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Comprehensive Framework for Controlling Nonlinear
Multispecies Water Quality Dynamics

Salma M. Elsherif, S.M.ASCE'; Ahmad F. Taha®; Ahmed A. Abokifa, A.M.ASCE?; and Lina Sela, A.M.ASCE*

Abstract: Tracing disinfectant (e.g., chlorine) and contaminants evolution in water networks requires the solution of one-dimensional (1D)
advection-reaction (AR) partial differential equations (PDEs). With the absence of analytical solutions in many scenarios, numerical solutions
require high-resolution time and space discretizations, resulting in large model dimensions. This adds complexity to the water quality control
problem. In addition, considering multispecies water quality dynamics rather than the single-species dynamics produces a more accurate
description of the reaction dynamics under abnormal hazardous conditions (e.g., contamination events). Yet, these dynamics introduce a
nonlinear reaction formulation to the model. To that end, solving nonlinear 1D AR PDE:s in real time is critical to achieving monitoring and
control goals for various scaled networks with a high computational burden. In this work, we propose a novel comprehensive framework to
overcome the large-dimensionality issue by introducing different approaches for applying model order reduction (MOR) algorithms to
the nonlinear system followed by applying a real-time water quality regulation algorithm that is based on an advanced model to maintain
desirable disinfectant levels in water networks under multispecies dynamics. The performance of this framework is validated using rigorous
numerical case studies under a wide range of scenarios demonstrating the challenges associated with regulating water quality under such

conditions. DOI: 10.1061/ JWRMDS5.WRENG-6179. © 2023 American Society of Civil Engineers.

Introduction

Water quality (WQ) dynamics are widely modeled by one-
dimensional (1D) advection-reaction (AR) partial differential equa-
tions (PDEs). These AR PDEs allow the tracing of the disinfectant
and other chemical substances’ evolution throughout the compo-
nents of water distribution networks (WDNs). In most cases, analyti-
cal solutions are nonexistent to solve these PDEs network-wide.
Nonetheless, PDEs can be solved using numerical techniques,
although they require high-resolution time and space discretization.
This results in high-dimension models that add computational bur-
den to the problem of regulating water quality in drinking networks.
That leads to physically driven models that are intractable when
considering constrained control and WQ regulation algorithms.
Moreover, in water quality simulations, the most widely used de-
cay and reaction model is the single-species model. In this model,
disinfectant (i.e., chlorine) is assumed to decay at a constant rate that
only accounts for purified water contamination levels. Yet, contami-
nation sources can be from microbial or nonmicrobial components in
the bulk flow, attached to the pipe walls, or contamination events that
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get intruded into the system (Palansooriya et al. 2020). This drives
the need for a more accurate representation of these scenarios, which
can be achieved by multispecies reaction dynamics. Multispecies
dynamics enable the model to simulate chlorine evolution with the
existence of another reactive component in the system. This repre-
sentation duplicates the number of variables to be traced network-
component-wide while unfortunately adding complexity to the
model by introducing nonlinear reaction dynamics.

To that end, model order reduction (MOR) is an essential step to
move forward in achieving a compact formulation of the multispe-
cies water quality dynamics to be integrated into a model-based con-
trol framework. MOR techniques transform the full-order model
(FOM) to a reduced-order model (ROM) in a way that preserves
the structure, properties, and closed-form representation of the
FOM while achieving the prespecified level of accuracy and reduc-
ing computational time. Eventually, the goal is to control chlorine
injections dosed by rechlorination stations to maintain residual levels
that meet water quality standards. That can be achieved by applying
an effective control algorithm on the derived ROM.

Our group has been interested in various dimensions of this re-
search area. A summary of our work and the prior literature is
given next.

Literature Review

Hereinafter, we survey the literature on the topics of MOR for
dynamic systems in general and water systems in particular and
water quality regulation and control while highlighting the gaps
and drawbacks motivating this paper’s contributions.

MOR for Dynamic Systems

Several studies have proposed and implemented different MOR
algorithms in various disciplines (e.g., electromagnetics, electro-
mechanics, structural and fluid dynamics) where the large-
dimensionality issue is faced (Moore 1981; Baur et al. 2014;
Montier et al. 2017; Rutzmoser 2018). Most of these studies have
applied either the singular value decomposition (SVD) approach
(Rowley 2005; Willcox and Peraire 2002) or Krylov subspace
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methods (Grimme 1997; Beattie and Gugercin 2008). Combining
SVD and Krylov methods has been investigated and implemented
in Gugercin (2008). In infrastructure networks, preserving the
system’s properties including stability, controllability, and observ-
ability is a major concern when applying MOR with the aim of
applying a postreduction control. Nevertheless, Krylov methods do
not preserve such properties, which limits their suitability to be
used in our study (Baur et al. 2014).

Several SVD-based model reduction methods have been pro-
posed for linear systems and more realizations and extensions have
been investigated and integrated to tackle the reduction of nonlinear
systems; a review of linear and nonlinear models order reduction
can be found in Antoulas et al. (2000) and Kumar and Ezhilarasi
(2022). The balanced truncation (BT) method (Moore 1981) is built
based on both the controllability and observability Gramians for
stable, linear systems. The study by Lall et al. (2002) extended
BT to be applied to nonlinear systems, while Barrachina et al.
(2005) and Zhou et al. (1999) built extensions for unstable systems.
However, BT becomes computationally intractable for large-scale
systems. Nevertheless, the famous widely used proper orthogonal
decomposition (POD) method in fluid dynamics community
(Sirovich 1987) is considered tractable at the expense of accuracy
compared with BT. Yet, in some cases, where relatively lower ac-
curacy is acceptable, POD may result in an unstable system even
near stable equilibrium points depending on the actual formulation
of the full-order model. Therefore, methods that balance between
the BT and POD methods have been proposed to integrate the ad-
vantages of both methods into one. For example, Willcox and
Peraire (2002) proposed a balanced method, but it failed to success-
fully reduce models when the number of outputs of the system is
large. Conversely, the balanced POD (BPOD) (Rowley 2005) is
tractable with an overall computation time similar to POD, but
it computes adjoint snapshots to combine and balance controllabil-
ity and observability similarly to BT, which is not raised in POD.
Furthermore, POD can be extended to reduce the order of nonlinear
systems by approximately projecting the nonlinearity term in the
system to a subspace of the dynamics (Nguyen et al. 2020;
Baur et al. 2014). Therefore, the nonlinear term is evaluated sep-
arately and approximated at only a small set of interpolation points
(hyperparameter) using a combination of projection and interpola-
tion methods such as the discrete empirical interpolation method
(DEIM) (Nguyen et al. 2020), the gappy POD method (Galbally
et al. 2010; Akkari et al. 2019), and the Gauss-Newton with ap-
proximated tensors (GNAT) method (Carlberg et al. 2013); refer
to the review paper by Benner et al. (2015) for details.

MOR for Water Systems
Water systems model order reduction has been broadly investigated
for network hydraulics over the past decades with a limited number
of studies looking into MOR for water quality dynamics. These
studies adopt different approaches to reduce the hydraulic model
dimension by applying methods varying between performing nodal
Gaussian elimination (Ulanicki et al. 1996), Gaussian elimination
on the linearized form of the model and recovering the nonlinearity
of the system as a postreduction step (Martnez Alzamora et al.
2014), genetic algorithm (Shamir and Salomons 2008), and system
aggregation (Preis et al. 2011). Perelman and Ostfeld (2008) con-
sidered a coupled model that combines both hydraulics and water
quality dynamics of the network and applied systems aggregation.
Recently, two studies have applied different approaches to
cover the MOR for water quality dynamics. Elkhashap and Abel
(2022) proposed reducing the order of the water quality model
by formulating a bilinear spatially discretized but temporally con-
tinuous representation of the dynamics. This formulation augments
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the input vectors in a way that preserves the system’s stability.
The induced error between the actual and reduced-order models
is minimized by the reduction of the H,-norm. In that study, water
dynamics transport and reaction are simulated using advection-
diffusion-reaction partial differential equations, which incorporate
the diffusion term, In contrast, our work in this paper neglects the
diffusion term's effect. Nonetheless, studies (Li et al. 2005; Shang
et al. 2021) state that diffusion is dominant in network branches
with significantly low velocities. To that end, it is an acceptable
assumption to neglect the diffusion effect in networks with limited
dead-end branches, higher velocities, and changing demands. On
the other hand, augmenting and transferring the model into nonlin-
ear formulation results in a more complex model when considering
the multispecies nonlinear water quality dynamics and does not
preserve the stability of the system.

Second, Wang et al. (2022) applies different SVD-based projec-
tion algorithms to reach a reduced-order water quality model in-
cluding BT, POD, and BPOD in addition to preserving the
stability of the BPOD method. Results have proven that the BPOD
method is more usable while being computationally tractable and
robust for zero and nonzero initial conditions. However, their
model only includes single-species linear reaction dynamics where
chlorine is assumed to be decaying at a constant rate, resulting in a
linear state-space formulation. Therefore, this work allows filling
the gap in applying MOR for multispecies nonlinear dynamics.
Moreover, in their model, the explicit central Lax-Wendroff discre-
tization scheme is used. However, the upwind schemes give a more
accurate physical description of the advection-reaction problem. In
our study, we apply the explicit and implicit upwind discretization
schemes while highlighting the differences and the level of diffi-
culty. Contrary to Fu et al. (2020), Lassila et al. (2014), and He
and Durlofsky (2014), where MOR is performed for compositional
simulation, Wang et al. (2022) state that it is considered as a prestep
to apply an efficient control algorithm, which also applies to the
work in this paper.

Water Quality Control

The topic of controlling chlorine has been covered in several stud-
ies with various algorithms, objectives, and constraints (Ohar and
Ostfeld 2014; Ostfeld and Salomons 2006; Munavalli and Kumar
2003). Objectives vary between minimizing the cost of injecting
chlorine into the system, maintaining minimal deviations from
chlorine setpoint concentrations, minimizing the formation of the
excess disinfection by-products (DBPs), and minimizing computa-
tional time (Fisher et al. 2018). The problem formulation is either
a single-objective optimization problem or a multiobjective one with
more of the aforementioned objectives. However, such studies do not
build a closed-form representation of all inputs, states, and outputs
that updates every specified time step over the simulation period and
allows network-wide control. Wang et al. (2021, 2022) applied
model predictive control (MPC) on the full-order and reduced-order
single-species models in both studies with no clear explanation or
extension for scenarios where multispecies dynamics take place.

Our Prior Work

We have been focusing on tackling and covering water quality
modeling and control in WDNSs. First, the problem of modeling
and controlling single-species water quality dynamics is thoroughly
investigated in Wang et al. (2021), followed by reducing this mod-
el’s order and verifying the validity of controlling the reduced-order
model in Wang et al. (2022). Moreover, as a first state-of-the-art
attempt, Wang et al. (2023) identified single-species water quality
models using only input-output experimental data and, accordingly,
data-driven system identification algorithms. Last, a survey study
on how to accurately simulate multispecies water quality dynamics
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Fig. 1. Conceptual framework of the paper.

was conducted by Elsherif et al. (2022). This study built a closed-
form, network— and control-theoretic representation of all system
inputs, variables, and output measurements under such dynamics
that give a more realistic WQ formulation. The performance of this
formulation was validated using the widely used simulation tool
EPANET and its multispecies water quality simulation extension,
EPANET-MSX (Rossman et al. 2020). However, controlling chlorine
under multispecies dynamics, based on a control-theoretic explicit
model, to the authors’ knowledge, has not been investigated—a
gap that is filled in this paper.

