
Citation: Alnajim, K.; Abokifa, A.A.

Bayesian Optimization for

Contamination Source Identification

in Water Distribution Networks.

Water 2024, 16, 168. https://doi.org/

10.3390/w16010168

Academic Editor: Vittorio Di Federico

Received: 7 December 2023

Revised: 22 December 2023

Accepted: 26 December 2023

Published: 31 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Bayesian Optimization for Contamination Source Identification
in Water Distribution Networks
Khalid Alnajim and Ahmed A. Abokifa *

Department of Civil, Materials, and Environmental Engineering, The University of Illinois Chicago,
Chicago, IL 60607, USA; kalnaj2@uic.edu
* Correspondence: abokifa@uic.edu; Tel.: +1-312-413-4636

Abstract: In the wake of the terrorist attacks of 11 September 2001, extensive research efforts have been
dedicated to the development of computational algorithms for identifying contamination sources
in water distribution systems (WDSs). Previous studies have extensively relied on evolutionary
optimization techniques, which require the simulation of numerous contamination scenarios in
order to solve the inverse-modeling contamination source identification (CSI) problem. This study
presents a novel framework for CSI in WDSs using Bayesian optimization (BO) techniques. By
constructing an explicit acquisition function to balance exploration with exploitation, BO requires
only a few evaluations of the objective function to converge to near-optimal solutions, enabling
CSI in real-time. The presented framework couples BO with EPANET to reveal the most likely
contaminant injection/intrusion scenarios by minimizing the error between simulated and measured
concentrations at a given number of water quality monitoring locations. The framework was tested
on two benchmark WDSs under different contamination injection scenarios, and the algorithm
successfully revealed the characteristics of the contamination source(s), i.e., the location, pattern, and
concentration, for all scenarios. A sensitivity analysis was conducted to evaluate the performance of
the framework using various BO techniques, including two different surrogate models, Gaussian
Processes (GPs) and Random Forest (RF), and three different acquisition functions, namely expected
improvement (EI), probability of improvement (PI), and upper confident bound (UCB). The results
revealed that BO with the RF surrogate model and UCB acquisition function produced the most
efficient and reliable CSI performance.
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1. Background

Since the terrorist attacks on 11 September 2001, there has been a heightened focus
on securing water infrastructure. One crucial aspect that has received significant attention
in recent years is the development of methods and algorithms for rapidly detecting water
contaminants that may enter into drinking water distribution systems (WDSs). Contami-
nants entering the WDS through either accidental intrusion or intentional injection may
spread rapidly and unpredictably through the pipes of the WDS. As a result, rapid iden-
tification of contamination events is essential for managing water quality and protecting
public health and safety. By employing sophisticated algorithms and advanced sensing
technologies, water utilities can promptly identify and respond to contamination incidents.
This proactive approach plays a vital role in ensuring the security and safety of the water
supply system, thereby safeguarding public health and well-being.

WDS pipes typically extend across vast distances, often spanning hundreds or even
thousands of kilometers, with the majority of them buried underground [1]. This exten-
sive pipe network makes it challenging to achieve ubiquitous monitoring of the entire
system [2,3]. To enable an early warning and contamination response, numerous studies
have focused on developing algorithms to optimize the placement of monitoring sensors [4].
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These efforts aim to strategically position sensors throughout the network to maximize
network coverage and contamination detection capabilities [5]. The latter was achieved by
implementing different metrics, including minimizing the time to identify contamination
events and minimizing the consumption of contaminated water [6–9]. Despite these exten-
sive efforts, there is still a significant need for developing novel algorithms that can support
early-warning systems by enabling real-time identification of contamination sources based
on the monitoring data.

The contamination source identification (CSI) problem entails detecting the location,
injection pattern, and injection concentration of a contamination source. Solving the inverse
problem of identifying inputs (i.e., sources) from outputs (i.e., monitoring data) involves sig-
nificant uncertainty due to the non-unique input–output relationship [10]. That is, different
contamination sources could produce the same signal at the monitoring locations, making it
challenging to accurately identify the true injection characteristics. This complexity can be
further compounded by the occurrence of multiple contamination events simultaneously,
the intricate topology of the water distribution network, and the inherent uncertainties in
water quality monitoring data and simulation models, which makes predicting the correct
pathway of the contaminant in the system very challenging [11].

