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1. Introduction

Y.-P. Lee defined the (small) quantum K-theory of a smooth projective variety X,
denoted by QK (X) (see [13], and also [8]). This is a deformation of the ordinary K-ring
of X, analogous to the relation between quantum cohomology and ordinary cohomology.
The deformed product is defined in terms of certain generalizations of Gromov-Witten
invariants (i.e., the structure constants in quantum cohomology), called quantum K-
invariants of Gromov-Witten type.

Given a simply-connected simple algebraic group G over C, with Borel subgroup B,
and maximal torus T C B, we consider the corresponding flag manifold G/B, the T-
equivariant K-theory Kr(G/B), and the T-equivariant quantum K-ring QK7 (G/B) :=
K1 (G/B)®z a1 Z[A][Q], where Z[A][Q] is the ring of formal power series with coefficients
in Z[A] in the (Novikov) variables Q; = Qi , i € I, with I the index set for the simple
roots a; of G5 QK1 (G/B) has a Z[A][Q]-basis given by the classes [O™] of the structure
sheaves of the (opposite) Schubert varieties X C G/B indexed by the elements w
of the Weyl group W = (s; := sqo, | # € I) of G. Also, given a (standard) parabolic
subgroup P; D B corresponding to a subset J, we also consider the partial flag manifold
G/ Py, the T-equivariant K-theory K (G/Py), and the T-equivariant quantum K-ring
QKr(G/Py) := Kr(G/Pj)®@zn Z[A][QK], where Z[A][Qk] is the ring of formal power
series with coefficients in Z[A] in the (Novikov) variables Qy, k € K := I\J; QK1(G/Py)
has a Z[A][Qk]-basis given by the (opposite) Schubert classes [0Y], for y € W7, where
W denotes the set of minimal-length coset representatives for the cosets in W/Wj,
where W; := (s; | j € J) C W. A Chevalley formula (in cohomology, K-theory, or
their quantum versions) expresses the Schubert basis expansion of the product between
an arbitrary Schubert class and the class of a line bundle, or a Schubert class indexed
by a simple reflection (i.e., a divisor class). Having an explicit Chevalley formula in
the quantum K-ring of an arbitrary flag manifold is important because this algebra
is uniquely determined by products with divisor classes [4], together with its Kr(pt)-
module structure; here, Kr(pt) = R(T), the representation ring of T, is identified with
the group algebra Z[A] of the weight lattice A of G.

A cancellation-free Chevalley formula in the T-equivariant quantum K-theory of G/B
was recently given in [19] (see also [20]); cf. the related conjecture in [22]. This formula is
expressed in terms of the so-called quantum alcove model, which was introduced in [17].
It generalizes the formula in the T-equivariant K-theory of G/B in [22], which can easily
be restricted to the partial flag manifold G/P; for J C I. However, such a restriction
does not work in quantum K-theory, because of the lack of functoriality. In contrast,
we know (see [10]) that for a subset J C I, the (Z[A]-linear) push-forward (7).
Kr(G/B) — Kr(G/Pj), induced by the natural projection 7y : G/B — G/P; with
Pj the (standard) parabolic subgroup of G corresponding to J, yields a surjective Z[A]-
module homomorphism from QK:I;Oly(G/B) = K7(G/B) ®za) Z[A][Q] C QK1 (G/B)
onto QKN (G/Py) = Kr(G/Py) ®z(a] Z[A])[Qk] such that
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(10" [Og/p(~wi))) = [01] - [0, p, (—=)]

for w e W and k € K :=1I\J, where Og,g(—wy) (resp., Og,p,(—w)) denotes the G-
equivariant line bundle G xZ C,, over G/B (resp., G x7 C, over G/Pj) corresponding
to the one-dimensional representation C, of B (resp., Py) of weight @y, and |w| denotes
the minimal-length coset representative for the coset wWy in W/Wy; here, Z[A][Q] (resp.,
Z[A][QK]) is the polynomial ring with coefficients in Z[A] in the (Novikov) variables Q;,
i €1, (resp., Qp, ke K=T1T\J).

Originally, in [10], the fact above was proved by using the relationship between the T-
equivariant K-group of a (full or partial) semi-infinite flag manifold and the T-equivariant
quantum K-theory of a (full or partial) flag manifold. Here we should mention that
the existence of the surjective Z[A]-algebra homomorphism ®; can also be verified by
using the K-theoretic analog, conjectured in [18], of the Peterson homomorphism (K-
Peterson homomorphism for short), which is a homomorphism of Z[A]-algebras from the
K-homology of the affine Grassmannian to (the localization, with respect to the positive
part QY of the coroot lattice QV, of) the quantum K-ring of G/P;; a (new) proof of
the existence of the K-Peterson homomorphism has been given recently by [6]. Indeed,
as stated in the proof of [6, Lemma 2.12], under the K-Peterson homomorphism (which
is a Z[A]-algebra homomorphism) in the case of the Borel subgroup B, the classes of
the structure sheaves of Schubert varieties in the affine Grassmannian indexed by the
minimal-length coset representatives for Wae /W, with Wy the affine Weyl group and
W the finite Weyl group, are sent injectively to the corresponding (opposite) Schubert
classes in QK7 (G/B) multiplied by explicit monomials in the Novikov variables corre-
sponding to anti-dominant coroots in —QY>". Hence, by composing the inverse of the
K-Peterson homomorphism in the case of B with the K-Peterson homomorphism (which
is also a Z[A]-algebra homomorphism) in the case of P; D B, we obtain the desired sur-
jective Z[A]-algebra homomorphism ®;; here we use the fact that all the (opposite)
Schubert classes will lie in the image of the K-Peterson homomorphism in the case of B
if we multiply them by a monomial in the Novikov variables corresponding to a (fixed)
regular anti-dominant coroot in —@Q"'T. The details of these arguments are explained in
Appendix A.

In this paper, on the basis of the fact above, we derive cancellation-free Chevalley
formulas in the T-equivariant quantum K-ring QK1 (G/Py) of the partial flag manifold
G /Py, where P; D B is the (standard) parabolic subgroup of G corresponding to J C I
in the following two cases: (i) G is of type A or C and J = I'\{k} for k € I; (ii) G is of type
A and J = I\ {kq, ko} for k1, ko € I with ky # ka. More precisely, the mentioned Cheval-
ley formulas express the quantum multiplication in QK7 (G/Pjy) with the class of the line
bundle associated to the anti-dominant fundamental weight —wy, for k € I'\ J. Our strat-
egy is the following: start with the Chevalley formula for QK2 (G/B) ¢ QK1 (G/B)
in [19]; apply the Z[A]-module surjection ®; : QK2 (G/B) — QK2 (G/Py) (which
respects quantum multiplications) above; perform all cancellations, which arise via a
sign-reversing involution. In addition, as an application of our Chevalley formulas, we
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prove the positivity property of certain structure constants of the quantum K-ring of a
Grassmannian of type C and that of a two-step flag manifold of type A, as well as that
for an arbitrary full flag manifold.

The resulting Chevalley formulas for Grassmannians of types A and C' and also those
for two-step flag manifolds of type A are no longer uniform, and they might also involve
several cases. This fact validates our approach of deriving them from the uniform formula
for G/B. Note that, in many cases, the opposite approach works better, namely the
formulas for Grassmannians are obtained first, because they are easier.

We now compare our work with two related papers. In [12], a quantum K-theory
Chevalley formula is given in QK¢ (G/Py), where J = I\ {k}, for the line bundle
associated to —wy, assuming that wy is a minuscule fundamental weight in type A, D,
E, or B. The formulas are expressed in terms of the quantum Bruhat graph (on which
the quantum alcove model is based). The approach in the present paper is simpler, and
has the advantage of being easier to be extended to other partial flag manifolds; in fact,
we also obtain a quantum K-theory Chevalley formula for two-step flag manifolds of
type A. On another hand, the Chevalley formulas in [4] for cominuscule varieties are of a
different nature than the corresponding cases of the formulas in this paper. Indeed, the
role of the quantum Bruhat graph is not transparent in [4].
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2. Background

Consider a simply-connected simple algebraic group G over C, with Borel subgroup B,
and maximal torus T'. Let g be the corresponding finite-dimensional simple Lie algebra
over C, and W its Weyl group, with length function denoted by £(-). Let ®, T, and &~
be the set of roots, positive roots, and negative roots of g, respectively, and let A be the
corresponding weight lattice. Let ay;, ¢ € I, be the simple roots, A := {«; | i € I} the set
of all simple roots, # the highest root, and « the coroot associated to the root o. The
reflection corresponding to « is denoted, as usual, by s,, and we let s; := s4,, @ € I, be
the simple reflections. Set p:= (1/2) ) o+ @

Let J be a subset of I. We denote by W := (s; | ¢ € J) the parabolic subgroup of W
corresponding to J, and we identify W/W; with the corresponding set of minimal coset
representatives, denoted by W7; note that if J = (), then W7 = W? is identical to W.
For w € W, we denote by |w]| = |w]’ € W the minimal coset representative for the
coset wWy in W/W.



T. Kouno et al. / Journal of Algebra 645 (2024) 1-53 5

2.1. The quantum Bruhat graph

We start with the definition of this graph, which plays a fundamental role in our
combinatorial model.

Definition 1. The quantum Bruhat graph QB(W) is the ®T-labeled directed graph whose

vertices are the elements of W, and whose directed edges are of the form: w Ly v for
w,v € W and 3 € &1 such that v = wsg, and such that either of the following holds:
(i) £(v) = L(w) + 1; (ii) £(v) = L(w) + 1 —2(p, BY). An edge satisfying (i) (resp., (ii)) is
called a Bruhat (resp., quantum) edge.

In [5], it is proved that the quantum Bruhat graph QB(W) has the following property
(called the shellability): for all z,y € W, there exists a unique directed path from in
QB(W) from z to y whose edge labels are increasing with respect to an arbitrarily fixed
reflection order on ®7.

We recall an explicit description of the edges of the quantum Bruhat graphs of types
A and C. These results generalize the well-known criteria for covers of the Bruhat order
in these cases [3].

In type A,_1, the Weyl group elements (i.e., permutations) w € W(4,-1) = S,
are written in one-line notation w = [w(1),...,w(n)]. For simplicity, we use the same
notation (i, ) with 1 <14 < j < n for the root a;; and the reflection s,,,, which is the
transposition ¢;; of ¢ and j. We have § = (1,n). We recall a criterion for the edges of the
type A,—1 quantum Bruhat graph. We need the circular order <; on [n] starting at 4,
namely ¢ <; i+ 1<; -+ <;n<; 1 <; -+ <; 14— 1. It is convenient to think of this order
in terms of the numbers 1,...,n arranged clockwise on a circle, in this order. We make
the convention that, whenever we write a < b < ¢ < ---; i.e., the leftmost of the chain
a <b<c=<--- we are writing is a, we refer to the circular order <==<,.

Proposition 2 ([15]). For w € S,, and 1 < i < j < n, we have an edge w GEN w(i, j) if
and only if there is no k such that i < k < j and w(i) < w(k) < w(j).

If there is a position k as above, we say that the transposition of w(i) and w(j)
straddles w(k). We also let w[i, j] := [w(i),w(i + 1), - ,w(j)]. We continue to use this
terminology and notation for the other classical types.

The Weyl group of type C,, is the group of signed permutations. These are bijections w
from [A] == {1 <2<---<n<A<n—1<--- <1} to [7] satisfying w(7) = w(i). Here
7 is viewed as —i, so 7 = 1, [1| = i, and sign(z) = —1. We use both the window notation
w = [w(1),...,w(n)] and the full one-line notation w = [w(1),...,w(n),w(®),...,w(1)]
for signed permutations. For simplicity, given 1 < i < j < n, we denote by (i,j) the
root €; — ; and the corresponding reflection, which is identified with the composition
of transpositions t;;t7. Similarly, for 1 < i < j < n, we denote by (¢,7) = (4,7) the
root €; + €; and the corresponding reflection, which is identified with the composition
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of transpositions ¢;;t;;. Finally, we denote by (4,7) the root 2¢; and the corresponding
reflection, which is identified with the transposition t;. We have 8 = (1, 1).

We now recall the criterion for the edges of the type C), quantum Bruhat graph. We
need the circular order <; on [7] starting at ¢, which is defined similarly to the circular
order on [n], by thinking of the numbers 1,2,...,n,7,n — 1,...,1 arranged clockwise on
a circle, in this order. We make the same convention as above that, whenever we write
a<b=<c=<---, werefer to the circular order <==,.

Proposition 3 (/15]). Let w € W(C,,) be a signed permutation.

(1) Given 1 <i < j<n, we have an edge w (l—]; w(i, j) if and only if there is no k such
that i < k < j and w(i) < w(k) < w(j).

(2) Given 1l <i < j <n, we have an edge w G if and only if w(i) < w(3), sign(w(i)) =
sign(w(3)), and there is no k such that i < k <7 and w(i) < w(k) < w(7).

(3) Given 1 <i < n, we have an edge w G w(i,7) if and only if there is no k such that
i <k <7 (or, equivalently, i < k <n) and w(i) < w(k) < w(7).

2.2. The quantum alcove model

We need basic notions related to the combinatorial model known as the alcove model,
which was defined in [22]. In particular, we need the notion of a A-chain of roots, where
A is a weight. In this section, we recall definitions of these notions from [22].

Let A be the weight lattice of G and set hi := A®zR. For o € ® and k € Z, we define
a hyperplane Hq 1, by Ho ik := {€ € b | (£, @) = k}. We denote by sg, 8 € ® and
k € Z, the reflection with respect to H, ;. Then, an alcove is defined to be a connected
component of the space

b]ik{\ U Hoe,k-

acd, keZ

If two alcoves A and B have a common wall, then A and B are said to be adjacent. Let
us take adjacent alcoves A and B. If the common wall of A and B is contained in a
hyperplane H, j for some o € ® and k € Z, and the vector o points a direction from
A to B, then we write A % B. We define a specific alcove A, called the fundamental
alcove, by

Ao ={¢ebr| (& aY)y>0foralla € T},
In addition, for A € A, we define an alcove Ay by Ay := Ao+ A={+ X | &€ A}

Definition 4 (/22, Definitions 5.2 and 5.4)).
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(1) An alcove path is a sequence (Ao, A1, ..., Apn) of alcoves such that for each 0 < k <
m — 1, Ax and Ak are adjacent. If an alcove path IT = (Ao, ..., A,,) is shortest
among all alcove paths from Ag to A,,, we say that II is reduced.

(2) Let A € A. A \-chain of roots is a sequence I' = (31, ..., Bn) of roots such that there
exists an alcove path IT = (A, = Ao, ..., A = A_)) such that

Ag 2P oA, Py e g

If T is reduced, then we also say that I' is reduced.

Let A € A. Take a A-chain I' = (f,...,8n) and corresponding alcove path
(Ao, ..., Apm). Set 1, := sg,, i = 1,...,m. Below, we present an explicit description
of the chains of roots corresponding to the anti-dominant fundamental weights in the
classical types, i.e., A = —wy.

We also need to recall the more general quantum alcove model [17]. We refer to [19,
Section 3.2] for more details. In the next definition, we use the following notation: for
p e,

18] = B ifBedt,
=B ifpecd.

Definition 5 (/17]). A subset A = {j1 < jo <---<js} of [m] := {1,...,m} (possibly
empty) is a w-admissible subset if we have the following directed path in the quantum
Bruhat graph QB(W):

|/6j1‘ szl ‘ﬁjal |ﬁjs‘

M(w,A):  w—— wrj, —— Wrj,rj, —> - —— wr;,rj, ---r;, = end(w, A).