Paper Contributions

This paper’s major objective is to investigate the implementation

and complexity of regulating and controlling chlorine levels under

multispecies water quality. The detailed paper contributions are as
follows:

* Construct and propose a comprehensive framework to overcome
the large-dimensionality issue associated with discretizing 1D
AR PDEs and the complexity associated with the nonlinearity
of the multispecies water quality dynamics. Different paths can
be taken, starting by linearizing the system and applying MOR
for linear systems (MOR-LS). Another path is to consider the
nonlinear MOR (MOR-NLS) algorithm on the original FOM.

 Utilize the reduced-order models in an MPC algorithm and com-
pare them with each other and with the original FOMs. Also, we
compare the results of the MPC algorithm when applied to both
single-species and multispecies dynamics, illustrating the chal-
lenges involved in controlling chlorine levels within the context
of multispecies water quality dynamics.

* Position the framework in a generalized scalable form in the
sense that simplifications are included to consider single-species
water dynamics, and differentiations are suggested to consider
chlorine linear and nonlinear decay and reaction models that
have been developed in the literature to simulate various events
and scenarios.

e Validate the performance of the framework using thorough
numerical case studies to test accuracy, computational burden,
and robustness to the system hydraulics changes.

Our proposed framework is illustrated in Fig. 1. As shown, dif-
ferent approaches can be followed to formulate a reduced-order

model to be controlled for the multispecies water quality model.
Each step to be taken and each path to be chosen is explained
in the following sections of the paper. The paper’s sections are
organized as follows: “State-Space Multispecies Water Quality
Model” provides the formulation of the state-space representation
of the multispecies water quality model (MS-WQM). This formu-
lation is based on the transport and reaction model in pipes,
mass balance for the other network components, and the multispe-
cies dynamics expression. “Model Order Reduction and Transfor-
mation of MS-WQM?” provides full descriptions of the methods
used in our framework to reach a compact reduced-order model.
“Real-Time Regulation of MS-WQM via Model Predictive
Control and McCormick Relaxations” introduces the control
problem and its implementation on the linear and nonlinear
ROM. “Case Studies” showcases the framework performance on
different networks under a wide range of scenarios. “Conclusion,
Paper’s Limitations, and Recommendations for Future Work”
comes last.

State-Space Multispecies Water Quality Model

We model the WDN by a directed graph G = (N, £). The set N/
defines the nodes and is partitioned as A" =7 U7 U R where
sets 7, 7, and R are collections of junctions, tanks, and reservoirs.
Let L C N x N be the set of links, and defines the partition,
L =P UM xV where sets, P, M, and V represent the collection
of pipes, pumps, and valves. The total number of states is n, =
n; + ny, where n;, and ny are numbers of links and nodes. The
number of reservoirs, junctions, tanks, pumps, valves, and pipes
are ng, ny, ng, Ny, Ny, and np. Each pipe i with length L; is
spatially discretized and split into s, segments. Hence, the number
of links is expressed as ny = ny +ny + 17, sp,» while ny =
ng + ny + nrg is the number of nodes.

In this paper, the state-space representation is formulated for
multispecies dynamics with two chemicals: chlorine and a fictitious
reactant. The system representation of the two species, which is
able to capture chemicals evolution, booster stations injections,
and sensors measurements, is expressed by a nonlinear difference
equation (NDE) as follows:

] I N [l Y N | R I
E(1) x(t+At) A(r) x(1) B(t) u(r)
Bg] - {C”om czfm] {8] *[chl)(t) D:jm} [:m (16)
¥(1) C(1) D(1) u(r)
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Fig. 2. Implicit and explicit upwind discretization schemes for Pipe i connecting Junctions 1 and 2. Each scheme calculates concentration
cP(s,t+ At) at segment s (colored in maroon) depending on concentrations at the segments and nodes included in its frame.

where variable ¢ = specific time in a simulation period [0, T]; At =
time step or sampling time; vectors X, (7) and x,(¢) € R™ = con-
centrations of chlorine and the other fictitious reactant (two-species
model) in the entire network; vector u;(7) € R™ = dosages of
injected chlorine; vector u,(7) € R™2 accounts for planned or
unplanned injection of the fictitious component; vector f(x, X», #)
encapsulates the nonlinear part of the equations representing the
mutual nonlinear reaction between the two chemicals; vector
y1(7) € R™t = sensor measurements of chlorine concentrations at
specific locations in the network; and y,(¢) € R™2 captures the
fictitious reactant measurements by sensors in the network if
they exist. The state-space matrices {E,A,B,C,D}, are all
time-varying matrices that depend on the network topology and
parameters, hydraulic parameters, decay rate coefficients for the
disinfectant, and booster station and sensor locations. It is custom-
ary to assume these matrices evolve at a slower pace than the
states x(¢) and control inputs u(#). On another note, matrices
E,,,E,, change every hydraulic time step, allowing them to be
represented at time #, not ¢ + At of the water quality simulation
horizon.

The concentration evolution throughout network components is
covered by the conservation of mass law, transport, decay, and
reaction models of the substances. A full description of how the
models are derived for each type of the components is provided
in Elsherif et al. (2022). However, for the reader to be able to follow
the developments of this paper, some material from Elsherif et al.
(2022) needs to be reproduced and altered. We list a brief overview
of the governing equations formulating our model and its state-
space representation in the following sections.

Transport and Reaction in Pipes

Conservation of mass during transport and reaction in pipes is
simulated by the 1D AR partial differential equation, which for
Pipe i is expressed as

Orcf = —vi()0xc} + Rygs(cf (x.1)) (2)

where ¢¥(x, t) = concentration in the pipe at location x and time
v;(t) = mean flow velocity; and RY¢(cP(x,7)) = multispecies
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reaction rate in pipes expression (more explanation is given in
“Multispecies Reaction and Decay Model”).

Eq. (2) is discretized over a fixed spatiotemporal grid, that for a
Pipe i with length L; is split into a number of segments s; =
|L;/(v;(t)At)] of length Ax; = L;/s;. In the considered 1D AR
model, the two main processes are the advection where the concen-
tration at a certain location and time is affected by upstream con-
centrations, and reaction where chemicals decay and/or mutually
react. That being said, upwind discretization schemes are more de-
scriptive to the actual physical process considered among other
schemes (Hirsch 1990). Applying the Eulerian finite-difference
(EFD)-based implicit upwind scheme on the multispecies water
quality dynamics representation adapted in this paper has shown
reliable results that trace chemicals’ contractions within different
networks with various scales, according to Elsherif et al. (2022).
In this paper we consider both explicit and implicit upwind
schemes to investigate their performance from a control—theoretic
perspective (Fig. 2).

Explicit Upwind Scheme
For segment s of Pipe i except for the first segment, the concen-
tration is calculated as

P, 14+ A1) = (1= X(0)eP(s.1) + N(0) e (s = 1.1)

+ Rys(cf (5.1) At (3)
where \;(7) = (v;(r)Ar)/Ax; is the Courant number (CN) and, ac-
cording to the Courant-Friedrichs-Lewy (CFL) condition, CN is
maintained to be in the range of 0 < \;(#) < 1 so the scheme is sta-
ble. Moreover, the concentrations in the first segment are expressed

as in Eq. (4) assuming that the connecting upstream node is
Junction j

CP(Lot+ Ar) = (1= A(D))eF(L1) + N (1))
+ R (i (s.1)) At (4)
Implicit Upwind Scheme

The difference is that the concentration at the upstream segment or
node is taken at the current time step. That is, Eq. (5a) calculates the

J. Water Resour. Plann. Manage.
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concentration for segment s of Pipe i. Also, the concentration of the
first segment with Junction j as the upstream node is expressed in
Eq. (5b)

(1+X(0)cP (s, 1+ Ar) = N(2)cP (s — 1,1+ Ar)
=i (s.1) + Ry (7 (s. 1)) At (5a)

(14 M) (Lt 4+ Ar) = M (1) (1 + Ar)
= cP(11) + Riys(eP(1.0) At (5b)

Mass Balance at Network Components

For components other than pipes, conservation of mass is applied to
formulate expressions for concentrations calculation.

Mass Balance at Reservoir
Reservoirs are assumed to have constant concentrations. For each
Reservoir i, concentration is expressed as cR(z + Ar) = cR(7).

Mass Balance at Pumps and Valves

The model deals with pumps and valves as transmission links

with concentration equal to the concentration of the node upstream.

That being said, for Pump i or Valve j installed after Reservoir k

(as an example), concentrations are expressed as ¢M(1+ Ar) =
cp(t+ Ar) and ¢ (1 + Ar) = ¢ (1 + A1),

Mass Balance at Junctions

Chemicals are assumed to have complete and instantaneous mixing
in junctions with no storage time. Thus, chemical concentration at
each Junction i is expressed as

Z,eLmqm(t) W(0) + 4" (0 (1)
" (1) + 32 qhulr)

keL

ci(t) =

(6)

out

where j and k = counters for total L;, links flowing into the junction

and L, links extracting flow from the junction; q]’n(t) and &, (1) =
inflows and outflows from these links connected to the junction;
¢l (¢) = concentration in the inflow solute q¥ (1) = flow injected

to the Junctlon with concentration c '(t) by booster station if
located; and % '(t) = demand.

Mass Balance at Tanks

Mass conservation in tanks assumes complete instantaneous mix-
ing of all inflows, outflows, and stored water following the contin-
uously stirred tank reactor (CSTR) model

VIR(t+ An)c TR (1 + Ar)
*VTK TK +qu (I A[+VBTK(t+Al) BTK(Z+AI)
J€Lin
= > qhu()e () AL+ RIE (TR (1) VIR(1) At (7)

k€ Loy

where VBTK( t + Ar) = volume injected to the tank with concentra-
tion ¢;™ (¢ 4 Ar) by booster station if located; and RTK (cP(x, 1)) =
multispecies reaction rate in tanks expression (refer to “Multispe-
cies Reaction and Decay Model”).

Multispecies Reaction and Decay Model

Dividing the model into decay and mutual reaction dynamics
allows it to consider a substance with relatively different reaction
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rates than the decay rate and for the model to be less sensitive to the
other reactants’ concentrations. The decay model is a first-order
model that depends on only chlorine concentration and constant
decay rate. Hence, the chlorine decay reaction rates for Pipe i
and Tank j are Kk} =k, + (2k,k;)/(rp,(k, + ks)), k& = ky,
where k,, is the bulk reaction rate constant, k,, is the wall reaction
rate constant, k; is the mass transfer coefficient between the bulk
flow and the pipe wall, and rp, is the pipe radius.

The mutual reaction model is expressed by second-order
nonlinear ordinary differential equations (ODEs), which are dis-
cretized using the forward Euler method c¢(z+ Atf) —c(t) =
—k,At(c(t)c(t)), c(t + At) — ¢(t) = —k, At(c(1)¢(t)), where ¢(t),
¢(r) are the concentrations for chlorine and fictitious reactant;
and k, is the mutual reaction rate between them. Eventually,
reaction expressions for pipes and tanks are

Ryi(c7 (s.1)) P (5. 0)E (s.1),
Ry (c55(0)) (@i (8a)

—k,c
—k,C

Ry (& (s.1))
R (E75(1))

—k,cP(s,1)cF (s, 1),
—k,c7(1)cTR (1) (8h)

A full description of the state-space matrices construction for
the upwind discretization schemes and an example on a simple
three-node network [consisting of reservoir, a pump, a junction,
a pipe, and a tank (Fig. 6)] are included in Elsherif et al. (2022) for
the reader’s reference on how to formulate the representation for
different network component. That study validates the utilization
of these EFD discretization schemes and the model performance as
mentioned in comparison to EPANET and its extension, EPANET-
MSX (WQ multispecies simulation tool). The comparison is con-
sidered reliable because the governing laws and equations are the
same for all network components in both models. EPANET +
EPANET-MSX employs the Lagrangian time-driven method, di-
viding each pipe into changing-sized segments, while the adopted
EFD schemes in our study work within a fixed grid, facilitating the
construction of a state-space representation with finite dimensions.
The drawback associated with these discretization schemes is the
large dimensionality of the model. However, the main objectives of
this study are to address this challenge by employing model order
reduction techniques and to integrate the reduced-order multispe-
cies model effectively into a time-efficient real-time feedback con-
trol algorithm, which are outlined and presented in detail in the next
sections. On the other hand, coupling the EPANET + EPANET-
MSX model with a real-time control algorithm is complex and
presents challenges due to the need to handle changes in segment
count and size per pipe at each simulation time step, as well as
being familiar with and able to leverage and use their toolkits in
the coding language used (i.e., MATLAB and Python).

