a variable Qi to each simple coroot α∨

i , 
and set Z[Q] := Z[Qi | i ∈ I], Z�Q� := Z�Qi | i ∈ I�; for each ξ =

∑
i∈I diα

∨
i in Q∨,+, 

we set Qξ :=
∏

i∈I Qdi
i . Also, we set Z[Λ][Q] := Z[Λ] ⊗ZZ[Q], Z[Λ]�Q� := Z[Λ] ⊗ZZ�Q�, 
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where Z[Λ] is the group algebra of the weight lattice Λ of G, and is identified with the 
representation ring R(T ) = KT (pt). Following [13] (and also [8]), we define the quantum 
K-ring QKT (G/B) to be the Z[Λ]�Q�-module KT (G/B) ⊗Z[Λ] Z[Λ]�Q�, equipped with 
the quantum product � given in terms of quantum K-invariants of Gromov-Witten type. 
The quantum K-ring QKT (G/B) has a Z[Λ]�Q�-basis given by the classes [Ow] of the 
structure sheaves of the (opposite) Schubert varieties Xw ⊂ G/B of codimension �(w), 
for w ∈ W .

We consider the maximal (standard) parabolic subgroup PJ ⊃ B of G correspond-
ing to the subset J := I \ {k}, for some k ∈ I. The T -equivariant quantum K-ring 
QKT (G/PJ) of the partial flag manifold G/PJ is defined as KT (G/PJ) ⊗Z[Λ] Z[Λ]�Qk�, 
where KT (G/PJ) is the T -equivariant K-theory of G/PJ , and Z[Λ]�Qk� is the ring of 
formal power series with coefficients in Z[Λ] in the single (Novikov) variable Qk = Qα∨

k

corresponding to the simple coroot α∨
k . The (opposite) Schubert classes [Oy

J ], for y ∈ W J , 
form a Z[Λ]�Qk�-basis.

We also consider the (standard) parabolic subgroup PJ ⊃ B of G corresponding to 
the subset J := I \ {k1, k2}, for some k1, k2 ∈ I with k1 �= k2. In this case, the T -
equivariant quantum K-ring QKT (G/PJ) is defined as KT (G/PJ) ⊗Z[Λ] Z[Λ]�Qk1 , Qk2�, 
where Z[Λ]�Qk1 , Qk2� is the ring of formal power series with coefficients in Z[Λ] in the two 
(Novikov) variables Qk1 , Qk2 . As in the maximal parabolic case, the (opposite) Schubert 
classes [Oy

J ], for y ∈ W J , form a Z[Λ]�Qk1 , Qk2�-basis.
For an arbitrary subset J ⊂ I, let πJ : G/B → G/PJ be the natural projection, 

and let (πJ)∗ : KT (G/B) → KT (G/PJ) denote the induced push-forward, which is 
Z[Λ]-linear. Also, it is well-known that πJ([Ow]) = [O�w�

J ] for each w ∈ W , where 
	w
 denotes the minimal-length coset representative for the coset wWJ in W/WJ , and 
that πJ([OG/B(−�k)]) = [OG/PJ

(−�k)] for k ∈ K = I \ J (see, for example, [24, 
Section 9.2]); recall that OG/B(−�k) (resp., OG/PJ

(−�k)) denotes the G-equivariant 
line bundle G ×B C�k

over G/B (resp., G ×PJ C�k
over G/PJ) corresponding to 

the one-dimensional representation C�k
of B (resp., PJ) of weight �k. Now, we set 

QKpoly
T (G/B) := KT (G/B) ⊗Z[Λ] Z[Λ][Q] ⊂ QKT (G/B), and QKpoly

T (G/PJ) :=
KT (G/PJ) ⊗Z[Λ] Z[Λ][QK ], where Z[Λ][QK ] is the ring of polynomials with coeffi-
cients in Z[Λ] in the (Novikov) variables Qk = Qα∨

k , k ∈ K := I \ J . Based on the 
finiteness result on the quantum multiplication in QKT (G/PJ) with the line bundle 
classes [OG/PJ

(−�k)] for k ∈ K = I \ J (see also [1]), Kato proved (see [10]) that the 
(Z[Λ]-linear) push-forward (πJ)∗ : KT (G/B) → KT (G/PJ) induces a surjective Z[Λ]-
module homomorphism ΦJ : QKpoly

T (G/B) → QKpoly
T (G/PJ) such that for w ∈ W and 

k ∈ K = I \ J , the following equality holds:

ΦJ([Ow] · [OG/B(−�k)]) = [O�w�
J ] · [OG/PJ

(−�k)],

by defining ΦJ(Qξ) := Q[ξ]J for each ξ ∈ Q∨,+, where [ξ]J :=
∑

k∈I\J ckα∨
k for ξ =∑

i∈I ciα
∨
i ∈ Q∨,+. Namely, Kato proved the following.
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Theorem 6 ([10]). Let J be an arbitrary subset of I. Then, the surjective Z[Λ]-module 
homomorphism

ΦJ : QKpoly
T (G/B) → QKpoly

T (G/PJ)

defined by ΦJ (Qξ[Ow]) = Q[ξ]J [O�w�
J ] for w ∈ W and ξ ∈ Q∨,+, where [ξ]J =∑

k∈I\J ckα∨
k for ξ =

∑
i∈I ciα

∨
i ∈ Q∨,+, has the following multiplicativity:

ΦJ([Ow] · [OG/B(−�k)]) = [O�w�
J ] · [OG/PJ

(−�k)]

for w ∈ W and k ∈ K = I \ J .

In Appendix A, we give another proof of the existence of the multiplicative Z[Λ]-
module surjection ΦJ above by using the K-Peterson homomorphism, which is a homo-
morphism of Z[Λ]-algebras from the K-homology of the affine Grassmannian associated 
to G to (the localization, with respect to Q∨,+, of) the quantum K-ring QKT (G/PJ); a 
(new) proof of the existence of the K-Peterson homomorphism has been given by [6].

We now recall the (cancellation-free) quantum K-theory Chevalley formula in [19, 
Theorem 47] (see also [20, Theorem 12]) for G/B, which is based on the quantum alcove 
model; in fact, we use the slight modification corresponding to the multiplication by the 
class [O(−�k)] := [OG/B(−�k)] of the line bundle associated to −�k. Throughout this 
paper, we denote by |S| for a set S the cardinality of S. This formula is expressed in 
terms of a (−�k)-chain of roots, cf. Section 2.2.

Theorem 7. Let k ∈ I, and fix a reduced (−�k)-chain Γ(k). Then, in QKpoly
T (G/B) ⊂

QKT (G/B), we have for w ∈ W ,

[O(−�k)] · [Ow] =
∑

A∈A(w,Γ(k))

(−1)|A| Qdown(w,A)e− wt(w,A)[Oend(w,A)] . (4)

Remark 8. The right-hand side of equation (4) is cancellation-free. Indeed, suppose, 
for a contradiction, that there exist two admissible subsets A, A′ ∈ A(w, Γ(k)) satis-
fying end(w, A) = end(w, A′) and (−1)|A| = −(−1)|A′| (together with down(w, A) =
down(w, A′) and wt(w, A) = wt(w, A′)). Here we know (see [5] and also [25]) that for 
directed paths p1, p2 in QB(W ) starting from the same element v ∈ W and ending at 
the same element u ∈ W , the equality (−1)�(p1) = (−1)�(p2) holds, where �(·) denotes the 
length of a directed path. This contradicts the equality (−1)|A| = −(−1)|A′|, as desired.

Let Nw,ξ
u,v ∈ Z[P ], with v, w, u ∈ W J , ξ ∈ Q∨,+

I\J :=
∑

i∈I\J Z≥0α∨
i , denote the structure 

constants of QKT (G/PJ) defined by:

[Ov] · [Ow] =
∑

u∈W J , ξ∈Q∨,+

Nu,ξ
v,wQξ[Ou].
I\J
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Let ρJ be a half of the sum of all positive roots of PJ , and set deg(Qξ) := 2〈ρ −ρJ , ξ〉 for 
ξ ∈ Q∨,+

I\J . It is expected that the structure constants of QKT (G/PJ) have the following 
positivity property.

Conjecture 9 ([4, Conjecture 2.2]). For v, w, u ∈ W J and ξ ∈ Q∨,+
I\J , we have

(−1)�(v)+�(w)+�(u)+deg(Qξ)Nu,ξ
v,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ].

The positivity property of the structure constants Nu,ξ
sk,w, with k ∈ K = I \ J , is 

proved for cominuscule varieties G/PJ , which include Grassmannians of type A, by Buch-
Chaput-Mihalcea-Perrin in [4] by writing explicitly the structure constants. Also, the 
positivity property of the structure constants Nu,ξ

v,w, with ξ = 0, is proved by Anderson-
Griffeth-Miller [2] since these are the structure constants of the ordinary T -equivariant 
K-theory KT (G/PJ). In this paper, we prove the positivity property of the structure 
constants Nu,ξ

sk,w, with k ∈ K = I \ J , for full flag manifolds of arbitrary types, two-step 
flag manifolds of type A, and Grassmannians of type C.

Let us define Cu,ξ
w ∈ Z[P ], with w, u ∈ W , ξ ∈ Q∨,+

I\J , by:

[O(−�k)] · [Ow] =
∑

u∈W J , ξ∈Q∨,+
I\J

Cu,ξ
w Qξ[Ou].

Since it is well-known that [Osk ] = 1 − e−�k [O(−�k)] for k ∈ I \ J , we see that

[Osk ] · [Ow] = (1 − e−�k [O(−�k)]) · [Ow]

= [Ow] − e−�k [O(−�k)] · [Ow]

= (1 − e−�k Cw,0
w )[Ow] +

∑
ξ∈Q∨,+

I\J \{0}

(−e−�k Cw,ξ
w )Qξ[Ow]

+
∑

u∈W \{w}, ξ∈Q∨,+
I\J

(−e−�k Cu,ξ
w )Qξ[Ou].

Hence it follows that for w, u ∈ W J and ξ ∈ Q∨,+
I\J ,

Nu,ξ
sk,w =

{
1 − e−�k Cw,0

w if u = w and ξ = 0,

−e−�k Cu,ξ
w otherwise.

For the proof of the positivity property, we need the following lemma.

Lemma 10. Let w ∈ W . Let λ ∈ Λ be a dominant weight, and take a reduced (−λ)-chain 
Γ. For A ∈ A(w, Γ), we have wt(w, A) ∈ −λ + Q+.
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Proof. Let A ∈ A(w, Γ). We denote by Λ0
af the set of all level-zero weights of the (un-

twisted) affine Lie algebra gaf = (g ⊗C[t, t−1]) ⊕Cc ⊕Cd associated to g; in the following, 
we regard λ as an element of Λ0

af .
We use quantum Lakshmibai-Seshadri (QLS) paths of shape λ, which are defined 

in [21, Definition 3.1]. We first assume that Γ is the lex (−λ)-chain, defined in [20, 
Section 4.2]. In this case, we know from [19, Proposition 31] that there exists a QLS 
path η of shape λ such that wt(w, A) = − wt(η), where wt(η) := η(1). Let us write η
in the form η = (ν1, . . . , νs; 0 = a0 < a1 < · · · < as = 1), with ν1, . . . , νs ∈ Wλ and 
a0, . . . , as ∈ Q. Then we see that νk ∈ λ − Q+, k = 1, . . . , s, since λ ∈ Λ is dominant and 
W is the finite Weyl group. Hence we have

wt(η) = η(1) =
s∑

k=1

(ak − ak−1)νk ∈ λ −
∑
j∈I

Q≥0αj .

Also, we have

wt(η) = η(1) = νs +
s−1∑
k=1

ak(νk − νk+1).

Since (νk, νk+1) is an ak-chain (see [16, Section 4]), it follows that ak(νk − νk+1) ∈ Q for 
k = 1, . . . , s −1. In addition, we have that νs ∈ λ −Q+. Hence we see that wt(η) ∈ λ +Q. 
Therefore, we deduce that wt(η) ∈ λ − Q+, as desired.

We next assume that Γ is an arbitrary reduced (−λ)-chain. Then we know that 
Γ can be deformed to the lex (−λ)-chain Γ′ by repeated application of Yang-Baxter 
transformations in [11, Section 3.1] (see also [20, Remark 40]). In this situation, [11, 
Theorems 3.2 and 3.4] implies that there exists a bijection Y : A(w, Γ) → A(w, Γ′), given 
by quantum Yang-Baxter moves, such that wt(w, Y (A)) = wt(w, A) for all A ∈ A(w, Γ). 
Here we note that [11, Theorem 3.2] states that Y is a sijection ([7, Section 2]), i.e., a 
“signed bijection”, where A(w, Γ) and A(w, Γ′) are regarded as signed sets equipped 
with sign functions. However, since −λ is anti-dominant, we have no sign-reversing 
involution on any non-empty subset of A(w, Γ) or A(w, Γ′). Therefore, Y is, in fact, 
a bijection. Since Γ′ is the lex (−λ)-chain and Y (A) ∈ A(w, Γ′), we deduce that 
wt(w, A) = wt(w, Y (A)) ∈ −λ + Q+. This proves the lemma. �

Note that if there exists an edge x → y in QB(W ) for x, y ∈ W , then we have 
�(y) ≡ �(x) + 1 mod 2 by the definition of QB(W ). This implies that for w ∈ W and 
A ∈ A(w, Γ(k)), we have (−1)|A| = (−1)�(end(w,A))−�(w).

In this section, we prove the positivity property of structure constants for full flag 
manifolds as a corollary of the Chevalley formula (Theorem 7). We will give a proof of 
the positivity property for Grassmannians of type C (resp., two-step flag manifolds of 
type A) in Section 3.2 (resp., Section 4.2).
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Corollary 11. Let G be of an arbitrary type, J = ∅ (hence PJ = B), and k ∈ I. Then, 
for w, u ∈ W J and ξ ∈ Q∨,+, we have

(−1)1+�(w)+�(u)+deg(Qξ)Nu,ξ
sk,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ].

Proof. Let w ∈ W . Take A ∈ A(w, Γ(k)) such that A− = ∅. If A = ∅, then we have

(−1)|A|Qdown(w,A)e− wt(w,A)[Oend(w,A)] = ew�k [Ow].