We denote by A~ the subset of A corresponding to quantum steps in II(w, A). Let
A(w, T") be the collection of all w-admissible subsets corresponding to the A-chain I', and
A< (w,T) its subset consisting of all those A with A~ = 0 (i.e., I[I(w, A) is a saturated
chain in Bruhat order). For convenience, we identify an admissible subset J = {j; <

- < js with the corresponding sequence of roots {8;,,...,5;,} in the A-chain ' (in
case of multiple occurrences of a root in I', we specify which one is considered). Also, we
define statistics down(w, A) for A € A(w,T") as follows:

down(w, A) Z 181"

JjEA—

In addition, let Hg, —;,, j = 1...m, be the hyperplane containing the common wall of
A;_1 and A;. Then we define wt(w, A) by

wt(w, A) 1= —WSg; 1y, Sja—1;, (=N).
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We use the same notation as in Section 2.1, and we start with type A, _1. It is proved
in [22, Corollary 15.4] that, for any k = 1,...,n — 1, we have the following reduced
(—wy)-chain of roots, denoted by I'(k) (note that all the roots in this (—wy)-chain are
negated for simplicity of notation, and hence they are all positive roots):

((L,n), (L,n—=1), ..., (LLk+1),
(2,n), (2,n—1), , (2,k+1), (1)
(k,n), (k,n—-1), ..., (kk+1)).

In type A,—1, we have the (Dynkin) diagram automorphism
wiln=1—=>n-1, l—n-1L

By applying the diagram automorphism w to I'(n—k), we obtain another reduced (—wy)-
chain (with all the roots negated), denoted by I'*(k):

( (1,n), (2,n), ey (k)
(Ln—=1), 2n-1), ..., (k,n—1),
(Lk+1), @k+1), .o (kE+1)).
In type Cp, let
D(k) :=T5-- T3y (k) Ti(k), (2)

where

%= ((1,7),(2,7),...,(G—17),

Fj(k) = ((Lj)v (2aj)a ) (J - 175),
(. k+1), (G,k+2), ..., (4,n), 3)
(j’j)’
(j,n), (Jymn—=1), ..., (J,k+1)).

It is proved in [14, Lemma 4.1] that I'(k) is a reduced (—wyg)-chain (with all the roots
negated), for 1 <k <n.

2.83. The quantum K-theory of flag manifolds

In order to describe the (small) T-equivariant quantum K-ring QK¢ (G/B), for the
finite-dimensional flag manifold G/ B, we associate a variable Q; to each simple coroot .,
and set Z[Q] := Z[Q; | i € 1], Z[Q] := Z[Q; | i € I]; for each £ =", ; d;jy in Q¥
we set Q° =[], Q% Also, we set Z[A][Q] == Z[A]®z Z[Q], Z[A][Q] := Z[A] ®z Z[Q],
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where Z[A] is the group algebra of the weight lattice A of G, and is identified with the
representation ring R(T') = Kr(pt). Following [13] (and also [8]), we define the quantum
K-ring QK7 (G/B) to be the Z[A][Q]-module K7(G/B) ®@za] Z[A][Q], equipped with
the quantum product x given in terms of quantum K-invariants of Gromov-Witten type.
The quantum K-ring QK7 (G/B) has a Z[A][Q]-basis given by the classes [O"] of the
structure sheaves of the (opposite) Schubert varieties X* C G/B of codimension ¢(w),
for w e W.

We consider the maximal (standard) parabolic subgroup Py D B of G correspond-
ing to the subset J := I\ {k}, for some k € I. The T-equivariant quantum K-ring
QK7 (G/Py) of the partial flag manifold G/ Py is defined as Kr(G/Py) ®za) Z[A][Q#],
where Kp(G/Py) is the T-equivariant K-theory of G/Py, and Z[A][Qx] is the ring of
formal power series with coefficients in Z[A] in the single (Novikov) variable Q) = Q¥
corresponding to the simple coroot o). The (opposite) Schubert classes [0Y], fory € W,
form a Z[A][Q]-basis.

We also consider the (standard) parabolic subgroup P; D B of G corresponding to
the subset J := I\ {k1,k2}, for some ki,ky € I with k; # ko. In this case, the T-
equivariant quantum K-ring QK7 (G/Py) is defined as K7 (G/Py) ®@za) Z[A][Qr, s Qk, ]
where Z[A][Qk, , Qk,] is the ring of formal power series with coeflicients in Z[A] in the two
(Novikov) variables Qy,, Qk,. As in the maximal parabolic case, the (opposite) Schubert
classes [0Y], for y € W, form a Z[A][Qk, , Qk,]-basis.

For an arbitrary subset J C I, let 7; : G/B — G/P; be the natural projection,
and let (7). : Kp(G/B) — Kp(G/Py) denote the induced push-forward, which is
Z[A]-linear. Also, it is well-known that w;([O"]) = [OLL,wJ] for each w € W, where
|w] denotes the minimal-length coset representative for the coset wWj in W/Wj, and
that 7;([Oq/p(—wi)]) = [Og/p,(—wr)] for k € K = I\ J (see, for example, [24,
Section 9.2]); recall that Og/p(—wy) (resp., Oq/p,(—wk)) denotes the G-equivariant
line bundle G xB C,, over G/B (resp., G x¥7 C, over G/P;) corresponding to
the one-dimensional representation C,, of B (resp., Py) of weight wj;. Now, we set
QKP™(G/B) = Kr(G/B) @z ZIN[Q] C QKr(G/B), and QKE™(G/P;) =
K1 (G/Pj) ®zia] ZIA][QKk], where Z[A][Qk] is the ring of polynomials with coeffi-
cients in Z[A] in the (Novikov) variables Q; = Q*, k € K := I\ J. Based on the
finiteness result on the quantum multiplication in QK7 (G/Py) with the line bundle
classes [Og/p,(—wy)] for k € K = I\ J (see also [1]), Kato proved (see [10]) that the
(Z[A)-linear) push-forward (7;). : Kr(G/B) — Kr(G/Py) induces a surjective Z[A]-
module homomorphism & : QKPY(G/B) — QKLY (G/Py) such that for w € W and
ke K =1\ J, the following equality holds:

©;([0"] - [Og/p(~=p)]) = [05] - [Og,p, (—=1)],

by defining ®;(Q%) := Q) for each £ € QY+, where [€]7 = Zkel\JCkO‘Z for £ =
Yier G € QY. Namely, Kato proved the following.
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Theorem 6 (/10]). Let J be an arbitrary subset of I. Then, the surjective Z[A]-module
homomorphism

d;: QKPY(G/B) — QKRN (G/Py)

defined by ®;(Q[O"]) = Q[f]J[OEwJ] for w € W and ¢ € QV'F, where [¢]7 =
dokeny cray for & =3, e € QV'F, has the following multiplicativity:

©;([0"] - [Og)5(~wr))) = [05"] - [Oc/p, (—)]
forweW andke K=1\J.

In Appendix A, we give another proof of the existence of the multiplicative Z[A]-
module surjection ®; above by using the K-Peterson homomorphism, which is a homo-
morphism of Z[A]-algebras from the K-homology of the affine Grassmannian associated
to G to (the localization, with respect to QV>*, of) the quantum K-ring QKr(G/Py); a
(new) proof of the existence of the K-Peterson homomorphism has been given by [6].

We now recall the (cancellation-free) quantum K-theory Chevalley formula in [19,
Theorem 47] (see also [20, Theorem 12]) for G/B, which is based on the quantum alcove
model; in fact, we use the slight modification corresponding to the multiplication by the
class [O(—wy)] := [Og,p(—wk)] of the line bundle associated to —wy. Throughout this
paper, we denote by |S| for a set S the cardinality of S. This formula is expressed in
terms of a (—wy)-chain of roots, cf. Section 2.2.

Theorem 7. Let k € I, and fix a reduced (—wy,)-chain T (k). Then, in QK2 (G/B) C
QKr(G/B), we have for w € W,

[0(_wk)] . [Ow] — Z (_1)|A| Qdown(w,A)e— wt(w,A) [Oend(w,A)] ) (4)
AcA(w,I'(k))

Remark 8. The right-hand side of equation (4) is cancellation-free. Indeed, suppose,
for a contradiction, that there exist two admissible subsets A, A’ € A(w,T'(k)) satis-
fying end(w, A) = end(w, A’) and (—1)4l = —(=1D)I4l (together with down(w,A) =
down(w, A’) and wt(w, A) = wt(w, A")). Here we know (see [5] and also [25]) that for
directed paths py, py in QB(W) starting from the same element v € W and ending at
the same element u € W, the equality (—1)*®1) = (—1)*®2) holds, where £(-) denotes the
length of a directed path. This contradicts the equality (—1)I41 = —(—1)“4/', as desired.

Let N;’f;f € Z|P), withv,w,u € W/, ¢ € QYJ = ZieI\J Z o« , denote the structure
constants of QK1 (G/Py) defined by:

0] [ov]= Y NSOl

ueWw’, £eQi}
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Let ps be a half of the sum of all positive roots of Py, and set deg(Q%) := 2(p—pys, &) for
e Qy\?; It is expected that the structure constants of QK7 (G/Py) have the following
positivity property.

Conjecture 9 (//, Conjecture 2.2]). For v,w,u € W and ¢ € Qy\’}', we have
(_1)£(v)+€(w)+€(u)+deg(Q£)Ngf) c Zzo[e’y —1|ye-AlL

The positivity property of the structure constants Ng» 5w, with k € K =1\ J, is
proved for cominuscule varieties G/ Py, which include Grassmannians of type A, by Buch-
Chaput-Mihalcea-Perrin in [4] by writing explicitly the structure constants. Also, the
positivity property of the structure constants N:ff,, with £ = 0, is proved by Anderson-
Griffeth-Miller [2] since these are the structure constants of the ordinary T-equivariant
K-theory Kp(G/Py). In this paper, we prove the positivity property of the structure
constants N 5w, with k € K =TI\ J, for full flag manifolds of arbitrary types, two-step

flag manifolds of type A, and Grassmannians of type C.
Let us define C%¢ € Z[P], with w,u € W, £ € Q}/\}, by:

O(-wp)]-[0"]= > CitQ[0"].

ueWJ €EQI\J
Since it is well-known that [O®*] = 1 — e ®*[O(—wy)] for k € I\ J, we see that

[0%F] - [0%] = (1 — e ®*[O(—wy,)]) - [OY]
= [0%] — e~ [O(~wy)] - [OV]
=(1=e OO ]+ 3 (—e TRt 0]
€Y I\{0}
+ > (—e™ ™ Cy*) Q0.

weW\{w}, £€Q}Y

Hence it follows that for w,u € W7 and ¢ € QI\J,

Nwé —

Sk,W — .
—e " FRCUE otherwise.

{1 —e @rCWY  if y =w and £ =0,
For the proof of the positivity property, we need the following lemma.

Lemma 10. Let w € W. Let A € A be a dominant weight, and take a reduced (—\)-chain
I. For A € A(w,T), we have wt(w, A) € =\ + Q.
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Proof. Let A € A(w,T"). We denote by AY; the set of all level-zero weights of the (un-
twisted) affine Lie algebra g.s = (g C[t,t71])®CcdCd associated to g; in the following,
we regard A as an element of AY;.

We use quantum Lakshmibai-Seshadri (QLS) paths of shape A, which are defined
in [21, Definition 3.1]. We first assume that I' is the lex (—A)-chain, defined in [20,
Section 4.2]. In this case, we know from [19, Proposition 31] that there exists a QLS
path 7 of shape A such that wt(w, A) = —wt(n), where wt(n) := n(1). Let us write n
in the form n = (v1,...,v50 = ag < a1 < -+ < as = 1), with v4,...,v5s € WA and
ag,...,as € Q. Then we see that v, € A—Q*, k=1,...,s, since A € A is dominant and
W is the finite Weyl group. Hence we have

S

wt(n) =n(1) = Z(ak — Qp—1)Vk €A — ZQZOO‘J'~

k=1 jelI
Also, we have
s—1
wt(n) =n(1) = vs + Zak(Vk — Vk+1)-
k=1

Since (Vg, Vg+1) is an ag-chain (see [16, Section 4]), it follows that a(vk — vk+1) € @ for
k=1,...,s—1.In addition, we have that vs € A— Q™. Hence we see that wt(n) € A+ Q.
Therefore, we deduce that wt(n) € A — QT as desired.

We next assume that I' is an arbitrary reduced (—A)-chain. Then we know that
I’ can be deformed to the lex (—A)-chain TV by repeated application of Yang-Bazter
transformations in [11, Section 3.1] (see also [20, Remark 40]). In this situation, [11,
Theorems 3.2 and 3.4] implies that there exists a bijection Y : A(w,T") — A(w,I"”), given
by quantum Yang-Bazter moves, such that wt(w,Y (A4)) = wt(w, A) for all A € A(w,T).
Here we note that [11, Theorem 3.2] states that Y is a sijection ([7, Section 2]), i.e., a
“signed bijection”, where A(w,T') and A(w,I") are regarded as signed sets equipped
with sign functions. However, since —\ is anti-dominant, we have no sign-reversing
involution on any non-empty subset of A(w,T") or A(w,T"). Therefore, Y is, in fact,
a bijection. Since I' is the lex (—A)-chain and Y(A4) € A(w,I'), we deduce that
wt(w, A) = wt(w, Y (A)) € =\ + Q. This proves the lemma. 0O

Note that if there exists an edge + — y in QB(W) for z,y € W, then we have
l(y) = £(x) + 1 mod 2 by the definition of QB(W). This implies that for w € W and
A€ A(w,T(k)), we have (—1)IA4l = (—1)¢(end(w,A))=(w),

In this section, we prove the positivity property of structure constants for full flag
manifolds as a corollary of the Chevalley formula (Theorem 7). We will give a proof of
the positivity property for Grassmannians of type C (resp., two-step flag manifolds of
type A) in Section 3.2 (resp., Section 4.2).
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Corollary 11. Let G be of an arbitrary type, J = 0 (hence Py = B), and k € I. Then,
for w,u € WY and € € QV'F, we have
(_1)1+€(w)+€(u)+deg(Q§)N;ilfw € Zsole” — 1]~ € —Al
Proof. Let w € W. Take A € A(w,T'(k)) such that A~ = (). If A = (), then we have

(_1)\A\Qdown(w,A)ef wt(w,A) [Oend(w,A)] — oWk [Ow]

Since there exists no A € A(w,T'(k)) such that end(w, A) = w and down(w,A) = 0
except for A = (), we have C*'0 = e*@*, In addition, we have deg(Q") = 0. Hence it
follows that

Nsli.’,%; — 1 — eWTk—Fk — (71)1+£(w)+ﬁ(w)+deg(Q0)(ewwkfwk o 1);

note that wwy, — @y € —QT. Since

e M = H(e—ai)ci

el

=TTt~ n+ 1
el

— H <2 (:)(eai _ 1)k> c Zzo[e’y -1 | ve —A]
i€l \k=0

for =737, cias € QF, we deduce that
1+4(w)+£(w)+d 0 0
(—1) (w)+&(w)+deg(Q )Nsu;,w € Zsole” — 1|y e —A],

as desired.
Next, take A € A(w,T'(k)) \ {0}. Then we have

(_1)|A|Qdown(w,A)e— wt(w,A) [Oend(w,A)]
— (_1)€(cnd(w,A))7Z(w)Qdown(w,A)ef wt(w,A) [Ocnd(w,A)}.
Also, by Lemma 10, we have wt(w, A) € —wy + QT for A € A(w,[(k)). Here we set
A(w,T(k))uer ={A € A(w,T(k)) | end(w, A) = u, down(w, A) =&, wt(w, A) = A},

forue W, &€ QV'", and A € —wy + Q. Then by Theorem 7, we have
C’;f}é = Z Z (_1)|A\e7wt(w,A)
Ae—w+QT A€ A(w,T(K))ue,x

= (=17 YT AW, T (k) uenle™.