In the next section, we investigate different MOR algorithms
for Eq. (1).

Model Order Reduction and Transformation of
MS-wQM

The state-space representations formulated in the previous section
are in form of NDEs like Eq. (1) with large numbers of variables
resulting from high-resolution spatiotemporal discretization. To
reach the end goal of this paper, which is controlling chlorine
levels for Eq. (1), we propose different methodologies to reduce
the model order and showcase their limitations, accuracy, computa-
tional time, and robustness and sensitivity to initial conditions and

J. Water Resour. Plann. Manage.
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fictitious reactant type. That being said, we list full descriptions of
the methods covered in our framework. We start with linearizing
Eq. (1), then explain model order reduction and transformation
for linearized and original nonlinear systems.

Model Linearization

The mutual reaction is expressed as a nonlinear term that can be
linearized using Taylor series approximations (Apostol 1991).
By linearizing around operating points c,, ¢,, the nonlinear term
Ry (c(1),¢(1)) for both chemicals is expressed as

Ry(c(2).¢(1)) = =k, (coCo + ¢, (E(1) = €,) + E4(c(t) = c,))
= _kr(cogo + CoE(t) - coéo + Eoc(t) - Eocn)

= —k,(c,€(1) + C,c(1) — Coc,) ©)

For each of the chemicals, the mutual reaction after linearization
is broken down to a term that depends on its concentration, a term
that depends on the other chemical’s concentration, and a constant.
The general state-space representation in Eq. (1) has a block-
diagonal matrix of A matrices with no dependency between the
chemical except in the f function. That is, by applying linearization
to the model, the state-space representation is updated to linear dif-
ference equations (LDEs)

{E“(t) 0 } |:X1(I+At):|

0 Ep (1) Lxo(t+ Ar)
E(r) x(1+Ar)

_ ﬁll(t) Ijlz(t) |:Xl(t):|+|:Bll(t) 0 }[“1(1‘)}
Ay (1) Ap(n | X0 L 0 Bn(]lw(®)]
T x(1) B() u(t)
+o (10)

where Zu (1) and Zzz(t) = modified diagonal matrices; le(t) and

A, (1) = matrices gathering the dependency between the two spe-
cies concentrations; and @ = vector containing the constants. The

changes in A 11(2) and Zzz(t) from the original matrices are only in

—~

S

N
S

z(t)

o
a(t + At)
I

_|_
+

u(t)

the submatrices and elements representing pipes and tanks only
(ie., A and ATK).

Model Order Reduction and Transformation Algorithms

In our study, we investigate two SVD-based projection methods;
POD and BPOD. The reason behind not applying the BT method
is that it has been proven to be computationally impractical for the
linear water quality model (Wang et al. 2022). Both POD and
BPOD are applied on the linearized MS-WQM, while an extension
to the POD method is applied to reduce the nonlinear model where
the nonlinear term is directly evaluated (Fig. 3).

Before explaining the detailed approach of the aforementioned
methods, we start by explaining the general approach of SVD-
based methods where a snapshot of the original space is taken.
For the general nonlinear state-space representation in Eq. (1) that
can be concisely formulated as follows

E(Ox(t + A1) = A(1)x(1) + B(H)u(r) + £(x (1))
y(t) = C(1)x(1) + D(t)u(z) (11)

the first step is to map the representation states x € R"« to another
space state w € R". This mapping aims to reorder the states ac-
cording to their influence in the preserved property. Driven by
the goal of applying the control algorithm on our model, we care
to capture the most controllable and observable snapshots of the
original space. Transformation is performed through constructing
a nonsingular matrix V € R"*"x, so that x = Vw. That is, Eq. (11)
is expressed in terms of w as follows:

E,()w(t + Af) = A, ()w(t) + B, (t)u(t) + V-'E£(Vw(1))
Yu(t) = C,,()w(1) + D(t)u(r) (12)

where E,, = V''EV; A,, = V''AV; B,, = V~'B; and C,, = CV.

Next, the reduced-order model is captured from the trans-
formed mapping with number of states n, < n, denoted by
X, € R™. A snapshot is taken of x equal to V,x,, where V, is
the matrix composed of the first n, columns of V. Similarly,
we define L, as the first n, rows of V!, Finally, the reduced-order
model is expressed as

£, -
< = G—F =
=S
E i 8 TE 3
e =

y(t)
u(t)

v y(t)
Il
z(t)

(@)

=
+ §
=

g(t)
Il
5‘)

wr(t)

(@)

A
Vi
Va

(b)

. (t)
+
fr(@e (1)
_|_
]
u(t)

z,(t + At)

g(t)

Fig. 3. (a) Linear; and (b) nonlinear MOR methods configuration.
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E ()x,(1+ A1) = A ()x,(2) + B.()u(7) + £,(x,(2))
¥:(t) = C,(1)x,(1) + D(1)u(z) (13)

where E, =L.EV,;A, =LAV,; B, =L,B; and C, =CV,.

The choice of 7, can be done arbitrarily as a fixed number or to
conserve a specified level of energy between ROM and FOM. The
energy of a system is determined by the summation of its eigen-
values; hence, n, can be chosen to keep a certain energy percentage
of FOM in ROM (Lall et al. 1999). However, we investigate choos-
ing different numbers of n, for each case study where the energy
persevered is increased with larger n,.

Additionally, the majority of MOR methods deal with original
systems with zero initial conditions, which does not align with the
nature of water quality dynamics. Previously, Wang et al. (2022)
dealt with that by recognizing the nonzero initials network-wide
as inputs for the system and setting X(7) = x(r) —x(0) in the
original model. We follow same approach with further analysis
for the nonlinear term of the mutual dynamics. The mutual reaction
dynamics as stated in “Multispecies Reaction and Decay Model”
take place in pipes and tanks. That is, vector f contains zeros except
for states of pipes’ segments and tanks. We define X (1) =

{c™ (1), P (1)} and xys, (1) = {¢™(¢), (1) }. Accordingly
f(xXwms, (1), Xwus, (1)) = @ - Xs, (1) - X, (7) (14)

where a:= {arg, ap}; o = =k A{VI*(0)/[V]*(t + An)]} VY

j:l,...,nTK;andoz}):—k,AtVl:l,..., ;’ilsl.,-'
Henceforward, by setting Xy, (1) = Xy, (f) — X, (0) and

Xy, (1) = Xws, (1) — Xpis, (0) and substituting into Eq. (14), we get

= Xys, (’)' (f)
= = (xys, (1) = Xws, (0)) * (Xws, () — X5, (0))
= a* (Xys, (1) * Xws, (1) — Xwus, (0) * Xy, (1)
— Xws, (0) * X, (1) + X, (0) * X5, (0)) (15)

which proves that considering f(Xys, (7). Xys, (f)) can be utilized
by updating A(¢) in the original model to eliminate the negative
terms for pipes and tanks, while the positive constant term encap-
sulates the nonlinear term at the initial concentrations, which is
already considered. Subsequently, the full-order model is formu-
lated as

(O%(r + A1) = A(D)%(r) + B(0)a (1) + £(X(1))
¥(1) = C(%(r) + D(1)a(1) (16)
where
c o [Au() Ap(
0= Lin(f) Azz(f)}
B(1) = [B(1) A(1)x(0)]; D(1) =[D(r) C(t)x(0)]; and @(z) =
[uT(s) 17]T.

On the other hand, for the linearized full-order model in
Eq. (10), the same approach as in Wang et al. (2022) is followed
and the final model formulated as

E(NX(t 4 Ar) = A(1)x(r)
y(1) = C(1)R(1) +D(1)a(r) (17)
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where A1) =A(t);  B(t)=[B(r) A()x(0): D)=
[D(r) C(1)x(0)]; and @(z) = [uT(r) 1T]T.

Last, we judge the performance of the MOR methods by calcu-
lating the root-mean-square error (RMSE) metric

RMSE = Z MOES O (18)

The error is calculated for a specific simulation period of N,
time steps through which we apply the same system inputs u(j)
to the two models.

In the following sections, we give a full description of the
utilized methods. We start with applying POD and BPOD for the
linearized formulation of the system, followed by integrating and
handling the nonlinearity in the original representation of the
system [Eq. (1) for the case of zero initial conditions and
Eq. (16) for the case of nonzero initial conditions].

The basic and the balanced POD methods are considered data-
driven SVD methods. The main idea is to build empirical Gramians
based on snapshots of the original system. These empirical Gramians
avoid solving complicated, in many cases intractable, Lyapunov
equations. The POD method relies on constructing a controllability
Gramian, while BPOD constructs finite horizon controllability and
observability Gramians. Notably, the POD method favors highly
controllable states over highly observable but less controllable ones,
which BPOD averts by reflecting observability in the captured
snapshot.

In our system, the concepts of controllability and observability
for the two chemicals are different in what they reflect. While the
input vector u,(#) depicts chlorine injections into the system by
source or rechlorination stations, vector u,(7) enables simulating
the intrusion of the contaminant to the system (Diao and Rauch
2013). Henceforward, controllability for the second chemical indi-
cates which network components get exposed or affected by the
contamination event. On the other hand, typically water quality
sensors are located to measure chlorine levels which defines the
abstract concept of the system being observable for water quality
measurements. This is a main reason for chlorine monitoring to be a
solid proxy of the water quality state in a specific network. How-
ever, no sensors are placed for contaminants detection specifically
with the wide range of types and characteristics of those contam-
inants. That is, contaminant’s observability is reflected in chlorine
levels and not quantifiable in the matrix C,, of Eq. (1b)
(i.e., a zero matrix). That puts a limitation on applying the BPOD
method because it overlooks this contaminant because it is not
observable. In “Balanced Proper Orthogonal Decomposition,” we
propose a special approach to solve this issue. In addition, with no
output measurement for that chemical, the RMSE metric in Eq. (18)
only measures the error for chlorine. In fact, the main purpose of
this work is to control and monitor chlorine under contamination
events, which makes it valid to focus on the output of measuring its
concentrations that are accurately representing the real-time state.
Nevertheless, to evaluate the performance of the applied MOR
methods, we assume the existence of imaginary sensors on some
specific nodes to measure the fictitious reactant concentrations to
calculate the corresponding error.

In the following subsections, we explain what snapshots
each method captures and how to construct these Gramians
correspondingly.