2. Literature Review

Numerous research studies have attempted to design algorithms to identify contam-
ination sources by utilizing observations from online monitoring stations. Early studies
have generally attempted to frame the CSI problem as an inverse modeling problem. In
study [12] an origin-tracking algorithm coupled with a nonlinear optimization technique
to solve the inverse problem of identifying pollution sources’ injection time and loca-
tion. The origin tracking model, employed to replace EPANET, reformulates the partial
differential equations into a set of algebraic constraints. The latter describes the time de-
lays between pipe boundary concentrations and connected nodes, removing the need for
spatial discretization along the length of the pipes. Another study proposed a simulation–
optimization approach in which EPANET was used to generate simulated concentrations
at preselected monitoring locations, while the nonlinear reduced gradient method was em-
ployed to identify candidate contaminant sources by minimizing errors between simulated
and observed concentrations at the monitoring locations [13]. A forward linear program-
ming model trees—an extension of regression trees— was used to replace EPANET [14].
This was followed by formulating a linear programming framework that uses the model
trees’ linear rule classification structure to solve the inverse problem and estimate the con-
tamination injection sources’ time, location, and concentration. De Sanctis et al. [15] used a
linear particle backtracking algorithm (PBA) to identify the water flow paths and travel
times leading to each sensor reading. Accordingly, locations and times exhibiting positive
sensor measurements but lacking negative ones were considered potential sources. A
contamination status algorithm was then used to iteratively update the pollution possibility
status for all candidate source locations and time intervals.

In addition to the aforementioned attempts, more recent efforts have generally focused
on introducing evolutionary computation approaches, as well as probabilistic and machine
learning algorithms, to solve the CSI problem [16]. A research by Liu et al. introduced an
adaptive dynamic optimization technique that uses multiple population-based searches
based on evolutionary algorithms (EAs) [17]. A distinct study developed a CSI model using
a simulation–optimization approach in which EPANET was coupled with a MapReduce-
based Parallel Niche Genetic Algorithm (GA) to generate contamination events based on
the fitness values [18]. This study demonstrated that the simulation–optimization-based
procedure has higher accuracy compared to the other approaches. Bayesian probabilistic
approach, the beta-binomial conjugate pair structure, was utilized to identify contaminant
source characteristics [11]. The algorithm allocated probabilities to potential source nodes
based on false positive or negative data from monitoring stations, updating them using
backtracking theory and Bayesian statistics. Overall, the proposed algorithm exhibited
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better responsiveness to sensor signal changes than a simple Bayes’ rule approach. A
Random Forest machine learning algorithm was trained using numerous contamination
scenarios (location, dosage, start time, and duration) that were generated through a Monte
Carlo approach [19]. The study assessed the impact of sensor layout, imperfect sensor
measurements, and demand uncertainty. The results demonstrated that the Random
Forest algorithm achieved accurate predictions of the true pollution source, with increased
accuracy corresponding to larger input datasets. However, the study was limited to the
identification of a single injection scenario rather than multiple source scenarios. Different
study compared three CSI techniques: Bayesian Probability-Based, Contaminant Status
Algorithm, and mixed-integer linear programming (MILP) [20]. Their evaluation focused
on accuracy and specificity metrics under various parameters, including WDS complexity,
imperfect sensors, modeling error, number and timing of contaminant injections, and
sensor coverage. Their results demonstrated that the optimization-based MILP method
performed the best, particularly in scenarios with significant sensor noise. However, it
requires tuning parameters that can impact real-world water network performance to
achieve optimal solutions.

3. Study Contributions

Previous studies have largely focused on solving the CSI problem by utilizing a range
of linear programming approaches, evolutionary optimization techniques, and statisti-
cal/machine learning methods. While linear approaches are recognized for their robustness
and simplicity, their application has generally been limited to simple scenarios featuring
only one contamination source. On the other hand, evolutionary optimization approaches
require significantly higher computational time, as they typically involve conducting nu-
merous evaluations of the objective function(s). The latter entails running a numerical
simulation model (e.g., EPANET), where the partial differential equations governing the
material transported in the WDS are numerically solved [21]. The high computational cost
of evolutionary algorithms hinders the real-time identification of contamination sources.
While machine learning algorithms overcome this limitation by shifting most of the com-
putational burden to the training phase, they are greatly dependent on the quality of the
training data, which are typically generated using numerical models (e.g., EPANET). Ad-
ditionally, advanced data-driven models are inherently prone to overfitting. Thus, model
errors could further propagate into CSI algorithms and compromise their outcomes.

In recent years, Bayesian optimization (BO) has gained considerable popularity due to
its efficiency in the derivative-free optimization of black-box objective functions [22–24].
Instead of directly optimizing the computationally expensive objective function, BO builds
a probabilistic model to estimate both the function’s output at unseen points, as well as a
measure of uncertainty or confidence in those estimates. The core of BO lies in its ability to
balance exploration (trying out new, uncertain points) and exploitation (focusing on areas
known to contain good solutions). To decide where to sample next, an explicit acquisition
function is derived from the model’s predictions incorporating both the predicted value
and uncertainty. Thus, BO tends to require fewer function evaluations to find optima
compared to other optimization approaches, earning it significant popularity for scenarios
where evaluations are costly or time-consuming, such as hyperparameter tuning in machine
learning models [25–28]. Other areas in which BO showed strong performance include
materials design [29], robotics control [30], and drug discovery [31].