A€—wp+Qt
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Since deg(Q;) = 2(p, a)) = 2 for all j € I, we have deg(Q*) € 2Z. Therefore, we see
that

Nus, = —em ™ (1) 70N A (w, T (k) )ueale™

Sk, w
Ae—w,+QT
w u e E — T —
= (—1)!HH0Fdes@) N T A, D(k))ueple™
AE—wp+QT

This implies that
w u eg g u
(—1) )+ uw)+deg(@ )stw € Zsole” — 1|~ e —-A],
as desired. This proves the corollary. O
3. Quantum K-theory Chevalley formulas in the maximal parabolic case

Given a maximal parabolic subgroup P; for J =T\ {k}, we will derive cancellation-
free parabolic Chevalley formulas for the quantum multiplication in QK7 (G/Py) with
[O(=wk)] := [Oc¢/p,(—wr)]. Based on Theorem 6 explained in Section 2.3, we obtain
certain formulas from equation (4) in Theorem 7 for QK2 (G/B) ¢ QKr(G/B) by
applying ®;; this argument works for an arbitrary fundamental weight wy of G of any
type. However, upon applying ®;, there are many terms to be canceled in the corre-
sponding formula in QK2 (G/P;) ¢ QKr(G/Py). For any fundamental weight ;. in
types A and C, we cancel out all these terms via a sign-reversing involution, and obtain
a cancellation-free formula. We rely on the structure of the corresponding (—wy,)-chain
of roots I'(k) in Section 2.2, as well as the quantum Bruhat graph criteria in Section 2.1.

Remark 12. Upon applying the above procedure, there are no cancellations among the
terms corresponding to w-admissible subsets A with A~ = ), by Remark 8.

Remark 13. If G is of type A,_1, then the partial flag manifold G/Py for J =1\ {k} is
isomorphic to the Grassmannian Gr(k,n) defined as:

Gr(k,n) := {V | V is a subspace of C" such that dimV = k}.

Also, if G is of type C,, then the partial flag manifold G/Py for J = I\ {k} is
isomorphic to the isotropic Grassmannian 1G(k,2n) defined as:

?

i 2n . o
1G(k,2n) == {V ‘ V is a subspace of C=" such that dim V' = &, and}

V' is isotropic with respect to (—, —)

where (—, —) denotes a non-degenerate skew symmetric bilinear form on C?".
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3.1. Type Ap—1

We start with type A,_1, and we fix the anti-dominant fundamental weight —coy.
Note that w € W is equivalent to w(1, k] and w[k + 1, n] being increasing sequences.

Lemma 14. Consider w € W”. We have an edge w @) w(i, j) in the quantum Bruhat
graph on Sy, with i < k < j, if and only if one of the following two conditions holds:

(1) the edge is a Bruhat cover, with w(i) = a, w(j) = a+ 1, and w(i,j) € W/;
(2) the edge is a quantum one, and (i,7) = a.

Proof. We implicitly use several times the quantum Bruhat graph criterion in Proposi-
tion 2, as well as the fact that w[1, k] and w[k + 1,n| are increasing sequences. Letting
a := w(i), and assuming that the edge is a Bruhat cover, we cannot have w(j) > a+1
because the value a+ 1 would be straddled by the transposition (i, 7). Indeed, this would
happen irrespective of a + 1 being in w[1, k] or w[k+ 1, n]. So we must have w(j) = a+1.
Now assume that w(i) > w(j). If i < k, then the value w(k) would be straddled, while
if j > k+ 1, then the value w(k + 1) would be straddled. So we must have i = k and
j=k+1. O

We can now give a short proof of [12, Theorem I} in type A,_;, which is restated
below in terms of the quantum alcove model.

Theorem 15. In type A, _1, consider 1 <k <n—1 and w € w.
(1) If w > [se], then we have the following cancellation-free formula:

O(—)] - [0"] = ¥ S (—pl ([Oendm,A)} _Qk[@Lendm,A)skJ]) . (5)
A€A<(w,T (k)

(2) If w 2 |se], then we have the following cancellation-free formula:

O] (0] = e ™ 3T (Mo, 0
AcA<(w,I'(k))

Remark 16. As will be seen in the proof below, for w € W, the condition w > |sg] is
equivalent to the condition w(k) =n and w(k 4+ 1) = 1.

Example 17. We give some examples of the Chevalley formula in the case that n = 4 and
k = 2. Note that |sp| = s3zs1s2. Also, we have I'(2) = ((1,4), (1,3),(2,4),(2,3)) (with
all roots negated).

(1) Let w = s3s182 = |sg]. Table 1 is the list of all admissible subsets A € A(w,T'(2))
and their statistics end(w, A), down(w, A), together with |end(w, A)]; note that
wt(w, A) = —sqatoy for all A € A(w,T'(2)).
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Table 1
The list of all admissible subsets A c
.A(S35182,F(2)).

A end(w,A) |end(w,A)] down(w,A)
0 $38182 $38182 0
{1} 82838182 §2838182 0
{4} S381 e ay
{1,4} 508381 So a;/
Table 2
The list of all admissible subsets A € A(s2,I'(2)).
A end(w, A) lend(w, A)]  down(w, A)
(0 So So 0
{2} 8182 8182 0
{3} 8382 S3S2 0
{4} e e ay
{2, 3} 838182 838182 0
{2,4} S1 e ay
{3,4} s3 e ay
{2,3,4}  s3s1 e ay

By Theorem 7, in QKE2°Y(G/B), we have:

[O(=w2)] - [O27°]

(7)
— 652838152W2 ([053815‘2] _ [082838182] _ Q2 [08351] + Q2 [0828381]) .

By applying the surjection ®; : QK?OIY(G/B) — QK?OI}'(G/PJ), explained in
Theorem 6, to equation (7), we obtain the following cancellation-free formula in
QKP™(G/Py) € QKr(G/Fy):

[O(—w2>] . [082338182] = 528351522 ([0338132] _ [Oszsaswz] _ QQ[Oe] + Q2[032]).
Also, we deduce that A« (w,'(2)) = {0, {1}}. Therefore, we see that

(RHS of equation (5))
— eS2531522 (([0535132] _ QQ[OLSSSIJ]) _ <[052535152} _ Q2[01523331J]))

— eSQS3SlSQW2 ([0838182] _ QQ[OE] _ [082838182] + Q2[082])
= [0(=wa)] - [O"59%17]

Thus Theorem 15 (1) holds in this case.

Let w = s9; note that w # |[sp]. Then we can give the list of all admissible
subsets A € A(w,T'(2)) and their statistics end(w, A), down(w, A), together with
|end(w, A)], as in Table 2. Note that wt(w, A) = —saws for all A € A(w,['(2)).
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By Theorem 7, in QKP°Y(G/B), we have:

(O(=m2)] - [0%] = = ([0%] = [07] = [0%] = Qa0

8
+ [0333132] + QQ[OSI] + Q2[O$3] — Q2[03331]) . ( )

By applying the surjection @ : QK;Oly(G/B) — QK?OIY(G/P_]) to equation (8),
we obtain the following cancellation-free formula in QK2 (G/Py) ¢ QKr(G/Py);
here, the underlined terms in the first equality are canceled out:

(O(=wa)]-[07] = 12 (10] = [07] = [0%**] = QafO"

+ (07971 + Qul0°] + @[0"] = Quf0")
= e (0] = [0°17] = (0] 4 [0,

Also, we deduce that A< (w,T'(2)) = {0, {2}, {3},{2,3}}. Therefore, we see that

(RHS of equation (6)) = €272 ([0%2] — [0®'%2] — [O®*%2] + [O%3°1°2])
= [O(=wm2)] - [O0*].

Thus Theorem 15 (2) holds in this case.

Proof of Theorem 15. The result is clear when w is the identity (indeed, a w-admissible
subset is either empty or consists only of the transposition (k, k+1)); so we can assume
that w(k) > w(k +1).

Let A be a generic w-admissible subset in A(w,T'(k)). Given the structure of the
(—wg)-chain T'(k) in (1) and Lemma 14, we can see that a quantum step in a path
II(w, A) must correspond to the transposition ay = (k, k + 1), which is the last one in
I'(k). All other steps are Bruhat covers of the form specified in Lemma 14 (1). Moreover,
the structure of T'(k) combined with the fact that w € W imply that A contains at
most one root labeling a Bruhat cover in IT(w, A) of the following forms: (4, -) for each
i < k,and (-,j) for each j > k. All these facts will be used implicitly.

By Deodhar’s criterion for the Bruhat order on the symmetric group [3, Theo-
rem 2.6.3], we can see that w > |sp| = [2,3,...,k,n,1,k+ 1,...,n — 1] (in one-line
notation) if and only if w(k) = n and w(k + 1) = 1. Thus, we consider the following
cases; whenever there are terms to be canceled, we describe the sign-reversing involution
mentioned above.

Case 1: w(k) < n. Let ¢ > k4 1 be such that w(g) = w(k) + 1 < n. We pair every A
containing (k,k + 1), but not (k, ) with j > k+ 1, with A" := AU {(k,q)}. It is clear
that A’ is also w-admissible, and in fact the root (k, q) is the predecessor of (k, k+ 1) in
A’. Moreover, we have

lend(w, AN)| = [+ (k. @)(k, b+ 1) = [+ (b, k + 1)(k +1,¢)] = [end(w, A)],
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as well as down(w, A) = down(w, A’) and wt(w, A) = wt(w, A’). The latter property is
a consequence of the fact that all the affine reflections in the definition of wt(w, -) in
[19, Equation (12)] fix wy; for more details, see [22, Corollary 8.2] and the discussion
preceding it. Finally, as the cardinalities of A and A’ differ by 1, their contributions to
the parabolic Chevalley formula for G/P; have opposite signs. We have thus proved that
the involution A <+ A’ is sign-reversing.

Case 2: w(k) = nand w(k—+1) > 1. Let p < k be such that w(p) = w(k+1)—1 > 1. We
pair every A containing (k, k+1), but not (¢, k+1) with ¢ < k, with A’ :== AU{(p, k+1)}.
We continue the reasoning like in Case 1.

Case 3: w(k) = n and w(k + 1) = 1. It is clear that no w-admissible subset A can
contain transpositions of the form (i, k + 1) with ¢ < k, and (k,j) with j > k + 1.
Furthermore, there is a 2-to-1 correspondence between A(w,T'(k)) and A< (w,T'(k)):
every A € A«(w,T'(k)) corresponds to itself and A U {(k,k + 1)}. Like above, we can
check that wt(w, A) = wt(w, AU {(k,k + 1)}). Finally, based on the above facts and
Remark 12, we can see that there are no cancellations of terms corresponding to the
elements of either A< (w,['(k)) or A(w,['(k)) \ A<(w,T'(k)).

It is now easy to see that the uncanceled terms in the resulting combinatorial formula
are precisely those in (5) in Case 3, and those in (6) in Cases 1 and 2. O

3.2. Type C,

As we move beyond type A, we note that the following analogue of Lemma 14 exists:
[12, Lemma 5.1] for any simply laced type and cy minuscule. Below we present the
corresponding result in type C),, which works for any wy; this result is easily proved
based on the quantum Bruhat graph criterion in Section 2.1.

Lemma 18. Consider 1 < k < n and w € W’ in type C,. We have a quantum edge
w —=5 ws, in QB(W), with a € @\ ®F, if and only if w # e and one of the following
two conditions holds:

(1) a= ;.

(2) a=(k,k), wk)=a forl<a<n, andwlk+1,n] C{a+1,...,n} if k <n.

Let us now turn to a short proof in the case of wy in type C,,, where 1 < k < n. Note
that w € W7 is equivalent to w[1,k] and w[k + 1,n] being increasing sequences (with
respect to the total order on [7]), as well as w[k + 1,n| consisting of positive entries.
We also need to introduce more notation. The (—wy)-chain T'(k) in (2) has an obvious
splitting T'(k) = T (k)T'?(k), where T'' (k) :=T%--- T}, and I'*(k) := 'y (k) - - - Tx (k). This
induces a splitting A = A! L A% of any w-admissible subset A, where A" = ANTi(k),
fori=1,2.
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Table 3
The list of all admissible subsets A € A(s2s3s2,'(2)).

A end(w, A')  end(w, A) lend(w, A)]  down(w, A)
0 525382 S98382 828382 0
{1} 81828382 51828382 81828382 0
{4} 825389 $2835182 $2838182 0
{5} 828382 81828382 81828382 0

v v
{7} 828382 e e ag + oy
{8} 525389 S983 So o
{1,4} S18283S82 $1828381 82 5152835182 0

v v
{1,7} 81828382 s1 e a% + oy
{1,8} 51525389 S$18283 5182 o
{4,6} 525382 51582535182 S$182838182 0

v
{4,8} 828382 598381 So oz% .
{5,7} 528382 s1 e a% + oy
{5,8} 528352 518283 S182 Qp

¢ v
{7,8} 828382 So So ozzv + a%
{1,4,7} 51828382 S$251 S2 0‘% +ag
{1,4,8} 51525389 S$1825381 S182 oy

\2 Vv
{1,7,8} 51828382 5182 5189 ozzv +oz§/
{4,6,7} 828382 S981 So a% + oy
{4,6,8} 825389 S$1825381 5182 o
{5,7,8} 525382 S182 5182 oczv + Oc;
{1,4,7,8} 5158258382 518281 5182 ag/ +oz:\,,/
{4,6,7,8} 898389 S18281 5182 a;/ +a§/

Theorem 19. In type C,,, given w € W7, we have the following cancellation-free formula
in QKEY(G/Py) c QKr(G/Py):

[O(_wk)] . [Ow} _ Z (_1)|A|e— wt(w,A) [Oend(w,A)] (9)
A€A<(w,I'(k))
—Q Z (_1)|A|ef wt(w,A) [OLend(w,A)s%kJ] )
AeA<(w,I(k))
end(w,A1)> o

Remark 20. As will be seen in the proof below, for w € W, the condition w > |sg] is
equivalent to the condition w(k) = 1.

Example 21. In this example, we consider the case that n = 3 and k& = 2. Note that |sg] =
s1828382. Recall that T'(2) = ((1,2), (1,3),(1,1), (1, 3),(1,2),(2,3),(2,2),(2,3)) (with all
roots negated). Let w = $28352. Then the list of all admissible subsets A € A(w,T'(2))
and their statistics end(w, A), down(w, A), together with end(w, A'), |end(w, A4)], is
given in Table 3. Note that wt(w, A) = —sas3sqows for all A € A(w,['(2)).

By Theorem 7, in QK2 (G/B), we have:

(O(=w2)] - [07%)

= @ (] [OF10%] — [0 - [0 — QaQ3[0°] - Qa[0°]
+ (0779752 4 QuQa[07] + QalO™™70) + (0775977 + Qa0 + Q2Qu[0™]
+ Qa[0757] + Q2Q3[0%7] = Q2Qa[0™] = Q[0 — Q2 Qs [0 7]
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- QaQaf0""]) = Qa0 ™25%] = QaQa[0™ 2] + QaQs[0™"] + QaQa[0™ 2.
(10)

By applying the surjection ®; : QK2°Y(G/B) — QKLY (G/Py) to equation (10), we
obtain the following cancellation-free formula in QK2Y(G/P;) ¢ QKr(G/Py); here,
the underlined terms in the first equality are canceled out:

O(=w2)] - [07*]
_ qpessssma[gyeaoasn]  [(omonsss] _ [(pmenssen] _ [gousaosss] _ o] — Qa0
1 [05152559152] 4 Qu[O°] + QoO1%] + [O%12551%2] + Qu[O%2] + Q2 [O°]
+ Qof0" ] + Qo[0] — Qa[0] = Qa[07] = Q2[0°]
~ Quf0™] = QufO™™2] = Qu[0"] + Qa[0" ] + Qa[0" )
_ esarseams ([genssen] _ plymomssen] _ [gmaeseira] 4 0] 4 @a[0] — @alO™])

Also, we deduce that A< (w,T(2)) = {0, {1}, {4}, {5},{1,4},{4,6}}; note that only
two elements A = {1}, {1,4} of AL(w,T(2)) satisfy end(w, A') > |sg]. Therefore, we
see that

(RHS of equation (9))
— @"25952m2 ([(525352] _ [(091925352] _ [()253515]
_[O1525352) 4 [O152585152] y [S152535152))
— QuenE ([0l 4 [oln))
— @252 ([(0925352] _ 9[(0S1525352] L [(0S2595152] 4 9[(05152535152] 4 (,[0°] — Q,[0°2])
= (O(-m)] - [0%05%];

here, we have used s2., = 525352 for the first equality. Thus Theorem 19 holds in this
case.

Proof of Theorem 19. We assume that w is not the identity, as this case is trivial. We
follow the same procedure outlined above, and describe the sign-reversing involution
canceling terms obtained from the Chevalley formula for G/B.