Proper Orthogonal Decomposition
This method captures snapshot matrix X, that is built for specific
number of steps m by concatenating the states vector into

J. Water Resour. Plann. Manage.
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X, =[x(0), x(1),....,x(m—1)] (19)

where X € R,

The approximate m-step controllability Gramian W is defined
as X, X}, € R Next, we apply eigenvalue decomposition (ED)
W,V = VA and obtain V, whose columns are the corresponding
eigenvectors. However, in many cases applying ED for an n, x n,
matrix with large n, is taxing. This can be avoided in cases of
m < n, by constructing W = X}, X,, € R”*". Accordingly, the
eigenvalue decomposition procedure is easier and requires less
computational time (Luchtenburg and Rowley 2011). In this case,
ED is formulated as Wch = QA, where A is the diagonal matrix
of eigenvalues and matrix @ is assembled with eigenvectors as
columns. The transformation matrix is then calculated as V =
X,,0A~"/2. For a detailed step-by-step depiction of the POD
method, follow Procedure 1. This procedure is followed for both
chemicals.

Procedure 1. POD for general MS-WQM

1. Construct snapshot X,, as in Eq. (19)

2. if n, < m then

3. Calculate W = X, X],

4 Obtain transformation matrix V by applying eigenvalue
decomposition W¢ V = VA

5. else _

6. Calculate W = X1.X,,

7. Obtain matrices forms of eigenvector and eigenvalue of
We,, Q and A

8. Calculate transformation matrix as V = X,,QA~'/2

9. end if

10. Specify n,

11. Define V, as the first n, columns of V
12. Define L, as the first n, rows of V™!
13. Calculate E,,A,,B,, and C,

14. if FOM is nonlinear then

15. Follow Procedure 2

16. end if

Mapping and Integrating the Nonlinearity

While applying MOR, the reason behind separating the linear
term(s) and the nonlinear term(s) is to be able to capture the behav-
ior of the latter while working in a subspace of the original system
(i.e., R™ instead of R™). In Eq. (13), following the projection
of the whole system the nonlinear term is expressed as f, =
L.f(V,x,(t)). Yet, the computational complexity of the nonlinear
term still depends on 7,

fr: L, f(VrXr(t))

n.xn, n,x1

Henceforward, it is proposed to reduce the nonlinear term based
on an approximate hyper-reduction approach. The approach is to
measure not the full state-space variables, but particular points
and from those points we construct the nonlinear term by interpo-
lation around these points. In our study we specify the number of
these points to equal 7,

f,=LU; f(1)

~—

n.xn, nxl1
The goal is to project f(V,x,(7)) onto U, so that f(V,x,(t)) ~
U f,f () and L,U;, can be precomputed offline. This approach is
called the gappy method of Galerkin projection and the DEIM
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is used to reconstruct the nonlinear vector by interpolation. We
adopt a greedy sampling algorithm to construct the measurement
matrix to select the entries used.

We start by stacking numerical snapshot F,, only for the non-
linear term

L fxm—1)]  (20)

followed by performing a separate SVD for that snapshot, F,, =
U f):FQ}. The next step is to define a rank n, approximating basis
Uy, as the first n, columns of Uy. Next, we construct the measure-
ment matrix K by applying the greedy sampling algorithm as sum-
marized in Procedure 2. As shown in Fig. 4, the greedy sampling
algorithm starts by choosing the index with the maximum value in
the first mode u; and making it the first measurement location. In
the second and subsequent iterations, we compute the residual to
evaluate how the current measurement subspace projects onto the
next one and decide on the next measurement point. The reason
behind choosing the measurement with the maximum residual is
that the modes are no longer orthogonal in the support space;
hence, we calculate the residuals and locate the index with the
maximum residual.

Procedure 2. Nonlinearity handling in MOR
1 Capture F,, as in Eq. (20)

2 Perform SVD of F,, = U;Z;Q}

3 Construct Uy, as the first n, columns of U,

4 Start greedy sampling algorithm for selecting the indexes
(entries of f)

5 Input: U; = [u;,....u,]

6 Output: 7 :={iy, ...,i, ;and K =1e; , ..., e ]

7 [s.i] = max{[u, |}

8 Uy, =[wlK=le,]

9 for I =2:n, do

10 solve KTU; b = K™u, for b

11 q=u;— Ufrb

12 [s.i] = max{lal}

13 U.fr = [Uf,7u1]7 K= [K, e,v]]

14 end for

15 Proceed

16 Calculate f(r) = (KTU; )"'£(KV,x,(t))

Balanced Proper Orthogonal Decomposition

The advance in the BPOD method is the reflection of both control-
lability and observability in ranking the states, unlike POD. This is
attained by constructing two snapshots of the system: X,,, which
captures the impulse responses when applying impulse signal as
system input [i.e., u;(m) = ~(m)], and P,,, which is assembled
from states p(¢) obtained from the adjoint system with impulse
response in the measurements as the system’s output. For the
linearized model in Eq. (17), the adjoint system can be expressed
as follows:

p(i+ A1) = A (1) (B~ (1)Tp(1) + CT(1)y(1) + E7 ()@ (21)

The next step is performing SVD to the block Hankel matrix
H, :P,T,,f(m = UXZQ' then specifying n, to collect the largest
n, singular values in X and obtain the corresponding left and
right singular vectors (i.e., U, and Q,). Accordingly, V, and S, are
calculated as

V,=X,0,2V* L =3zVUlP}, (22)

J. Water Resour. Plann. Manage.
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Fig. 4. Applying the greedy sampling algorithm to construct the measurement matrix K for the case of n, = 5.

This approach is applicable for chlorine with sensors placed
to measure its levels. For the fictitious reactant representing
the contaminant, matrix C,, in Eq. (1)) is a zero matrix represent-
ing nonsensed variables in our system. To solve this issue, we
assume the contamination event is detected and the source loca-
tion is determined. This is considered a valid assumption in water
quality monitoring to work backward detecting, classifying, and
quantifying using conventional WQ sensors (Yang et al. 2009).
This is different from the aforementioned imaginary sensors while
calculating the error to evaluate the performance of the applied
methods.

Another advance of the BPOD is the ability to stabilize it by
choosing the length of the snapshots to be large enough to re-
present the actual Gramians shooting for infinity. We adopt an
a priori stabilization method to ensure the snapshot captures
the chemicals’ evolution from the time it is injected in the
system until it is observed by the furthest sensor. This is ful-
filled by assembling the snapshots over a period exceeding,
m = max ([Tgs/Af]) = max ([S.LES /(vBSAr)]) where L5S and
v3S are the length and velocity of the pipes the chemical travels
through a booster station to the furthest sensor. With the existence
of multiple booster stations and sensors and within the simula-
tion period, m is taken as the length corresponding to the maxi-
mum travel time Tgg. Accordingly, this method is affected by
the actuators’ and sensors’ locations along the network. Last,
Procedure 3 summarizes all the steps needed for a linear(ized)
WQ model.
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Procedure 3. BPOD for linear(ized) WQM
Obtain snapshots length m = m

Construct snapshot X,, and P, ~
Construct the block Hankel matrix H,, = P}, X,,
Perform SVD of H,, = UZQT

Specify n,

Obtain U,,X,, and Q,

Calculate V, and L, via Eq. (22)

Calculate E,,A,,B,, and C,

01NN W~

Real-Time Regulation of MS-WQM via Model
Predictive Control and McCormick Relaxation

The water quality control problem is formulated over simulation
period [0, 7] and constrained by putting standard upper and lower
bounds on chlorine concentrations stated by EPA regulations
(Acrylamide 2009), which are x‘l‘“" =02 mg/L and x™ =
4 mg/L. The contaminant in the system is assumed to be detected
and classified. Accordingly, for some toxic or health-threatening
substances, a constraint can be introduced to be kept lower than
the allowed concentration defined by the EPA. These lower and
upper bounds for both chemicals formulates the constraint
XM < x(f) < x™*, Additionally, the control inputs for chlorine
are constrained to be nonnegative and limited by the chlorine avail-
ability and capacity of each booster station. The objective of this
control problem is to keep chemicals concentrations in all the

J. Water Resour. Plann. Manage.
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Fig. 5. (a) Discrete MPC prediction horizon scheme; and (b) McCormick envelope relaxation.

network’s components within the aforementioned bounds while
minimizing the cost of chlorine injections. That being said, the
problem formulation is as follows:

N,

minimize J(u,(¢)) = MZQB(T)Tul(t)

(). (1) -
subjectto  WQM(1)
Xmin S X(l‘) S xmax

ult <y (7) < uh (23)

where problem variables x(#) and u () = chemicals concentrations
network-wide and chlorine injections through booster stations;
q5(¢) = flow rates at the nodes corresponding to the locations of
the booster stations; 4 = unit cost of chlorine ($/mg); WQM = water
quality model we are simulating and controlling following the
representation in Eq. (1); and N, = number of time steps in the
simulation period, N, = T,/ At.

Nonetheless, this problem has a large number of variables x(¢)
and u, (7). This issue can be solved by transforming a constrained
linear program (LP) in Eq. (23) to a quadratic program (QP) with
fewer variables by applying real-time constrained model predictive
control (WQ-MPC). The water quality control formulated in Wang
et al. (2021) is based on the linear state-space representation of the
single-species WQ dynamics. In addition, the same control algo-
rithm is applied in Wang et al. (2022) for the reduced-order model
of the single-species representation and it proved its validity and
effectiveness. For brevity, we do not include the details and the
derivation in this paper for the case of linearized MS-WQM. Even-
tually, the WQC problem is formulated as a quadratic program. For
the nonlinear MS-WQM, the nonlinearity in the constraint can be
relaxed using McCormick envelopes and integrated back to the
original constrained control problem as explained in the following
section.

McCormick Relaxation

The nonlinear term in the constraint is formulated as a bilinear
expression depending on the concentration of two chemicals at
a specific network component. This constraint can be relaxed
using McCormick relaxation for bilinear nonlinear problems
(McCormick 1976). This method turns the bilinear term into

two envelopes surrounded by overestimators and underestimators
to work within [Fig. 5(b)]. For a bilinear expression z = x;x,,
where x; and x, are the two chemicals concentrations under
AP0 < xp <P and XN < xy < XP, 7 s introduced as a new
decision variable with the following constraints:

72> x‘l“i"xz + xlx’z"i" — x'l“i"xg‘i"

z Z xrlnaxxz + xlxgnax _ xIl]’IZIszmaX

z< xrlnaxx2 + xlxrznin _ xrlnaxxzmin

2 S x4 X — iR (24)

In some cases, the upper bound on x, is not specified or its con-
centration initially is lower than the maximum allowed one stated
by the EPA. In such cases, we specify x5'** to be equal to this initial
concentration detected to be able to tighten the overestimators’
envelope while having the minimum equal to zero.

Eventually, the problem formulation explained for the linearized
model can be adopted with these modifications. First, a new
variable vector z(¢) is introduced and it replaces f(x;,X,,?) in
Eq. (1a). Additionally, the total number of the constraints added
to the optimization problem via Eq. (24) is equal to 4(npg +

i" | 51,) because the nonlinear term is defined for pipes’ segments
and tanks and is the same for both chemicals at same element of the
aforementioned [Eq. (8)]. To that end, the WQC problem described
in Eq. (23) is modified as follows:

N,

minimize J(u,(1)) = B(f)Tu, (¢
minimize 7w, (0) = 1Y a0 0

subjectto  WQM(1)
Xmin < X(t) < xmax
ul < u(7) < uP
McCormick(24) (25)
The next step is transforming Eq. (25) into a linear augmented
formulation, based on which the final WQC-QP is built. First, by

introducing z(#) into Eq. (la), the state-space representation is
updated as

x(1+ 1) = A(D)x(r) + B(H)u(t) + Ba(r) (26)
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where 3 = —k,. Then we define the change in the states and inputs

as follows:

Ax(t+ 1) =x(r+ 1) — x(r), Au(t+1)=u(t+ 1) —u(s),

Az(t+1)=z(r+ 1) —z(1) (27)
To concatenate these rates of change in Eq. (26), Az is as-

sembled to the vector of systems decision inputs to be optimally

chosen within the envelopes defined by Eq. (24). Eventually, we
reach the augmented state-space representation in Eq. (28)

S )

x,(1+1) @, X, (1)

! {cg(ziz) ﬁCﬂ(Z)] Liug(rﬂ %)

I, Au, (1)

This augmented representation can be abstractly rewritten as
X,(t+ 1) =D,x,(t+ 1)+ T,Au,(t). To avoid redundancy, inte-
grating this equality into WQC-MPC formation follows the same
approach of Wang et al. (2022) reaching the final QP [Wang et al.
(2022), Eq. (38)]. On another note, the added constraints expressed
in Eq. (24) are incorporated in the constraints on the optimization
variables.