This study presents the first attempt at applying BO to solve the CSI problem in
WDSs. This is accomplished by developing a simulation–optimization framework that
combines EPANET with BO. The framework is implemented to conduct a sensitivity
analysis of various BO techniques (including different covariance kernels and acquisition
functions), coupled with an assessment of the role played by different BO parameters
under diverse scenarios. Contrary to the majority of the previous CSI studies, which
assumed a conservative (i.e., non-reactive) contaminant, the presented framework considers
the contaminant to undergo reactions as it moves through the WDS. The significance of
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considering a reactive, rather than a conservative, contaminant is that reactions can further
complicate the non-uniqueness challenge of CSI.

4. Methodology
4.1. Problem Formulation and CSI Framework

The presented simulation–optimization CSI framework involves coupling a water
quality simulation model (EPANET) with an optimization algorithm (BO) to solve the CSI
problem in WDSs. The CSI problem is defined herein as revealing the characteristics of
multiple contamination sources given some sensory data. The objective function is formu-
lated with the aim of minimizing the difference between the contaminant concentrations
simulated using EPANET and those measured using sensors placed at specific locations
within the network:

min

 N

∑
i

D

∑
t

∣∣∣yi,t − y′i,t
∣∣∣

yi,t
∗ 100

 (1)

where yi,t and y′i,t are the observed and simulated concentrations at sensor location i and
time t. A value close to zero indicates a higher likelihood of the simulated contamination
event being the true contamination event. The decision variables in the optimization
problem represent the characteristics of the simulated contamination event, namely the
locations, start times, end times, and concentrations of the contamination sources.

Figure 1 shows a schematic of the closed-loop CSI framework developed in this study.
First, the algorithm generates an initial set of random contamination events to build the
prior of the BO probabilistic surrogate model. Each contamination event is characterized by
different contaminant injection locations, durations, and concentrations. Second, the Water
Network Tool for Resilience (WNTR) is used as a Python wrapper of EPANET to simulate
WDS hydraulics and water quality [32]. That is, WNTR is used to simulate the contaminant
concentrations at the designated sensor locations for each of the contamination events.
Third, the probabilistic surrogate model, which predicts the simulated concentration and
the associated uncertainty for a given contamination event, is updated with the results of
the WNTR simulation. Fourth, the BO acquisition function is employed to evaluate the
deviation between the observed and the simulated concentrations at the sensor locations,
and propose the next point to sample (i.e., the next contamination event to simulate) to
balance exploration and exploitation. As more contamination events are sampled, the
probabilistic model is sequentially updated, producing more accurate estimates, which
helps the algorithm converge to an optimal solution. After a given stoppage criterion
(e.g., a predefined number of iterations with no significant improvement in the objective
function), the algorithm is terminated, and the contamination event featuring the minimum
deviation between simulated and observed concentrations is selected as the best solution.
To execute the BO steps, the “pyGPGO” Python 3.8 package was used in this study, which
allows the choice of different surrogate models, covariance functions, acquisition functions,
and hyperparameters [33].

4.2. Bayesian Optimization

BO is comprised of two key components: the surrogate function and the acquisition
function. The former constitutes a method for predicting the value of the objective function
at any point together with an estimate of the uncertainty in this prediction, while the latter
is a method for deciding where to sample based on the posterior probability distribution
obtained from the surrogate model [23].
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4.2.1. Probabilistic Surrogate Model

In this study, we investigated two of the most widely adopted approaches to fit the
surrogate model within the context of BO, namely Gaussian Process (GP) regression and
Random Forest (RF) regression [34]. Both models constitute non-parametric, probabilistic
approaches that can model complex nonlinear relationships.

Gaussian Process Regression

A GP is a collection of random variables, any finite number that has a joint Gaussian
distribution. In GP regression, it is used to define a prior over functions. Each function in
this space is characterized by a mean function, m(x ), and a covariance kernel, k(x, x′) [35]:

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(2)

The choice of kernel function is crucial in GP regression as it defines the covariance
between any two points in the input space, determining how the similarity between inputs
influences the regression output. In this study, four of the commonly used kernel functions
for GP regression were tested for the problem of CSI in WDSs, namely squared-exponential,
Matérn 3/2, rational quadratic, and gamma-exponential [22].

As highlighted by Melkumyan and Nettleton [36], the squared-exponential (SE) func-
tion is the most commonly used choice for the covariance (kernel) function, and can be
represented as

k
(

x, x′
)
= exp

(
− r2

2l2

)
(3)

where r is the Euclidean distance between x and x′, r =
√
(x − x′)T(x − x′), and l is the

characteristic length scale of the covariance kernel.
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The gamma-exponential (GE) kernel is a modified version of the SE kernel, which is
controlled by a hyperparameter (γ) that further adjusts the smoothness of the kernel:

k
(

x, x′
)
= exp

(
− r2γ

2l2

)
(4)

The Matérn 3/2 (M32) kernel function is considered a general case of the SE kernel:

k
(

x, x′
)
=

(
1 +

√
3r
l

)
exp

(
−
√

3r
l

)
(5)

The rational quadratic (RQ) kernel can be specified as follows:

k
(

x, x′
)
=

(
1 +

r2

2αl2

)−α

(6)

where α is a positive-valued scale-mixture parameter.
It is noteworthy that when the covariance between f (x) and f (x′) is close to one, this

indicates a belief that f (x) and f (x′) are likely to be very similar, and they have substantial
mutual influence. Conversely, a covariance close to zero indicates that f (x) and f (x′) are
unrelated and have negligible impact on one another [29]. This concept is fundamental to
converging the search space and achieving the best sequential sampling pathway.