Since there exists no A ∈ A(w, Γ(k)) such that end(w, A) = w and down(w, A) = 0
except for A = ∅, we have Cw,0

w = ew�k . In addition, we have deg(Q0) = 0. Hence it 
follows that

Nw,0
sk,w = 1 − ew�k−�k = (−1)1+�(w)+�(w)+deg(Q0)(ew�k−�k − 1);

note that w�k − �k ∈ −Q+. Since

e−μ =
∏
i∈I

(e−αi)ci

=
∏
i∈I

((e−αi − 1) + 1)ci

=
∏
i∈I

(
ci∑

k=0

(
ci

k

)
(e−αi − 1)k

)
∈ Z≥0[eγ − 1 | γ ∈ −Δ]

for μ =
∑

i∈I ciαi ∈ Q+, we deduce that

(−1)1+�(w)+�(w)+deg(Q0)Nw,0
sk,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ],

as desired.
Next, take A ∈ A(w, Γ(k)) \ {∅}. Then we have

(−1)|A|Qdown(w,A)e− wt(w,A)[Oend(w,A)]

= (−1)�(end(w,A))−�(w)Qdown(w,A)e− wt(w,A)[Oend(w,A)].

Also, by Lemma 10, we have wt(w, A) ∈ −�k + Q+ for A ∈ A(w, Γ(k)). Here we set

A(w, Γ(k))u,ξ,λ := {A ∈ A(w, Γ(k)) | end(w, A) = u, down(w, A) = ξ, wt(w, A) = λ},

for u ∈ W , ξ ∈ Q∨,+, and λ ∈ −�k + Q+. Then by Theorem 7, we have

Cu,ξ
w =

∑
λ∈−�k+Q+

∑
A∈A(w,Γ(k))u,ξ,λ

(−1)|A|e− wt(w,A)

= (−1)�(u)−�(w)
∑

λ∈−�k+Q+

|A(w, Γ(k))u,ξ,λ|e−λ.
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Since deg(Qj) = 2〈ρ, α∨
j 〉 = 2 for all j ∈ I, we have deg(Qξ) ∈ 2Z. Therefore, we see 

that

Nu,ξ
sk,w = −e−�k · (−1)�(u)−�(w)

∑
λ∈−�k+Q+

|A(w, Γ(k))u,ξ,λ|e−λ

= (−1)1+�(w)+�(u)+deg(Qξ)
∑

λ∈−�k+Q+

|A(w, Γ(k))u,ξ,λ|e−�k−λ.

This implies that

(−1)1+�(w)+�(u)+deg(Qξ)Nu,ξ
sk,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ],

as desired. This proves the corollary. �
3. Quantum K-theory Chevalley formulas in the maximal parabolic case

Given a maximal parabolic subgroup PJ for J = I \ {k}, we will derive cancellation-
free parabolic Chevalley formulas for the quantum multiplication in QKT (G/PJ) with 
[O(−�k)] := [OG/PJ

(−�k)]. Based on Theorem 6 explained in Section 2.3, we obtain 
certain formulas from equation (4) in Theorem 7 for QKpoly

T (G/B) ⊂ QKT (G/B) by 
applying ΦJ ; this argument works for an arbitrary fundamental weight �k of G of any 
type. However, upon applying ΦJ , there are many terms to be canceled in the corre-
sponding formula in QKpoly

T (G/PJ) ⊂ QKT (G/PJ). For any fundamental weight �k in 
types A and C, we cancel out all these terms via a sign-reversing involution, and obtain 
a cancellation-free formula. We rely on the structure of the corresponding (−�k)-chain 
of roots Γ(k) in Section 2.2, as well as the quantum Bruhat graph criteria in Section 2.1.

Remark 12. Upon applying the above procedure, there are no cancellations among the 
terms corresponding to w-admissible subsets A with A− = ∅, by Remark 8.

Remark 13. If G is of type An−1, then the partial flag manifold G/PJ for J = I \ {k} is 
isomorphic to the Grassmannian Gr(k, n) defined as:

Gr(k, n) := {V | V is a subspace of Cn such that dim V = k}.

Also, if G is of type Cn, then the partial flag manifold G/PJ for J = I \ {k} is 
isomorphic to the isotropic Grassmannian IG(k, 2n) defined as:

IG(k, 2n) :=
{

V

∣∣∣∣ V is a subspace of C2n such that dim V = k, and 
V is isotropic with respect to (−, −)

}
;

where (−, −) denotes a non-degenerate skew symmetric bilinear form on C2n.
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3.1. Type An−1

We start with type An−1, and we fix the anti-dominant fundamental weight −�k. 
Note that w ∈ W J is equivalent to w[1, k] and w[k + 1, n] being increasing sequences.

Lemma 14. Consider w ∈ W J . We have an edge w
(i,j)−→ w(i, j) in the quantum Bruhat 

graph on Sn, with i ≤ k < j, if and only if one of the following two conditions holds:

(1) the edge is a Bruhat cover, with w(i) = a, w(j) = a + 1, and w(i, j) ∈ W J ;
(2) the edge is a quantum one, and (i, j) = αk.

Proof. We implicitly use several times the quantum Bruhat graph criterion in Proposi-
tion 2, as well as the fact that w[1, k] and w[k + 1, n] are increasing sequences. Letting 
a := w(i), and assuming that the edge is a Bruhat cover, we cannot have w(j) > a + 1
because the value a +1 would be straddled by the transposition (i, j). Indeed, this would 
happen irrespective of a +1 being in w[1, k] or w[k +1, n]. So we must have w(j) = a +1. 
Now assume that w(i) > w(j). If i < k, then the value w(k) would be straddled, while 
if j > k + 1, then the value w(k + 1) would be straddled. So we must have i = k and 
j = k + 1. �

We can now give a short proof of [12, Theorem I] in type An−1, which is restated 
below in terms of the quantum alcove model.

Theorem 15. In type An−1, consider 1 ≤ k ≤ n − 1 and w ∈ W J .
(1) If w ≥ 	sθ
, then we have the following cancellation-free formula:

[O(−�k)] · [Ow] = ew�k

∑
A∈A�(w,Γ(k))

(−1)|A|
(

[Oend(w,A)] − Qk[O�end(w,A)sk�]
)

. (5)

(2) If w �≥ 	sθ
, then we have the following cancellation-free formula:

[O(−�k)] · [Ow] = ew�k

∑
A∈A�(w,Γ(k))

(−1)|A|[Oend(w,A)] . (6)

Remark 16. As will be seen in the proof below, for w ∈ W J , the condition w ≥ 	sθ
 is 
equivalent to the condition w(k) = n and w(k + 1) = 1.

Example 17. We give some examples of the Chevalley formula in the case that n = 4 and 
k = 2. Note that 	sθ
 = s3s1s2. Also, we have Γ(2) = ((1, 4), (1, 3), (2, 4), (2, 3)) (with 
all roots negated).

(1) Let w = s3s1s2 = 	sθ
. Table 1 is the list of all admissible subsets A ∈ A(w, Γ(2))
and their statistics end(w, A), down(w, A), together with 	end(w, A)
; note that 
wt(w, A) = −s2�2 for all A ∈ A(w, Γ(2)).
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Table 1
The list of all admissible subsets A ∈
A(s3s1s2, Γ(2)).

A end(w, A) �end(w, A)� down(w, A)
∅ s3s1s2 s3s1s2 0
{1} s2s3s1s2 s2s3s1s2 0
{4} s3s1 e α∨

2
{1, 4} s2s3s1 s2 α∨

2

Table 2
The list of all admissible subsets A ∈ A(s2, Γ(2)).

A end(w, A) �end(w, A)� down(w, A)
∅ s2 s2 0
{2} s1s2 s1s2 0
{3} s3s2 s3s2 0
{4} e e α∨

2
{2, 3} s3s1s2 s3s1s2 0
{2, 4} s1 e α∨

2
{3, 4} s3 e α∨

2
{2, 3, 4} s3s1 e α∨

2

By Theorem 7, in QKpoly
T (G/B), we have:

[O(−�2)] · [Os2s3s1s2 ]

= es2s3s1s2�2 ([Os3s1s2 ] − [Os2s3s1s2 ] − Q2[Os3s1 ] + Q2[Os2s3s1 ]) .
(7)

By applying the surjection ΦJ : QKpoly
T (G/B) → QKpoly

T (G/PJ), explained in 
Theorem 6, to equation (7), we obtain the following cancellation-free formula in 
QKpoly

T (G/PJ) ⊂ QKT (G/PJ):

[O(−�2)] · [Os2s3s1s2 ] = es2s3s1s2�2 ([Os3s1s2 ] − [Os2s3s1s2 ] − Q2[Oe] + Q2[Os2 ]) .

Also, we deduce that A�(w, Γ(2)) = {∅, {1}}. Therefore, we see that

(RHS of equation (5))

= es2s3s1s2�2
((

[Os3s1s2 ] − Q2[O�s3s1�]
)

−
(

[Os2s3s1s2 ] − Q2[O�s2s3s1�]
))

= es2s3s1s2�2 ([Os3s1s2 ] − Q2[Oe] − [Os2s3s1s2 ] + Q2[Os2 ])

= [O(−�2)] · [Os2s3s1s2 ].

Thus Theorem 15 (1) holds in this case.
(2) Let w = s2; note that w �≥ 	sθ
. Then we can give the list of all admissible 

subsets A ∈ A(w, Γ(2)) and their statistics end(w, A), down(w, A), together with 
	end(w, A)
, as in Table 2. Note that wt(w, A) = −s2�2 for all A ∈ A(w, Γ(2)).
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By Theorem 7, in QKpoly
T (G/B), we have:

[O(−�2)] · [Os2 ] = es2�2 ([Os2 ] − [Os1s2 ] − [Os3s2 ] − Q2[Oe]

+ [Os3s1s2 ] + Q2[Os1 ] + Q2[Os3 ] − Q2[Os3s1 ]) .
(8)

By applying the surjection ΦJ : QKpoly
T (G/B) → QKpoly

T (G/PJ) to equation (8), 
we obtain the following cancellation-free formula in QKpoly

T (G/PJ) ⊂ QKT (G/PJ); 
here, the underlined terms in the first equality are canceled out:

[O(−�2)] · [Os2 ] = es2�2([Os2 ] − [Os1s2 ] − [Os3s2 ] − Q2[Oe]

+ [Os3s1s2 ] + Q2[Oe] + Q2[Oe] − Q2[Oe])

= es2�2([Os2 ] − [Os1s2 ] − [Os3s2 ] + [Os3s1s2 ]).

Also, we deduce that A�(w, Γ(2)) = {∅, {2}, {3}, {2, 3}}. Therefore, we see that

(RHS of equation (6)) = es2�2 ([Os2 ] − [Os1s2 ] − [Os3s2 ] + [Os3s1s2 ])

= [O(−�2)] · [Os2 ].

Thus Theorem 15 (2) holds in this case.

Proof of Theorem 15. The result is clear when w is the identity (indeed, a w-admissible 
subset is either empty or consists only of the transposition (k, k + 1)); so we can assume 
that w(k) > w(k + 1).

Let A be a generic w-admissible subset in A(w, Γ(k)). Given the structure of the 
(−�k)-chain Γ(k) in (1) and Lemma 14, we can see that a quantum step in a path 
Π(w, A) must correspond to the transposition αk = (k, k + 1), which is the last one in 
Γ(k). All other steps are Bruhat covers of the form specified in Lemma 14 (1). Moreover, 
the structure of Γ(k) combined with the fact that w ∈ W J imply that A contains at 
most one root labeling a Bruhat cover in Π(w, A) of the following forms: (i, · ) for each 
i ≤ k, and ( · , j) for each j > k. All these facts will be used implicitly.

By Deodhar’s criterion for the Bruhat order on the symmetric group [3, Theo-
rem 2.6.3], we can see that w ≥ 	sθ
 = [2, 3, . . . , k, n, 1, k + 1, . . . , n − 1] (in one-line 
notation) if and only if w(k) = n and w(k + 1) = 1. Thus, we consider the following 
cases; whenever there are terms to be canceled, we describe the sign-reversing involution 
mentioned above.

Case 1: w(k) < n. Let q > k + 1 be such that w(q) = w(k) + 1 ≤ n. We pair every A
containing (k, k + 1), but not (k, j) with j > k + 1, with A′ := A ∪ {(k, q)}. It is clear 
that A′ is also w-admissible, and in fact the root (k, q) is the predecessor of (k, k + 1) in 
A′. Moreover, we have

	end(w, A′)
 = 	· · · (k, q)(k, k + 1)
 = 	· · · (k, k + 1)(k + 1, q)
 = 	end(w, A)
 ,
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as well as down(w, A) = down(w, A′) and wt(w, A) = wt(w, A′). The latter property is 
a consequence of the fact that all the affine reflections in the definition of wt(w, · ) in 
[19, Equation (12)] fix �k; for more details, see [22, Corollary 8.2] and the discussion 
preceding it. Finally, as the cardinalities of A and A′ differ by 1, their contributions to 
the parabolic Chevalley formula for G/PJ have opposite signs. We have thus proved that 
the involution A ↔ A′ is sign-reversing.

Case 2: w(k) = n and w(k+1) > 1. Let p < k be such that w(p) = w(k+1) −1 ≥ 1. We 
pair every A containing (k, k+1), but not (i, k+1) with i < k, with A′ := A ∪{(p, k+1)}. 
We continue the reasoning like in Case 1.

Case 3: w(k) = n and w(k + 1) = 1. It is clear that no w-admissible subset A can 
contain transpositions of the form (i, k + 1) with i < k, and (k, j) with j > k + 1. 
Furthermore, there is a 2-to-1 correspondence between A(w, Γ(k)) and A�(w, Γ(k)): 
every A ∈ A�(w, Γ(k)) corresponds to itself and A ∪ {(k, k + 1)}. Like above, we can 
check that wt(w, A) = wt(w, A ∪ {(k, k + 1)}). Finally, based on the above facts and 
Remark 12, we can see that there are no cancellations of terms corresponding to the 
elements of either A�(w, Γ(k)) or A(w, Γ(k)) \ A�(w, Γ(k)).

It is now easy to see that the uncanceled terms in the resulting combinatorial formula 
are precisely those in (5) in Case 3, and those in (6) in Cases 1 and 2. �

3.2. Type Cn

As we move beyond type A, we note that the following analogue of Lemma 14 exists: 
[12, Lemma 5.1] for any simply laced type and �k minuscule. Below we present the 
corresponding result in type Cn, which works for any �k; this result is easily proved 
based on the quantum Bruhat graph criterion in Section 2.1.

Lemma 18. Consider 1 ≤ k ≤ n and w ∈ W J in type Cn. We have a quantum edge 
w

α−→ wsα in QB(W ), with α ∈ Φ+ \ Φ+
J , if and only if w �= e and one of the following 

two conditions holds:

(1) α = αk;
(2) α = (k, k), w(k) = a for 1 ≤ a ≤ n, and w[k + 1, n] ⊆ {a + 1, . . . , n} if k < n.