Table 1. Chlorine bulk decay and reaction models expressions

Model L or
No. Model Model formulation #States  NL*
M-1 First order % = —ke(r) . L
. . dc
M-2 First order with ~ — = —k(c(t) — c1) n, L
dt
stable
component
d
M-3  Parallel first =~k (1) n, L
order dag
2
W |slow = _kslowCZ([)
(1) = e1(8) + ex(0)
d
M-4 Parallel second % fast = —kgastc (1) cp (1) 2n, NL
order dcts
E |s]0w = _kslowc(t)cs(t)
dc  dcg  dcg
dt dt = dt
dc
M-5 nth order o= —kc" (1) n, NL
. dc -
M-6 nth order with i —k(c(t) — e )" n, NL
stable !
component
M-7 Second order % = —ke(1)c(1) 2n, NL
with fictitious dé
component i —ke(r)e(r)
dCi ~
M-8 Second order T —k;c(1)¢;(1) In, NL
with multiple dg i
components 7; = —kic(1)ei(1)
de _g~de
dt 4~ dt

L = linear model expression; and NL = nonlinear model expression.
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Generalized Comprehensive Water Quality Modeling
and Control Framework

In our study, we have covered model order reduction and control
for multispecies water quality dynamics where chlorine is reacting
with another source of contamination in the form of a bilinear ex-
pression (refer to “Multispecies Reaction and Decay Model”).
However, there are other formulations for single-species and multi-
species chlorine bulk decay and reaction dynamics as listed in
Elsherif et al. (2022). We include a short list of these formulations
in Table 1; nevertheless, for more details and descriptions refer to
the aforementioned study. The generalized framework described
in Algorithm 1 maps out the methods adopted in this study to be
applied on the different decay and reaction models.

For the first-order, first-order with stable component, and par-
allel first-order (M-1, M-2, and M-3) models, the dynamics are lin-
ear and accordingly follow the procedure of the linearized model
represented in our study. The second order with multiple compo-
nents (M-8) is considered to be the same formula as the second
order with fictitious component (M-7) we cover in this paper except
for the number of states that get multiplied by the number of
reactants in the system. That is, model order reduction for M-8
becomes more demanded. On the other hand, the parallel second-
order model (M-4) is a special form of the second order with
fictitious component. Last, the nth order without and with stable
component models are higher-order models that can be reduced
as nonlinear models or be transferred into quadratic approximation
and piecewise linear relaxation applied.

Algorithm 1. Generalized water quality modeling and control
framework

Input: WDN topology, components’ characteristics, and

hydraulics parameters

Output: Real-time water quality states x(¢) and control inputs

u(t) at time 7 of a simulation period of T

Initialization

Define Az, number of segments s; for each pipe and
accordingly n,

3 Formulate WQ state-space representation Eq. (1) as
explained in “State-Space Multispecies Water Quality
Model” and according to the reaction dynamics in Table 1

4  Proceed

5 if Applying M-1/M-2/M-3 reaction model then

6 Follow Procedure 3 to obtain ROM

7

8

[N

Apply constrained real-time WQ-MPC on Eq. (23)
else if Applying M-4/M-7/M-8 reaction model then
9 if Following Procedure 1 then

10 Apply McCormick relaxation via Eq. (24)

11 Apply constrained real-time WQ-MPC on Eq. (25)
12 else

13 Linearizing and following Procedure 3 then

14 Apply constrained real-time WQ-MPC on Eq. (23)
15 end if

16 else

17 Applying M-5/M-6 then

18 Follow Procedure 1 to obtain ROM

19 Transform into quadratic approximation/Apply piecewise
linear relaxation

20 Apply constrained real-time WQ-MPC on Eq. (23)

21 end if

To recapitulate, this paper is an extension of Elsherif et al.
(2022) and Wang et al. (2022). That is, some methods and aspects
included in this section have already been covered in these studies.
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Yet, we have decided to reintroduce this material in our study in a

more concise way to ensure the reader can effectively follow and

comprehend the new information being presented. In the following
bullet points, we highlight the novelty in our work in comparison to
these studies:

* A nonlinear multispecies water quality dynamics is adopted
rather than the linear single-species dynamics in a control frame-
work. These dynamics enable a heightened level of realism in
the system dynamics representation.

* Two different paths are followed where different MOR methods
and control algorithms are applied on the original nonlinear and
linearized forms of the model. For the linearized model, we im-
plement the same MOR techniques (specifically, POD and
BPOD) described in Wang et al. (2022). On the other hand,
for the nonlinear model, we introduce the gappy method, which
employs a greedy algorithm to effectively handle the nonlinear-
ity and reduce the model dimension.

e The implementation of these MOR techniques is expanded for
the case of nonzero initial conditions by developing a closed
formulation that preserves the original nonlinear formulation
of the model.

* Likewise, for the linearized model, we implement the MPC al-
gorithm explained in Wang et al. (2022) to control and regulate
chlorine levels under the multispecies dynamics. In contrast,
we extend the MPC algorithm to incorporate the McCormick
relaxation technique, which is specifically tailored for the
nonlinear model.

*  While the same methods and algorithms are employed for the
linearized model as in the linear single-species model described
in Wang et al. (2022), special consideration is required when
implementing these techniques for the linearized model. This
is primarily due to the duplication of state numbers and the dis-
tinct construction of representation matrices for the fictitious
reactant. These factors necessitate a specific approach to ensure
accurate and reliable results during the implementation of these
methods in the context of the linearized model.

* Explicit versus implicit discretization schemes are used to inves-
tigate and evaluate from a control—theoretic standpoint. Specifi-
cally, we apply upwind schemes, which offer a more accurate
representation of the advection-reaction 1D PDEs compared to
the Lax-Wendroff scheme utilized in Wang et al. (2022). The
advance in implementing an upwind scheme is proven and dem-
onstrated in Elsherif et al. (2022). In addition, the Lax-Wendroftf
scheme is an explicit scheme and the prior study does not
extensively investigate the use of an implicit scheme in this
context.

* A novel component of our study is investigating the water
quality control framework performance under different system
hydraulic settings. These settings directly impact the water qual-
ity dynamics and their progression over time within the same
network. This exploration adds a unique dimension to our study,
shedding light on the interplay between system hydraulics and
water quality dynamics for enhanced understanding and im-
proved control strategies.

The validity of these techniques and the performance of the con-
trol framework are evaluated and substantiated in the subsequent
section through a series of numerical case studies.

Case Studies

This section demonstrates the proposed framework for model order
reduction and control of MS-WQM. Particularly, we attempt to
answer the following questions:
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1. How does the number of operating points impact agreement
between the linearized model and the nonlinear MS-WQM?
2. How effective are the proposed MOR producers in terms of ac-
curacy and computational time when applied on the MS-WQM?
3. How sensitive is the performance of MOR and the control algo-
rithm to the discretization methods and system’s hydraulics?
4. How reliable and robust is model predictive control when ap-
plied to control chlorine levels under multispecies dynamics?

Numerical studies in this section are performed on three differ-
ent networks: three-node, Netl, and FFCL-1 networks (Rossman
et al. 2020). As shown in Fig. 6, the networks each have different
topologies and scales. The three-node network is a self-designed
network to help provide simple illustrations for different ap-
proaches throughout our framework implementation. Netl includes
different types of network components and has a looped layout.
The FFCL-1 network is based on the Fairfield, California, water
distribution system on which we test the scalability of our frame-
work and its performance with scattered dead-ends. Also, Fig. 6
illustrates and lists each of the networks’ components.

In addition to the listed components for each of the test networks
in Fig. 6, each network has a different number of sensors and
booster stations. The three-node network has one booster station
at Junction J1 and one sensor at Tank TK1. Netl has two stations
at Junctions 1 and 6 and sensors at Junctions J4 and J9. Last,
the controlled region of the FFCL-1 network has two sensors at
Junctions J56 and J67, and one rechlorination station at J89.

For any WDN, the system dimension depends on the hydraulics
parameters and water quality simulation time step, which accord-
ingly define the number of segments for each pipe (i.e., pipe state
variables). Further, changing the velocities and flows from one sce-
nario to another results in distinct chemical concentrations across
the network components for each. With that in mind, in some of our
case studies we feature the effect of changing the hydraulics for the
same network. In other case studies, we fix the hydraulics setting in
the system to investigate or test a technique or an approach under
discussion. In addition, for all studies performed in this section we
use the implicit upwind scheme except for in “Implicit versus
Explicit Discretization Schemes under Control-Theoretic Perspec-
tive,” where we compare its performance with the explicit upwind
scheme from a control-theoretic perspective.

Nonlinear versus Linearized Models

Studies (Chen 1999; Schilders et al. 2008; Liu and Barabasi 2016)
state that applying a linear MOR algorithm on a linearized system
gives satisfactory performance when the linearized system is close
to the original nonlinear one or operating within or near its linear
regime. In these studies, linearization is performed around one op-
erating point for the whole simulation horizon. We apply the same
approach by linearizing around two operating points, (0, 0) and
(0.2, 0.05) mg/L for chlorine and fictitious reactant, respectively,
at Tank TK1 of the three-node network. In this scenario, a constant
demand is drawn from J1 and sources of 2 mg/L of chlorine and
0.5 mg/L of the fictitious reactant are provided at R1 and zero ini-
tial conditions for other network components. As demonstrated in
Fig. 7, linearization around the operating point of (0, 0) results in
higher concentrations compared with the nonlinear model [based
on the NDE in Eq. (1)] for both chemicals because it drops out
the nonlinear term and neglects the mutual reaction. On the other
hand, linearizing the model around one random operating point as
(0.2, 0.05) mg/L results in relatively closer values for chlorine con-
centrations but not as close for the fictitious reactant. Furthermore,
unlike this scenario, in real-time water networks hydraulics are not
fixed and demands are time variant, resulting in chemical evolution
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Fig. 6. Case studies’ layouts and their components count: (a) three-node network; (b) Netl; and (c) FFCL-1 with the zone we control framed.

with different schemes for which fixing the operating point for all
elements is not actively efficient. That is, we next investigate taking
different operating points for each network component along the
simulation window every specific number of time steps.

The choice of the operating points we linearize around is criti-
cal. The narrower the recurrent window of choosing the operating
points, the closer the results to the original model. However, if we
choose to update the operating points each water quality time step,

then matrices A (1), A5(1), A (f), and A, (¢) in Eq. (10) should
be updated that frequently instead of being updated each hydraulic
time step. It is acceptable for the hydraulic time step to be within an
hourly scale to reflect the change in demand, while the range for
water quality is between minutes and seconds to allow a stable
numerical simulation (Shang et al. 2023; Seyoum and Tanyimboh
2017). Consequently, updating the aforementioned matrices every
WQ time step adds more computational burden to the simulation,
which negates the main reason for implementing linearization and
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model order reduction. On the contrary, widening the window to be
more than the hydraulic time step especially in cases with signifi-
cant demand change gives an inaccurate approximation of the sys-
tem’s behavior. Over and above that, it is important to consider
falling within the control algorithm prediction and control horizon
to be able to adjust accordingly with the controller input.