We carry out the proof in the case k < n, and refer to k = n at the end. Consider a
generic w-admissible subset A in A(w,T'(k)), corresponding to a term in the Chevalley
formula for G/B. Like in type A, the structure of I'(k) combined with the fact that
w € WY imply that A contains at most one root labeling a Bruhat cover in II(w, A)
from each row in the display of I';(k) in (3).

We focus on those A with A~ # (). By Lemma 18, we have A~ C {ay = (k,k +
1), 2¢;, = (k,k)}. Note that both of these roots appear only once in the (—wj)-chain
['(k), with (k,k + 1) being the last one, while (k, k) appears in the last segment 'y (k).
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In fact, we have either A~ = {(k,k + 1)} or A~ = {(k,k)}. Indeed, assuming that
(k,k) € A~, and considering the signed permutation u in II(w, A) to which (k,k) is
applied, we have u € W7 and u[k + 1,n] C {a +1,...,n}, where a := |u(k)| = u(k);
therefore, it is impossible for (k,k + 1) to correspond to a quantum step in II(w, A).

Now assume that A~ = {(k,k+ 1)}, and let v := end(w, A\ {(k,k +1)}). We clearly
have v € WY. We will pair A with another w-admissible subset A’, such that their
contributions to the parabolic Chevalley formula for G/Pjy cancel out. We must have
one of the following cases, where 1 < a < b < n.

Case 1: v(k) = b, v(k + 1) = a, and A does not contain (k, j) with j > k + 1.

Subcase 1.1: b < n. This case is completely similar to Case 1 in the type A proof.
Indeed, there clearly exists ¢ > k+1 such that v(q) = b+1 < n. Welet A’ := AU{(k,q)},
so (A")~ ={(k,k+ 1)}, and continue the reasoning as above.

Subcase 1.2: b=n. We let A’ := AU {(k,k)}, and we have (A")~ = {(k,k+ 1)}.

Case 2: v(k) =@, v(k+1) = b. Welet A’ := AU{(k,k)}, and we have (4")~ = {(k, k)}.

Case 3: v(k) = b, v(k 4+ 1) = a, and A contains neither (k, k), nor (k,7) for j >k + 1.

Subcase 3.1: k+2 < n and v(k+2) < b. Consider g > k+1 largest such that v(q) < b.
We let A" := AU{(k,q)}, and we have (A")” = {(k,k+1)}.

Subcase 3.2: k+2 > nor v(k+2) > b. Welet A’ := (A\{(k, k+1)HU{(k, k + 1), (k, &)},
and we have (A")~ = {(k,k)}.

We claim that in all cases,

A" e A(w,T(k)), |end(w,A)| = |end(w,A")|, and wt(w,A) = wt(w,A").

Furthermore, it is not hard to check that these cases completely pair up all w-admissible
subsets A with A~ = {(k, k + 1)}, either among themselves (in Cases 1.1, 1.2, and 3.1),
or with A satisfying A~ = {(k, k)} (in Cases 2 and 3.2); see below for a discussion of the
latter A which are not paired up above.

Indeed, let us consider, for instance, Case 2. We cannot have (k%) € A, because the
corresponding up step in Bruhat order would not be a cover (by the classical part of
the criterion in Proposition 3 (3)). Moreover, A cannot contain any root of the form
(k,j) with j > k + 1, as the corresponding reflection would bring a positive entry to
position k, whereas v(k) is negative. Therefore, the roots (k,k) and (k,k + 1) are the
last two in A’, while the step corresponding to (k, k) is a quantum one (by the criterion
in Proposition 3 (3)). Moreover, we have

lend(w, A")| = |v(k, k) (k,k+1)| = |[v(k,k+ 1)(k+ 1,k +1)] = [end(w, A)] .

The weight preservation is verified by noting that all affine hyperplanes corresponding
to the roots in I'?(k) contain cy; so the corresponding affine reflections fix wy, and are
thus irrelevant for the weight computation.

On another hand, in the Chevalley formula for G/ B, the quantum steps corresponding
to both roots (k, k+1) and (k, k) contribute the variable Q. Indeed, as indicated above,
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we have the following coroot splitting: (2¢x)" = a)/ + (/. +--- + 7). Finally, since
the cardinalities of A and A’ differ by 1, we conclude that the involution A <+ A’ is
indeed sign-reversing. In this way, the contributions to the parabolic Chevalley formula
for G/Pj of all A with A~ = {(k,k+ 1)} are canceled.

We have now exhausted all w-admissible sets A with A~ = {(k,k + 1)}. Thus, it
remains to discuss the contributions of the remaining A with A~ # (), i.e., A~ = {(k, k)}
and A is not among the A’ in Cases 2 and 3.2. So from now on we work under this
assumption. We previously considered the signed permutation v € W in II(w, A) to
which (k, k) is applied, and observed that u[k+1,n] C {a+1,...,n}, where a := |u(k)|.
If (k,k) is followed by another root in A, then this can only be (k,k + 1); but this
situation was considered in Case 2 above, which means that (k, k) must be the last root
in A. Moreover, A cannot contain any root of the form (k,7) with j > k, because we
would be in Case 3.2. The following two cases cover all remaining possibilities, and we
continue to use the above notation.

Case 4: u(k) # 1 (i.e., a # 1), and A? contains no root (i, k) with i < k. There clearly
exists p < k such that u(p) = a — 1. We let A’ := AU {(p,k)}, where the root (p, k)
is taken from I'?(k). We have (A’)~ = {(k,k)}. Like above, we verify that the terms
corresponding to A and A’ cancel out, so we can extend the sign-reversing involution
above by pairing A with A’.

Now recall that, in general, A% contains at most one root (4, k) with i < k. Whenever
it contains one, the values in positions 7 and k of the signed permutation to which this
reflection is applied are of the form b — 1 and b, respectively. Thus, the remaining case
consists of the following w-admissible subsets A.

Case 5: u(k) =1 (i.e., a = 1), and A? contains no root (i, k) with i < k. We clearly
have A\ {(k,k)} € A<(w,T(k)), where we recall that (k, k) is the last root in A. Now let
v’ := end(w, A'). Based on the structures of I'(k) and A, we have u'(k) = u(k) = 1. But
this is equivalent to ' > |sg] = [2,3,...,k, 1,k +1,...,n] (in the window notation), by
Deodhar’s criterion for the type C Bruhat order [3, Chapter 8, Exercise 6]. In the same
way as above, we can see that wt(w, A) = wt(A \ {(k,k)}). The above facts imply that
the terms corresponding to this case make up the second sum in (9). By Remark 12,
there are no cancellations between these terms.

We conclude by considering k = n, and noting that the proof reduces to Cases 4 and
5 above. O

We now prove the positivity property of structure constants for isotropic Grassman-
nians as a corollary of Theorem 19.

Corollary 22. Let G be of type Cy,, and J = I\ {k} for an arbitrary fized 1 < k < n.

Then, for w,u € W7 and & € Q}/\}', we have

(_1)1+Z(w)+£(u)+dcg(Q5)Nngw € Zsole” — 1|~ —Al
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Proof. Take A € A(w,['(k)) such that end(w, A') > [sg], and set v := end(w, A).
Recall from the proof of Theorem 19 that there exists a quantum edge v ELN VSge, €
QB(W). Also, by Case 5 in the proof of Theorem 19, we have v(k) = 1. Note that
v € WY, and hence that v(1) < --- < v(k), v(k +1) < --- < v(n). It follows that
1 = vsge, (k) < vs2e, (1) < -+ < wsge, (K — 1) and vsg., (K + 1) < -+ < sz, (n).
Therefore, if we take a cyclic permutation o := (1,k,k — 1,...,2) € W, then we have
|vS2e, | = vS2, 0. Hence we see that

Al +1=[AU{(k,k)}]
= l(vsae, ) — L(w)
= (U(vsae,0) — £(0)) — L(w)
= {([vs2e, ]) = (k= 1) = l(w)
= l(w) + ((|vsae, |) +k — 1

modulo 2. Thus, we obtain

(71)|A|+1 - (71)z(w)+e(@525kj)+k71'

It is easy to check (see, for example, [9, Section 3.1.5, Exercise 4]) that

k—1
Z(k — l)ai
i=1
n—k—1
—kn—-k+1
205 = + i(2(n—k) — i+ Dagyr + (n )(r; + )an if k # n,
i=1
n—1
i(n —1)a; if k = n.
i=1
Since
2 ifi=j,
-1 if|i—j|=1andi#n,
(ai, aj> = e .
-2 ifi=nandj=n-—1,
0 otherwise,
we have
—(k-=1)—-2(n—k) ifk#n—1,n,
1-2
2(py, ) = —(n—2)—2~T if k=n-—1,

—(n—1) itk=n
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=k—1 mod2.
In addition, we have 2(p, o)) = 2. Therefore, we see that
deg(Qr) = 2{(p, o) —2{ps, a))) =2—(k—1)=k—1 mod 2.

We set

A(w, T(8))0, oy 1 = {A & Ac(w,T(k))

end(w, AY) > |sg], |end(w, A)soc, | = u,
wt(AU{(k,k)}) = A '

Then, since wt(w, A) € —wy + Q@+ by Lemma 10, we deduce from Theorem 19 that

C:j},a;c/ _ Z Z (_1)|A|+1lef wt(w,AU{(k,k)})

Ae—wp+QT AEA(“”F)Z,aZ N

= (- N A(w, T(R)S v ale ™
AE—w+QT

Therefore, we obtain

NG = (1)@ Y T A, D(k))) gy ale™™ 7

u,a),
)\G*ﬁk+Q+

This implies that
(_1)1—{-5(1:1)—‘,—Z(u)—i—dcg(Qk)]\[(;lkﬂftu;}C c Zzo[e'y 1 ‘ v e _AL (11)

as desired. Equation (11), together with the positivity property of N;‘f;JO for u,v,w € W7,
proves the corollary. O

4. Quantum K-theory Chevalley formulas for two-step flag manifolds

In this section, we concentrate on the case of type A,_1; note that I = [n — 1] in
this case. Let us consider the (standard) parabolic subgroup P; O B corresponding to
J = T\ {ky,ka} for some ki,ky € I with k1 < ks; the resulting partial flag manifold
G/ Py is isomorphic to a two-step flag manifold Fl(k1, ko;n) defined as:

Vi and V& b: fC™ h that V3 C V&
Fl(kl,kg;n)::{(vl,%)‘ 1 and V5 are subspaces o suc at Vi C 2,}.

dimV; = k1, and dim V5 = ko

The purpose of this section is to derive cancellation-free parabolic Chevalley formulas
for the quantum multiplication in QK7 (G/Py) with [O(—wy)], for k = k1 and k = k.
For this purpose, as in Section 3, we examine all the terms to be canceled in certain
formulas obtained from equation (4) in Theorem 7, in QK%OIY(G/B) C QKr(G/B), by
applying the map @ : QK:I;Oly(G/B) — QK%,)«OIY(G/PJ).
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4.1. Some lemmas on admissible subsets

Note that for w € W = W (A,,_1) = S, w € W is equivalent to w[1, k1], w[k1 +1, ko],
and wlks + 1, n] being increasing sequences (see [3, Lemma 2.4.7]).

We first consider the case k = k1. We will make repeated use of the following.
Lemma 23. Consider w € W7. We have an edge w ﬁi)» w(i, j) in the quantum Bruhat
graph QB(W), with i < k1 < j, if and only if one of the following two conditions holds:

(1) the edge above is a Bruhat cover, and w(i,j) € W;
(2) the edge above is a quantum one, and (i,7) = (ki,k2+ 1) or (i,7) = ag,

Proof. As in the proof of Lemma 14, we implicitly use Proposition 2, as well as the fact
that w(l, k1], w[k1 + 1, ko], and w[ks + 1, n| are increasing sequences. Assume first that
the edge above is a Bruhat cover. Then, since (i,j) ¢ W, [3, Corollary 2.5.2] implies
that w(i,j) € W, as desired. Assume next that the edge above is a quantum one; note
that w() > w(j) in this case. If i < ky, then the value w(k1) would be straddled between
w(i) and w(j). Hence we must have i = ky. Also, if k1 +1 < j < ko, then the value
w(ky + 1) would be straddled between w(ky) and w(j); if j > ko + 1, then the value
w(ky + 1) would be straddled between w(k;) and w(j). Hence we must have j = ky + 1
or j = ko + 1. This proves the lemma. O
L . 7 (k1,k2+1)

emma 24. Consider w € W, and assume that we have a quantum edge w ———
w(ki, k2 + 1) in QB(W). Then, for k1 +1 < j < ko, we have an edge w(ky, ks +
1) LN w(k, ke + 1)(k1,7) in QB(W) if and only if j = k1 + 1. In this case, the edge
w(ky, ko + 1) d), w(ky, ko + 1)(k1,7) is a Bruhat cover.

) (k1,k2t1)

Proof. Set v := w(ky, k2 + 1). Since we have a quantum edge w ——= v in QB(W),
Proposition 2 implies the following:

v(ky) <vlkr +1) <vlks +2) < - <wv(lke) <wv(ky+1).

If k1 + 1 < j < kg, then the value v(k; + 1) would be straddled between v(k;) and v(j).
Hence we must have j = k; + 1. In this case, by Proposition 2, we have a Bruhat edge

p Brkith, v(k1, k1 4+ 1). This proves the lemma. O

As a corollary of Lemmas 23 and 24, we immediately obtain the following.

Lemma 25. Let w € WY, and take A = {j1 < --- < js} € A(w,I'(ky)). If the directed
path T(w, A) contains a quantum edge, then II(w, A) is one of the following forms; here
? indicates a Bruhat edge, while ? indicates a quantum edge:
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(1) M(w, A) : w=wy =g Wee W:Q—l+1)>ws;

(2) M(w, A) : w=wq ? ? We_1 (kl’];ﬁl)} W
(3) H(w,A) Tw = wy ? ? Ws_o (K1,k2+1) We_ 1 (kl,lz-i-l) w,.

In view of this lemma, we divide the set A(w,T'(k1)) into the disjoint union of the
following four subsets:

(1) A<(w,T(k1)) (defined in Section 2.1);

(2) A1(w,T'(k1)) :={A € A(w,T'(k1)) | H(w, A) is of the form (1) in Lemma 25};
(3) Az(w,T'(k1)) :={A € A(w,T'(k1)) | H(w, A) is of the form (2) in Lemma 25};
(4) As(w,T'(k1)) :={A € A(w,T'(k1)) | H(w, A) is of the form (3) in Lemma 25}.

Then it follows that
A(w,T(k1)) = Ac(w,T(k1)) U Ay (w,T(k1)) U Ao (w, T'(k1)) U Az (w, T'(k1)).
Also, we can verify the following:

e if A€ A (w,T(ky)), then down(w, A) = 0, and hence Qldovn(w.4)]” — (.

o if A€ Ay(w,T(k1)), then down(w, A) = oy , and hence Qldown(w. AN — ¢,

o if A e Asy(w,T'(ky1)) or Ave Jélvg,(w,l"(k:l))7 then down(w, A) = oy + -+ ay,, and
hence Q[down(w’A”J = QT2 = Qp, Qp,.

Therefore, by equation (4), we deduce that

[O(fwkl)] . [O’w} — W@k Z (71)\A\[Oend(w,A)]
Ac A< (w,T (k1))

+ Wk Z (—l)lAlel [OLend(w,A)j]

AcA, (wI(kl))

Ferm 3T () Q0]

A€Az(w, (k1))

4 eWFk Z (_1)|A|Qk1 ka [OLend(w,A)j] )

AeAz(w,I'(k1))

Next, we consider the case k = ko. In this case, we use I'*(k2) instead of I'(k2). From
Lemma 25, by applying the diagram automorphism w, we obtain the following.