Random Forest Regression

RF is a popular supervised machine learning technique used to solve classification
and regression problems. RF is an ensemble learning method; that is, it combines the
predictions from multiple machine learning algorithms to make more accurate predictions
than any individual model. It operates by constructing a multitude of decision trees at
training time and outputting the mean prediction of the individual trees for regression
problems, or the mode of the classes (i.e., the most common output class) for classification
problems [37]. Each of the decision trees in an RF is trained on a random subset of the
training data, and a random subset of the input features is used. This approach is known
as “bootstrap aggregating” or “bagging”, which helps reduce the variance of the RF model,
making it less likely to overfit the training data [38].

Assume T represents the number of decision trees, and Mi(x) is the output of the i-th
decision tree for the input x. An average of T (i.e., decision variables) has a variance, 1

T σ2,
where σ2 is a variance of each decision tree. The variance of the average could be computed
as follows [35]:

var

(
1
T

T

∑
i=1

Mi(x)

)
= ρσ2 +

1 − ρ

T
σ2 (7)

where ρ is the positive pairwise correlation of the identically distributed variables [38].
Accordingly, we may deduce that the correlation between the variance of the RF estimator
and ρ and σ2 is positive but not with the size of the forest (T).

4.2.2. Acquisition Function

The acquisition function is the second primary component of the BO framework. Its
role is to determine where to sample the next area of the posterior distribution that is
derived from the surrogate model. The main task of the acquisition function is to guide the
search to locations that have potential improvement toward finding the optimal solution of
the objective function f (x). It achieves this by selecting a point where either the predicted
value for the objective function is promising (exploitation), the uncertainty of that prediction
is high (exploration), or a combination of both [22]. Accordingly, to balance exploration and
exploitation, the acquisition function evaluates the trade-off between exploring uncertain
regions of the posterior distribution and exploiting promising points in the multivariate
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distribution of the objective function. In this study, we consider three commonly used types
of acquisition functions:

Probability of Improvement

The probability of improvement (POI) can be written as

POI(x) = P( f (x) ≥ f (x+)) = Φ

 (x)− f (x+
)

σ(x)

 (8)

The equation above selects the next sampling location as the one that has the highest
probability of improving over the current best estimate of the objective function ( f (x+))
observed so far. Here, (x) and σ(x) are the mean and standard deviation of the posterior
constructed using the surrogate model, and Φ(·) indicates the normal CDF.

POI favors points with a high probability of being greater than f (x+
)

. The latter
indicates that POI is biased toward exploitation [39]. Therefore, a new term ϵ is introduced
to the formula above in order to regulate the balance between exploration and exploitation.
A high value of ϵ guides the next query sampling point toward exploration, while ϵ = 0
indicates pure exploitation.

POI(x) = P( f (x) ≥ f (x+) + ϵ) = Φ
(
(x)− f (x+)− ϵ

σ(x)

)
(9)

Expected Improvement

Expected improvement (EI) is the most widely used acquisition function with BO [40].
EI calculates the improvement expectation on the objective function with respect to the
predictive distribution of the surrogate model. EI selects the point to sample next as the
one that has the greatest expected improvement over the current best value of the objective
function f (x+

)
observed so far.

EI can be mathematically expressed as follows [35]:

EI(x) =

 ((x)− f (x+)− ϵ) Φ
(

(x)− f (x +)−ϵ

σ(x)

)
+ σ(x)

(
(x)− f (x +)−ϵ

σ(x)

)
, σ(x) > 0

0 , σ(x) = 0
(10)

where Φ(·) represents the CDF, (·) is the pdf, and ϵ is a term added to the expression to
manage and moderate the trade-off between exploration and exploitation.

Upper Confidence Bound

The Upper Confidence Bound (UCB) acquisition function depends on the Confidence-
Bound theory to choose the next point for objective function evaluation [41,42]. The UCB
function is defined as the weighted sum of the predicted mean (x) and the standard
deviation σ(x) of the objective function:

UCB(x) = (x) + ϵ σ(x) (11)

Based on the above equation, it can be seen that UCB offers a straightforward approach
to balance exploitation (x) and exploration σ(x) since ϵ, the term introduced to the equation,
directly controls the trade-off between exploration and exploitation. For a small value of ϵ,
BO will search for the areas that have promising performance (i.e., high (x)), while a large
ϵ will guide the search space toward uncertain areas (exploration).

4.3. Case Study

The presented framework was applied to two case study WDSs with varying degrees
of complexity to demonstrate the performance of BO for CSI under various conditions.