Let us now turn to a short proof in the case of �k in type Cn, where 1 ≤ k ≤ n. Note 
that w ∈ W J is equivalent to w[1, k] and w[k + 1, n] being increasing sequences (with 
respect to the total order on [n]), as well as w[k + 1, n] consisting of positive entries. 
We also need to introduce more notation. The (−�k)-chain Γ(k) in (2) has an obvious 
splitting Γ(k) = Γ1(k)Γ2(k), where Γ1(k) := Γ′

2 · · · Γ′
k and Γ2(k) := Γ1(k) · · · Γk(k). This 

induces a splitting A = A1 � A2 of any w-admissible subset A, where Ai = A ∩ Γi(k), 
for i = 1, 2.
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Table 3
The list of all admissible subsets A ∈ A(s2s3s2, Γ(2)).

A end(w, A1) end(w, A) �end(w, A)� down(w, A)
∅ s2s3s2 s2s3s2 s2s3s2 0
{1} s1s2s3s2 s1s2s3s2 s1s2s3s2 0
{4} s2s3s2 s2s3s1s2 s2s3s1s2 0
{5} s2s3s2 s1s2s3s2 s1s2s3s2 0
{7} s2s3s2 e e α∨

2 + α∨
3

{8} s2s3s2 s2s3 s2 α∨
2

{1, 4} s1s2s3s2 s1s2s3s1s2 s1s2s3s1s2 0
{1, 7} s1s2s3s2 s1 e α∨

2 + α∨
3

{1, 8} s1s2s3s2 s1s2s3 s1s2 α∨
2

{4, 6} s2s3s2 s1s2s3s1s2 s1s2s3s1s2 0
{4, 8} s2s3s2 s2s3s1 s2 α∨

2
{5, 7} s2s3s2 s1 e α∨

2 + α∨
3

{5, 8} s2s3s2 s1s2s3 s1s2 α∨
2

{7, 8} s2s3s2 s2 s2 α∨
2 + α∨

3
{1, 4, 7} s1s2s3s2 s2s1 s2 α∨

2 + α∨
3

{1, 4, 8} s1s2s3s2 s1s2s3s1 s1s2 α∨
2

{1, 7, 8} s1s2s3s2 s1s2 s1s2 α∨
2 + α∨

3
{4, 6, 7} s2s3s2 s2s1 s2 α∨

2 + α∨
3

{4, 6, 8} s2s3s2 s1s2s3s1 s1s2 α∨
2

{5, 7, 8} s2s3s2 s1s2 s1s2 α∨
2 + α∨

3
{1, 4, 7, 8} s1s2s3s2 s1s2s1 s1s2 α∨

2 + α∨
3

{4, 6, 7, 8} s2s3s2 s1s2s1 s1s2 α∨
2 + α∨

3

Theorem 19. In type Cn, given w ∈ W J , we have the following cancellation-free formula 
in QKpoly

T (G/PJ) ⊂ QKT (G/PJ):

[O(−�k)] · [Ow] =
∑

A∈A�(w,Γ(k))

(−1)|A|e− wt(w,A)[Oend(w,A)] (9)

− Qk

∑
A∈A�(w,Γ(k))

end(w,A1)≥�sθ�

(−1)|A|e− wt(w,A)[O�end(w,A)s2εk
�] .

Remark 20. As will be seen in the proof below, for w ∈ W J , the condition w ≥ 	sθ
 is 
equivalent to the condition w(k) = 1.

Example 21. In this example, we consider the case that n = 3 and k = 2. Note that 	sθ
 =
s1s2s3s2. Recall that Γ(2) = ((1, 2), (1, 3), (1, 1), (1, 3), (1, 2), (2, 3), (2, 2), (2, 3)) (with all 
roots negated). Let w = s2s3s2. Then the list of all admissible subsets A ∈ A(w, Γ(2))
and their statistics end(w, A), down(w, A), together with end(w, A1), 	end(w, A)
, is 
given in Table 3. Note that wt(w, A) = −s2s3s2�2 for all A ∈ A(w, Γ(2)).

By Theorem 7, in QKpoly
T (G/B), we have:

[O(−�2)] · [Os2s3s2 ]

= es2s3s2�2([Os2s3s2 ] − [Os1s2s3s2 ] − [Os2s3s1s2 ] − [Os1s2s3s2 ] − Q2Q3[Oe] − Q2[Os2s3 ]

+ [Os1s2s3s1s2 ] + Q2Q3[Os1 ] + Q2[Os1s2s3 ] + [Os1s2s3s1s2 ] + Q2[Os2s3s1 ] + Q2Q3[Os1 ]

+ Q2[Os1s2s3 ] + Q2Q3[Os2 ] − Q2Q3[Os2s1 ] − Q2[Os1s2s3s1 ] − Q2Q3[Os1s2 ]
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− Q2Q3[Os2s1 ] − Q2[Os1s2s3s1 ] − Q2Q3[Os1s2 ] + Q2Q3[Os1s2s1 ] + Q2Q3[Os1s2s1 ]).
(10)

By applying the surjection ΦJ : QKpoly
T (G/B) → QKpoly

T (G/PJ) to equation (10), we 
obtain the following cancellation-free formula in QKpoly

T (G/PJ) ⊂ QKT (G/PJ); here, 
the underlined terms in the first equality are canceled out:

[O(−�2)] · [Os2s3s2 ]

= es2s3s2�2([Os2s3s2 ] − [Os1s2s3s2 ] − [Os2s3s1s2 ] − [Os1s2s3s2 ] − Q2[Oe] − Q2[Os2 ]

+ [Os1s2s3s1s2 ] + Q2[Oe] + Q2[Os1s2 ] + [Os1s2s3s1s2 ] + Q2[Os2 ] + Q2[Oe]

+ Q2[Os1s2 ] + Q2[Os2 ] − Q2[Os2 ] − Q2[Os1s2 ] − Q2[Os1s2 ]

− Q2[Os2 ] − Q2[Os1s2 ] − Q2[Os1s2 ] + Q2[Os1s2 ] + Q2[Os1s2 ])

= es2s3s2�2([Os2s3s2 ] − 2[Os1s2s3s2 ] − [Os2s3s1s2 ] + 2[Os1s2s3s1s2 ] + Q2[Oe] − Q2[Os2 ]).

Also, we deduce that A�(w, Γ(2)) = {∅, {1}, {4}, {5}, {1, 4}, {4, 6}}; note that only 
two elements A = {1}, {1, 4} of A�(w, Γ(2)) satisfy end(w, A1) ≥ 	sθ
. Therefore, we 
see that

(RHS of equation (9))

= es2s3s2�2([Os2s3s2 ] − [Os1s2s3s2 ] − [Os2s3s1s2 ]

− [Os1s2s3s2 ] + [Os1s2s3s1s2 ] + [Os1s2s3s1s2 ])

− Q2es2s3s2�2(−[O�s1�] + [O�s2s1�])

= es2s3s2�2([Os2s3s2 ] − 2[Os1s2s3s2 ] − [Os2s3s1s2 ] + 2[Os1s2s3s1s2 ] + Q2[Oe] − Q2[Os2 ])

= [O(−�2)] · [Os2s3s2 ];

here, we have used s2ε2 = s2s3s2 for the first equality. Thus Theorem 19 holds in this 
case.

Proof of Theorem 19. We assume that w is not the identity, as this case is trivial. We 
follow the same procedure outlined above, and describe the sign-reversing involution 
canceling terms obtained from the Chevalley formula for G/B.

We carry out the proof in the case k < n, and refer to k = n at the end. Consider a 
generic w-admissible subset A in A(w, Γ(k)), corresponding to a term in the Chevalley 
formula for G/B. Like in type A, the structure of Γ(k) combined with the fact that 
w ∈ W J imply that A contains at most one root labeling a Bruhat cover in Π(w, A)
from each row in the display of Γj(k) in (3).

We focus on those A with A− �= ∅. By Lemma 18, we have A− ⊆ {αk = (k, k +
1), 2εk = (k, k)}. Note that both of these roots appear only once in the (−�k)-chain 
Γ(k), with (k, k + 1) being the last one, while (k, k) appears in the last segment Γk(k). 
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In fact, we have either A− = {(k, k + 1)} or A− = {(k, k)}. Indeed, assuming that 
(k, k) ∈ A−, and considering the signed permutation u in Π(w, A) to which (k, k) is 
applied, we have u ∈ W J and u[k + 1, n] ⊆ {a + 1, . . . , n}, where a := |u(k)| = u(k); 
therefore, it is impossible for (k, k + 1) to correspond to a quantum step in Π(w, A).

Now assume that A− = {(k, k + 1)}, and let v := end(w, A \ {(k, k + 1)}). We clearly 
have v ∈ W J . We will pair A with another w-admissible subset A′, such that their 
contributions to the parabolic Chevalley formula for G/PJ cancel out. We must have 
one of the following cases, where 1 ≤ a < b ≤ n.

Case 1: v(k) = b, v(k + 1) = a, and A does not contain (k, j) with j > k + 1.
Subcase 1.1: b < n. This case is completely similar to Case 1 in the type A proof. 

Indeed, there clearly exists q > k+1 such that v(q) = b +1 ≤ n. We let A′ := A ∪{(k, q)}, 
so (A′)− = {(k, k + 1)}, and continue the reasoning as above.

Subcase 1.2: b = n. We let A′ := A ∪ {(k, k)}, and we have (A′)− = {(k, k + 1)}.
Case 2: v(k) = a, v(k+1) = b. We let A′ := A ∪{(k, k)}, and we have (A′)− = {(k, k)}.
Case 3: v(k) = b, v(k + 1) = a, and A contains neither (k, k), nor (k, j) for j > k + 1.
Subcase 3.1: k +2 ≤ n and v(k +2) < b. Consider q > k +1 largest such that v(q) < b. 

We let A′ := A ∪ {(k, q)}, and we have (A′)− = {(k, k + 1)}.
Subcase 3.2: k+2 > n or v(k+2) > b. We let A′ := (A \{(k, k+1)}) ∪{(k, k + 1), (k, k)}, 

and we have (A′)− = {(k, k)}.
We claim that in all cases,

A′ ∈ A(w, Γ(k)) , 	end(w, A)
 = 	end(w, A′)
 , and wt(w, A) = wt(w, A′) .

Furthermore, it is not hard to check that these cases completely pair up all w-admissible 
subsets A with A− = {(k, k + 1)}, either among themselves (in Cases 1.1, 1.2, and 3.1), 
or with A satisfying A− = {(k, k)} (in Cases 2 and 3.2); see below for a discussion of the 
latter A which are not paired up above.

Indeed, let us consider, for instance, Case 2. We cannot have (k, k) ∈ A, because the 
corresponding up step in Bruhat order would not be a cover (by the classical part of 
the criterion in Proposition 3 (3)). Moreover, A cannot contain any root of the form 
(k, j) with j > k + 1, as the corresponding reflection would bring a positive entry to 
position k, whereas v(k) is negative. Therefore, the roots (k, k) and (k, k + 1) are the 
last two in A′, while the step corresponding to (k, k) is a quantum one (by the criterion 
in Proposition 3 (3)). Moreover, we have

	end(w, A′)
 = 	v(k, k)(k, k + 1)
 = 	v(k, k + 1)(k + 1, k + 1)
 = 	end(w, A)
 .

The weight preservation is verified by noting that all affine hyperplanes corresponding 
to the roots in Γ2(k) contain �k; so the corresponding affine reflections fix �k, and are 
thus irrelevant for the weight computation.

On another hand, in the Chevalley formula for G/B, the quantum steps corresponding 
to both roots (k, k +1) and (k, k) contribute the variable Qk. Indeed, as indicated above, 
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we have the following coroot splitting: (2εk)∨ = α∨
k + (α∨

k+1 + · · · + α∨
n). Finally, since 

the cardinalities of A and A′ differ by 1, we conclude that the involution A ↔ A′ is 
indeed sign-reversing. In this way, the contributions to the parabolic Chevalley formula 
for G/PJ of all A with A− = {(k, k + 1)} are canceled.

We have now exhausted all w-admissible sets A with A− = {(k, k + 1)}. Thus, it 
remains to discuss the contributions of the remaining A with A− �= ∅, i.e., A− = {(k, k)}
and A is not among the A′ in Cases 2 and 3.2. So from now on we work under this 
assumption. We previously considered the signed permutation u ∈ W J in Π(w, A) to 
which (k, k) is applied, and observed that u[k + 1, n] ⊆ {a + 1, . . . , n}, where a := |u(k)|. 
If (k, k) is followed by another root in A, then this can only be (k, k + 1); but this 
situation was considered in Case 2 above, which means that (k, k) must be the last root 
in A. Moreover, A cannot contain any root of the form (k, j) with j > k, because we 
would be in Case 3.2. The following two cases cover all remaining possibilities, and we 
continue to use the above notation.

Case 4: u(k) �= 1 (i.e., a �= 1), and A2 contains no root (i, k) with i < k. There clearly 
exists p < k such that u(p) = a − 1. We let A′ := A ∪ {(p, k)}, where the root (p, k)
is taken from Γ2(k). We have (A′)− = {(k, k)}. Like above, we verify that the terms 
corresponding to A and A′ cancel out, so we can extend the sign-reversing involution 
above by pairing A with A′.

Now recall that, in general, A2 contains at most one root (i, k) with i < k. Whenever 
it contains one, the values in positions i and k of the signed permutation to which this 
reflection is applied are of the form b − 1 and b, respectively. Thus, the remaining case 
consists of the following w-admissible subsets A.

Case 5: u(k) = 1 (i.e., a = 1), and A2 contains no root (i, k) with i < k. We clearly 
have A \{(k, k)} ∈ A�(w, Γ(k)), where we recall that (k, k) is the last root in A. Now let 
u′ := end(w, A1). Based on the structures of Γ(k) and A, we have u′(k) = u(k) = 1. But 
this is equivalent to u′ ≥ 	sθ
 = [2, 3, . . . , k, 1, k + 1, . . . , n] (in the window notation), by 
Deodhar’s criterion for the type C Bruhat order [3, Chapter 8, Exercise 6]. In the same 
way as above, we can see that wt(w, A) = wt(A \ {(k, k)}). The above facts imply that 
the terms corresponding to this case make up the second sum in (9). By Remark 12, 
there are no cancellations between these terms.

We conclude by considering k = n, and noting that the proof reduces to Cases 4 and 
5 above. �

We now prove the positivity property of structure constants for isotropic Grassman-
nians as a corollary of Theorem 19.