Lemma 26. Let w € W7, and take A = {j1 < --- < js} € A(w,T*(k2)). If the directed
path (w, A) contains a quantum edge, then II(w, A) is one of the following forms; here,
E) indicates a Bruhat edge, while ? indicates a quantum edge:
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(1) M(w, A) : w=wy o g Wt M>ws;

Q
(2) Tw, A) sw = 1wy 2 -+ 2wy S
(k1,k2+1) (k2,k2+1)
II(w,A) :w= — e = W, o 5.
(3) M(w,A) :w wo — = Ws—2 ] We_1 . w

In view of this lemma, we divide the set A(w,I™*(k2)) into the disjoint union of the
following four subsets:

(1) A¢(w,T*(k2)) (already defined);

(2) A (w,T*(kg)) :={A € A(w,T*(k2)) | I(w, A) is of the form (1) in Lemma 26};
(3) Ax(w,T* (ko)) :={A € A(w,T*(k2)) | (w, A) is of the form (2) in Lemma 26};
(4) As(w,T™*(ke)) :={A € A(w,T*(k2)) | I(w, A) is of the form (3) in Lemma 26}.

4.2. Parabolic Chevalley formulas for two-step flag manifolds

We state cancellation-free parabolic Chevalley formulas for the equivariant quantum
K-theory of the two-step flag manifold G/Py; the proofs of these results will be given in
Sections 4.3 and 4.4. First, we assume that k = k;. Take and fix w € W,

Theorem 27. If w(ky) < w(ky + 1), then we have the following cancellation-free formula:

[O(=w@k, )] - [0] = e > (—pHomateAy,
AeAg(w,I'(k1))

We consider the following condition:
(Q) w(ky) > w(k2) and w(ky +1) > w(ky + 1).

Remark 28. As mentioned at the beginning of Section 4.1, w[k; + 1, ko] is an increasing
sequence for w € W, Hence condition (Q) implies that w(k;) > w(ks) > w(k; + 1) >
w(k‘z + 1).

Theorem 29. Assume that w(ky) > w(k; + 1), and assume that condition (Q) does not
hold.

(1) Ifw(l) <w(ky +1) or w(ky) < w(ks), then we have the following cancellation-free
formula:

[O(—wkl)] . [Ow} — W@k Z (71)\A\[Oend(w,A)] )
AEA< (wxr(kl))

(2) Ifw(l) > w(ki1+1) and w(ki) > w(ks), then we have the following cancellation-free
formula:
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O[O ] = e 3T ()M ([0 D] - gy [olenn Ay
Ac A< (w,I'(k1))

Also, we consider the following condition:

(Full) both of the following hold:
(1) w(ky) =n and w(ke + 1) = 1; and
(2) w(ky + 1) is the minimum element in the sequence w[l, ko).
Remark 30. Condition (Full) holds if and only if condition (Q) holds and w(1) > w(k; +

1), w(k1) > w(n); note that the inequality w(1) > w(k; + 1), together with condition
(Q), implies that w(1) > w(ks + 1).

Theorem 31. Assume condition (Q).

(1) Assume that w(k;) < w(n).
(a) If w(l) < w(ky + 1), then we have the following cancellation-free formula:

[O(=wp,)] - [0 =¥ Y~ (=) joerdtD).
Ac A (w, (k1))

(b) If w(1l) > w(ky + 1), then we have the following cancellation-free formula:
0@ 0] == 37 (DA ([0 D) — g ol s ly)
Ae A< (w,I'(k1))

(2) Assume that w(ky) > w(n).
(a) If w(l) < w(ke + 1), then we have the following cancellation-free formula:

[O(=wp,)] - [0¥] =¥ Y~ (=1)AljoerdtD].
Ac A (w, (k1))

(b) If w(ka 4+ 1) < w(1) < w(ky 4+ 1), then we have the following cancellation-free
formula:

[O(=w,)] - [0]

— W@k Z (71)|A| ([Oend(w,A)] — Q1 Qr, [OLend(w,A)(kl,l@«H)J]) ]
AeAg(w,I'(k1))
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(3) If condition (Full) holds, then we have the following cancellation-free formula:

[0(_wk1)] . [Ow} — oW Z (_1)\14\ ([Oend(w,A)] B le [OLend(w,A)sklj]

A€ A (w, (k1))

Qi Qu, ([O\_end(w,A)(kl,kz—i-l)J] . [OLend(w,A)(kl,kg-i-l)sklj])) .

Next, we assume that k& = k.

Theorem 32. If w(ky) < w(ka+ 1), then we have the following cancellation-free formula:

[O(—ka)] . [Ow] = eW%k2 Z (_1)|A|[Oend(w,A)} _
Ae Ao (w,I*(k2))

Recall condition (Q) above.

Theorem 33. Assume that w(ks) > w(ks + 1), and assume that condition (Q) does not
hold.

(1) Ifw(ks) < w(n) orw(ki+1) < w(ka+1), then we have the following cancellation-free

formula:

[O(=w,)] - [O"] =¥ Y (=) [joendtD],
A€ A (w,I'*(k2))

(2) If w(ks) > w(n) and w(ky+1) > w(ke+1), then we have the following cancellation-
free formula:

[O(-mr)}O"] =e=a 37 (=) ([0 ] - g ol D))
A€A<(w,I'*(k2))

We consider the following analog of condition (Full):

(Full)* both of the following hold:
(1) w(ky) =n and w(ke + 1) = 1; and
(2) w(kq) is the maximum element in the sequence w(k; + 1,n).

Remark 34. Condition (Full)* holds if and only if condition (Q) holds and w(n) < w(ks),
w(ke + 1) < w(1); note that the inequality w(n) < w(ksz), together with condition (Q),

implies that w(n) < w(ky).

Theorem 35. Assume condition (Q).
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(1) Assume that w(l) < w(ka +1).
(a) If w(ks) < w(n), then we have the following cancellation-free formula:

[O(—sz)] . [Ow] = eW%@k2 Z (_1)\A|[Oend(w7A)] )

Ac AL (w,T*(k2))

(b) If w(kz) > w(n), then we have the following cancellation-free formula:

[O(=@,)] - [0"]

— eWTky Z (_1)\A\ ([Oend(w,A)] _ ka [Ol_end(w,A)stJ]) )
A€ A< (w,I*(k2))

(2) Assume that w(1) > w(ke +1).
(a) If w(ky) < w(n), then we have the following cancellation-free formula:

[O(—wk2>] . [Ow] — eWFk2 Z (_1>\A|[Oend(w,A)] )
A€A<(w,f‘*(k2))

(b) If w(ks) < w(n) < w(ki), then we have the following cancellation-free formula:

[O(=w,)] - [0]

— VT Z (_1)\A\ ([Oend(w,A)] QO Qs [OLend(w,A)(kl,szrl)J}) '
A€ A (w,T*(k2))

(3) If condition (Full)* holds, then we have the following cancellation-free formula:

O] [0 =e"a Y (1M ([0 ] - g ol
A€ A< (w,I'* (k2))

—Qu, O, ([Ol_end(w,A)(kl,kg-i-l)j] _ [OLend(w,A)(kl,k2+1)sk2j])) .

Example 36.In this example, we consider the case that n = 6 and (ki,k2) =
(2,4). Let w = 8$481528385848352. Then, w satisfies condition (Q), and we see
that w(ks + 1)(= w(5)) < w(l) < w(k + 1)(= w(3)). Recall that T'(2) =
((1,6),(1,5),(1,4),(1,3),(2,6),(2,5),(2,4),(2,3)). Then Table 4 is the list of all ad-
missible subset A € A(w,T'(5)) and their statistics end(w, A), down(w, A), together
with |end(w, A)].
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Table 4
The list of all admissible subsets A € A(s451525355548352, '(2)).
A end(w, A) lend(w, A)] down(w, A)
0 8485818283848382 84858182838483S2 0
{4} 5485818258354838182 548581528354835152 0
v v v
{6} 548581 S4 oczv + ay + o)
{8} 84858182535483 545551525354 azv . .
{4,6} 548558281 5482 oy + oy + ay
{4,8} 54555152535453851 848581828384 oezv
¢ v v
{6,8} 54558182 548182 ozzv +ozi\,,/ +a<1/
{4,6,8} 5455818251 548182 oy + oy + ay

By Theorem 7, in QK2 (G/B), we have:

[O(_WQ)] . [(1)5455515253545352]
— 684858182838483821712([08485818283348382] _ [0848581825384535152]
— Q2Q3Q4[Os4sss1] _ Q2[034sss1323334ss] + Q2Q3Q4[OS4858281]
+ Q2 [08455815283845351] + Q2Q3Q4[OS4S55152] _ Q2Q3Q4[OS455515251]).
By applying the surjection ®; : QK?Oly(G/B) — QK;Oly(G/PJ> to equation (12), we

obtain the following cancellation-free formula in QK2 (G/P;) ¢ QK1 (G/Py); here,
the underlined terms in the first equality are canceled out:

[(’)(_W2)] . [08485818253545352]

— 5455515253548352W2 ([08485518253848352] _ [0545551828384835152]
— QQsQul0M] — QO] 4 2Q5Qu[0% ]
+ Q2[054sss1S2sas4] + Q2Q3Q4[OS4S182] _ Q2Q3Q4[0343132]).

— 654555152535453521?2 ([08455518283848332]

o [0345551325334335152] _ Q2Q4[OS4] + Q2Q4[08482])'
Also, we deduce that A< (w,'(2)) = {0, {4}}. Therefore, we see that

(RHS of the equation in Theorem 31 (2)(b))
— eS4S5515253545382w2 (([05455515253545382] _ Q2Q4[OLS48581J])
o ([0345551323354335152] _ Q2Q4[OLS4855281J]))

— @5455515283548352W2 ([05485515253545382}

— QuQ4[0%] — [Osasss1sEssasIS] L (0, Q4[O52))
= [O(—wz)} . [08455518253848382]_

Thus Theorem 31 (2)(b) holds in this case.
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Remark 37. In [27, Theorem 4.5], Xu obtained a Chevalley formula for incidence vari-
eties, that is, for the two-step flag manifold G/P; in the case that J = I\ {1,n — 1},
by a completely different method of proof than ours of Theorems 27, 29, 31, 32, 33, and
35. We can verify that in this case, our Chevalley formula coincides with the one in [27,
Theorem 4.5] for incidence varieties. As an example, we compare Theorem 29 (2) with
[27, Equation (9) of Theorem 4.5]; this is a most complicated case. As for Theorems 27
and 29 (1), we can also compare our formulas and Xu’s ones by the same argument as
below. As for Theorem 31, w should be the unique element of W+ such that w(1) = n
and w(n) = 1, and hence we can compare the formulas by direct calculation. As for
Theorems 32, 33, and 35, we can show the coincidence of the formulas from that of the
formulas in Theorems 27, 29, and 31 by applying the diagram automorphism w (see
Section 4.3).

Throughout this remark, we assume that ky = 1, ks = n — 1. Note that under this
assumption, for 1 < 4,5 < n with i # j, there exists a unique w € W+ such that w(1) =i
and w(n) = j; in such a case, we write w = [i, j], as in [27].

We assume that w € W satisfies the following:

o w(ky) >w(ks +1),

« condition (Q) does not hold,
o w(l) > w(ky + 1),

. w(kl) > ’w(kg),

and set i := w(1l), j := w(n) (i.e., w = [i,5]). Under these assumptions, we see that
i+1=j modnifandonlyifi=n—1and j =n (ie, w=[n—1,n]).
Let us compute the product [O®]- [O"] by our Chevalley formula. Recall that

(1) =((1,n),(1,n—1),...,(1,2))

(with all roots negated). First, assume that w = [n — 1,n]. Then, by Proposition 2, we
deduce that A< ([n —1,n],I'(1)) = {0, {(1,n)}}. By Theorem 29 (2), we compute:

[O(=w1)] - [0 7]

_ eln—1nlm Z (_1)|A| ([Ocnd([nq,n],A)] _ Ql[opnd([nq,n]ﬁ)slj])
A€AL([n—1,n],0(1))

= et | ([00 ] = Qu[otT]) - (o] - Q[0 ))

A=0 A={(1,n)}

By the well-known formula [O%] =1 —e @' [O(—w)] (cf., [4, Section 4.1]), we see that

(0] - [Ol =]
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= (1 - e [O(=wn)]) - [OI" 1]
— [O[nfl,n]] _ e*81[0(7w1)} . [O[nfl,n]]

= [ol=tol) — e ([0 — @il ]) — ([OF 1] - ot 1))

— (1 _ ean,1—61>[0[n—1,n]] 4 efn-17¢1 <Q1[O[1’n]] + [O[n,n—l]] _ Q1[O[1’n_1]]) )

This result agrees with the second equation of [27, Equation (9) of Theorem 4.5].

Next, we consider the case w = [i,j] # [n — 1,n]. In this case, we see that i + 1 £ j
mod n. Since condition (Q) does not hold, we have w(n) # 1. Also, we have w(n) # n;
this is because if w(n) = n, then w must be [n — 1, n] under our assumptions. These facts
imply that w(1) = i = n and w(2) = 1. By Proposition 2, we deduce that A (w, (1)) =
{@}. Therefore, we compute:

[O(~w1)] - [O"]

— qwm Z (_1)\,4\ ([Oend([n,j],A)] _ Ql[olend([n,j]u‘i)sﬂ])
A€A<([n,g],T(1))

— efn ([O[n,ﬂ] _ Ql[@[l,j]]) ‘
Again, since [O*1] =1 — e~ ®1[O(—wy)], we see that

") (0]
~ (1= e [0(-=)) - (0]
— [01"] - e~ {O(~w)] - (O]

= [Ol)] _ gEn—en (w[n,ﬂ] _ Ql[O“J]})

=(1- efrﬁl)[@[n,j]] 4 efnEl Ql[O[l’j]}.
This result agrees with the first equation of [27, Equation (9) of Theorem 4.5].
4.83. Proofs of parabolic Chevalley formulas: part 1

In this and the next subsection, we give proofs of the results stated in the previous
subsection. Since Theorems 32, 33, and 35 follow from Theorems 27, 29, and 31, respec-
tively, by applying the diagram automorphism w : [n — 1] — [n — 1], it suffices to prove
Theorems 27, 29, and 31. Note that the diagram automorphism w induces a group auto-
morphism w : W = W, s, Sw(1), together with a linear automorphism w : hg = hgs
@]+ W), and also an isomorphism w : G/P; = G/ P,y of varieties; recall that G
is simply-connected. Hence, as mentioned in [24, Sections 8.1 and 8.3], we see that there
exists a Z-module isomorphism w : QK1 (G/Py) = QK71 (G/P,(s)) such that
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eH[Ov] — e (1) [OW(w)]

for p € A, w € W7, and such that w(Q;) = Quqy for I € I'\ J. In this subsection, we
give proofs of Theorems 27 and 29.
By Remark 8, we obtain the following.

Lemma 38. The sum

Wk Z (_1>\A\[Oend(w,A)]

AceAs(w,I'(k1))

is cancellation-free.
Also, by making use of Proposition 2, we can verify the following.

Lemma 39. The following hold.

(1) We have Ay (w,T'(k1)) # 0 if and only if w(ky) > w(ky + 1).
(2) We have Ax(w,T (k1)) # 0 if and only if condition (Q) holds.

Remark 40. It is obvious that Ag(w, (k1)) # 0 if and only if Az(w, (k1)) # 0.
Remark 41. If w(ky) > w(ky + 1), then we have

Ay, (k) = {A U {(kr b + 1)} | A € Ac(w, T(k1))} (13)
Also, if condition (Q) holds, then we have

Az(w, (k1)) = {AU{(k1, k2 + 1)} | A € Ac(w,T(k1))}, (14)
As(w,T(ky)) = {AU{(k1, ks + 1), (k1, k1 + 1)} | A € Ac(w,T(k1))} - (15)

Proof of Theorem 27. By Lemma 39, we have A(w,I'(k1)) = A« (w,T'(k1)). Therefore,
the theorem follows from Lemma 38. O

In the rest of this subsection, we assume that w(k;) > w(k; 4+ 1), and assume that
condition (Q) does not hold. Hence we have As(w,T'(k1)) = Az(w, (k1)) = 0.