With the hydraulic setting of a patterned demand at J1 changing
every 1 h [Fig. 8(c)], the model is linearized around operating
points that are taken every 1 h for each of the network elements.
The same sources of chemicals are provided at R1 with zero initial
conditions for the other components. The results shown in Figs. 8(a
and b) for chlorine concentrations at TK1 and P1 exhibit that up-
dating operating points every 1 h results in accurate representation
in comparison to the original model, except for the first hour, dur-
ing which operating points are taken to be the initial concentrations
at those elements. To mitigate this issue, operating points are up-
dated after 1-10 min from the simulation start. The same approach

J. Water Resour. Plann. Manage.
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Fig. 8. Chlorine concentrations at (a) P1; and (b) TK1 of the three-node network; with (c) patterned demand at J1. Results are for the nonlinear and
linearized models; linearization operating points are updated every hour for all network components.

is followed in scenarios where chemical dosages are increasing extended POD for the nonlinear model. We refer to these proce-
locally at some node for elements downstream of this node. dures as LPOD, LBPOD, and NLPOD, respectively. We record
the computational time needed for assembling the snapshots,
obtaining the transformation matrices, and calculating the RMSE

MS-WQ Model Order Reduction Performance between the original and reduced-order model for a specific sim-
In this section, we assess and compare the performance of each of ulation under the same conditions.

the proposed model order reduction procedures for multispecies First, we apply the three MOR methods on the three-node and
water quality dynamics in terms of accuracy compared with the Netl networks under zero and nonzero initial conditions and static
original full-order model and computational time. For each net- hydraulic profiles. The results shown in Figs. 9 and 10 validate that
work, we apply POD and BPOD on the linearized model and all methods are able to reduce the model dimensions with relatively
© ASCE 04023077-14 J. Water Resour. Plann. Manage.
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Fig. 10. Chlorine and fictitious reactant concentrations evolution at (a) TK1 of three-node network (n, = 204); and (b) Tank 11 of Netl (n, = 482)
under zero (in blue) and nonzero (in red) initial conditions simulated by full- and reduced-order models with n, = 30 for both networks.

low RMSE:s for different n, values. These RMSEs get lower with concentrations are 0.5 mg/L network-wide; the initial fictitious
increasing n, values and are lower for the scenario of zero initial reactant concentrations at TK1 in the three-node network and Tank
conditions compared with the case of nonzero initial conditions. 11 in Netl are 0.05 mg/L. Fig. 10 shows the chlorine and fictitious
For the scenario with nonzero initial conditions, initial chlorine reactant concentrations for both scenarios of initial conditions at
© ASCE 04023077-15 J. Water Resour. Plann. Manage.
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TK1 of the three-node network and Tank 11 of Netl for the full-
order model and the reduced-order models using all three MOR
producers. The reduced-order models give almost identical results
to the full-order one for the step response at TK1 and for a regular
node along the network for Tank 1 for the two scenarios of zero and
nonzero initial conditions. These results differ from Wang et al.
(2022), where the POD method was found to have higher errors
for the scenario of nonzero initial concentrations under single-
species dynamics because the input-output relationship is not cor-
rectly captured when the initial values are treated as inputs into the
system. In our study, this effect is mitigated by building the offline
snapshot with a higher impulse signal by the booster stations,
which results in favoring the actual locations of booster stations.

Meanwhile, MOR methods’ performance is significantly im-
pacted by the locations of the sensors and actuators and their re-
flection on network-wide observability and controllability. This
leads to inaccurate or unstable results in some cases and in some
other scenarios. However, the allocation of these sensors and ac-
tuators for each network is out of this paper’s scope and we solve
assuming the predetermination of their locations.

Model Order Reduction Sensitivity to System
Hydraulics

The construction of the transformation matrices V, and L, for both
methods POD and BPOD is sensitive to the snapshots (i.e., X, and
P,,) constructed offline. These snapshots need to be long enough
and representative of the actual reaction between states, inputs, and
outputs. That leads to being sensitive to the hydraulic settings of the
system while capturing these snapshots and also while applying the
desired model reduction. Dynamic hydraulic states in a network
reflect the consumers’ patterned consumption, which can be re-
corded for a specific network during a specific season (Mazzoni
et al. 2023).

After validating the reliability of the three MOR methods under
zero and nonzero initial conditions, we investigate the case of
dynamic hydraulic demands for a bigger network: the FFCL-1 net-
work. In Fig. 11, the evolution of chlorine and the fictitious reactant
at J11, J56, J76, and J107 of the FFCL-1 network simulated by
the full-order model and LPOD-based reduced-order model is
presented. Only LPOD is shown, which is representative of the
behavior of all other approaches. In this scenario, an input of
0.3 mg/L for the fictitious reactant is inserted at the start of the
network (i.e., at the tank) depicting an early intrusion event. As
demonstrated, the LPOD-based ROM is able to trace the concen-
trations of the chemicals at different junctions, including dead-ends
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and junctions that connect looped pipes. Nonetheless, an oscillatory
effect is detected for the fictitious reactant concentrations in the
framed zone. This oscillation is formulated as the fictitious reactant
being completely consumed by the chlorine at these junctions or at
pipes flowing into them (e.g., J76). However, the operating points
around which the system is linearized force the fictitious reactant to
have false concentrations. Therefore, this effect is illuminated by
applying NLPOD and is reduced by updating the operating points
more frequently.

Last, the computational time recorded for each of the MOR
method implementations on the three tested networks is illustrated
in Fig. 12. For all networks, the NLPOD method requires more
computational time as a result of handling the nonlinearity term
separately and performing the greedy sampling algorithm. How-
ever, the maximum increase in time is around 95 s compared with
BPOD for the FFCL-1 network, which is considered an acceptable
computational time for a network of n, = 10,356 states.

Implicit versus Explicit Discretization Schemes under
Control-Theoretic Perspective

As stated in “Transport and Reaction in Pipes,” the 1D AR equation
can be discretized by implementing either explicit or implicit up-
wind schemes. The explicit scheme needs to be performed under a
satisfied CFL condition to ensure stability, which requires a small
time step in many cases and hence a higher system dimension. The
implicit scheme is unconditionally stable but requires more com-
plicated mathematical calculations that add to the computational
work. Therefore, the following has been a pressing question: Which
is better: implicit or explicit discretization schemes? This has
proven to not have an easy answer. In our study, we reduce our
system’s dimensions while applying either of these methods. None-
theless, while transformation matrices are calculated offline, some
system matrices are updated every hydraulic time step. This adds
more computational load with matrices multiplication, which is
higher with the matrix inverse in the case of the implicit scheme.
Also, although the implicit scheme allows a larger simulation time
step, a smaller one is more efficient to be able to update the control
inputs more frequently. So our question can be formulated as fol-
lows: From a control-theoretic perspective, which is better:
implicit or explicit discretization schemes?

Because model order reduction is a prior step to applying control
to our model, we test both discretization methods’ performance
while applying the LPOD method for Netl. As demonstrated in
Fig. 13(a), the RMSEs are lower for the implicit than the explicit
scheme. In addition, the change in RMSEs by increasing n, more
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Fig. 11. Chlorine and fictitious reactant concentrations evolution at J11, J56, J76, and J107 of the FFCL-1 network simulated by full- and reduced-
order models. Full-order model results for at each of the junctions are in solid lines, while the LPOD method results are in dashed lines. The number of
states for the full-order model is n, = 10,356 and reduced to n, = 200 states.
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Fig. 13. (a) RMSEs for the reduced-order explicit and implicit upwind schemes—based models while applying LPOD on Netl with n, = 482 for
different n, values; and (b) chlorine concentrations at J4 simulated by the full- and reduced-order models (with n, = 100) using both schemes.

than 150 is insignificant because the states that get retained do not
hold high energy compared to the previously selected ones. On the
other hand, the error values for the explicit scheme do not go lower
than 0.003 with increasing n,—explained through the following ex-
ample. Although the CFL condition is satisfied for the explicit
scheme, it formulates sharp fronts at points with a relatively signifi-
cant change in the chemical concentrations as shown in Fig. 13(b).
Fig. 13(b) illustrates chlorine concentrations at J4 for both implicit
and explicit schemes and the corresponding reduced models with
n, = 120 of a full model with n, = 482. It is noticeable that the
reduced model, based on the explicit scheme, exhibits instability
behavior initially, but this behavior gradually dampens, allowing
the system to eventually reach equilibrium. This performance is re-
corded under a low Courant number with the network’s pipes. To
mitigate that, the water quality time step is required to be reduced
to reach a higher CN—near but less than 1. Such behavior is avoided
when applying the unconditionally stable implicit scheme.

To that end, the implicit upwind scheme gives more accurate
results that lead to a more robust control algorithm. The computa-
tional burden of this scheme can be lowered using sparse matrix
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multiplication. The computational times to perform the simulation
on Netl shown in Fig. 13(a) are 32.9 and 43.4 s for the explicit and
implicit upwind schemes, respectively, for the same water quality
time step. However, the implicit scheme retains high accuracy
under a higher WQ time step while requiring lower computational
run time. Therefore, the implicit upwind scheme gives more flex-
ibility in choosing the time step needed to retain real-time control
windows while maintaining high accuracy.

Real-Time Control Implementation of MS-WQM
MOR-Based MPC

The main objective of this paper and the prior investigation of the
MOR methods is to integrate them into and apply a real-time con-
trol algorithm of chlorine concentrations using the booster stations
distributed along the WDN under MS-WQM. We apply the MPC
algorithm on the linearized and nonlinearized MS-WQ ROM as
explained in “Real-Time Regulation of MS-WQM via Model Pre-
dictive Control and McCormick Relaxations.” Because both LPOD
and BPOD can reduce the MS-WQM effectively, for the linearized
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model we apply the BPOD method. On the other hand, we apply
NLPOD for the nonlinear model to obtain the ROM.

For multispecies water quality control and regulation, while ap-
plying the McCormick relaxation, the envelopes rely on the limits
for both chemicals. For the network’s components near the location
of the second chemical intrusion, these envelopes put tight boun-
daries on the chosen value for z by the control problem because x,
is close to x5, On the other hand, for components downstream
from this location with lower concentrations for both chemicals,
the relaxation allows higher and lower values for z, which leads
to choosing a value of z to be as close to the underestimators so
the control inputs are lower and the cost of chlorine injections
is reduced. Additionally, for higher values of the mutual reaction
coefficient k,, the effect of relaxation on the chosen control input
increases. That is, the proposed relaxed MPC may result in over-
looking or underestimating the mutual reaction and, therefore, we
lowered the upper bound for the fictitious reactant as a procedure
integrated into the looped control algorithm repeated each time
step.

As explained in “Nonlinear versus Linearized Models,” it is pro-
posed to update the operating points around which the system is
linearized every significant change window (e.g., hydraulic states
change). Updating these operating points adds to the computational
time by recalculating the matrices, yet it yields a more accurate
representation. Therefore, we put a threshold according to which
we judge changing these points after applying every control input.