Water 2024, 16, 168 8 of 23

The first case study features a well-known medium-sized network, EPANET Net3, which
comprises 92 nodes, 2 water sources, 3 elevated storage tanks, 2 pumps, and 117 pipes
(Figure 2). The second case study features a real-world, large-scale WDS, known as the
Richmond network, which comprises 865 junctions, 1 reservoir, 6 elevated storage tanks,
and 949 pipes (Figure 3). The Richmond Water Network model was obtained from the
study by Grbčić et al. [19]. Monitoring nodes were strategically positioned in both WDSs
based on previous literature. In the case of Net3, the sensor layout was obtained from
the study by Seth et al. [20]. The authors employed TEVA-SPOT, integrated into EPA’s
Water Security Toolkit, to optimize the sensor placement. The results found the optimal
locations for the sensors to be at nodes 117, 149, 167, 213, and 253 (Figure 2). Similarly, for
the Richmond network, the monitoring network layout was obtained from the studies by
Grbčić et al. [19] and Preis and Ostfeld [43]. The sensors in this network were optimally
placed at nodes 93, 352, 428, 600, and 672 (see Figure 3).

The hydraulics of the two water networks were simulated hourly over a 24 h duration
for the Net3 network, and 48 h for the Richmond network. Contaminant injection was
simulated at a 5 min interval, and the contaminant concentration values at the sensors
were monitored at the end of each 5 min timestep. Table 1 lists hydraulic and network
parameters for both WDSs. It is worth noting that, as Seth et al. [20] indicated, short-
duration contaminant injections significantly influence the identification of contamination
source characteristics, particularly when the injection period is less than 4 h. Consequently,
all contaminant source patterns considered in this study have a duration of 2 h.
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Table 1. Simulation Parameters for the Case Study Networks.

Simulation Parameter Net3 Value(s) Richmond WDS Value(s)

Simulation duration (h) 24 48
Hydraulic time step (h) 1 1

Number of water sources 2 1
Number of pumps 2 7

Water quality time step (min) 5 5
Number of tanks 3 6

Reporting time step (min) 5 5
Number of nodes 92 865
Number of pipes 117 949

Three different contaminant injection patterns were investigated in this study as
illustrated in Figure 4 and represented in Table 2. Pattern 1 forms a continuous, time-
dependent intrusion (uniform pattern injection) initiated at 2 a.m. and lasting until 4 a.m.
On the other hand, Pattern 2 was designed to be more complicated than Pattern 1, exhibiting
a doubling in the concentration of contaminants after 1 h. Pattern 3, the most complex of
the three, combines Patterns 1 and 2, where it involves multiple simultaneous contaminant
injection sources at different node locations.
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Table 2. Characteristics of case study scenarios.

Injection Pattern Scenario Water Network Injection Location

1

A Net3 189

B Net3 151

C Richmond 518

D Richmond 91

2

E Net3 189

F Net3 151

G Richmond 518

H Richmond 91

3
J Net3 151,189

K Richmond 91,518

Various source locations of contaminant injection were tested for the different designed
patterns, as outlined in Table 2. For the EPANET Net3 network, the injection locations were
selected based on the work by Seth et al. [20], and the same criteria were applied when
choosing the injection locations for the Richmond network. It should be noted that specific
sites were selected for the Net3 and Richmond networks to be near water quality sensors.
These sites, namely 151 (Net3) and 91 (Richmond network), are covered by a single sensor
(refer to Figures 2 and 3). Conversely, sites 189 (Net3) and 518 (Richmond network) were
deliberately chosen to be located far away from water quality sensor locations, covered by
two sensors (refer to Figures 2 and 3).

The EPANET injection source type was chosen as a “set point booster” for all the
above scenarios. Furthermore, the contaminant was assumed to be subjected to both bulk
and wall reaction coefficients in all scenarios, unless stated otherwise. For the candidate
solutions, the objective function values for the single injection were set to be below 10%,
and for multiple contamination injections, less than 15%. These value thresholds serve
as benchmarks. The device used to conduct the simulations for all scenarios has the
following configuration: ASUS VivoBook, Model: S512F, Intel Core i5-10th processor, 12 GB
of memory, and Windows 10–64-bit operating system.
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5. Results and Discussion
5.1. Sensitivity Analysis and Hyperparameter Tuning

First, we focus on investigating the influence of the choice of surrogate model and
acquisition function on the accuracy and computational efficiency of the BO CSI framework.
To that end, we tested two different probabilistic surrogate models, namely Gaussian
Process (GP) regression and Random Forest (RF) regression, in combination with three
acquisition functions: probability of improvement (POI), expected improvement (EI), and
Upper Confidence Bound (UCB). To conduct this sensitivity analysis, Scenario A is selected
as the basis, which involves a single intrusion location (node 189 in the Net3 network) and
a dosage of 1000 mg/L. For this sensitivity analysis, the injected contaminant was assumed
to be conservative.