First, assume that w(1) < w(k; + 1). Take the maximal 1 < p < k; such that
w(p) < w(k1 + 1). Then, we can define an involution ¢ on A; (w, (k1)) as follows: set

A (w,T(ky)) := {A € A(w,T(k)) | (p, k1 +1) € A},
A (w,T(k1)) == {A € Aj(w,T(k1)) | (p, k1 +1) ¢ A},

and define ¢ by
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Ac A2 (w,T(k)) — 1(A):=AU{(p,k1 +1)} € Al(w,T(k1)),
Ae .A}(w,l"(kl)) = (A):=A\{(p,k1 +1)} € .A%(w,l"(kl)).
This ¢ has the following properties:

o end(w,t(A)) = end(w, A)(p, k1) (and hence |end(w,t(A))] = |end(w, A)]);
o |L(A)] =Al£1.

By using the involution ¢, we obtain the following.

Lemma 42. Assume that w(k1) > w(k1 + 1), and assume that condition (Q) does not
hold. If w(1) < w(ky + 1), then

Wk Z (=1)IA1IQy, [Olendw )] — ¢,
A€ Ay (w,T(k1))

Remark 43. Even if we assume condition (Q), the identity in Lemma 42 is still valid, if
all the conditions of this lemma other than the negation of condition (Q) hold. This is
because the involution ¢ above is well-defined whether or not condition (Q) holds.

Next, assume that w(k;) < w(ks). Take the minimal k3 + 1 < ¢ < ko such that
w(ky) < w(q). Then, we can define an involution ¢ on A; (w,I'(k1)) as follows: set

Aj(w, T (k1)) == {A € A1 (w,T (k1)) | (k1,q) € A},
Af(w, T (k1)) == {A € A1 (w,T(k1)) | (k1,q) ¢ A},

and define ¢ by

Ae Al (w,T (k1)) = o(A) :=AU{(k1,q)} € Aj(w,T(k1)),
Aec Al (w,T(ky)) = t(A):= A\ {(k1,q)} € A2(w,T(k1)).

This ¢ has the following properties:

o end(w,t(A)) =end(w, A)(k1 + 1,q) (and hence |end(w,t(A))] = |end(w, A)]);
o (A=Al £1.

By using the involution ¢, we obtain the following.

Lemma 44. Assume that w(k1) > w(ky + 1), and assume that condition (Q) does not
hold. If w(k1) < w(ks), then



36 T. Kouno et al. / Journal of Algebra 645 (2024) 1-53

Wk Z (—1)|A|Qk1 [O I_end(w,A)j] —=0.
Ae A (w,I'(k1))

Proof of Theorem 29 (1). By Lemmas 42 and 44, we deduce that

Wk Z (—l)lAlel [O [end(w,A)j] =0.
A€Ay(w,I'(k1))

Therefore, we obtain the desired cancellation-free formula from Lemma 38, together with
the fact that As(w, (k1)) = As(w,['(k1)) = 0. O

We assume that w(1) > w(ky +1) and w(k1) > w(kz) until the end of this subsection.
Let A € Aj(w,T'(k1)), and set y := end(w, A\ {(k1,k1 + 1)}). Since A\ {(k1,k1 + 1)}
contains only Bruhat steps, we see that y(k; + 1) < y(1) and y(k2) < y(k1). Therefore,
if we set z := ysg, = end(w, A), then we have

o z(k1) <z(1) <2(2) < <2k — 1),
o z(k1+2) <z(k1+3) <--- < z(k) < z(k1 +1), and
o z(ka+1) < z(ka+2) < - < z(n);

hence, if we take cyclic permutations o1 := (1, k1, k1 — 1,...,2) (if k4 = 1, then we take
o1 := e, the identity permutation) and o9 := (k1 + 1,k + 2,...,k2) (if k1 + 1 = ko,
then we take o9 := e), then we deduce that |z] = zo109. Note that the definitions of o1
and o3 do not depend on the choice of A. Thus, for A, B € A;(w,T'(k1)) with A # B, it
follows that

|lend(w, A)| = end(w, A)o102 # end(w, B)o1oe = |end(w, B)] .

Since the right-hand side of equation (4) in Theorem 7 is cancellation-free, as mentioned
in Remark 8, this proves the following.

Lemma 45. Assume that w(k1) > w(ky + 1), and assume that condition (Q) does not
hold. If w(1) > w(ky + 1) and w(k1) > w(ks), then the sum

e Y (—)MlQy, [olerte ] (16)
A€ Ay (w,I(k1))

is cancellation-free.

Remark 46. Note that we do not use the negation of condition (Q) in the proof of
Lemma 45. Hence the sum (16) is cancellation-free whether or not we assume condition
(Q), if all the conditions of Lemma 45 other than the negation of (Q) hold.
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Remark 47. If A; (w,T'(k1)) # 0 (or equivalently, w(k1) > w(k1 +1)), then equation (13)
shows that

eWky Z (71)\A\le [OLend(w,A)J}
AeA; (w,I'(k1))

N Z (_1)|A|Qk1 [OLcnd(w,A)sklj] )
AeA<(w,I' (k1))

Proof of Theorem 29 (2). The desired identity follows from Lemmas 38, 45, and Re-
mark 47, together with the fact that As(w, (k1)) = As(w,T'(k1)) =0. O

4.4. Proofs of parabolic Chevalley formulas: part 2

In this subsection, we give a proof of Theorem 31; since we assume condition (Q), we
have w(k1) > w(ky + 1); see Remark 28.

First, assume that w(k;) < w(n). Then, we can take the minimal k2 +1 < ¢ < n such
that w(ki) < w(q), and define an involution ¢ on A;(w,T'(k1)), I = 2,3, as follows: for
each | = 2,3, we set

Al (w,T(ky)) == {A € Ai(w,T(k1)) | (k1. q) € A},
Af(w, T (k1)) == {A € Ai(w,T(k1)) | (k1,q) ¢ A},

and define ¢ by

Ac A(w,T(k)) — t(A):=AU{(k1,q)} € A (w,T(ky)),
Ac Al (w,T(k)) = t(A):= A\ {(k1,q)} € A?(w,T(k1)).
This ¢ has the following properties:

o end(w,t(A4)) = end(w, A) (ks + 1,¢q) (and hence |end(w,t(A4))| = |end(w, A)]);
o [L(A)]=|Al£1.

By using the involution ¢, we obtain the following.

Lemma 48. Assume condition (Q). If w(ki) < w(n), then for ! = 2,3,

Wk Z (_1)|A|Qk1 ka [O Lend(w,A)J] —=0.
AeA; (w,T'(k1))
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Proof of Theorem 31 (1). By Lemma 48, we deduce that

[O(—wkl )] . [Ow] — oWk Z (_1)|A|[Oend(w,A)}
Ac A4 (w,T(k1))

+ eWFr Z (71)\A\le [OLend(w,A)J] )
AeA; (w,I'(k1))

If w(l) < w(ky + 1), then

eW k1 Z (—l)lAlel [O[end(w,A)j] =0
AeA; (w,I'(k1))

by Remark 43. Therefore, Theorem 31 (1) (a) follows from Lemma 38.
Assume now that w(1) > w(k1+1). Note that w(k;) > w(ks) by condition (Q). Hence
Remark 46 implies that the sum

WPk Z (_1)|A\Qk1 [OLend(w,A)J]
Ac Ay (w, (k1))

is cancellation-free. Therefore, Theorem 31 (1) (b) follows from Lemma 38 and Re-
mark 47. O

Next, assume that w(k;) > w(n). We consider the following auxiliary condition:
(Q-A) there exists 1 <1 < ky such that w(kes +1) < w(l) < w(ky + 1).
Assume condition (Q-A), and that w(1) < w(kz+1). We take the maximal 1 < py, <

k1 such that w(pa,) < w(kz+1). Then, we can define an involution ¢ 4, on As(w,T'(k1))
as follows: set

Ay (w, T (k1)) := {A € As(w,T(k2)) | (pa,, k2 +1) € A},
A3(w,T(k1)) = {A € Ax(w,T(k2)) | (pay, k2 +1) & A},

and define ¢4, by

A€ A (w,D(k1)) = 1a,(A) = AU{(pay k2 + 1)} € Aj(w,T(k1))
A€ Ay(w,T (k1) = 1ay(A) = A\ {(pag. b2 + 1)} € A5 (w,T(k1)) -

Remark 49. If condition (Q-A) does not hold, then the above 14, : AL(w,T'(k1)) —
A2(w,T (k1)) is not well-defined; we will explain this situation later.

This ¢ 4, has the following properties:
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o end(w,t4,(A)) =end(w, A)(pa,, k1) (and hence |end(w,t4,(A))| = |end(w, A)|);
o lea,(A)] = [A[ £ 1.

By using the involution ¢4,, we obtain the following.

Lemma 50. Assume condition (Q). If w(1) < w(ks + 1) and condition (Q-A) hold, then

e 3 (~)MIQy @0t — 0.
A€ Az (w,I'(k1))

Also, we take the maximal 1 < p4, < k; such that w(pa,) < w(k;+1). We can define
an involution ¢4, on Agz(w,I'(k1)) as follows: set

Aé(war(kl)) = {A € Aé(wvr(kl)) ‘ (pAsvkl + ]-) € A}7
Af(w, D (k1)) = {A € A3(w,T(k1)) | (pay, ky +1) ¢ A},

and define ¢4, by

A€ A5(w,T(kr)) = 1a,(A) = AU{(pa,. b1 + 1)} € A3(w, T (k1))
A€ A(w,D(k1)) = 1a,(A) = A\ {(pag, k1 + 1)} € A3(w, T(k1)).

Remark 51. If condition (Q-A) does not hold, then the above ¢4, : A%(w,T(k1)) —
AL(w,T (k1)) is not well-defined for the same reason as ¢ 4,.

This ¢ 4, has the following properties:

o end(w,ta,(A)) =end(w, A)(pa,, k1) (and hence |end(w,t4,(A))] = [end(w, A)|);
o leas(4)] = A 1

By using the involution ¢ 4,, we obtain the following.

Lemma 52. Assume condition (Q). If w(1) < w(ke +1) and condition (Q-A) holds, then

W@k Z (_1)|A|Qk1 ka [O Lend(w,A)J] —0.
A€ Az (w,T' (k1))

Next, assume that condition (Q-A) does not hold, but assume that w(1l) < w(ks +1).
Take the maximal 1 < p < ky such that w(p) < w(ks +1). Set

Ay(w, T(k1)) :={A € Ag(w,T(k1)) | (p, k1 +1) € A},
A (w, T (k1)) = Az (w, T(k1)) \ Aj(w, T(k1)) -
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Observe that if A € A5 (w,T'(k1)), then we must have (p, ka+1) € A; if not, then A cannot
contain a quantum step (ki,ks + 1), which contradicts the definition of Ag(w,T'(k1)).
Thus, the above 14, : A(w,T(k1)) — A3(w, (k1)) is not well-defined. Hence we need
another involution.

In fact, we can define an involution on AL (w, '(ky)) similar to ¢ 4, as follows. We set

A7 (w, T (k) = {A € A7 (w,T(k)) | (p, k2 +1) € A},
A7 (w, T (k) = {A € A (w,T(k1) | (p, ko +1) ¢ A}

Then we can define an involution ¢ on A, (w, T'(ky)) by

A€ AP (w,T(ky)) = o(A) = AU{(p, k2 +1)} € A7 (w,T(k1)),
A A5 w, (k) = t(A):= A\{(p, k2 + 1)} € AL (w,T(ky1)).

This ¢ has the following properties:

e end(w,t(A)) = end(w, A)(p, k1) (and hence |end(w, t(A4))] = |end(w, A)]);
o [L(A)]=|Al£1.

By using the involution ¢, we obtain the following.

Lemma 53. Assume condition (Q). If w(1) < w(ka+ 1), and if condition (Q-A) does not
hold, then

PO Z (—1)|A|Qk1Qk2 [(f)tcnd(wvA)J] -0.

A€ ALY (w,I (k1))

Similarly, we set

Az(w,T(k)) := {A € As(w,T(k1)) | (p, k2 + 1) ¢ A},
A (w, T (k1)) = As(w, (k1)) \ As(w, T(k1)) -
Observe that if A € A5(w,'(ky)), then we must have (p, k1 + 1) ¢ A; if not, then A

cannot contain a quantum step (k1, ke + 1). However, we can define an involution on
Al (w,T'(ky1)) similar to ¢4, as follows. We set

A (W, T (k) o= {A € A% (w, T (k1)) | (p. k1 + 1) € 4},
A2 (w,T (k) o= {A € A% (w, T (k1)) | (p. k1 +1) & A}

Then we can define an involution ¢ on A4 (w, T'(ky)) by
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Ae A2 (w,T(k)) — u(A):=AU{(p,k1+1)} € A% (w,T(ky)),
Ae A% (w,T(k)) — u(A):=A\{(p,k1 + 1)} € A7 (w,T(ky)).
This ¢ has the following properties:

o end(w,t(A)) = end(w, A)(p, k1) (and hence |end(w,t(A))] = [end(w, A)]);
o (A=Al £1.

By using the involution ¢, we obtain the following.

Lemma 54. Assume condition (Q). If w(1) < w(ks +1), and if condition (Q-A) does not
hold, then

e’ > ()Mot ] = 0.

A€ ALC (w,D (k1))

It remains to examine cancellations for the set
23(w, (k1)) := Ay(w,T'(k1)) U A5 (w, L(k1)) .-
The desired involution on A4 (w,I'(k1)) is given as follows:

A e Ay(w,T(ky))
W(A) = (A\A{(p, k2 + 1), (p, k1 + 1) }) U{(k1, k1 + 1)} € Ag(w, (k1))
A€ Ay (w,T(ky))
) =

W(A) = (A\{(k1, k1 + D)} U{(p, k2 + 1), (p k1 + 1)} € Ay(w,T(k1)) -

This ¢ has the following properties:

o end(w,t(A)) = end(w, A)(p, k1) (and hence |end(w, t(A))] = |end(w, A)]);
o |L(A)]=Al£1.

By using the involution ¢, we obtain the following.

Lemma 55. Assume condition (Q). If w(1) < w(ka + 1), and if condition (Q-A) does not
hold, then

Wk Z (_1)|A|Qk1 ng [OLcnd(w,A)J]
Ac AL (w,I'(k1))

ter ™ Y ()Mot ] = 0.



42 T. Kouno et al. / Journal of Algebra 645 (2024) 1-53

Proof of Theorem 31 (2) (a). By Lemmas 50, 52, 53, 54, and 55, we have

ek, Z (_1)\A\Qk1Qk2 [OLend(w,A)J]

AeAz(w,I'(ky1))

ter™a Y (-)MQ ot ] = 0.
A€ Az(w,T' (k1))

Also, since w(1) < w(ky + 1) < w(ky + 1), Remark 43 implies that

Wk Z (—l)lAlel [O Lend(w,A)j] =0.
Ae Ay (w,I'(k1))

These observations, together with Lemma 38, prove the desired cancellation-free iden-
tity. O

Remark 56. In the proof of Theorem 31(2)(a), we do not use the assumption that
w(ky) > w(n).

Now, we assume that w(k1) > w(n) and w(kz +1) < w(l) < w(ky + 1), which are the
assumptions of Theorem 31 (2) (b); note that w(1) < w(k; + 1) < w(ky) by condition
(Q), and hence k; # 1. In this case, the same proof as that of Lemma 52 yields the
following,.

Lemma 57. Assume condition (Q). If w(ks +1) < w(1l) < w(ky + 1), then

Y ()MQQul0l i =0
A€ Az(w,I' (k1))

Remark 58. We do not need the assumption that w(k;) > w(n) for Lemma 57.