By adopting these approaches, we start with applying the
MS-WQC-MPC-based method on the three-node network under
a static hydraulic profile and with a reduced number of states of
n, = 30 out of n, = 204. The water quality time step is chosen
to be 5 s and the control horizon is 10 min. The fictitious reactant
was discharged into the system at J1 (same location of the booster
station) at a concentration of 0.1 mg/L for the first hour of the sim-
ulation. Fig. 14 demonstrates the control actions and the corre-
sponding control response in J1 and P1 under the multispecies
linearized ROM, nonlinear ROM, and single-species ROM that ne-
glects the existence of the other chemical in the system for the first
consecutive 2 h of simulation. For all scenarios, chlorine concen-
trations at J1 and P1 are zero at the start of the simulation. That is,
MPC starts by injecting high chlorine dosage of 21,284 mg/min
for the case of multispecies dynamics and 20,838 mg/min for the
single-species model. The control input needed drops to 19,158 and
17,596 mg/min for multispecies and single-species dynamics, re-
spectively. After the first hour of simulation, MPC results in the
same control actions for both models as the intrusion event is con-
tained. The second substance’s initial concentration for P1 is zero,

Control Input (mg/min)

MS-RMPC

CL Concentration (mg/L)

(a) Time (mins)

30 60 90 120

which leads to the peak control action at the start of the simulation
being relatively close because the second substance has not traveled
into P1. Comprehensively, this highlights the importance and effec-
tiveness of the adopted MS-WQM and control framework. Further-
more, this difference between the two models’ results (i.e., chlorine
concentration dynamics and optimal chlorine inputs) increases
for more reactive components with chlorine and initial intrusion
concentrations, which may cause operational issues with limited
chlorine availability and/or budget.

Additionally, the linearized MS-WQC problem and relaxed one
produce the same performance as illustrated in Fig. 14(a). In the
linearized model, the operating points are updated at the beginning
of the simulation, following the application of the peak control ac-
tion, and once again at the end of the contamination event. For the
relaxed MS-WQC problem, all elements are directly affected by the
event, resulting in tight envelopes and approximating the mutual re-
action near its actual value. However, the number of control variables
for this procedure is higher for the first hour. To that end, the com-
putational time needed for each of the two control procedures is case
oriented. For this case study, the linearized-based MPC method has
computational time of 78 s, while it is 93 s for the second method.

Next, we apply the proposed MS-WQC approach on Netl under
a dynamic hydraulic profile defined by the patterned demand at
Junction 1 [Fig. 15(c)]. The FOM has 482 states, which are reduced
to 50. Because both control procedures have proved their ability to
regulate chlorine concentrations network-wide, we showcase the
results from the relaxed MPC procedure only to point out case stud-
ies that can take place. In this case study, the water quality time step
is 5 s, while the control horizon is 10 min and the simulation period
is 24 h. The initial concentrations of all chemicals are zero. The
fictitious reactant is set to intrude the system at Junction 6 with
a concentration of 0.3 mg/L mid-day. Additionally, chlorine con-
centrations are limited to 1.2 mg/L for cost reasons. For this case
study, we introduce two types of disturbance to the system: a sud-
den drop in chlorine concentration at Junction 6 to 0.15 mg/L at
the 12th hour of the day and a sudden increase to 2 mg/L at the
18th hour. Fig. 15(a) shows the control action at Junctions 1 and 6,
while Fig. 15(b) demonstrates the corresponding chlorine concen-
trations at these junctions and Junctions 5 and 8. For Junction 1, the
control action is higher and almost constant at 1.9 x 10* mg/min
because the junction is located at the very start of the network and
all the downstream elements are affected by its input. On the other
hand, the booster station at Junction 6 acts on the disturbances and
the changes at the downstream nodes effectively. The results val-
idate the performance of the control algorithm and how adaptive it
is under these disturbances. The run time recorded for applying the
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Fig. 14. (a) Control action u; during 2 h of simulation on the three-node network by applying SS-LMPC: linear single-species-based MPC,
MS-LMPC: linearized multispecies-based MPC, and MS-RMPC: nonlinear multispecies-based relaxed MPC; and (b) chlorine concentrations at

J1 and P1 under another chemical intrusion at J1 for the first hour.
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Fig. 16. (a) Control action at J89 of the FFCL-1 network; and (b) the corresponding chlorine concentrations at J56 and J67.

control algorithm for this case study is 278 s. Likewise, chlorine
concentrations are regulated through the FFCL-1 network as Fig. 16
exhibits. The total number of states of the original model is 10,356,
while the reduced model has 200 states. Water quality time step,
control horizon, and simulation period are the same as the previous
case study. Two different fictitious reactants are assumed to be de-
tected, the first one at J76 with initial concentration of 0.3 mg/L
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and the second one at J89 with 0.2 mg/L. Control actions illus-
trated in Fig. 16(a) are under the condition of hydraulic profile that
results in changing flow directions. Yet, the control algorithm re-
covers effectively and maintains chlorine concentrations within the
desired range. In short, the ROMs-based control algorithms guar-
antee the bounds defined for the inputs and outputs while being
tractable for larger networks.
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Conclusion, Paper’s Limitations, and
Recommendations for Future Work

Relying on the results from the numerical case studies in “Case
Studies,” we answer the research questions in the order they
are posed:

1. The multispecies water quality model can be effectively linear-
ized around operating points updated every specific moving win-
dow according to the hydraulic profile, instantaneous changes,
initial conditions, and control actions. However, to achieve the
desired accuracy, this window is reduced, and accordingly the
computational time increases.

2. The presented MOR methods yield high accuracy in estimating
output concentrations for both chlorine and the fictitious sub-
stance in the system. The three MOR procedures LPOD, BPOD,
and NLPOD are able to handle nonzero initial conditions by
favoring the control actuators’ inputs while building the offline
snapshots. Additionally, the NLPOD method requires more
computational time to handle and interpolate the nonlinearity
in the system, yet it is still computationally tractable; the same
is true for LPOD and BPOD.

3. MPC’s behavior depends on the underlying model and its ac-
curacy. Accordingly, the implicit upwind scheme is preferred
over the explicit upwind scheme because of its ability to provide
highly accurate simulation for the full- and reduced-order
MS-WQM. Moreover, numerical case studies show that the
three MOR producers are robust to dynamically changing hy-
draulic profiles.

4. MPC shows robustness and high flexibility in regulating chlo-
rine levels in WDN5s under different scenarios of contamination
events and hydraulic profiles by applying feedback control on
the reduced-order model while maintaining affordable computa-
tional requirements. Both proposed control procedures, the
linearized model and the relaxed nonlinear model based, show
reliable performance while applying adaptive approaches ac-
cording to the case study considered. These approaches lead to
a different level of complexity and computational burden for
each of the procedures, which results in favoring one procedure
over the other according to the case study.

Our study is not limitations free. We highlight these limitations
next along with our future work. First, this work use preassigned
fixed-location booster and sensor locations. Given that these loca-
tions impact performance, future work will include optimizing
them from a control-theoretic perspective. Second, additional ap-
proaches to model linearization should be explored to potentially
exploit offline precomputed FOM trajectories. Last, further work is
needed to improve the relaxation method because we expect oppor-
tunities to further improve computational performance compared
to the linearized model. This study is considered a computational
study that is based on a model that has been verified; however, a
real-time experimental study to verify the considered model and our
framework performance under various scenarios is recommended.

Data Availability Statement

All data, models, and codes that support the findings of this study are
available from the corresponding author upon reasonable request.

Acknowledgments

This work is partially supported by National Science Foundation
under Grants 1728629, 2015603, 2015671, 2151392, and 2015658.

© ASCE

JERND024, 150(2): 04023077

04023077-20

References

Acrylamide, T. 2009. “National primary drinking water regulations.”
Kidney 2 (4-D): 1-7.

Akkari, N., F. Casenave, and D. Ryckelynck. 2019. A novel gappy reduced
order method to capture non-parameterized geometrical variation in
fluid dynamics problems. Bangalore, India: Hindustan Aeronautics
Limited.

Antoulas, A. C., D. C. Sorensen, and S. Gugercin. 2000. A survey of model
reduction methods for large-scale systems. Rep. No. 719. Houston:
Rice Univ.

Apostol, T. M. 1991. Vol. 1 of Calculus. New York: Wiley.

Barrachina, S., P. Benner, E. S. Quintana-Orti, and G. Quintana-Orti. 2005.
“Parallel algorithms for balanced truncation of large-scale unstable sys-
tems.” In Proc., 44th IEEE Conf. on Decision and Control, 2248-2253.
New York: IEEE.

Baur, U., P. Benner, and L. Feng. 2014. “Model order reduction for linear
and nonlinear systems: A system-theoretic perspective.” Arch. Comput.
Methods Eng. 21 (4): 331-358. https://doi.org/10.1007/s11831-014
-O111-2.

Beattie, C. A., and S. Gugercin. 2008. “Interpolation theory for structure-
preserving model reduction.” In Proc., 47th IEEE Conf. on Decision
and Control, 4204—4208. New York: IEEE.

Benner, P., S. Gugercin, and K. Willcox. 2015. “A survey of projection-
based model reduction methods for parametric dynamical systems.”
SIAM Rev. 57 (4): 483-531. https://doi.org/10.1137/130932715.

Carlberg, K., C. Farhat, J. Cortial, and D. Amsallem. 2013. “The GNAT
method for nonlinear model reduction: Effective implementation and
application to computational fluid dynamics and turbulent flows.”
J. Comput. Phys. 242 (Mar): 623-647. https://doi.org/10.1016/j.jcp
.2013.02.028.

Chen, Y. 1999. “Model order reduction for nonlinear systems.” Ph.D. thesis,
Dept. of Mathematics, Massachusetts Institute of Technology.

Diao, K., and W. Rauch. 2013. “Controllability analysis as a pre-selection
method for sensor placement in water distribution systems.” Water Res.
47 (16): 6097-6108. https://doi.org/10.1016/j.watres.2013.07.026.

Elkhashap, A., and D. Abel. 2022. “Model order reduction of the time-
dependent advection-diffusion-reaction equation with time-varying
coefficients: Application to real-time water quality monitoring.” In Proc.,
2022 European Control Conf. (ECC), 333-338. New York: IEEE.

Elsherif, S. M., S. Wang, A. F. Taha, L. Sela, M. H. Giacomoni, and A. A.
Abokifa. 2022. “Control-theoretic modeling of multi-species water
quality dynamics in drinking water networks: Survey, methods, and test
cases.” Annu. Rev. Control 55 (Jun): 466-485. https://doi.org/10.1016/j
.arcontrol.2022.08.003.

Fisher, 1., G. Kastl, F. Shang, and A. Sathasivan. 2018. “Framework for
optimizing chlorine and byproduct concentrations in drinking water
distribution systems.” J. Am. Water Works Assoc. 110 (11): 38—49.
https://doi.org/10.1002/awwa.1183.

Fu, B., et al. 2020. “Modeling water quality in watersheds: From here to the
next generation.” Water Resour. Res. 56 (11): €2020WR027721. https:/
doi.org/10.1029/2020WR027721.

Galbally, D., K. Fidkowski, K. Willcox, and O. Ghattas. 2010. “Non-linear
model reduction for uncertainty quantification in large-scale inverse
problems.” Int. J. Numer. Methods Eng. 81 (12): 1581-1608. https://doi
.org/10.1002/nme.2746.

Grimme, E. J. 1997. Krylov projection methods for model reduction.
Champaign, IL: Univ. of Illinois at Urbana-Champaign.

Gugercin, S. 2008. “An iterative SVD-Krylov based method for model
reduction of large-scale dynamical systems.” Linear Algebra Appl.
428 (8-9): 1964—1986. https://doi.org/10.1016/j.1aa.2007.10.041.

He, J., and L. J. Durlofsky. 2014. “Reduced-order modeling for composi-
tional simulation by use of trajectory piecewise linearization.” SPE J.
19 (5): 858-872. https://doi.org/10.2118/163634-PA.

Hirsch, C. 1990. “Numerical computation of internal and external flows.”
Vol. 2 of Computational methods for inviscid and viscous flows.
Chichester, UK: Wiley.