Corollary 22. Let G be of type Cn, and J = I \ {k} for an arbitrary fixed 1 ≤ k ≤ n. 
Then, for w, u ∈ W J and ξ ∈ Q∨,+

I\J , we have

(−1)1+�(w)+�(u)+deg(Qξ)Nu,ξ
s ,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ].
k
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Proof. Take A ∈ A�(w, Γ(k)) such that end(w, A1) ≥ 	sθ
, and set v := end(w, A). 
Recall from the proof of Theorem 19 that there exists a quantum edge v

2εk−−→ vs2εk
∈

QB(W ). Also, by Case 5 in the proof of Theorem 19, we have v(k) = 1. Note that 
v ∈ W J , and hence that v(1) < · · · < v(k), v(k + 1) < · · · < v(n). It follows that 
1 = vs2εk

(k) < vs2εk
(1) < · · · < vs2εk

(k − 1) and vs2εk
(k + 1) < · · · < vs2εk

(n). 
Therefore, if we take a cyclic permutation σ := (1, k, k − 1, . . . , 2) ∈ W , then we have 
	vs2εk


 = vs2εk
σ. Hence we see that

|A| + 1 = |A ∪ {(k, k)}|
≡ �(vs2εk

) − �(w)

≡ (�(vs2εk
σ) − �(σ)) − �(w)

≡ �(	vs2εk

) − (k − 1) − �(w)

≡ �(w) + �(	vs2εk

) + k − 1

modulo 2. Thus, we obtain

(−1)|A|+1 = (−1)�(w)+�(�vs2εk
�)+k−1.

It is easy to check (see, for example, [9, Section 3.1.5, Exercise 4]) that

2ρJ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1∑
i=1

i(k − 1)αi

+
n−k−1∑

i=1
i(2(n − k) − i + 1)αk+1 + (n − k)(n − k + 1)

2 αn if k �= n,

n−1∑
i=1

i(n − i)αi if k = n.

Since

〈αi, α∨
j 〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 if i = j,
−1 if |i − j| = 1 and i �= n,

−2 if i = n and j = n − 1,

0 otherwise,

we have

2〈ρJ , α∨
k 〉 =

⎧⎪⎪⎨
⎪⎪⎩

−(k − 1) − 2(n − k) if k �= n − 1, n,

−(n − 2) − 2 · 1 · 2
2 if k = n − 1,

−(n − 1) if k = n
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≡ k − 1 mod 2.

In addition, we have 2〈ρ, α∨
k 〉 = 2. Therefore, we see that

deg(Qk) = 2〈ρ, α∨
k 〉 − 2〈ρJ , α∨

k 〉 ≡ 2 − (k − 1) ≡ k − 1 mod 2.

We set

A(w, Γ(k))0
u,α∨

k ,λ :=
{

A ∈ A�(w, Γ(k))

∣∣∣∣∣ end(w, A(1)) ≥ 	sθ
, 	end(w, A)s2εk

 = u,

wt(A ∪ {(k, k)}) = λ

}
.

Then, since wt(w, A) ∈ −�k + Q+ by Lemma 10, we deduce from Theorem 19 that

C
u,α∨

k
w =

∑
λ∈−�k+Q+

∑
A∈A(w,Γ)0

u,α∨
k

,λ

(−1)|A|+1Qke− wt(w,A∪{(k,k)})

= (−1)�(w)+�(u)+k−1Qk

∑
λ∈−�k+Q+

|A(w, Γ(k))0
u,α∨

k ,λ|e−λ.

Therefore, we obtain

N
u,α∨

k
sk,w = (−1)1+�(w)+�(u)+k−1Qk

∑
λ∈−�k+Q+

|A(w, Γ(k))0
u,α∨

k ,λ|e−�k−λ.

This implies that

(−1)1+�(w)+�(u)+deg(Qk)N
u,α∨

k
sk,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ], (11)

as desired. Equation (11), together with the positivity property of Nw,0
u,v for u, v, w ∈ W J , 

proves the corollary. �
4. Quantum K-theory Chevalley formulas for two-step flag manifolds

In this section, we concentrate on the case of type An−1; note that I = [n − 1] in 
this case. Let us consider the (standard) parabolic subgroup PJ ⊃ B corresponding to 
J = I \ {k1, k2} for some k1, k2 ∈ I with k1 < k2; the resulting partial flag manifold 
G/PJ is isomorphic to a two-step flag manifold Fl(k1, k2; n) defined as:

Fl(k1, k2; n) :=
{

(V1, V2)
∣∣∣∣ V1 and V2 are subspaces of Cn such that V1 ⊂ V2, 

dim V1 = k1, and dim V2 = k2

}
.

The purpose of this section is to derive cancellation-free parabolic Chevalley formulas 
for the quantum multiplication in QKT (G/PJ) with [O(−�k)], for k = k1 and k = k2. 
For this purpose, as in Section 3, we examine all the terms to be canceled in certain 
formulas obtained from equation (4) in Theorem 7, in QKpoly

T (G/B) ⊂ QKT (G/B), by 
applying the map ΦJ : QKpoly

T (G/B) → QKpoly
T (G/PJ).
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4.1. Some lemmas on admissible subsets

Note that for w ∈ W = W (An−1) = Sn, w ∈ W J is equivalent to w[1, k1], w[k1+1, k2], 
and w[k2 + 1, n] being increasing sequences (see [3, Lemma 2.4.7]).

We first consider the case k = k1. We will make repeated use of the following.

Lemma 23. Consider w ∈ W J . We have an edge w
(i,j)−−−→ w(i, j) in the quantum Bruhat 

graph QB(W ), with i ≤ k1 < j, if and only if one of the following two conditions holds:

(1) the edge above is a Bruhat cover, and w(i, j) ∈ W J ;
(2) the edge above is a quantum one, and (i, j) = (k1, k2 + 1) or (i, j) = αk1 .

Proof. As in the proof of Lemma 14, we implicitly use Proposition 2, as well as the fact 
that w[1, k1], w[k1 + 1, k2], and w[k2 + 1, n] are increasing sequences. Assume first that 
the edge above is a Bruhat cover. Then, since (i, j) /∈ WJ , [3, Corollary 2.5.2] implies 
that w(i, j) ∈ W J , as desired. Assume next that the edge above is a quantum one; note 
that w(i) > w(j) in this case. If i < k1, then the value w(k1) would be straddled between 
w(i) and w(j). Hence we must have i = k1. Also, if k1 + 1 < j ≤ k2, then the value 
w(k1 + 1) would be straddled between w(k1) and w(j); if j > k2 + 1, then the value 
w(k2 + 1) would be straddled between w(k1) and w(j). Hence we must have j = k1 + 1
or j = k2 + 1. This proves the lemma. �
Lemma 24. Consider w ∈ W J , and assume that we have a quantum edge w

(k1,k2+1)−−−−−−→
w(k1, k2 + 1) in QB(W ). Then, for k1 + 1 ≤ j ≤ k2, we have an edge w(k1, k2 +
1) (k1,j)−−−−→ w(k1, k2 + 1)(k1, j) in QB(W ) if and only if j = k1 + 1. In this case, the edge 

w(k1, k2 + 1) (k1,j)−−−−→ w(k1, k2 + 1)(k1, j) is a Bruhat cover.

Proof. Set v := w(k1, k2 + 1). Since we have a quantum edge w
(k1,k2+1)−−−−−−→ v in QB(W ), 

Proposition 2 implies the following:

v(k1) < v(k1 + 1) < v(k1 + 2) < · · · < v(k2) < v(k2 + 1).

If k1 + 1 < j ≤ k2, then the value v(k1 + 1) would be straddled between v(k1) and v(j). 
Hence we must have j = k1 + 1. In this case, by Proposition 2, we have a Bruhat edge 

v
(k1,k1+1)−−−−−−→ v(k1, k1 + 1). This proves the lemma. �
As a corollary of Lemmas 23 and 24, we immediately obtain the following.

Lemma 25. Let w ∈ W J , and take A = {j1 < · · · < js} ∈ A(w, Γ(k1)). If the directed 
path Π(w, A) contains a quantum edge, then Π(w, A) is one of the following forms; here 
−→ indicates a Bruhat edge, while −→ indicates a quantum edge:

B Q
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(1) Π(w, A) : w = w0 −→
B

· · · −→
B

ws−1
(k1,k1+1)−−−−−−→

Q
ws;

(2) Π(w, A) : w = w0 −→
B

· · · −→
B

ws−1
(k1,k2+1)−−−−−−→

Q
ws;

(3) Π(w, A) : w = w0 −→
B

· · · −→
B

ws−2
(k1,k2+1)−−−−−−→

Q
ws−1

(k1,k1+1)−−−−−−→
B

ws.

In view of this lemma, we divide the set A(w, Γ(k1)) into the disjoint union of the 
following four subsets:

(1) A�(w, Γ(k1)) (defined in Section 2.1);
(2) A1(w, Γ(k1)) := {A ∈ A(w, Γ(k1)) | Π(w, A) is of the form (1) in Lemma 25};
(3) A2(w, Γ(k1)) := {A ∈ A(w, Γ(k1)) | Π(w, A) is of the form (2) in Lemma 25};
(4) A3(w, Γ(k1)) := {A ∈ A(w, Γ(k1)) | Π(w, A) is of the form (3) in Lemma 25}.

Then it follows that

A(w, Γ(k1)) = A�(w, Γ(k1)) � A1(w, Γ(k1)) � A2(w, Γ(k1)) � A3(w, Γ(k1)).

Also, we can verify the following:

• if A ∈ A�(w, Γ(k1)), then down(w, A) = 0, and hence Q[down(w,A)]J = 0;
• if A ∈ A1(w, Γ(k1)), then down(w, A) = α∨

k1
, and hence Q[down(w,A)]J = Qk1 ;

• if A ∈ A2(w, Γ(k1)) or A ∈ A3(w, Γ(k1)), then down(w, A) = α∨
k1

+ · · · + α∨
k2

, and 

hence Q[down(w,A)]J = Qα∨
k1 +α∨

k2 = Qk1Qk2 .

Therefore, by equation (4), we deduce that

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|[Oend(w,A)]

+ ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�]

+ ew�k1
∑

A∈A2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

+ ew�k1
∑

A∈A3(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�] .

Next, we consider the case k = k2. In this case, we use Γ∗(k2) instead of Γ(k2). From 
Lemma 25, by applying the diagram automorphism ω, we obtain the following.

Lemma 26. Let w ∈ W J , and take A = {j1 < · · · < js} ∈ A(w, Γ∗(k2)). If the directed 
path Π(w, A) contains a quantum edge, then Π(w, A) is one of the following forms; here, 
−→ indicates a Bruhat edge, while −→ indicates a quantum edge:

B Q
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(1) Π(w, A) : w = w0 −→
B

· · · −→
B

ws−1
(k2,k2+1)−−−−−−→

Q
ws;

(2) Π(w, A) : w = w0 −→
B

· · · −→
B

ws−1
(k1,k2+1)−−−−−−→

Q
ws;

(3) Π(w, A) : w = w0 −→
B

· · · −→
B

ws−2
(k1,k2+1)−−−−−−→

Q
ws−1

(k2,k2+1)−−−−−−→
B

ws.

In view of this lemma, we divide the set A(w, Γ∗(k2)) into the disjoint union of the 
following four subsets:

(1) A�(w, Γ∗(k2)) (already defined);
(2) A1(w, Γ∗(k2)) := {A ∈ A(w, Γ∗(k2)) | Π(w, A) is of the form (1) in Lemma 26};
(3) A2(w, Γ∗(k2)) := {A ∈ A(w, Γ∗(k2)) | Π(w, A) is of the form (2) in Lemma 26};
(4) A3(w, Γ∗(k2)) := {A ∈ A(w, Γ∗(k2)) | Π(w, A) is of the form (3) in Lemma 26}.

4.2. Parabolic Chevalley formulas for two-step flag manifolds

We state cancellation-free parabolic Chevalley formulas for the equivariant quantum 
K-theory of the two-step flag manifold G/PJ ; the proofs of these results will be given in 
Sections 4.3 and 4.4. First, we assume that k = k1. Take and fix w ∈ W J .

Theorem 27. If w(k1) < w(k1 + 1), then we have the following cancellation-free formula:

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|[Oend(w,A)] .

We consider the following condition:

(Q) w(k1) > w(k2) and w(k1 + 1) > w(k2 + 1).

Remark 28. As mentioned at the beginning of Section 4.1, w[k1 + 1, k2] is an increasing 
sequence for w ∈ W J . Hence condition (Q) implies that w(k1) > w(k2) ≥ w(k1 + 1) >
w(k2 + 1).

Theorem 29. Assume that w(k1) > w(k1 + 1), and assume that condition (Q) does not 
hold.

(1) If w(1) < w(k1 + 1) or w(k1) < w(k2), then we have the following cancellation-free 
formula:

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|[Oend(w,A)] .

(2) If w(1) > w(k1 + 1) and w(k1) > w(k2), then we have the following cancellation-free 
formula:
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[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|
(

[Oend(w,A)] − Qk1 [O�end(w,A)sk1 �]
)

.

Also, we consider the following condition:

(Full) both of the following hold:
(1) w(k1) = n and w(k2 + 1) = 1; and
(2) w(k1 + 1) is the minimum element in the sequence w[1, k2].

Remark 30. Condition (Full) holds if and only if condition (Q) holds and w(1) > w(k1 +
1), w(k1) > w(n); note that the inequality w(1) > w(k1 + 1), together with condition 
(Q), implies that w(1) > w(k2 + 1).

Theorem 31. Assume condition (Q).

(1) Assume that w(k1) < w(n).
(a) If w(1) < w(k1 + 1), then we have the following cancellation-free formula:

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|[Oend(w,A)] .

(b) If w(1) > w(k1 + 1), then we have the following cancellation-free formula:

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|
(

[Oend(w,A)] − Qk1 [O�end(w,A)sk1 �]
)

.

(2) Assume that w(k1) > w(n).
(a) If w(1) < w(k2 + 1), then we have the following cancellation-free formula:

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|[Oend(w,A)] .

(b) If w(k2 + 1) < w(1) < w(k1 + 1), then we have the following cancellation-free 
formula:

[O(−�k1)] · [Ow]

= ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|
(

[Oend(w,A)] − Qk1Qk2 [O�end(w,A)(k1,k2+1)�]
)

.
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(3) If condition (Full) holds, then we have the following cancellation-free formula:

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|
(

[Oend(w,A)] − Qk1 [O�end(w,A)sk1 �]

− Qk1Qk2

(
[O�end(w,A)(k1,k2+1)�] − [O�end(w,A)(k1,k2+1)sk1 �]

))
.