5.1.1. Choice of the GP Covariance Kernel Function

The investigated methods have several crucial hyperparameters that require tuning.
First, in the case of the Gaussian Process (GP) surrogate model, different covariance kernel
options were tested to identify the best-performing covariance function for estimating the
GP model, namely (a) squared-exponential, (b) Matérn 3/2, (c) gamma-exponential, and
(d) rational quadratic.

The length scale parameter plays a critical role in characterizing the smoothness of
the GP surrogate function, and thus affects the accuracy of the GP model in fitting the
underlying objective function. To select the optimal length scale (OLS) for each kernel, the
five-fold cross-validation mean squared error (CV_MSE) resulting from fitting each kernel
to 1000 randomly generated evaluations of the objective function was minimized by means
of a univariate bounded optimization routine, namely the minimize_scalar function in the
scipy library.

Figure 5 illustrates the CV_MSE of the GP surrogate model (y-axis) at different values
of the length scale parameter (x-axis) for the four kernels. The figure highlights the signifi-
cance of selecting appropriate length scale values for each kernel, as the accuracy of the
GP model in predicting the objective function values varies significantly across different
length scale values. The following optimal length scale values and their respective CV_MSE
values were obtained for each kernel function: 3.74 → 45.37 for the SE kernel, 18.52 → 31.41
for M32, 816.07 → 618.16 for GE, and 5.70 → 30.19 for RQ. Based on these findings, it
can be concluded that the RQ kernel yields the lowest CV_MSE value, indicating a higher
accuracy in fitting the GP surrogate model. Therefore, a further analysis was continued
using the rational quadratic kernel (GP_RQ).
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5.1.2. Number of Initial Evaluations

Another important parameter that requires tuning is the number of initial evaluations
used to fit the prior of the probabilistic surrogate model. To determine the optimal number
of initial evaluations, a wide range was tested for both surrogate models (GP_RQ and RF),
starting from 0 to 1000 with an increment of 20. Figure 6 shows the cross-validation r2 values
calculated for both of the surrogate models using different numbers of initial evaluations.
As expected, increasing the number of initial evaluations improves the performance of the
surrogate model in fitting the objective function. However, increasing the number of initial
evaluations also increases the computational cost of fitting the models. As a result, we
concluded that selecting 400 initial evaluations for GP_RQ and 500 initial evaluations for
RF provides a satisfactory trade-off between accuracy and computational cost.
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5.1.3. Choice of the Surrogate Model and Acquisition Function

Following the choice of the GP covariance kernel, optimal length scale values, and
number of initial evaluations, we tested the performance of both surrogate models in
conjunction with three acquisition functions, namely POI, EI, and UCB. Three different
metrics were used in this comparison: the best objective function, total runtime, and
convergence profile. The objective function value reflects the quality of the obtained
solution through each method, while the total runtime reflects the computational cost of
training the surrogate model and performing the optimization iterations. The convergence
profile revealed the rate at which the optimization converged toward the best solution.

Figure 7 depicts the value of the best objective function achieved through each surro-
gate model-acquisition function combination after 200 iterations. The results show that the
GP surrogate model generally produces solutions of a significantly lower quality compared
to the RF model with the three acquisition function alternatives. Furthermore, RF was
able to consistently identify the source location along with the exact start and end times
when employed with all tested acquisition functions as listed in Table 3, far surpassing the
performance of the GP alternatives.
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Table 3. Results of different BO Surrogate Models and Acquisition Functions for Scenario A.

Surrogate
Model

Acquisition
Function

Concentration
(mg/L)

Start Time
(a.m.)

End Time
(a.m.)

Best Objective
Value

Total Runtime
(min/node)

GP

EI 750.5 1.87 4.39 27.361 7.78

POI 972.3 1.98 4.19 14.581 8.31

UCB 973.1 1.89 4.10 13.671 15.68

RF

EI 1000.7 2.00 4.00 0.195 3.33

POI 998.8 2.00 4.00 0.274 3.40

UCB 1000.7 2.00 4.00 0.195 3.03

Next, we examined the total runtime of each of the tested BO methods, which is crucial
in facilitating a rapid response to contamination events. The findings show that the GP
model options require more computational time than the RF model alternatives (Table 3).
Among the GP alternatives, GP_UCB utilized the most time, specifically 15.68 min/node for
200 iterations, whereas GP_EI and GP_POI required less time (Table 3). This was consistent
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with the results of previous literature, where Candelieri et al. [35] deduced that BO with
GP models demands an average of 7.5 times the wall clock time needed for RF-based BO.
Among the RF alternatives, both RF_UCB and RF_EI combinations required slightly lower
computational time than the other options, with RF_UCB showing the best computational
efficiency.

Finally, we examined the convergence profile of the different BO methods, which
gauges the ability of BO to rapidly guide the search space toward convergence. The results
depicted in Figure 8 show that, in general, the GP alternatives converge slower than the RF
combinations. Notably, both RF_UCB and RF_EI quickly acquire and achieve the assumed
parameters of Scenario A within a minimal number of iterations (19), corresponding to
approximately 0.33 and 0.39 min/node, respectively.
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Taken together, the results of the sensitivity analysis revealed that the Random Forest
(RF) regression surrogate model remarkably outperformed the Gaussian Process (GP)
regression surrogate model, which can be attributed to two key factors: (1) Since RF
regression relies on building multiple decision trees and averaging their predictions, it
can capture a wide range of data patterns, which makes it very effective at capturing
nonlinear relationships between features and the target variable. (2) RF regression has
built-in mechanisms, such as bootstrapping and averaging, to prevent overfitting, which
makes it more robust, especially when dealing with noisy data.