Kumar, R., and D. Ezhilarasi. 2022. “A state-of-the-art survey of model
order reduction techniques for large-scale coupled dynamical systems.”

J. Water Resour. Plann. Manage.


https://doi.org/10.1007/s11831-014-9111-2
https://doi.org/10.1007/s11831-014-9111-2
https://doi.org/10.1137/130932715
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1016/j.watres.2013.07.026
https://doi.org/10.1016/j.arcontrol.2022.08.003
https://doi.org/10.1016/j.arcontrol.2022.08.003
https://doi.org/10.1002/awwa.1183
https://doi.org/10.1029/2020WR027721
https://doi.org/10.1029/2020WR027721
https://doi.org/10.1002/nme.2746
https://doi.org/10.1002/nme.2746
https://doi.org/10.1016/j.laa.2007.10.041
https://doi.org/10.2118/163634-PA

it 2/30/24. [Pl

Int. J. Dyn. Control 11 (2): 900-916. https://doi.org/10.1007/s40435
-022-00985-7.

Lall, S., J. E. Marsden, and S. Glavaski. 1999. “Empirical model reduction
of controlled nonlinear systems.” IFAC Proc. Volumes 32 (2): 2598—
2603. https://doi.org/10.1016/S1474-6670(17)56442-3.

Lall, S., J. E. Marsden, and S. Glavaski. 2002. “A subspace approach to
balanced truncation for model reduction of nonlinear control systems.”
Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 12 (6): 519-535.
https://doi.org/10.1002/rnc.657.

Lassila, T., A. Manzoni, A. Quarteroni, and G. Rozza. 2014. “Model order
reduction in fluid dynamics: Challenges and perspectives.” In Reduced
order methods for modeling and computational reduction, edited by
A. Quarteroni and G. Rozza, 235-273. Cham, Switzerland: Springer
International.

Li, Z., S. G. Buchberger, and V. Tzatchkov. 2005. “Importance of
dispersion in network water quality modeling.” In Impacts of global
climate change, 1-12. Reston, VA: ASCE. https://doi.org/10.1061
/40792(173)27.

Liu, Y.-Y., and A.-L. Barabdsi. 2016. “Control principles of complex
systems.” Rev. Mod. Phys. 88 (3): 035006. https://doi.org/10.1103
/RevModPhys.88.035006.

Luchtenburg, D. M., and C. W. Rowley. 2011. “Model reduction using
snapshot-based realizations.” Bull. Am. Phys. Soc. 56 (18).

Martnez Alzamora, F., B. Ulanicki, and E. Salomons. 2014. “Fast and
practical method for model reduction of large-scale water-distribution
networks.” J. Water Resour. Plann. Manage. 140 (4): 444-456. https://
doi.org/10.1061/(ASCE)WR.1943-5452.0000333.

Mazzoni, F., et al. 2023. “Investigating the characteristics of residential end
uses of water: A worldwide review.” Water Res. 230 (Feb): 119500.
https://doi.org/10.1016/j.watres.2022.119500.

McCormick, G. P. 1976. “Computability of global solutions to factorable
nonconvex programs: Part [—Convex underestimating problems.”
Math. Program. 10 (1): 147-175. https://doi.org/10.1007/BF01580665.

Montier, L., T. Henneron, B. Goursaud, and S. Clenet. 2017. “Balanced
proper orthogonal decomposition applied to magnetoquasi-static prob-
lems through a stabilization methodology.” IEEE Trans. Magnage.
53 (7): 1-10. https://doi.org/10.1109/TMAG.2017.2683448.

Moore, B. 1981. “Principal component analysis in linear systems: Control-
lability, observability, and model reduction.” IEEE Trans. Autom.
Control 26 (1): 17-32. https://doi.org/10.1109/TAC.1981.1102568.

Munavalli, G. R., and M. S. M. Kumar. 2003. “Optimal scheduling of
multiple chlorine sources in water distribution systems.” J. Water Resour.
Plann. Manage. 129 (6): 493-504. https://doi.org/10.1061/(ASCE)0733
-9496(2003)129:6(493).

Nguyen, V. B., S. B. Q. Tran, S. A. Khan, J. Rong, and J. Lou. 2020.
“POD-DEIM model order reduction technique for model predictive con-
trol in continuous chemical processing.” Comput. Chem. Eng. 133 (May):
106638. https://doi.org/10.1016/j.compchemeng.2019.106638.

Ohar, Z., and A. Ostfeld. 2014. “Optimal design and operation of booster
chlorination stations layout in water distribution systems.” Water Res.
58 (Aug): 209-220. https://doi.org/10.1016/j.watres.2014.03.070.

Ostfeld, A., and E. Salomons. 2006. “Conjunctive optimal scheduling
of pumping and booster chlorine injections in water distribution
systems.” Eng. Optim. 38 (3): 337-352. https://doi.org/10.1080
/03052150500478007.

Palansooriya, K. N., Y. Yang, Y. F. Tsang, B. Sarkar, D. Hou, X. Cao,
E. Meers, J. Rinklebe, K.-H. Kim, and Y. S. Ok. 2020. “Occurrence
of contaminants in drinking water sources and the potential of biochar
for water quality improvement: A review.” Crit. Rev. Environ. Sci.
Technol. 50 (6): 549-611. https://doi.org/10.1080/10643389.2019
.1629803.

© ASCE

JERND024, 150(2): 04023077

04023077-21

Perelman, L., and A. Ostfeld. 2008. “Water distribution system aggregation
for water quality analysis.” J. Water Resour. Plann. Manage. 134 (3):
303-309. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(303).

Preis, A., A. J. Whittle, A. Ostfeld, and L. Perelman. 2011. “Efficient hy-
draulic state estimation technique using reduced models of urban water
networks.” J. Water Resour. Plann. Manage. 137 (4): 343-351. https:/
doi.org/10.1061/(ASCE)WR.1943-5452.0000113.

Rossman, L., H. Woo, M. Tryby, F. Shang, R. Janke, and T. Haxton. 2020.
EPANET 2.2 user manual water infrastructure division, center for envi-
ronmental solutions and emergency response. Cincinnati: USEPA.

Rowley, C. W. 2005. Model reduction for fluids, using balanced proper
orthogonal decomposition, 17. Singapore: World Scientific.

Rutzmoser, J. 2018. “Model order reduction for nonlinear structural
dynamics.” Ph.D. thesis, Technische Universitdt Miinchen.

Schilders, W. H. A., et al., eds. 2008. “Model order reduction: Theory, re-
search aspects and applications.” In Vol. 13 of Mathematics in industry.
Berlin: Springer.

Seyoum, A. G., and T. T. Tanyimboh. 2017. “Integration of hydraulic and
water quality modelling in distribution networks: EPANET-PMX.”
Water Resour. Manage. 31 (14): 4485-4503. https://doi.org/10.1007
/s11269-017-1760-0.

Shamir, U., and E. Salomons. 2008. “Optimal real-time operation of urban
water distribution systems using reduced models.” J. Water Resour.
Plann. Manage. 134 (2): 181-185. https://doi.org/10.1061/(ASCE)
0733-9496(2008)134:2(181).

Shang, F., L. A. Rossman, and J. G. Uber. 2023. EPANET-MSX 2.0 user
manual. EPA/600/R-22/199. Cincinnati: USEPA.

Shang, F., H. Woo, J. B. Burkhardt, and R. Murray. 2021. “Lagrangian
method to model advection-dispersion-reaction transport in drinking
water pipe networks.” J. Water Resour. Plann. Manage. 147 (9):
04021057. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001421.

Sirovich, L. 1987. “Turbulence and the dynamics of coherent structures.
I. Coherent structures.” Q. Appl. Math. 45 (3): 561-571. https://doi
.org/10.1090/qam/910462.

Ulanicki, B., A. Zehnpfund, and F. Martinez. 1996. “Simplification of
water distribution network models.” In Proc., 2nd Int. Conf. on Hydro-
informatics, 493-500. Rotterdam, Netherlands: A. A. Balkema.

Wang, S., A. Chakrabarty, and A. F. Taha. 2023. “Data-driven identification
of dynamic quality models in drinking water networks.” J. Water
Resour. Plann. Manage. 149 (4): 04023008. https://doi.org/10.1061
/TWRMDS5.WRENG-5431.

Wang, S., A. F. Taha, and A. A. Abokifa. 2021. “How effective is
model predictive control in real-time water quality regulation? State-
space modeling and scalable control.” Water Resour. Res. 57 (5):
€2020WR027771. https://doi.org/10.1029/2020WR027771.

Wang, S., A. F. Taha, A. Chakrabarty, L. Sela, and A. A. Abokifa. 2022.
“Model order reduction for water quality dynamics.” Water Resour.
Res. 58 (4): e2021WR029856. https://doi.org/10.1029/2021WR029856.

Willcox, K., and J. Peraire. 2002. “Balanced model reduction via the proper
orthogonal decomposition.” AIAA J. 40 (11): 2323-2330. https://doi.org
/10.2514/2.1570.

Yang, Y. J., R. C. Haught, and J. A. Goodrich. 2009. “Real-time contam-
inant detection and classification in a drinking water pipe using conven-
tional water quality sensors: Techniques and experimental results.”
J. Environ. Manage. 90 (8): 2494-2506. https://doi.org/10.1016/j
Jjenvman.2009.01.021.

Zhou, K., G. Salomon, and E. Wu. 1999. “Balanced realization and model
reduction for unstable systems.” Int. J. Robust Nonlinear Control:
IFAC-Affiliated J. 9 (3): 183—198. https://doi.org/10.1002/(SICI)1099
-1239(199903)9:3<183::AID-RNC399>3.0.CO;2-E.

J. Water Resour. Plann. Manage.


https://doi.org/10.1007/s40435-022-00985-7
https://doi.org/10.1007/s40435-022-00985-7
https://doi.org/10.1016/S1474-6670(17)56442-3
https://doi.org/10.1002/rnc.657
https://doi.org/10.1061/40792(173)27
https://doi.org/10.1061/40792(173)27
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000333
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000333
https://doi.org/10.1016/j.watres.2022.119500
https://doi.org/10.1007/BF01580665
https://doi.org/10.1109/TMAG.2017.2683448
https://doi.org/10.1109/TAC.1981.1102568
https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(493)
https://doi.org/10.1061/(ASCE)0733-9496(2003)129:6(493)
https://doi.org/10.1016/j.compchemeng.2019.106638
https://doi.org/10.1016/j.watres.2014.03.070
https://doi.org/10.1080/03052150500478007
https://doi.org/10.1080/03052150500478007
https://doi.org/10.1080/10643389.2019.1629803
https://doi.org/10.1080/10643389.2019.1629803
https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(303)
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000113
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000113
https://doi.org/10.1007/s11269-017-1760-0
https://doi.org/10.1007/s11269-017-1760-0
https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(181)
https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(181)
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001421
https://doi.org/10.1090/qam/910462
https://doi.org/10.1090/qam/910462
https://doi.org/10.1061/JWRMD5.WRENG-5431
https://doi.org/10.1061/JWRMD5.WRENG-5431
https://doi.org/10.1029/2020WR027771
https://doi.org/10.1029/2021WR029856
https://doi.org/10.2514/2.1570
https://doi.org/10.2514/2.1570
https://doi.org/10.1016/j.jenvman.2009.01.021
https://doi.org/10.1016/j.jenvman.2009.01.021
https://doi.org/10.1002/(SICI)1099-1239(199903)9:3%3C183::AID-RNC399%3E3.0.CO;2-E
https://doi.org/10.1002/(SICI)1099-1239(199903)9:3%3C183::AID-RNC399%3E3.0.CO;2-E