Next, we assume that k = k2.

Theorem 32. If w(k2) < w(k2 + 1), then we have the following cancellation-free formula:

[O(−�k2)] · [Ow] = ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|[Oend(w,A)] .

Recall condition (Q) above.

Theorem 33. Assume that w(k2) > w(k2 + 1), and assume that condition (Q) does not 
hold.

(1) If w(k2) < w(n) or w(k1+1) < w(k2+1), then we have the following cancellation-free 
formula:

[O(−�k2)] · [Ow] = ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|[Oend(w,A)] .

(2) If w(k2) > w(n) and w(k1 +1) > w(k2 +1), then we have the following cancellation-
free formula:

[O(−�k2)]·[Ow] = ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|
(

[Oend(w,A)] − Qk2 [O�end(w,A)sk2 �]
)

.

We consider the following analog of condition (Full):

(Full)∗ both of the following hold:
(1) w(k1) = n and w(k2 + 1) = 1; and
(2) w(k2) is the maximum element in the sequence w[k1 + 1, n].

Remark 34. Condition (Full)∗ holds if and only if condition (Q) holds and w(n) < w(k2), 
w(k2 + 1) < w(1); note that the inequality w(n) < w(k2), together with condition (Q), 
implies that w(n) < w(k1).

Theorem 35. Assume condition (Q).
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(1) Assume that w(1) < w(k2 + 1).
(a) If w(k2) < w(n), then we have the following cancellation-free formula:

[O(−�k2)] · [Ow] = ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|[Oend(w,A)] .

(b) If w(k2) > w(n), then we have the following cancellation-free formula:

[O(−�k2)] · [Ow]

= ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|
(

[Oend(w,A)] − Qk2 [O�end(w,A)sk2 �]
)

.

(2) Assume that w(1) > w(k2 + 1).
(a) If w(k1) < w(n), then we have the following cancellation-free formula:

[O(−�k2)] · [Ow] = ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|[Oend(w,A)] .

(b) If w(k2) < w(n) < w(k1), then we have the following cancellation-free formula:

[O(−�k2)] · [Ow]

= ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|
(

[Oend(w,A)] − Qk1Qk2 [O�end(w,A)(k1,k2+1)�]
)

.

(3) If condition (Full)∗ holds, then we have the following cancellation-free formula:

[O(−�k2)] · [Ow] = ew�k2
∑

A∈A�(w,Γ∗(k2))

(−1)|A|
(

[Oend(w,A)] − Qk2 [O�end(w,A)sk2 �]

−Qk1Qk2

(
[O�end(w,A)(k1,k2+1)�] − [O�end(w,A)(k1,k2+1)sk2 �]

))
.

Example 36. In this example, we consider the case that n = 6 and (k1, k2) =
(2, 4). Let w = s4s1s2s3s5s4s3s2. Then, w satisfies condition (Q), and we see 
that w(k2 + 1)(= w(5)) < w(1) < w(k1 + 1)(= w(3)). Recall that Γ(2) =
((1, 6), (1, 5), (1, 4), (1, 3), (2, 6), (2, 5), (2, 4), (2, 3)). Then Table 4 is the list of all ad-
missible subset A ∈ A(w, Γ(5)) and their statistics end(w, A), down(w, A), together 
with 	end(w, A)
.
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Table 4
The list of all admissible subsets A ∈ A(s4s1s2s3s5s4s3s2, Γ(2)).

A end(w, A) �end(w, A)� down(w, A)
∅ s4s5s1s2s3s4s3s2 s4s5s1s2s3s4s3s2 0
{4} s4s5s1s2s3s4s3s1s2 s4s5s1s2s3s4s3s1s2 0
{6} s4s5s1 s4 α∨

2 + α∨
3 + α∨

4
{8} s4s5s1s2s3s4s3 s4s5s1s2s3s4 α∨

2
{4, 6} s4s5s2s1 s4s2 α∨

2 + α∨
3 + α∨

4
{4, 8} s4s5s1s2s3s4s3s1 s4s5s1s2s3s4 α∨

2
{6, 8} s4s5s1s2 s4s1s2 α∨

2 + α∨
3 + α∨

4
{4, 6, 8} s4s5s1s2s1 s4s1s2 α∨

2 + α∨
3 + α∨

4

By Theorem 7, in QKpoly
T (G/B), we have:

[O(−�2)] · [Os4s5s1s2s3s4s3s2 ]

= es4s5s1s2s3s4s3s2�2([Os4s5s1s2s3s4s3s2 ] − [Os4s5s1s2s3s4s3s1s2 ]

− Q2Q3Q4[Os4s5s1 ] − Q2[Os4s5s1s2s3s4s3 ] + Q2Q3Q4[Os4s5s2s1 ]

+ Q2[Os4s5s1s2s3s4s3s1 ] + Q2Q3Q4[Os4s5s1s2 ] − Q2Q3Q4[Os4s5s1s2s1 ]).

(12)

By applying the surjection ΦJ : QKpoly
T (G/B) → QKpoly

T (G/PJ) to equation (12), we 
obtain the following cancellation-free formula in QKpoly

T (G/PJ) ⊂ QKT (G/PJ); here, 
the underlined terms in the first equality are canceled out:

[O(−�2)] · [Os4s5s1s2s3s4s3s2 ]

= es4s5s1s2s3s4s3s2�2([Os4s5s1s2s3s4s3s2 ] − [Os4s5s1s2s3s4s3s1s2 ]

− Q2Q3Q4[Os4 ] − Q2[Os4s5s1s2s3s4 ] + Q2Q3Q4[Os4s2 ]

+ Q2[Os4s5s1s2s3s4 ] + Q2Q3Q4[Os4s1s2 ] − Q2Q3Q4[Os4s1s2 ]).

= es4s5s1s2s3s4s3s2�2([Os4s5s1s2s3s4s3s2 ]

− [Os4s5s1s2s3s4s3s1s2 ] − Q2Q4[Os4 ] + Q2Q4[Os4s2 ]).

Also, we deduce that A�(w, Γ(2)) = {∅, {4}}. Therefore, we see that

(RHS of the equation in Theorem 31 (2)(b))

= es4s5s1s2s3s4s3s2�2(([Os4s5s1s2s3s4s3s2 ] − Q2Q4[O�s4s5s1�])

− ([Os4s5s1s2s3s4s3s1s2 ] − Q2Q4[O�s4s5s2s1�]))

= es4s5s1s2s3s4s3s2�2([Os4s5s1s2s3s4s3s2 ]

− Q2Q4[Os4 ] − [Os4s5s1s2s3s4s3s1s2 ] + Q2Q4[Os4s2 ])

= [O(−�2)] · [Os4s5s1s2s3s4s3s2 ].

Thus Theorem 31 (2)(b) holds in this case.
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Remark 37. In [27, Theorem 4.5], Xu obtained a Chevalley formula for incidence vari-
eties, that is, for the two-step flag manifold G/PJ in the case that J = I \ {1, n − 1}, 
by a completely different method of proof than ours of Theorems 27, 29, 31, 32, 33, and 
35. We can verify that in this case, our Chevalley formula coincides with the one in [27, 
Theorem 4.5] for incidence varieties. As an example, we compare Theorem 29 (2) with 
[27, Equation (9) of Theorem 4.5]; this is a most complicated case. As for Theorems 27
and 29 (1), we can also compare our formulas and Xu’s ones by the same argument as 
below. As for Theorem 31, w should be the unique element of W J such that w(1) = n

and w(n) = 1, and hence we can compare the formulas by direct calculation. As for 
Theorems 32, 33, and 35, we can show the coincidence of the formulas from that of the 
formulas in Theorems 27, 29, and 31 by applying the diagram automorphism ω (see 
Section 4.3).

Throughout this remark, we assume that k1 = 1, k2 = n − 1. Note that under this 
assumption, for 1 ≤ i, j ≤ n with i �= j, there exists a unique w ∈ W J such that w(1) = i

and w(n) = j; in such a case, we write w = [i, j], as in [27].
We assume that w ∈ W J satisfies the following:

• w(k1) > w(k1 + 1),
• condition (Q) does not hold,
• w(1) > w(k1 + 1),
• w(k1) > w(k2),

and set i := w(1), j := w(n) (i.e., w = [i, j]). Under these assumptions, we see that 
i + 1 ≡ j mod n if and only if i = n − 1 and j = n (i.e., w = [n − 1, n]).

Let us compute the product [Os1 ] · [Ow] by our Chevalley formula. Recall that

Γ(1) = ((1, n), (1, n − 1), . . . , (1, 2))

(with all roots negated). First, assume that w = [n − 1, n]. Then, by Proposition 2, we 
deduce that A�([n − 1, n], Γ(1)) = {∅, {(1, n)}}. By Theorem 29 (2), we compute:

[O(−�1)] · [O[n−1,n]]

= e[n−1,n]�1
∑

A∈A�([n−1,n],Γ(1))

(−1)|A|
(

[Oend([n−1,n],A)] − Q1[O�end([n−1,n],A)s1�]
)

= eεn−1

⎛
⎜⎜⎝([O[n−1,n]] − Q1[O[1,n]]

)
︸ ︷︷ ︸

A=∅

−
(

[O[n,n−1]] − Q1[O[1,n−1]]
)

︸ ︷︷ ︸
A={(1,n)}

⎞
⎟⎟⎠ .

By the well-known formula [Os1 ] = 1 − e−�1 [O(−�1)] (cf., [4, Section 4.1]), we see that

[Os1 ] · [O[n−1,n]]
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= (1 − e−ε1 [O(−�1)]) · [O[n−1,n]]

= [O[n−1,n]] − e−ε1 [O(−�1)] · [O[n−1,n]]

= [O[n−1,n]] − eεn−1−ε1
((

[O[n−1,n]] − Q1[O[1,n]]
)

−
(

[O[n,n−1]] − Q1[O[1,n−1]]
))

= (1 − eεn−1−ε1)[O[n−1,n]] + eεn−1−ε1
(

Q1[O[1,n]] + [O[n,n−1]] − Q1[O[1,n−1]]
)

.

This result agrees with the second equation of [27, Equation (9) of Theorem 4.5].
Next, we consider the case w = [i, j] �= [n − 1, n]. In this case, we see that i + 1 �≡ j

mod n. Since condition (Q) does not hold, we have w(n) �= 1. Also, we have w(n) �= n; 
this is because if w(n) = n, then w must be [n −1, n] under our assumptions. These facts 
imply that w(1) = i = n and w(2) = 1. By Proposition 2, we deduce that A�(w, Γ(1)) =
{∅}. Therefore, we compute:

[O(−�1)] · [O[n,j]]

= ew�1
∑

A∈A�([n,j],Γ(1))

(−1)|A|
(

[Oend([n,j],A)] − Q1[O�end([n,j],A)s1�]
)

= eεn

(
[O[n,j]] − Q1[O[1,j]]

)
.

Again, since [Os1 ] = 1 − e−�1 [O(−�1)], we see that

[Os1 ] · [O[n,j]]

= (1 − e−�1 [O(−�1)]) · [O[n,j]]

= [O[n,j]] − e−ε1 [O(−�1)] · [O[n,j]]

= [O[n,j]] − eεn−ε1
(

[O[n,j]] − Q1[O[1,j]]
)

= (1 − eεn−ε1)[O[n,j]] + eεn−ε1Q1[O[1,j]].

This result agrees with the first equation of [27, Equation (9) of Theorem 4.5].

4.3. Proofs of parabolic Chevalley formulas: part 1

In this and the next subsection, we give proofs of the results stated in the previous 
subsection. Since Theorems 32, 33, and 35 follow from Theorems 27, 29, and 31, respec-
tively, by applying the diagram automorphism ω : [n − 1] → [n − 1], it suffices to prove 
Theorems 27, 29, and 31. Note that the diagram automorphism ω induces a group auto-
morphism ω : W

∼−→ W , sl �→ sω(l), together with a linear automorphism ω : h∗
R

∼−→ h∗
R, 

�l �→ �ω(l), and also an isomorphism ω : G/PJ
∼−→ G/Pω(J) of varieties; recall that G

is simply-connected. Hence, as mentioned in [24, Sections 8.1 and 8.3], we see that there 
exists a Z-module isomorphism ω : QKT (G/PJ) ∼−→ QKT (G/Pω(J)) such that
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eμ[Ow] �→ eω(μ)[Oω(w)]

for μ ∈ Λ, w ∈ W J , and such that ω(Ql) = Qω(l) for l ∈ I \ J . In this subsection, we 
give proofs of Theorems 27 and 29.

By Remark 8, we obtain the following.

Lemma 38. The sum

ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|[Oend(w,A)]

is cancellation-free.

Also, by making use of Proposition 2, we can verify the following.

Lemma 39. The following hold.

(1) We have A1(w, Γ(k1)) �= ∅ if and only if w(k1) > w(k1 + 1).
(2) We have A2(w, Γ(k1)) �= ∅ if and only if condition (Q) holds.

Remark 40. It is obvious that A2(w, Γ(k1)) �= ∅ if and only if A3(w, Γ(k1)) �= ∅.

Remark 41. If w(k1) > w(k1 + 1), then we have

A1(w, Γ(k1)) = {A � {(k1, k1 + 1)} | A ∈ A�(w, Γ(k1))} . (13)

Also, if condition (Q) holds, then we have

A2(w, Γ(k1)) = {A � {(k1, k2 + 1)} | A ∈ A�(w, Γ(k1))} , (14)

A3(w, Γ(k1)) = {A � {(k1, k2 + 1), (k1, k1 + 1)} | A ∈ A�(w, Γ(k1))} . (15)

Proof of Theorem 27. By Lemma 39, we have A(w, Γ(k1)) = A�(w, Γ(k1)). Therefore, 
the theorem follows from Lemma 38. �

In the rest of this subsection, we assume that w(k1) > w(k1 + 1), and assume that 
condition (Q) does not hold. Hence we have A2(w, Γ(k1)) = A3(w, Γ(k1)) = ∅.

First, assume that w(1) < w(k1 + 1). Take the maximal 1 ≤ p ≤ k1 such that 
w(p) < w(k1 + 1). Then, we can define an involution ι on A1(w, Γ(k1)) as follows: set

A1
1(w, Γ(k1)) := {A ∈ A1(w, Γ(k1)) | (p, k1 + 1) ∈ A} ,

A2
1(w, Γ(k1)) := {A ∈ A1(w, Γ(k1)) | (p, k1 + 1) /∈ A} ,

and define ι by
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A ∈ A2
1(w, Γ(k1)) �→ ι(A) := A � {(p, k1 + 1)} ∈ A1

1(w, Γ(k1)) ,

A ∈ A1
1(w, Γ(k1)) �→ ι(A) := A \ {(p, k1 + 1)} ∈ A2

1(w, Γ(k1)) .