In contrast, the sum over Az(w,I'(k1)) is cancellation-free. Indeed, let A €
Ag(w,T'(k1)), and set y := end(w, A \ {(k1,k2 + 1)}). Note that A\ {(k1,k2 + 1)}
contains only Bruhat steps. Hence we see that y(ko + 1) < y(1) and y(n) < y(k1).
Therefore, if we set z := y(k1, k2 + 1) = end(w, A), then

o z(k1) <z(1) <2(2) < <2k — 1),
o z(k1+1) < z(k1+2) <--- < 2z(k2), and
o 2(ka+2) <z(ka+3) < <z(n) < z(ks+1);

hence, if we take cyclic permutations o1 := (1,k1,k1 — 1,...,2) and o9 := (ko +
1,ks + 2,...,n) (if k2 + 1 = n, then we take o2 := €), then we have |end(w,A)| =
end(w, A)oios. Note that these o1 and o2 do not depend on the choice of A. Thus, for
A, B € Ay(w,T'(k1)) with A # B, it follows that
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|end(w, A)| = end(w, A)oy09 # end(w, B)o109 = |end(w, B)| .
This, together with Remark 8, proves the following.

Lemma 59. Assume condition (Q). If w(k1) > w(n) and w(ks + 1) < w(l) < w(ky + 1),
then the sum

ek Z (—1)A1Qp, Qp, [OLend(wA)]]

A€ Az (w,I'(k1))

is cancellation-free.

Remark 60. If As(w,T'(k1)) # 0 (or equivalently, if condition (Q) holds), then equa-
tion (14) shows that

Wk Z (_1)|A|Qk1Qk2 [OLend(w,A)J]
A€Az(w,I'(k1))
— _eWTk Z (_1)|A|Qk1Qk2 [Ol_end(w,A)(kl,kg-&-l)j] )
AcA<(w,I' (k1))

Proof of Theorem 31 (2) (b). Since w(1) < w(ky + 1), Remark 43 implies that

Wk Z (*l)m‘le [OLend(w,A)J} =0.
AeA; (w,I'(k1))

Hence, by Lemmas 38, 57, 59, and Remark 60, we obtain the desired cancellation-free
formula. O

It only remains to prove Theorem 31 (3). To do so, we assume condition (Full). By
the same argument as in the proof of Lemma 59, we see that for A € Ay(w,T'(kq)),
|end(w, A)| = end(w, A)oy02, where o1 and oo are the cyclic permutations defined
above (if k1 = 1, then we take o7 := e). In addition, since w(k; +1) < w(1) by condition
(Full) (2), it follows that end(w, A)(k1) < end(w, A)(k1 + 1) < end(w, A)(1) (if k&1 = 1,
then we need only the inequality end(w, A)(k; + 1) < end(w, A)(1)). Therefore, for
A€ Az(w,T(k1)) (note that A\ {(k1,k1 +1)} € Az(w,T'(k1))), the following hold:

e end(w, A)(k1) < end(w, A)(1) < end(w, A)(2) < --- < end(w, A) (k1 — 1),
o end(w,A)(k1 +1) < end(w, A)(k1 +2) < -+ < end(w, A)(kz), and
o end(w, A)(ke + 2) < end(w, A) (k2 +3) < --- < end(w, A)(n) < end(w, A)(k2 + 1).

Thus we conclude that |end(w,A)] = end(w, A)oios, and hence that for A, B €
Ag(w,T'(k1)) U As(w,T'(k1)) with A # B,

|end(w, A)| = end(w, A)oy04 # end(w, B)o1o2 = |end(w, B)| .
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This, together with Remark 8, proves the following.

Lemma 61. Assume conditions (Q) and (Full). Then the sum
e’ Y, (F)MQK Qo
A€Asz(w,T(k1))

Ferm ST () Q0]
AcAz(w,I'(k1))

is cancellation-free.

Remark 62. If Az(w,T(k1)) # @ (or equivalently, if condition (Q) holds), then equa-
tion (15) shows that

pRUC/ Z (fl)lAleleQ [Olend(w’A)J]
AcAz(w,I'(k1))

— Wk Z (=1)IA1Qy, Qp, [OLend(w A krskatDsiy JT
A€ A (w,T'(k1))

Therefore, by Remark 60, we deduce that

W@k Z (*l)lAlel Qk2 [O[end(w,A)j]

AcAs(w,I'(k1))

4 Wk Z (_1)|A|leQk2 [OLend(w,A)j]
A€Az(w,I(k1))

— oWk Z (71)\A\le ka ([Otend(w,A)(kl,szrl)J} - [O[end(w,A)(kl,k2+1)sklj]) )
Ae A< (w,I' (k1))

Proof of Theorem 31 (3). The desired identity follows from Lemmas 38, 61 and Re-
marks 46, 47, 62. O

4.5. The positivity property

We prove the positivity property of structure constants for two-step flag manifolds in
type A, which is a corollary of Chevalley formulas (Theorems 27, 29, 31, 32, 33, and 35).

Corollary 63. Let G be of type Ap—1, J = I\ {k1,ka} for arbitrarily fited 1 < ky < ko <
n—1, and k =k, or k= ky. Then, for w,u € W’ and ¢ € Q\I/\J;, we have

(_1)1+f(w)+f(“)+d°g(Q€)N§fw € Zsole” — 1|~ —Al
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Proof. We give a proof of Corollary 63 under the assumptions of Theorems 27, 29 and
31. The positivity property under the assumptions of Theorems 32, 33, and 35 follows
by the same arguments as those for Theorems 27, 29 and 31. Note that the positivity
property under the assumptions of Theorems 27, 29 (1), 31 (1) (a) and (2) (a) has already
been known because of the positivity property of N;’f;}o for u,v,w € WY. First, it is easy
to check (see, for example, [9, Section 3.1.5, Exercise 4]) that

kl—l k‘g—k‘l—l ’n—k‘g—l

2p5 = Z Z(/fl — i)ai + Z Z(kQ — k1 — i)aliri + Z z(n — ko — i)ak2+i.
i=1 i=1 i=1
Since
2 if i = 7,
(as, af ) = ¢ —1 if i —j| =1,
0 otherwise,
we have

2pg, ag,) = (k1 = 1) = (k2 — k1 — 1) = 2 — ko,
2py, af,) =—(ka —ky —1) = (n—ky — 1) =2 —n + ky.
In addition, we know that 2{p, O‘XI> = 2. Therefore,
deg(Qr,) = 2(p — ps, af,) = —ko
deg(Q’@) = 2<p —PJ, a\k/2> =n— ki,

and hence

deg( Qr, @k, ) =2(p—p, a;g/l +04Z2> =n— ki +ka.
——

Vv Vv
=Q“k1 oy

Let us consider the structure constants N:,;f,w with £ # 0 under the assumptions
of Theorems 29 (2) and 31 (1) (b). We maintain the setting of Lemma 45 except for
the negation of condition (Q) (see Remark 46). Take A € Ay (w,T'(ky1)), and set u :=
|end(w, A)|, up := end(w, A). Then, by the proof of Lemma 45, we have u = ugoi09,
where 01 = (1,k1,k1 —1,...,2) and 09 = (k1 + 1,k1 + 2, ..., ka). Therefore, we see that

(_1)\A\ewwk1 le [O Lend(w,A)j]
= (~1)/ e [0
— (_1)(é(uotﬁcfz)—f(ﬂl)—5(02))—e(w)ewwk1 Qr, [OU]
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:(_1)€(u)—(k1—1) (k2—k1—1)—€(w) wwlek [Ou]
_ (71)€(w)+ﬁ(u)+k2ewwkl le[ ]

(_l)é(w)+£(u)+dcg(Qk1 )ewwkl le [Ou}
We set
Av(w,T(k1))u == {A € Ay(w, (k1)) | [end(w, A)| = u}

for u € W, Then, for u € W7, we deduce from Theorems 29 (2) and 31 (1) (b) that

C;L],azl — Wk Z (_1)|A| _ (_1)Z(u)+l(w)+deg(le)|A1(,w’F(kl))u|ewwk1’
Ac Ay (w,I'(k1))u

and hence that

u (X;c/l

NSI;1 - (_1)1+l(w)+5(u)+deg(Qk1)|A1(w7F(kl))”ewmpwh.

Since wwy, — @k, € —Q1 and hence ek ~%k € Zsgle?” — 1| v € —A], we conclude
that

(71)1+Z(w)+€(u)+deg(Qk1)N:k’i% € Zsole” —1|v¢€ —A] (17)

as desired. Equation (17), together with the positivity property of sz‘fg}o for u,v,w € W7,
implies Corollary 63 under the assumptions of Theorems 29 (2) and 31 (1) (b).

Next, we consider the structure constants N ;‘If w With € # 0 under the assumption
of Theorem 31 (2) (b). We maintain the setting of Lemma 59. Take A € Ay(w,T'(k1)),
and set u := |end(w, A)], ug := end(w, A). Then, by the proof of Lemma 59, we have
u = ugo109, where o1 = (1, k1,k1 — 1,...,2) and 09 = (k2 + 1, k2 + 2,...,n). Therefore,
we see that

_1)|A|ewwk1Qk Qk [OLcnd(w,A)j]
1 L(ug)—L£(w) wwlek ng [Ou]

—

1 (b(ugo102)—L(01)— (02))7Z(w)ewwk1 le ng [Ou}

1 L(w)+(u)+(n—ki+ksa) Wk Qk ka[ ]

=(=1)
=(=1)
( 1)Z(u (k1=1)=(n—kz2—1)—£(w) g, Qr, Qr, [Ou]
= (=1
=(=1)

1 £(w) +Z(u)+deg(leQk2)ewwkl Qk ka[ ]
We set

Ag(w, T'(k1))y :={A € Ax(w,T'(k1)) | |end(w, A)| = u}
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for w € WY, Then, for u € W7, we deduce from Theorem 31 (2) (b) that

\2 \
CZvak1+(¥k2 — ewwkl Z (_1)‘14‘
A€ Az (w,l'(k1))u

_ (_1>€(w)+i(u)+deg(Qk’1ng)|A2(w’r(k1))u‘ewwk17
and hence that

v Vv
U, 0t

Nsm,w _ (71)1+4(w)+4(u)+deg(leng)|A2(w7F(kl))u|ewwhfw;«1. (18)

Again, since e¥%r1~ %k € Zsole? — 1 | v € —A], we conclude that

(_1)1+€(w)+4(U)+deg(Qm Q”)N;:ié +ay, € Zsole” — 1|~ € —A] (19)

as desired. Equation (19), together with the positivity property of N:jj;)o for u,v,w € W7,
implies Corollary 63 under the assumption of Theorem 31 (2) (b).

It remains to consider the structure constants N ;‘kfw with £ # 0 under the assumption
of Theorem 31 (3) and consider the structure constants N, :‘k’f’w for € # 0. The positivity
property in the case £ = a}; has already been proved by equation (17). Hence it suffices

to consider the case £ = a%l + a}c/z. We maintain the setting of Lemma 61. We set
Azs(w, L'(k1))u :={A € Az(w, (k1)) U As(w,I'(k1)) | [end(w, A)] = u}

for u € W7. Then, by the same argument as that for equation (18), we deduce from
Theorem 31 (3) that

4 v
U, Qg+,

Nskl,w _ (_1)1+Z(w)+f(u)+deg(Qk1ng)|A23(w’F(kl))“ewwklfwkl,
and hence conclude that
(_1)1+€(w)+€(u)+deg(Qk1 ka)N:k’i’E T, € Zsole” — 1|~ € —A] (20)

as desired. Equations (17), (20), together with the positivity property of N.;% for
u,v,w € W7, imply Corollary 63 under the assumption of Theorem 31 (3). This com-
pletes the proof of the corollary. 0O
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Appendix A. Another proof of the existence of the multiplicative surjection ® ;

In this appendix, we mainly use the notation of Section 2.3. In addition, we set
QK%OIY(G/B) = K7(G/B) ®za) Z[A][Q], where Z[A][Q] is the polynomial ring with
coefficients in Z[A] in the (Novikov) variables @Q; = Q> , i € I; also, for an arbitrary
subset J C I, we set QK;Oly(G/PJ) = K7(G/P;)@zn Z[A][QK], with K := I'\J, where
Z[A][QKk] is the polynomial ring with coefficients in Z[A] in the variables Qg, k € K. It
is known (see [10]) that there exists a surjective Z[A]-algebra homomorphism ®; from
QK2 (G/B) onto QKLY (G/Py) such that ®;(Q¢[O"]) = Q[f]J[OBwJ] for w € W and
¢ € QV't, where [¢]7 = Zkel\!] cpay for & = 3,0 € Q¥ In this appendix,
based on results in [6], we give another (short) proof of the existence of such a Z[A]-
algebra homomorphism. First of all, we note that QK2 (G/B) is a Z[A]-subalgebra of
QK7(G/B) = Kr(G/B) ®z) Z[A][Q] by [6, Corollary 1.2].

Let us briefly recall the main result of [6]. Following [6], let Grg denote Pressley-
Segal’s model of the affine Grassmannian associated to a simple and simply-connected
complex Lie group G; more precisely, let Grg be the space of polynomial based loops in
a (fixed) maximal compact subgroup of G, equipped with an ind-variety structure (see
[26, Chapter 8] for details). We denote by KT (Grg) the T-equivariant K-homology (in
the topological sense) of the affine Grassmannian Gr¢, equipped with the Pontryagin
product ® coming from the group product on the topological group Grg. Then, we
have two bases. One is a basis (called the localization basis) O¢ = [O,,], £ € QV,
of KT(Grg) over Frac(Z[A]), where z¢ is the T-fixed point of Grg corresponding to
the cocharacter of T associated to & € QY. More precisely, if we consider the Z[A]-
algebra @ger Frac(Z[A])O¢ equipped with the product ® defined by O © O, =
O¢, +£,, €1,&2 € QV, then we have an injective Z[A]-algebra homomorphism KT (Grg) —
@Decqv Frac(Z[A])O¢ which fixes every Og. Another is indeed a basis of K T(Grg) over
Z[A] given as follows. Let Wor = W x QV be the affine Weyl group of G, and let W%
denote the set of minimal-length coset representatives for W,s/W. We know from [23,
Section 3] that an element wte € Wee, with w € W and ¢ € QV, lies in WS if and
only if £ € QY is anti-dominant and w is of minimal length in its coset wW in W/We,
where We C W is the stabilizer of £ in W; note that if £ € Q" is anti-dominant, then
¢ € —QV'T. In particular, if £ € QY is regular anti-dominant, then wte € WY for all
w € W. For each wtg € WY, there exists a complex cell (called an affine Schubert cell)
in Grg containing the T-fixed point z,¢ € Grg of finite dimension; the class of the
structure sheaf of the Zariski closure of this cell is denoted by O, and is called the
affine Schubert class associated to wte € W2%. Then we know that the classes Oy,
wte € WY, form a Z[A]-basis of KT(Grg).

Now the main result of [6] is stated as follows.

Theorem 64 (/6, Theorem 1.1]). Let J be an arbitrary subset of I. Then, there exists a
Z[A]-algebra homomorphism
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Uy KT(Grg) = QK (G/Py)[(QV) 1],

where QK1 (G/Py)[(QVT) 1] denotes the localization of QKr(G/Py) with respect to the
monomials in the Novikov variables Q; = Q® , i € I. Moreover, U7 (Owte) = QL [ngj]
for each wtg € WS, where [€]7 = Ykengcray for & =30 € QY and [Obwj]

denotes the (opposite) Schubert class in K1(G/Py) associated to the minimal-length coset
representative |w| € W for the coset wW in W/W.

Note that in the case J = 0, i.e., Py = B, the Z[A]-algebra homomorphism ¥ := ¥y is
injective since the affine Schubert classes Oy, , wte € WS, form a Z[A]-basis of K (Gr¢)
and ¥([Oye]) = Q*[OY].