Additionally, the results also revealed that the influence of the acquisition function
on the performance of BO is less significant than that of the surrogate model. This is also
consistent with recent studies that investigated the application of BO for water quality
optimization [44]. However, comparing the performance of the three acquisition functions,
the UCB function achieved the best value for the objective function when coupled with both
surrogate models (Figure 7). Furthermore, UCB converged to the best solution in fewer
iterations than both POI and EI (Figure 8). Nevertheless, UCB required more computational
time when coupled with the GP surrogate model (Table 3).
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5.2. Influence of Pattern, Location, and Number of Sources

Overall, the Random Forest (RF) surrogate model in conjunction with the Upper
Confidence Bound (UCB) acquisition function displayed the best performance, in terms of
both accuracy and convergence speed. Hence, the RF_UCB combination was selected for a
further analysis in this study.

5.2.1. Continuous Injection

Figure 9 illustrates the patterns of the best solutions achieved using the selected BO
method (RF-UCB) in comparison with the true injection characteristics for Scenarios A–D.
The four scenarios feature continuous injection pattern 1 on both the Net3 WDS (Scenarios
A and B) and Richmond WDS (Scenarios C and D). For each scenario, the figure depicts
the top four candidate solutions produced using the BO algorithm as well as the true
injection scenario. For all four scenarios, the best solution achieved using BO (dashed
green line) matched the true injection scenario (solid cyan line) almost exactly in terms of
starting time and duration, and was able to find the true injection location, but with very
slight differences in the mass loading rate. Generally, the BO algorithm required less than
100 iterations to converge to the best solution in all four scenarios.
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Figure 9. True contamination source and top solutions achieved using BO for the continuous
injection pattern.

As can be observed in Figure 9, the second top candidate solution for all scenarios,
except Scenario C, was in good agreement with the true injection scenario. Nevertheless, as
listed in Table 4, significant differences existed between the objective function values of
the best and the second-best solutions. Thus, the algorithm was able to identify the right
solution with little confusion.
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Table 4. Objective function values for the top two candidate solutions for the continuous pattern.

Scenario A Results Scenario B Results Scenario C Results Scenario D Results

Predicted
Injection
Node ID

Achieved
Objective
Function

Predicted
Injection
Node ID

Achieved
Objective
Function

Predicted
Injection
Node ID

Achieved
Objective
Function

Predicted
Injection
Node ID

Achieved
Objective
Function

189 0.195 151 1.3 518 0.716 91 0.786
183 5.48 149 4.62 525 8.63 89 3.37

5.2.2. Non-Uniform Contaminant Injection

Figure 10 reveals the top four optimal solutions that the BO algorithm identified
for Scenarios E-H, all featuring non-uniform injection pattern 2. The green dashed line
represents the overall best solution for all scenarios, while the true source pattern is
represented by the cyan solid line. For the four injection scenarios, the RF_UCB algorithm
was able to identify the true injection source locations, durations, and contaminant mass
amounts with fairly high accuracy. It is also worth noting that Scenario B and F, and
Scenario D and H, true injection locations were designed to be adjacent to the sensor
location, which explains why they show a good agreement between the top first and second
candidate solutions for both Patterns 1 and 2. However, this is not the case for Scenarios C
and G, and Scenarios A and E, given that they were designed to be distant from the sites of
the sensors.
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It is also worth mentioning that Pattern 2, designed to be more complex than Pattern 1,
required 150 iterations to reduce the initial objective function from 489.57% to 2.11% as can
be seen from Table 5. The average time taken to reach the optimal solution was 2.82 min
per node for the Net3 network and 4.95 min per node for the Richmond network. Due to
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its higher complexity, the Richmond network required more time for EPANET simulation
of the hydraulic and water quality analysis compared to the Net3 network. Despite the
significant difference in the initial objective function error of the best solutions between
the Richmond and Net3 networks, the BO-based framework achieved low error values for
both networks (Table 5).

Table 5. Objective function values for the top two candidate solutions for the non-uniform pattern.

Scenario E Results Scenario F Results Scenario G Results Scenario H Results
PSN SOFV FOFV PSN SOFV FOFV PSN SOFV FOFV PSN SOFV FOFV
189 435.06 2.19 151 1007.31 2.07 518 120.76 2.10 91 395.13 2.08
183 441.51 7.92 149 1008.22 6.17 526 151.14 9.27 89 394.00 5.03

Notes: PSN: predicted solution nodes, SOFV: starting objective function value, FOFV: final objective func-
tion value.