This ι has the following properties:

• end(w, ι(A)) = end(w, A)(p, k1) (and hence 	end(w, ι(A))
 = 	end(w, A)
);
• |ι(A)| = |A| ± 1.

By using the involution ι, we obtain the following.

Lemma 42. Assume that w(k1) > w(k1 + 1), and assume that condition (Q) does not 
hold. If w(1) < w(k1 + 1), then

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] = 0 .

Remark 43. Even if we assume condition (Q), the identity in Lemma 42 is still valid, if 
all the conditions of this lemma other than the negation of condition (Q) hold. This is 
because the involution ι above is well-defined whether or not condition (Q) holds.

Next, assume that w(k1) < w(k2). Take the minimal k1 + 1 ≤ q ≤ k2 such that 
w(k1) < w(q). Then, we can define an involution ι on A1(w, Γ(k1)) as follows: set

A1
1(w, Γ(k1)) := {A ∈ A1(w, Γ(k1)) | (k1, q) ∈ A} ,

A2
1(w, Γ(k1)) := {A ∈ A1(w, Γ(k1)) | (k1, q) /∈ A} ,

and define ι by

A ∈ A2
1(w, Γ(k1)) �→ ι(A) := A � {(k1, q)} ∈ A1

1(w, Γ(k1)) ,

A ∈ A1
1(w, Γ(k1)) �→ ι(A) := A \ {(k1, q)} ∈ A2

1(w, Γ(k1)) .

This ι has the following properties:

• end(w, ι(A)) = end(w, A)(k1 + 1, q) (and hence 	end(w, ι(A))
 = 	end(w, A)
);
• |ι(A)| = |A| ± 1.

By using the involution ι, we obtain the following.

Lemma 44. Assume that w(k1) > w(k1 + 1), and assume that condition (Q) does not 
hold. If w(k1) < w(k2), then
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ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] = 0 .

Proof of Theorem 29 (1). By Lemmas 42 and 44, we deduce that

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] = 0 .

Therefore, we obtain the desired cancellation-free formula from Lemma 38, together with 
the fact that A2(w, Γ(k1)) = A3(w, Γ(k1)) = ∅. �

We assume that w(1) > w(k1 +1) and w(k1) > w(k2) until the end of this subsection. 
Let A ∈ A1(w, Γ(k1)), and set y := end(w, A \ {(k1, k1 + 1)}). Since A \ {(k1, k1 + 1)}
contains only Bruhat steps, we see that y(k1 + 1) < y(1) and y(k2) < y(k1). Therefore, 
if we set z := ysk1 = end(w, A), then we have

• z(k1) < z(1) < z(2) < · · · < z(k1 − 1),
• z(k1 + 2) < z(k1 + 3) < · · · < z(k2) < z(k1 + 1), and
• z(k2 + 1) < z(k2 + 2) < · · · < z(n);

hence, if we take cyclic permutations σ1 := (1, k1, k1 − 1, . . . , 2) (if k1 = 1, then we take 
σ1 := e, the identity permutation) and σ2 := (k1 + 1, k1 + 2, . . . , k2) (if k1 + 1 = k2, 
then we take σ2 := e), then we deduce that 	z
 = zσ1σ2. Note that the definitions of σ1

and σ2 do not depend on the choice of A. Thus, for A, B ∈ A1(w, Γ(k1)) with A �= B, it 
follows that

	end(w, A)
 = end(w, A)σ1σ2 �= end(w, B)σ1σ2 = 	end(w, B)
 .

Since the right-hand side of equation (4) in Theorem 7 is cancellation-free, as mentioned 
in Remark 8, this proves the following.

Lemma 45. Assume that w(k1) > w(k1 + 1), and assume that condition (Q) does not 
hold. If w(1) > w(k1 + 1) and w(k1) > w(k2), then the sum

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] (16)

is cancellation-free.

Remark 46. Note that we do not use the negation of condition (Q) in the proof of 
Lemma 45. Hence the sum (16) is cancellation-free whether or not we assume condition 
(Q), if all the conditions of Lemma 45 other than the negation of (Q) hold.
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Remark 47. If A1(w, Γ(k1)) �= ∅ (or equivalently, w(k1) > w(k1 + 1)), then equation (13)
shows that

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�]

= −ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)sk1 �] .

Proof of Theorem 29 (2). The desired identity follows from Lemmas 38, 45, and Re-
mark 47, together with the fact that A2(w, Γ(k1)) = A3(w, Γ(k1)) = ∅. �
4.4. Proofs of parabolic Chevalley formulas: part 2

In this subsection, we give a proof of Theorem 31; since we assume condition (Q), we 
have w(k1) > w(k1 + 1); see Remark 28.

First, assume that w(k1) < w(n). Then, we can take the minimal k2 + 1 ≤ q ≤ n such 
that w(k1) < w(q), and define an involution ι on Al(w, Γ(k1)), l = 2, 3, as follows: for 
each l = 2, 3, we set

A1
l (w, Γ(k1)) := {A ∈ Al(w, Γ(k1)) | (k1, q) ∈ A} ,

A2
l (w, Γ(k1)) := {A ∈ Al(w, Γ(k1)) | (k1, q) /∈ A} ,

and define ι by

A ∈ A2
l (w, Γ(k1)) �→ ι(A) := A � {(k1, q)} ∈ A1

l (w, Γ(k1)) ,

A ∈ A1
l (w, Γ(k1)) �→ ι(A) := A \ {(k1, q)} ∈ A2

l (w, Γ(k1)) .

This ι has the following properties:

• end(w, ι(A)) = end(w, A)(k2 + 1, q) (and hence 	end(w, ι(A))
 = 	end(w, A)
);
• |ι(A)| = |A| ± 1.

By using the involution ι, we obtain the following.

Lemma 48. Assume condition (Q). If w(k1) < w(n), then for l = 2, 3,

ew�k1
∑

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

A∈Al(w,Γ(k1))
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Proof of Theorem 31 (1). By Lemma 48, we deduce that

[O(−�k1)] · [Ow] = ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|[Oend(w,A)]

+ ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] .

If w(1) < w(k1 + 1), then

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] = 0

by Remark 43. Therefore, Theorem 31 (1) (a) follows from Lemma 38.
Assume now that w(1) > w(k1 +1). Note that w(k1) > w(k2) by condition (Q). Hence 

Remark 46 implies that the sum

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�]

is cancellation-free. Therefore, Theorem 31 (1) (b) follows from Lemma 38 and Re-
mark 47. �

Next, assume that w(k1) > w(n). We consider the following auxiliary condition:

(Q-A) there exists 1 ≤ l ≤ k1 such that w(k2 + 1) < w(l) < w(k1 + 1).

Assume condition (Q-A), and that w(1) < w(k2 +1). We take the maximal 1 ≤ pA2 ≤
k1 such that w(pA2) < w(k2 + 1). Then, we can define an involution ιA2 on A2(w, Γ(k1))
as follows: set

A1
2(w, Γ(k1)) := {A ∈ A2(w, Γ(k2)) | (pA2 , k2 + 1) ∈ A} ,

A2
2(w, Γ(k1)) := {A ∈ A2(w, Γ(k2)) | (pA2 , k2 + 1) /∈ A} ,

and define ιA2 by

A ∈ A2
2(w, Γ(k1)) �→ ιA2(A) := A � {(pA2 , k2 + 1)} ∈ A1

2(w, Γ(k1)) ,

A ∈ A1
2(w, Γ(k1)) �→ ιA2(A) := A \ {(pA2 , k2 + 1)} ∈ A2

2(w, Γ(k1)) .

Remark 49. If condition (Q-A) does not hold, then the above ιA2 : A1
2(w, Γ(k1)) →

A2
2(w, Γ(k1)) is not well-defined; we will explain this situation later.

This ιA2 has the following properties:
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• end(w, ιA2(A)) = end(w, A)(pA2 , k1) (and hence 	end(w, ιA2(A))
 = 	end(w, A)
);
• |ιA2(A)| = |A| ± 1.

By using the involution ιA2 , we obtain the following.

Lemma 50. Assume condition (Q). If w(1) < w(k2 + 1) and condition (Q-A) hold, then

ew�k1
∑

A∈A2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

Also, we take the maximal 1 ≤ pA3 ≤ k1 such that w(pA3) < w(k1 +1). We can define 
an involution ιA3 on A3(w, Γ(k1)) as follows: set

A1
3(w, Γ(k1)) := {A ∈ A3(w, Γ(k1)) | (pA3 , k1 + 1) ∈ A} ,

A2
3(w, Γ(k1)) := {A ∈ A3(w, Γ(k1)) | (pA3 , k1 + 1) /∈ A} ,

and define ιA3 by

A ∈ A2
3(w, Γ(k1)) �→ ιA3(A) := A � {(pA3 , k1 + 1)} ∈ A1

3(w, Γ(k1)) ,

A ∈ A1
3(w, Γ(k1)) �→ ιA3(A) := A \ {(pA3 , k1 + 1)} ∈ A2

3(w, Γ(k1)) .

Remark 51. If condition (Q-A) does not hold, then the above ιA3 : A2
3(w, Γ(k1)) →

A1
3(w, Γ(k1)) is not well-defined for the same reason as ιA2 .

This ιA3 has the following properties:

• end(w, ιA3(A)) = end(w, A)(pA3 , k1) (and hence 	end(w, ιA3(A))
 = 	end(w, A)
);
• |ιA3(A)| = |A| ± 1.

By using the involution ιA3 , we obtain the following.

Lemma 52. Assume condition (Q). If w(1) < w(k2 + 1) and condition (Q-A) holds, then

ew�k1
∑

A∈A3(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

Next, assume that condition (Q-A) does not hold, but assume that w(1) < w(k2 + 1). 
Take the maximal 1 ≤ p ≤ k1 such that w(p) < w(k2 + 1). Set

A′
2(w, Γ(k1)) := {A ∈ A2(w, Γ(k1)) | (p, k1 + 1) ∈ A} ,

A′ C
2 (w, Γ(k1)) := A2(w, Γ(k1)) \ A′

2(w, Γ(k1)) .
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Observe that if A ∈ A′
2(w, Γ(k1)), then we must have (p, k2+1) ∈ A; if not, then A cannot 

contain a quantum step (k1, k2 + 1), which contradicts the definition of A2(w, Γ(k1)). 
Thus, the above ιA2 : A1

2(w, Γ(k1)) → A2
2(w, Γ(k1)) is not well-defined. Hence we need 

another involution.
In fact, we can define an involution on A′ C

2 (w, Γ(k1)) similar to ιA2 as follows. We set

A′ C,1
2 (w, Γ(k1)) := {A ∈ A′ C

2 (w, Γ(k1)) | (p, k2 + 1) ∈ A} ,

A′ C,2
2 (w, Γ(k1)) := {A ∈ A′ C

2 (w, Γ(k1)) | (p, k2 + 1) /∈ A} .

Then we can define an involution ι on A′ C
2 (w, Γ(k1)) by

A ∈ A′ C,2
2 (w, Γ(k1)) �→ ι(A) := A � {(p, k2 + 1)} ∈ A′ C,1

2 (w, Γ(k1)) ,

A ∈ A′ C,1
2 (w, Γ(k1)) �→ ι(A) := A \ {(p, k2 + 1)} ∈ A′ C,2

2 (w, Γ(k1)) .

This ι has the following properties:

• end(w, ι(A)) = end(w, A)(p, k1) (and hence 	end(w, ι(A))
 = 	end(w, A)
);
• |ι(A)| = |A| ± 1.

By using the involution ι, we obtain the following.

Lemma 53. Assume condition (Q). If w(1) < w(k2 + 1), and if condition (Q-A) does not 
hold, then

ew�k1
∑

A∈A′ C
2 (w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

Similarly, we set

A′
3(w, Γ(k1)) := {A ∈ A3(w, Γ(k1)) | (p, k2 + 1) /∈ A} ,

A′ C
3 (w, Γ(k1)) := A3(w, Γ(k1)) \ A′

3(w, Γ(k1)) .

Observe that if A ∈ A′
3(w, Γ(k1)), then we must have (p, k1 + 1) /∈ A; if not, then A

cannot contain a quantum step (k1, k2 + 1). However, we can define an involution on 
A′

3(w, Γ(k1)) similar to ιA3 as follows. We set

A′ C,1
3 (w, Γ(k1)) := {A ∈ A′ C

3 (w, Γ(k1)) | (p, k1 + 1) ∈ A} ,

A′ C,2
3 (w, Γ(k1)) := {A ∈ A′ C

3 (w, Γ(k1)) | (p, k1 + 1) /∈ A} .

Then we can define an involution ι on A′ C
3 (w, Γ(k1)) by
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A ∈ A′ C,2
3 (w, Γ(k1)) �→ ι(A) := A � {(p, k1 + 1)} ∈ A′ C,1

3 (w, Γ(k1)) ,

A ∈ A′ C,1
3 (w, Γ(k1)) �→ ι(A) := A \ {(p, k1 + 1)} ∈ A′ C,2

3 (w, Γ(k1)) .

This ι has the following properties:

• end(w, ι(A)) = end(w, A)(p, k1) (and hence 	end(w, ι(A))
 = 	end(w, A)
);
• |ι(A)| = |A| ± 1.

By using the involution ι, we obtain the following.

Lemma 54. Assume condition (Q). If w(1) < w(k2 + 1), and if condition (Q-A) does not 
hold, then

ew�k1
∑

A∈A′ C
3 (w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

It remains to examine cancellations for the set

A′
23(w, Γ(k1)) := A′

2(w, Γ(k1)) � A′
3(w, Γ(k1)) .

The desired involution on A′
23(w, Γ(k1)) is given as follows:

A ∈ A′
2(w, Γ(k1))

�→ ι(A) := (A \ {(p, k2 + 1), (p, k1 + 1)}) � {(k1, k1 + 1)} ∈ A′
3(w, Γ(k1)) ,

A ∈ A′
3(w, Γ(k1))

�→ ι(A) := (A \ {(k1, k1 + 1)}) � {(p, k2 + 1), (p, k1 + 1)} ∈ A′
2(w, Γ(k1)) .

This ι has the following properties:

• end(w, ι(A)) = end(w, A)(p, k1) (and hence 	end(w, ι(A))
 = 	end(w, A)
);
• |ι(A)| = |A| ± 1.

By using the involution ι, we obtain the following.