We will construct a surjective Z[A]-algebra homomorphism @ ; from QK2 (G/B) to
QKN (G/Py) such that ®;(QS[0"]) = Q) [OL)] for w € W and ¢ € QY+, where
(€] = Yhensenay for & = 3 ey € QVF. We first note that for each element
v e QKPM(G/B) = Kr(G/B) ®z1a] Z[A][Q], there exists a sufficiently regular anti-
dominant coroot n € —QV'T such that Q"v € QK7 (G/B)[(QY"")™!] lies in the image
of the map ¥, i.e., Q"v € V(KT (Grg)); by the injectivity of ¥, there exists a unique
u € KT (Grg) such that ¥(u) = Q" v. Indeed, we may assume that v = Q$[O"] for some
w e W and € € QV>F since each v € QK;OIY(G/B) is, by its definition, a finite linear
combination with coefficients in Z[A] of such elements. Hence we can take a sufficiently
regular anti-dominant coroot 7 € QV such that £+n € QV is also regular anti-dominant;
note that we have n € —QY'" since n € QY is anti-dominant. We set u := Oy, ,
where wt¢, lies in WY since £ +n € QY is regular anti-dominant. Then it follows that
U(u) = Q"v by Theorem 64. Now we define ®;(v) := Q[_"]J\I!J(u) € QKr(G/Py).
We can easily verify that the element Qv J(u) does not depend on the choice of
(a sufficiently regular anti-dominant coroot) n € —QY>*, and hence that ®; is a well-
defined surjective Z[A]-module homomorphism from QK2°Y(G/B) onto QKEY (G/Py).
Indeed, if v = Q[O™] with w € W and & € Q¥F, then ®,(Q¢[0"]) = QI [O}")].

Also, for vy, vy € QK;Oly (G/B), we can take sufficiently regular anti-dominant coroots
n,n2 € —QV'F such that Q™ v, Q™ vy € W(KT(Grg)); hence there exist uniquely
u1,uz € KT (Grg) such that ¥(u;) = Q™ vy and ¥ (ug) = Q" vq. Since ¥ = Wy is a Z[A]-
algebra homomorphism, we have Q"7 (v - vg) = (Q™ v1) - (Q™ vo) = W(uy) - U(ug) =
U (u; ®ug) in QK1 (G/B)[(QV )71, where u; ®ug € KT(Grg). Therefore, we see that
®g(vr+02) = QUMW (1 ©uz) = QUM (W () - Wy (2)) = QUM W )
QW) = @(vy) - ®4(v2) in QEr(G/Py)[(QV-F)~Y since U, is a Z[A]-algebra
homomorphism. This proves that the map ®; is a Z[A]-algebra homomorphism from
QKPR (G/B) to QK2 (G/Py), as desired.

Finally, since [0%] = 1 — e %[Oq/p(~w;)] in Kr(G/B) for all i € I and
0] = 1 — e ®*[Og/p,(—wi)] in Kp(G/Py) for all k € K = I\ J, it follows
that ©,([Og/p(—wmk)]) = [Og,p,(~wk)], and hence that ®;([0"] - [Og,p(~wk)]) =
2,5((0")) - 2([Oc/n(~wr)]) = (03] [Ocyp, (~won)] for all k€ K =1\ J.

Thus, we have given a proof of the following fact; cf. Theorem 6, due to Kato ([10]).
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Corollary 65. Let J be an arbitrary subset of I. Then, there exists a surjective Z[A]-
algebra homomorphism

Oy : QKLY (G/B) — QKR (G/Py)

such that ®;(Q%[Ov]) = QK]J[(’)BWJ} forw e W and € € Q¥'F. Also, for each k € K =
I\ J, the following equality holds for all w € W:

0,(10"] - [Og/5(~wr))) = [05] - [0, p, (—n))-

Appendix B. Weihong Xu’s conjecture about a cancellation-free parabolic Chevalley
formula in type A (with Weihong Xu)

In this appendix, we mention the relation between our results and a conjecture due
to Weihong Xu, which is expected to be a cancellation-free Chevalley formula in type A
for an arbitrary subset J C I.

Let G be of type A,—1. Take 1 < k1 < ko < -+ < kyy < m—1, and set J :=
I\{k1,...,km}. In this case, the partial flag manifold G/P; is isomorphic to the m-step
flag manifold Fl(kq, ..., kny,;n), defined as:

Vi, l=1,...,m, is a subspace of C" such that
Fl(k1, ..., km;n) := {(Vl,...,Vm) ‘ dimVi = k. and V, C Vo C - C Vi }

For a directed path

Up) =,
end(p) := wy,
wt(p) := > -

1<k<r
Wk _—1—wWgkis a quantum edge

Also, for 1 < a < n — 1, the quantum a-Bruhat graph QB,(WW) is defined to be the
subgraph of QB(W) having only those edges whose labels are of the form (i, j) such that
i < a < j. In addition, we define a total order <t on ®* as follows: for 1 <4 < j < n and
1<k<l<n,wedefine (¢,5) < (k,1)if (j >1) or (j=1and i <k).

Xu formulated the following conjecture on a cancellation-free Chevalley formula for
QK(G/Py), the non-equivariant quantum K-theory of G/P;, and checked it for all
partial flag manifolds with n < 8 and m < 4 using a computer program.
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Conjecture 66 (Weihong Xu). In QK (G/Py), for w € W7, the following cancellation-
free formula holds:

(O3] - [O"] = Z(—l)z(p)*lQ[Wt(P)]J [Olend®)]], (21)

P

where the sum on the right-hand side is over all non-empty paths p in QBy, (W) of the
form

(1,91) (i2,J2) (ir,37)
P:Iw=1wg w1 s Wy

such that

(1) (i1,51) < (i2,52) < -+ < (i, Ji),
(2) for each 0 <t <r (regarding as ko =0 and k,41 =n) and an edge v GDy oy in P,
e there does nmot exist any path of the form v M) w' in QBy, (W) such that
ke +1<j<j <keya,
e there does mot exist any path of the form v (z/—])> w' in QBy, (W) such that
ke +1<id <i<kgyr,
(3) if there are two edges ) ond (l—J/)> in p such that (i,7) < (4,5'), then there exists
1<t<n-—1 such that j' <k < 7,
(4) if there are two edges % and (l/—])> in p such that (i,7) < (¢, 7), then there exists
1<t<n-—1 suchthati <k <7.

We now compare Xu’s conjectural formula in the case m = 2 with our cancellation-
free Chevalley formula for two-step flag manifolds. For w € W, we obtain the following
formula in QK (G/Py) by applying the surjection ®; to equation (4) and specializing at
et =1 for p € A:

[O(—g,)] - (0] = Z (—1)l4l Qldown(w. 4))7 [ lend(w,4)]]
A€A(w,I (k1))
= Z(_l)@(p)Q[Wt(p)]" [Olend®)]]

P

where the sum ) is over all (possibly empty) directed paths in QB,,, (W) satisfying (1)
in Conjecture 66. By the formula [O%:1] = 1 —[O(—wy, )] in QK (G/Py), we deduce that

[0%:1] - [O¥] = z:(_1)4(9)*1Q[Wt(p)]"[@Lend(p)J]7

P

where the sum ) is over all non-empty directed paths in QB,, (W) satisfying (1) in
Conjecture 66. Here, we can construct certain involutions among non-empty directed
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paths satisfying (1) but not (2), and those satisfying (1) but not (3) or (4). Furthermore,
we can verify that such involutions agree with those constructed in Section 4 by direct
calculation. Hence we deduce that equation (21) coincides with our cancellation-free
Chevalley formula (Theorems 27, 29, and 31). We can also consider the product [O%kz] -
[O%] by using the diagram automorphism w and the result above for the product [O®*1]-
[O™]. In addition, we can verify that Xu’s conjectural formula (21) coincides with our
Chevalley formula for Grassmannians of type A (Theorem 15) in the same way as above.

References

[1] D. Anderson, L. Chen, H.-H. Tseng, On the finiteness of quantum K-theory of a homogeneous space,
Int. Math. Res. Not. 2022 (2022) 1313-1349.

[2] D. Anderson, S. Griffeth, E. Miller, Positivity and Kleiman transversality in equivariant K-theory
of homogeneous spaces, J. Eur. Math. Soc. 13 (2011) 57-84.

[3] A. Bjorner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231,
Springer, New York, 2005.

[4] A.S. Buch, P.-E. Chaput, L.C. Mihalcea, N. Perrin, A Chevalley formula for the equivariant quantum
K-theory of cominuscule varieties, Algebr. Geom. 5 (2018) 568-595.

[5] F. Brenti, S. Fomin, A. Postnikov, Mixed Bruhat operators and Yang-Baxter equations for Weyl
groups, Int. Math. Res. Not. 1999 (1999) 419-441.

[6] C.H. Chow, N.C. Leung, Quantum K-theory of G/P and K-homology of affine Grassmannian,
arXiv:2201.12951, 2022.

[7] I. Fischer, M. Konvalinka, A bijective proof of the ASM theorem, part I: the operator formula,
Electron. J. Comb. 27 (2020), Paper No. 3.35.

[8] A. Givental, On the WDVV equation in quantum K-theory, Mich. Math. J. 48 (2000) 295-304.

[9] R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants, Graduate Texts in Math-
ematics, vol. 255, Springer, New York, 2009.

[10] S. Kato, On quantum K-groups of partial flag manifolds, arXiv:1906.09343, 2019.

[11] T. Kouno, C. Lenart, S. Naito, New structure on the quantum alcove model with applications to
representation theory and Schubert calculus, J. Comb. Algebra 7 (2023) 347-400.

[12] T. Kouno, S. Naito, D. Sagaki, Chevalley formula for anti-dominant minuscule fundamental weights
in the equivariant quantum K-group of partial flag manifolds, J. Comb. Theory, Ser. A 192 (2022),
Paper No. 105670.

[13] Y.-P. Lee, Quantum K-theory I: foundations, Duke Math. J. 121 (2004) 389-424.

[14] C. Lenart, Haglund-Haiman-Loehr type formulas for Hall-Littlewood polynomials of type B and C,
Algebra Number Theory 4 (2010) 887-917.

[15] C. Lenart, From Macdonald polynomials to a charge statistic beyond type A, J. Comb. Theory, Ser.
A 119 (2012) 683-T712.

[16] P. Littelmann, Paths and root operators in representation theory, Ann. Math. 142 (1995) 499-525.

[17] C. Lenart, A. Lubovsky, A generalization of the alcove model and its applications, J. Algebraic
Comb. 41 (2015) 751-783.

[18] T. Lam, C. Li, L.C. Mihalcea, M. Shimozono, A conjectural Peterson isomorphism in K-theory,
J. Algebra 513 (2018) 326-343.

[19] C. Lenart, S. Naito, D. Sagaki, A general Chevalley formula for semi-infinite flag manifolds and
quantum K-theory, Sel. Math. New Ser. (2024), arXiv:2010.06143, in press.

[20] C. Lenart, S. Naito, D. Sagaki, A combinatorial Chevalley formula for semi-infinite flag manifolds
and its applications (extended abstract), in: 33rd International Conference on Formal Power Series
and Algebraic Combinatorics (FPSAC 2021), in: Sém. Lothar. Combin., vol. 85B, 2021, Art. 22.

[21] C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for Kirillov-Reshetikhin
crystals II. alcove model, path model, and P = X, Int. Math. Res. Not. 2017 (2017) 4259-4319.

[22] C. Lenart, A. Postnikov, Affine Weyl groups in K-theory and representation theory, Int. Math. Res.
Not. 2007 (2007) rnm038.

[23] T. Lam, M. Shimozono, Quantum cohomology of G/P and homology of affine Grassmannian, Acta
Math. 204 (2010) 49-90.


http://refhub.elsevier.com/S0021-8693(24)00051-6/bib90D991B47098CEEF3D8283A386CF7E91s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib90D991B47098CEEF3D8283A386CF7E91s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib02FE41D602B19843805156A17E27DC08s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib02FE41D602B19843805156A17E27DC08s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibF76B7FD7CD57795091869EC08BC6DC15s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibF76B7FD7CD57795091869EC08BC6DC15s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib5A47798929F26F5BB600FF65C9F80F53s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib5A47798929F26F5BB600FF65C9F80F53s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib72A988766278599391D2486117B01C78s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib72A988766278599391D2486117B01C78s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibA7A1585EFCB1EC7271326A6E026CC334s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibA7A1585EFCB1EC7271326A6E026CC334s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib1B3965B2CDBC90A9D4527ED99C602C8Cs1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib1B3965B2CDBC90A9D4527ED99C602C8Cs1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibA2CA4D3901688D7A60D5273AA829C39Bs1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibBDCB6E802B5F819E5A00215FF72113E7s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibBDCB6E802B5F819E5A00215FF72113E7s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibED06AEB488D1077DD92652EDBA720C18s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib8FBBECA09BD5CEA015EA8A23CDB1318Bs1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib8FBBECA09BD5CEA015EA8A23CDB1318Bs1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib1CD3F99999DE6AF9D8AE40BC942D5BD4s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib1CD3F99999DE6AF9D8AE40BC942D5BD4s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib1CD3F99999DE6AF9D8AE40BC942D5BD4s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibE8473B63728B2F737DD0B4DA21289CD0s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibE1D3A98896BE8A2E482914E113750EC5s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibE1D3A98896BE8A2E482914E113750EC5s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib9FF0B5FA365EC38C4952EFBE346D9B01s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib9FF0B5FA365EC38C4952EFBE346D9B01s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib892B33ED11AC71B884A5A5FB97A398C3s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibCF5D9ED0C42798807BF3205F43FAF50Fs1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibCF5D9ED0C42798807BF3205F43FAF50Fs1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib539AEE6C83080B493A1B4F95F9E0B8C3s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib539AEE6C83080B493A1B4F95F9E0B8C3s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibA2A8A1B97A48810559AB33E3C1A21C06s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibA2A8A1B97A48810559AB33E3C1A21C06s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibC27F2925E09F490078AB950F755E154As1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibC27F2925E09F490078AB950F755E154As1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibC27F2925E09F490078AB950F755E154As1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib6EEEED1DB336467B8A23C7C45CE6B926s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib6EEEED1DB336467B8A23C7C45CE6B926s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibBCFF0DB35F705F6CBE832F6304126F75s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibBCFF0DB35F705F6CBE832F6304126F75s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib58F3E6A37C9BF1C9F87D4E7AA3BC7922s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib58F3E6A37C9BF1C9F87D4E7AA3BC7922s1

T. Kouno et al. / Journal of Algebra 645 (2024) 1-53 53

[24] L.C. Mihalcea, H. Naruse, C. Su, Left Demazure-Lusztig operators on equivariant (quantum) coho-
mology and K-theory, Int. Math. Res. Not. 2022 (2022) 12096-12147.

[25] A. Postnikov, Quantum Bruhat graph and Schubert polynomials, Proc. Am. Math. Soc. 133 (2005)
699-709.

[26] A. Pressley, G. Segal, Loop Groups, Oxford Mathematical Monographs, Oxford Univ. Press, New
York, 1986.

[27] W. Xu, Quantum K-theory of incidence varieties, arXiv:2112.13036, 2021.


http://refhub.elsevier.com/S0021-8693(24)00051-6/bib390E1D8C1015852EAC7648DC45A2DA74s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib390E1D8C1015852EAC7648DC45A2DA74s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib481B775A6E78A7ADEE9B6DD26D629111s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib481B775A6E78A7ADEE9B6DD26D629111s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibCAA1C72E0F6D04DEDB33AC2BDDEA4DC3s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bibCAA1C72E0F6D04DEDB33AC2BDDEA4DC3s1
http://refhub.elsevier.com/S0021-8693(24)00051-6/bib02AA60B52DEFAC8624A7C0AC76815E06s1

	Quantum K-theory Chevalley formulas in the parabolic case
	1 Introduction
	2 Background
	2.1 The quantum Bruhat graph
	2.2 The quantum alcove model
	2.3 The quantum K-theory of flag manifolds

	3 Quantum K-theory Chevalley formulas in the maximal parabolic case
	3.1 Type An−1
	3.2 Type Cn

	4 Quantum K-theory Chevalley formulas for two-step flag manifolds
	4.1 Some lemmas on admissible subsets
	4.2 Parabolic Chevalley formulas for two-step flag manifolds
	4.3 Proofs of parabolic Chevalley formulas: part 1
	4.4 Proofs of parabolic Chevalley formulas: part 2
	4.5 The positivity property

	Data availability
	Appendix A Another proof of the existence of the multiplicative surjection ΦJ
	Appendix B Weihong Xu’s conjecture about a cancellation-free parabolic Chevalley formula in type A (with Weihong Xu)
	References