Lemma 55. Assume condition (Q). If w(1) < w(k2 + 1), and if condition (Q-A) does not 
hold, then

ew�k1
∑

A∈A′
2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

+ ew�k1
∑

′

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

A∈A3(w,Γ(k1))
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Proof of Theorem 31 (2) (a). By Lemmas 50, 52, 53, 54, and 55, we have

ew�k1
∑

A∈A2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

+ ew�k1
∑

A∈A3(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

Also, since w(1) < w(k2 + 1) < w(k1 + 1), Remark 43 implies that

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] = 0 .

These observations, together with Lemma 38, prove the desired cancellation-free iden-
tity. �
Remark 56. In the proof of Theorem 31 (2) (a), we do not use the assumption that 
w(k1) > w(n).

Now, we assume that w(k1) > w(n) and w(k2 + 1) < w(1) < w(k1 + 1), which are the 
assumptions of Theorem 31 (2) (b); note that w(1) < w(k1 + 1) < w(k1) by condition 
(Q), and hence k1 �= 1. In this case, the same proof as that of Lemma 52 yields the 
following.

Lemma 57. Assume condition (Q). If w(k2 + 1) < w(1) < w(k1 + 1), then

ew�k1
∑

A∈A3(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�] = 0 .

Remark 58. We do not need the assumption that w(k1) > w(n) for Lemma 57.

In contrast, the sum over A2(w, Γ(k1)) is cancellation-free. Indeed, let A ∈
A2(w, Γ(k1)), and set y := end(w, A \ {(k1, k2 + 1)}). Note that A \ {(k1, k2 + 1)}
contains only Bruhat steps. Hence we see that y(k2 + 1) < y(1) and y(n) < y(k1). 
Therefore, if we set z := y(k1, k2 + 1) = end(w, A), then

• z(k1) < z(1) < z(2) < · · · < z(k1 − 1),
• z(k1 + 1) < z(k1 + 2) < · · · < z(k2), and
• z(k2 + 2) < z(k2 + 3) < · · · < z(n) < z(k2 + 1);

hence, if we take cyclic permutations σ1 := (1, k1, k1 − 1, . . . , 2) and σ2 := (k2 +
1, k2 + 2, . . . , n) (if k2 + 1 = n, then we take σ2 := e), then we have 	end(w, A)
 =
end(w, A)σ1σ2. Note that these σ1 and σ2 do not depend on the choice of A. Thus, for 
A, B ∈ A2(w, Γ(k1)) with A �= B, it follows that
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	end(w, A)
 = end(w, A)σ1σ2 �= end(w, B)σ1σ2 = 	end(w, B)
 .

This, together with Remark 8, proves the following.

Lemma 59. Assume condition (Q). If w(k1) > w(n) and w(k2 + 1) < w(1) < w(k1 + 1), 
then the sum

ew�k1
∑

A∈A2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

is cancellation-free.

Remark 60. If A2(w, Γ(k1)) �= ∅ (or equivalently, if condition (Q) holds), then equa-
tion (14) shows that

ew�k1
∑

A∈A2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

= −ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)(k1,k2+1)�] .

Proof of Theorem 31 (2) (b). Since w(1) < w(k1 + 1), Remark 43 implies that

ew�k1
∑

A∈A1(w,Γ(k1))

(−1)|A|Qk1 [O�end(w,A)�] = 0 .

Hence, by Lemmas 38, 57, 59, and Remark 60, we obtain the desired cancellation-free 
formula. �

It only remains to prove Theorem 31 (3). To do so, we assume condition (Full). By 
the same argument as in the proof of Lemma 59, we see that for A ∈ A2(w, Γ(k1)), 
	end(w, A)
 = end(w, A)σ1σ2, where σ1 and σ2 are the cyclic permutations defined 
above (if k1 = 1, then we take σ1 := e). In addition, since w(k1 + 1) < w(1) by condition 
(Full) (2), it follows that end(w, A)(k1) < end(w, A)(k1 + 1) < end(w, A)(1) (if k1 = 1, 
then we need only the inequality end(w, A)(k1 + 1) < end(w, A)(1)). Therefore, for 
A ∈ A3(w, Γ(k1)) (note that A \ {(k1, k1 + 1)} ∈ A2(w, Γ(k1))), the following hold:

• end(w, A)(k1) < end(w, A)(1) < end(w, A)(2) < · · · < end(w, A)(k1 − 1),
• end(w, A)(k1 + 1) < end(w, A)(k1 + 2) < · · · < end(w, A)(k2), and
• end(w, A)(k2 + 2) < end(w, A)(k2 + 3) < · · · < end(w, A)(n) < end(w, A)(k2 + 1).

Thus we conclude that 	end(w, A)
 = end(w, A)σ1σ2, and hence that for A, B ∈
A2(w, Γ(k1)) � A3(w, Γ(k1)) with A �= B,

	end(w, A)
 = end(w, A)σ1σ2 �= end(w, B)σ1σ2 = 	end(w, B)
 .
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This, together with Remark 8, proves the following.

Lemma 61. Assume conditions (Q) and (Full). Then the sum

ew�k1
∑

A∈A2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

+ ew�k1
∑

A∈A3(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

is cancellation-free.

Remark 62. If A3(w, Γ(k1)) �= ∅ (or equivalently, if condition (Q) holds), then equa-
tion (15) shows that

ew�k1
∑

A∈A3(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

= ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)(k1,k2+1)sk1 �] .

Therefore, by Remark 60, we deduce that

ew�k1
∑

A∈A2(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

+ ew�k1
∑

A∈A3(w,Γ(k1))

(−1)|A|Qk1Qk2 [O�end(w,A)�]

= −ew�k1
∑

A∈A�(w,Γ(k1))

(−1)|A|Qk1Qk2

(
[O�end(w,A)(k1,k2+1)�] − [O�end(w,A)(k1,k2+1)sk1 �]

)
.

Proof of Theorem 31 (3). The desired identity follows from Lemmas 38, 61 and Re-
marks 46, 47, 62. �
4.5. The positivity property

We prove the positivity property of structure constants for two-step flag manifolds in 
type A, which is a corollary of Chevalley formulas (Theorems 27, 29, 31, 32, 33, and 35).

Corollary 63. Let G be of type An−1, J = I \ {k1, k2} for arbitrarily fixed 1 ≤ k1 < k2 ≤
n − 1, and k = k1 or k = k2. Then, for w, u ∈ W J and ξ ∈ Q∨,+

I\J , we have

(−1)1+�(w)+�(u)+deg(Qξ)Nu,ξ
s ,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ].
k
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Proof. We give a proof of Corollary 63 under the assumptions of Theorems 27, 29 and 
31. The positivity property under the assumptions of Theorems 32, 33, and 35 follows 
by the same arguments as those for Theorems 27, 29 and 31. Note that the positivity 
property under the assumptions of Theorems 27, 29 (1), 31 (1) (a) and (2) (a) has already 
been known because of the positivity property of Nw,0

u,v for u, v, w ∈ W J . First, it is easy 
to check (see, for example, [9, Section 3.1.5, Exercise 4]) that

2ρJ =
k1−1∑
i=1

i(k1 − i)αi +
k2−k1−1∑

i=1
i(k2 − k1 − i)αk1+i +

n−k2−1∑
i=1

i(n − k2 − i)αk2+i.

Since

〈αi, α∨
j 〉 =

⎧⎪⎪⎨
⎪⎪⎩

2 if i = j,

−1 if |i − j| = 1,

0 otherwise,

we have

2〈ρJ , α∨
k1

〉 = −(k1 − 1) − (k2 − k1 − 1) = 2 − k2,

2〈ρJ , α∨
k2

〉 = −(k2 − k1 − 1) − (n − k2 − 1) = 2 − n + k1.

In addition, we know that 2〈ρ, α∨
k1

〉 = 2. Therefore,

deg(Qk1) = 2〈ρ − ρJ , α∨
k1

〉 = −k2

deg(Qk2) = 2〈ρ − ρJ , α∨
k2

〉 = n − k1,

and hence

deg( Qk1Qk2︸ ︷︷ ︸
=Q

α∨
k1

+α∨
k2

) = 2〈ρ − ρJ , α∨
k1

+ α∨
k2

〉 = n − k1 + k2.

Let us consider the structure constants Nu,ξ
sk1 ,w with ξ �= 0 under the assumptions 

of Theorems 29 (2) and 31 (1) (b). We maintain the setting of Lemma 45 except for 
the negation of condition (Q) (see Remark 46). Take A ∈ A1(w, Γ(k1)), and set u :=
	end(w, A)
, u0 := end(w, A). Then, by the proof of Lemma 45, we have u = u0σ1σ2, 
where σ1 = (1, k1, k1 − 1, . . . , 2) and σ2 = (k1 + 1, k1 + 2, . . . , k2). Therefore, we see that

(−1)|A|ew�k1 Qk1 [O�end(w,A)�]

= (−1)�(u0)−�(w)ew�k1 Qk1 [Ou]

= (−1)(�(u0σ1σ2)−�(σ1)−�(σ2))−�(w)ew�k1 Qk1 [Ou]
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= (−1)�(u)−(k1−1)−(k2−k1−1)−�(w)ew�k1 Qk1 [Ou]

= (−1)�(w)+�(u)+k2ew�k1 Qk1 [Ou]

= (−1)�(w)+�(u)+deg(Qk1 )ew�k1 Qk1 [Ou].

We set

A1(w, Γ(k1))u := {A ∈ A1(w, Γ(k1)) | 	end(w, A)
 = u}

for u ∈ W J . Then, for u ∈ W J , we deduce from Theorems 29 (2) and 31 (1) (b) that

C
u,α∨

k1
w = ew�k1

∑
A∈A1(w,Γ(k1))u

(−1)|A| = (−1)�(u)+�(w)+deg(Qk1 )|A1(w, Γ(k1))u|ew�k1 ,

and hence that

N
u,α∨

k1
sk1 ,w = (−1)1+�(w)+�(u)+deg(Qk1 )|A1(w, Γ(k1))u|ew�k1 −�k1 .

Since w�k1 − �k1 ∈ −Q+ and hence ew�k1 −�k1 ∈ Z≥0[eγ − 1 | γ ∈ −Δ], we conclude 
that

(−1)1+�(w)+�(u)+deg(Qk1 )N
u,α∨

k1
sk1 ,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ], (17)

as desired. Equation (17), together with the positivity property of Nw,0
u,v for u, v, w ∈ W J , 

implies Corollary 63 under the assumptions of Theorems 29 (2) and 31 (1) (b).
Next, we consider the structure constants Nu,ξ

sk1 ,w with ξ �= 0 under the assumption 
of Theorem 31 (2) (b). We maintain the setting of Lemma 59. Take A ∈ A2(w, Γ(k1)), 
and set u := 	end(w, A)
, u0 := end(w, A). Then, by the proof of Lemma 59, we have 
u = u0σ1σ2, where σ1 = (1, k1, k1 − 1, . . . , 2) and σ2 = (k2 + 1, k2 + 2, . . . , n). Therefore, 
we see that

(−1)|A|ew�k1 Qk1Qk2 [O�end(w,A)�]

= (−1)�(u0)−�(w)ew�k1 Qk1Qk2 [Ou]

= (−1)(�(u0σ1σ2)−�(σ1)−�(σ2))−�(w)ew�k1 Qk1Qk2 [Ou]

= (−1)�(u)−(k1−1)−(n−k2−1)−�(w)ew�k1 Qk1Qk2 [Ou]

= (−1)�(w)+�(u)+(n−k1+k2)ew�k1 Qk1Qk2 [Ou]

= (−1)�(w)+�(u)+deg(Qk1 Qk2 )ew�k1 Qk1Qk2 [Ou].

We set

A2(w, Γ(k1))u := {A ∈ A2(w, Γ(k1)) | 	end(w, A)
 = u}
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for u ∈ W J . Then, for u ∈ W J , we deduce from Theorem 31 (2) (b) that

C
u,α∨

k1 +α∨
k2

w = ew�k1
∑

A∈A2(w,Γ(k1))u

(−1)|A|

= (−1)�(w)+�(u)+deg(Qk1 Qk2 )|A2(w, Γ(k1))u|ew�k1 ,

and hence that

N
u,α∨

k1 +α∨
k2

sk1 ,w = (−1)1+�(w)+�(u)+deg(Qk1 Qk2 )|A2(w, Γ(k1))u|ew�k1 −�k1 . (18)

Again, since ew�k1 −�k1 ∈ Z≥0[eγ − 1 | γ ∈ −Δ], we conclude that

(−1)1+�(w)+�(u)+deg(Qk1 Qk2 )N
u,α∨

k1 +α∨
k2

sk1 ,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ], (19)

as desired. Equation (19), together with the positivity property of Nw,0
u,v for u, v, w ∈ W J , 

implies Corollary 63 under the assumption of Theorem 31 (2) (b).
It remains to consider the structure constants Nu,ξ

sk1 ,w with ξ �= 0 under the assumption 

of Theorem 31 (3) and consider the structure constants Nu,ξ
sk1 ,w for ξ �= 0. The positivity 

property in the case ξ = α∨
k1

has already been proved by equation (17). Hence it suffices 
to consider the case ξ = α∨

k1
+ α∨

k2
. We maintain the setting of Lemma 61. We set

A23(w, Γ(k1))u := {A ∈ A2(w, Γ(k1)) � A3(w, Γ(k1)) | 	end(w, A)
 = u}

for u ∈ W J . Then, by the same argument as that for equation (18), we deduce from 
Theorem 31 (3) that

N
u,α∨

k1
+α∨

k2
sk1 ,w = (−1)1+�(w)+�(u)+deg(Qk1 Qk2 )|A23(w, Γ(k1))u|ew�k1 −�k1 ,

and hence conclude that

(−1)1+�(w)+�(u)+deg(Qk1 Qk2 )N
u,α∨

k1
+α∨

k2
sk1 ,w ∈ Z≥0[eγ − 1 | γ ∈ −Δ], (20)

as desired. Equations (17), (20), together with the positivity property of Nw,0
u,v for 

u, v, w ∈ W J , imply Corollary 63 under the assumption of Theorem 31 (3). This com-
pletes the proof of the corollary. �
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Appendix A. Another proof of the existence of the multiplicative surjection ΦJ

In this appendix, we mainly use the notation of Section 2.3. In addition, we set 
QKpoly

T (G/B) := KT (G/B) ⊗Z[Λ] Z[Λ][Q], where Z[Λ][Q] is the polynomial ring with 
coefficients in Z[Λ] in the (Novikov) variables Qi = Qα∨

i , i ∈ I; also, for an arbitrary 
subset J ⊂ I, we set QKpoly

T (G/PJ) := KT (G/PJ) ⊗Z[Λ]Z[Λ][QK ], with K := I\J , where 
Z[Λ][QK ] is the polynomial ring with coefficients in Z[Λ] in the variables Qk, k ∈ K. It 
is known (see [10]) that there exists a surjective Z[Λ]-algebra homomorphism ΦJ from 
QKpoly

T (G/B) onto QKpoly
T (G/PJ) such that ΦJ(Qξ[Ow]) = Q[ξ]J [O�w�

J ] for w ∈ W and 
ξ ∈ Q∨,+, where [ξ]J :=

∑
k∈I\J ckα∨

k for ξ =
∑

i∈I ciα
∨
i ∈ Q∨,+. In this appendix, 

based on results in [6], we give another (short) proof of the existence of such a Z[Λ]-
algebra homomorphism. First of all, we note that QKpoly

T (G/B) is a Z[Λ]-subalgebra of 
QKT (G/B) = KT (G/B) ⊗Z[Λ] Z[Λ]�Q� by [6, Corollary 1.2].

Let us briefly recall the main result of [6]. Following [6], let GrG denote Pressley-
Segal’s model of the affine Grassmannian associated to a simple and simply-connected 
complex Lie group G; more precisely, let GrG be the space of polynomial based loops in 
a (fixed) maximal compact subgroup of G, equipped with an ind-variety structure (see 
[26, Chapter 8] for details). We denote by KT (GrG) the T -equivariant K-homology (in 
the topological sense) of the affine Grassmannian GrG, equipped with the Pontryagin 
product � coming from the group product on the topological group GrG. Then, we 
have two bases. One is a basis (called the localization basis) Oξ := [Oxξ

], ξ ∈ Q∨, 
of KT (GrG) over Frac(Z[Λ]), where xξ is the T -fixed point of GrG corresponding to 
the cocharacter of T associated to ξ ∈ Q∨. More precisely, if we consider the Z[Λ]-
algebra 

⊕
ξ∈Q∨ Frac(Z[Λ])Oξ equipped with the product � defined by Oξ1 � Oξ2 :=

Oξ1+ξ2 , ξ1, ξ2 ∈ Q∨, then we have an injective Z[Λ]-algebra homomorphism KT (GrG) ↪→⊕
ξ∈Q∨ Frac(Z[Λ])Oξ which fixes every Oξ. Another is indeed a basis of KT (GrG) over 

Z[Λ] given as follows. Let Waf = W � Q∨ be the affine Weyl group of G, and let W 0
af

denote the set of minimal-length coset representatives for Waf/W . We know from [23, 
Section 3] that an element wtξ ∈ Waf , with w ∈ W and ξ ∈ Q∨, lies in W 0

af if and 
only if ξ ∈ Q∨ is anti-dominant and w is of minimal length in its coset wWξ in W/Wξ, 
where Wξ ⊂ W is the stabilizer of ξ in W ; note that if ξ ∈ Q∨ is anti-dominant, then 
ξ ∈ −Q∨,+. In particular, if ξ ∈ Q∨ is regular anti-dominant, then wtξ ∈ W 0

af for all 
w ∈ W . For each wtξ ∈ W 0

af , there exists a complex cell (called an affine Schubert cell) 
in GrG containing the T -fixed point xwξ ∈ GrG of finite dimension; the class of the 
structure sheaf of the Zariski closure of this cell is denoted by Owtξ

, and is called the 
affine Schubert class associated to wtξ ∈ W 0

af . Then we know that the classes Owtξ
, 

wtξ ∈ W 0
af , form a Z[Λ]-basis of KT (GrG).

Now the main result of [6] is stated as follows.

Theorem 64 ([6, Theorem 1.1]). Let J be an arbitrary subset of I. Then, there exists a
Z[Λ]-algebra homomorphism
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ΨJ : KT (GrG) → QKT (G/PJ)[(Q∨,+)−1],

where QKT (G/PJ)[(Q∨,+)−1] denotes the localization of QKT (G/PJ) with respect to the 
monomials in the Novikov variables Qi = Qα∨

i , i ∈ I. Moreover, ΨJ(Owtξ
) = Q[ξ]J [O�w�

J ]
for each wtξ ∈ W 0

af , where [ξ]J =
∑

k∈I\J ckα∨
k for ξ =

∑
i∈I ciα

∨
i ∈ Q∨, and [O�w�

J ]
denotes the (opposite) Schubert class in KT (G/PJ) associated to the minimal-length coset 
representative 	w
 ∈ W J for the coset wWJ in W/WJ .

Note that in the case J = ∅, i.e., PJ = B, the Z[Λ]-algebra homomorphism Ψ := Ψ∅ is 
injective since the affine Schubert classes Owtξ

, wtξ ∈ W 0
af , form a Z[Λ]-basis of KT (GrG)

and Ψ([Owtξ
]) = Qξ[Ow].

We will construct a surjective Z[Λ]-algebra homomorphism ΦJ from QKpoly
T (G/B) to 

QKpoly
T (G/PJ) such that ΦJ(Qξ[Ow]) = Q[ξ]J [O�w�

J ] for w ∈ W and ξ ∈ Q∨,+, where 
[ξ]J =

∑
k∈I\J ckα∨

k for ξ =
∑

i∈I ciα
∨
i ∈ Q∨,+. We first note that for each element 

v ∈ QKpoly
T (G/B) = KT (G/B) ⊗Z[Λ] Z[Λ][Q], there exists a sufficiently regular anti-

dominant coroot η ∈ −Q∨,+ such that Qη v ∈ QKT (G/B)[(Q∨,+)−1] lies in the image 
of the map Ψ, i.e., Qη v ∈ Ψ(KT (GrG)); by the injectivity of Ψ, there exists a unique 
u ∈ KT (GrG) such that Ψ(u) = Qη v. Indeed, we may assume that v = Qξ[Ow] for some 
w ∈ W and ξ ∈ Q∨,+ since each v ∈ QKpoly

T (G/B) is, by its definition, a finite linear 
combination with coefficients in Z[Λ] of such elements. Hence we can take a sufficiently 
regular anti-dominant coroot η ∈ Q∨ such that ξ +η ∈ Q∨ is also regular anti-dominant; 
note that we have η ∈ −Q∨,+ since η ∈ Q∨ is anti-dominant. We set u := Owtξ+η

, 
where wtξ+η lies in W 0

af since ξ + η ∈ Q∨ is regular anti-dominant. Then it follows that 
Ψ(u) = Qη v by Theorem 64. Now we define ΦJ (v) := Q[−η]J ΨJ (u) ∈ QKT (G/PJ). 
We can easily verify that the element Q[−η]J ΨJ (u) does not depend on the choice of 
(a sufficiently regular anti-dominant coroot) η ∈ −Q∨,+, and hence that ΦJ is a well-
defined surjective Z[Λ]-module homomorphism from QKpoly

T (G/B) onto QKpoly
T (G/PJ). 

Indeed, if v = Qξ[Ow] with w ∈ W and ξ ∈ Q∨,+, then ΦJ(Qξ[Ow]) = Q[ξ]J [O�w�
J ].

Also, for v1, v2 ∈ QKpoly
T (G/B), we can take sufficiently regular anti-dominant coroots 

η1, η2 ∈ −Q∨,+ such that Qη1 v1, Qη2 v2 ∈ Ψ(KT (GrG)); hence there exist uniquely 
u1, u2 ∈ KT (GrG) such that Ψ(u1) = Qη1 v1 and Ψ(u2) = Qη2 v2. Since Ψ = Ψ∅ is a Z[Λ]-
algebra homomorphism, we have Qη1+η2(v1 · v2) = (Qη1 v1) · (Qη2 v2) = Ψ(u1) · Ψ(u2) =
Ψ(u1 � u2) in QKT (G/B)[(Q∨,+)−1], where u1 � u2 ∈ KT (GrG). Therefore, we see that 
ΦJ (v1 · v2) = Q[−η1−η2]J ΨJ(u1 � u2) = Q[−η1−η2]J (ΨJ (u1) · ΨJ(u2)) = (Q[−η1]J ΨJ (u1)) ·
(Q[−η2]J ΨJ ) = ΦJ(v1) · ΦJ (v2) in QKT (G/PJ)[(Q∨,+)−1] since ΨJ is a Z[Λ]-algebra 
homomorphism. This proves that the map ΦJ is a Z[Λ]-algebra homomorphism from 
QKpoly

T (G/B) to QKpoly
T (G/PJ), as desired.

Finally, since [Osi ] = 1 − e−�i [OG/B(−�i)] in KT (G/B) for all i ∈ I and 
[Osk ] = 1 − e−�k [OG/PJ

(−�k)] in KT (G/PJ) for all k ∈ K = I \ J , it follows 
that ΦJ([OG/B(−�k)]) = [OG/PJ

(−�k)], and hence that ΦJ([Ow] · [OG/B(−�k)]) =
ΦJ ([Ow]) · ΦJ([OG/B(−�k)]) = [O�w�

J ] · [OG/PJ
(−�k)] for all k ∈ K = I \ J .

Thus, we have given a proof of the following fact; cf. Theorem 6, due to Kato ([10]).
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Corollary 65. Let J be an arbitrary subset of I. Then, there exists a surjective Z[Λ]-
algebra homomorphism

ΦJ : QKpoly
T (G/B) → QKpoly

T (G/PJ)

such that ΦJ(Qξ[Ow]) = Q[ξ]J [O�w�
J ] for w ∈ W and ξ ∈ Q∨,+. Also, for each k ∈ K =

I \ J , the following equality holds for all w ∈ W :

ΦJ([Ow] · [OG/B(−�k)]) = [O�w�
J ] · [OG/PJ

(−�k)].

Appendix B. Weihong Xu’s conjecture about a cancellation-free parabolic Chevalley 
formula in type A (with Weihong Xu)

In this appendix, we mention the relation between our results and a conjecture due 
to Weihong Xu, which is expected to be a cancellation-free Chevalley formula in type A
for an arbitrary subset J ⊂ I.

Let G be of type An−1. Take 1 ≤ k1 < k2 < · · · < km ≤ n − 1, and set J :=
I \ {k1, . . . , km}. In this case, the partial flag manifold G/PJ is isomorphic to the m-step 
flag manifold Fl(k1, . . . , km; n), defined as:

Fl(k1, . . . , km; n) :=
{

(V1, . . . , Vm)
∣∣∣∣ Vl, l = 1, . . . , m, is a subspace of Cn such that 

dim Vl = kl, and V1 ⊂ V2 ⊂ · · · ⊂ Vm

}
.

For a directed path

p : w0
γ1−→ w1

γ2−→ · · · γr−→ wr

in QB(W ), we define �(p) ≥ 0, end(p) ∈ W , and wt(p) ∈ Q∨,+ by

�(p) := r,

end(p) := wr,

wt(p) :=
∑

1≤k≤r
wk−1→wkis a quantum edge

γ∨
k .

Also, for 1 ≤ a ≤ n − 1, the quantum a-Bruhat graph QBa(W ) is defined to be the 
subgraph of QB(W ) having only those edges whose labels are of the form (i, j) such that 
i ≤ a < j. In addition, we define a total order � on Φ+ as follows: for 1 ≤ i < j ≤ n and 
1 ≤ k < l ≤ n, we define (i, j) � (k, l) if (j > l) or (j = l and i < k).

Xu formulated the following conjecture on a cancellation-free Chevalley formula for 
QK(G/PJ), the non-equivariant quantum K-theory of G/PJ , and checked it for all 
partial flag manifolds with n ≤ 8 and m ≤ 4 using a computer program.
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Conjecture 66 (Weihong Xu). In QK(G/PJ), for w ∈ W J , the following cancellation-
free formula holds:

[Oskl ] · [Ow] =
∑

p
(−1)�(p)−1Q[wt(p)]J

[O�end(p)�], (21)

where the sum on the right-hand side is over all non-empty paths p in QBkl
(W ) of the 

form

p : w = w0
(i1,j1)−−−−→ w1

(i2,j2)−−−−→ · · · (ir,jr)−−−−→ wr

such that

(1) (i1, j1) � (i2, j2) � · · · � (ir, jr),
(2) for each 0 ≤ t ≤ r (regarding as k0 = 0 and kn+1 = n) and an edge v

(i,j)−−−→ w in p,
• there does not exist any path of the form v

(i,j′)−−−→ w′ in QBkl
(W ) such that 

kt + 1 ≤ j < j′ ≤ kt+1,
• there does not exist any path of the form v

(i′,j)−−−→ w′ in QBkl
(W ) such that 

kt + 1 ≤ i′ < i ≤ kt+1,
(3) if there are two edges (i,j)−−−→ and 

(i,j′)−−−→ in p such that (i, j) � (i, j′), then there exists 
1 ≤ t ≤ n − 1 such that j′ ≤ kt < j,

(4) if there are two edges (i,j)−−−→ and 
(i′,j)−−−→ in p such that (i, j) � (i′, j), then there exists 

1 ≤ t ≤ n − 1 such that i ≤ kt < i′.

We now compare Xu’s conjectural formula in the case m = 2 with our cancellation-
free Chevalley formula for two-step flag manifolds. For w ∈ W J , we obtain the following 
formula in QK(G/PJ) by applying the surjection ΦJ to equation (4) and specializing at 
eμ = 1 for μ ∈ Λ:

[O(−�k1)] · [Ow] =
∑

A∈A(w,Γ(k1))

(−1)|A|Q[down(w,A)]J

[O�end(w,A)�]

=
∑

p
(−1)�(p)Q[wt(p)]J

[O�end(p)�],

where the sum 
∑

p is over all (possibly empty) directed paths in QBk1
(W ) satisfying (1) 

in Conjecture 66. By the formula [Osk1 ] = 1 − [O(−�k1)] in QK(G/PJ), we deduce that

[Osk1 ] · [Ow] =
∑

p
(−1)�(p)−1Q[wt(p)]J

[O�end(p)�],

where the sum 
∑

p is over all non-empty directed paths in QBk1
(W ) satisfying (1) in 

Conjecture 66. Here, we can construct certain involutions among non-empty directed 
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paths satisfying (1) but not (2), and those satisfying (1) but not (3) or (4). Furthermore, 
we can verify that such involutions agree with those constructed in Section 4 by direct 
calculation. Hence we deduce that equation (21) coincides with our cancellation-free 
Chevalley formula (Theorems 27, 29, and 31). We can also consider the product [Osk2 ] ·
[Ow] by using the diagram automorphism ω and the result above for the product [Osk1 ] ·
[Ow]. In addition, we can verify that Xu’s conjectural formula (21) coincides with our 
Chevalley formula for Grassmannians of type A (Theorem 15) in the same way as above.
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