5.2.3. Multiple Injection Locations

Pattern 3 was designed to incorporate combinations of Pattern 1 and Pattern 2. This
involved testing two simultaneous contaminant injections at nodes 151 and 189 for Scenario
J and nodes 91 and 518 for Scenario K. Nodes 151 and 91 represented Pattern 1, while
nodes 189 and 518 represented Pattern 2. Table 6 presents the characteristics of the top five
candidate combination solutions. It took 200 iterations for both networks to reduce the
objective function target value to 6.34% for Scenario J and 5.44% for Scenario K (Table 6).

Table 6. Results of contamination sources at multiple injection locations.

Scenario
Results

Candidate Combination
Nodes

Concentration 1
and 2 (mg/L)

Start Time
(h)

End Time
(h)

Concentration
2 (mg/L)

Objective
Function Value

J

151 189 1000 2 4 670 6.34
151 183 1000 2 4 700 6.93
151 267 1000 2 4 760 8.61
151 193 1000 2 4 840 10.28
149 189 1000 2 4 860 11.99

K

91 518 1000 2 4 610 5.44
91 522 1000 2 4 670 6.47
91 525 1000 2 4 860 7.83
89 518 1000 2 4 864 8.51
91 85 1000 2 3 220 12.97

The RF_UCB model successfully identified the locations of contaminant injection for
both networks. The results in Table 6 indicate that the most likely sources were candidate
nodes 151 and 189 for Scenario J and 91 and 518 for Scenario K. This deduction is based
on the fact that all other candidate combinations returned final objective function values
above 6.34% for the Net3 network and 5.44% for the Richmond network.

The algorithm achieved slightly more accurate results for the complex Richmond
Water Network compared to the smaller Net3 network, as the achieved function value
in the Richmond network was slightly lower than in the Net3 network. However, the
time required to reach the target error was 3.81 min/node for Net3 and 6.23 min/node
for Richmond. The significant time difference can be attributed to two factors. The first is
the size of the water distribution network as EPANET required more time to simulate the
hydraulic and water quality simulation for the larger Richmond network. The second is
the total duration of the simulation for Richmond that was twice that of the Net3 network.

The results depicted in Table 6 also indicate that the algorithm accurately identified
the injection duration, location, simulated concentrations for the uniform pattern, and
first simulated dosage for the doubled pattern. However, in the second doubled pattern,
the simulated dosage in both networks was slightly higher than the assumed value in
the true pattern (500 mg/L). Although the RF_UCB model performs well in identifying
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the two simultaneous injection sites, it performs much better in finding a single injection
characteristic.

5.3. Influence of Measurement Uncertainty and Contaminant Reaction

In this section, we focus on understanding the robustness of the BO model by intro-
ducing two variations: measurement error in the sensors and assuming a decay reaction
for the contaminant. A study by Seth et al. [20] highlighted that monitoring errors can
significantly influence the performance of CSI frameworks. Additionally, according to Hart
et al. [45], one of the major sources of uncertainty in water quality modeling is the type and
reaction dynamics. Herein, we examined the Richmond network’s five designed pattern
scenarios (Scenario C, Scenario D, Scenario G, Scenario H, and Scenario K).

Two performance metrics were utilized to evaluate every result scenario the selected
BO algorithm generates: accuracy and specificity. These metrics were established by Yang
and Boccelli [11] to evaluate their proposed model, and later used by Seth et al. [20] to
compare the performance of three CSI methods. Accuracy measures the extent to which
the algorithm accurately identifies the actual contaminant source(s) as the most likely
source(s). Specificity determines how effectively the BO model narrows down the range of
candidate nodes.

Accuracy (%) =
The true injection node likeliness measure

Highest liklinesss measure over all candidate nodes
∗ 100 (12)

Speci f icity (%) =
Number o f nodes with lower likeliness than the true injection node

Total number o f candidate nodes
∗ 100 (13)

In this case, the corresponding inverse of the objective function error for each candidate
solution represents the likeliness measure of each node identified in that solution. It is
worth noting that 100 percent accuracy means that the true injection node had the highest
likeliness value, while a high specificity value indicates that the true injection node ranks
the highest among all candidate nodes.

To test the robustness of the algorithm to measurement errors, a random normally
distributed noise was generated and added to the measured data at the designated sensor
locations to assess the robustness of the selected simulation–optimization approach.

y′′
i = yi + yiδε (14)

where yi represents the observed concentrations at sensor location i, y′′
i represents the

observed concentrations with error at sensor location i, δ represents the normal distribution
random error, and ε represents the error magnitude. The chosen error magnitude is
designed to simulate a high level of measurement error. Figure 11 demonstrates the
difference between the shape of observed concentrations with and without adding noise to
Pattern 1.

Figure 12 demonstrates that the selected model (RF_UCB Bayesian optimization)
performs well in the presence of sensor noise for all designed scenarios, achieving 100%
accuracy and specificity. However, it is worth noting that the objective function value of the
second top candidate solution is closer to the best solution, which is not true for previous
scenarios involving non-reactive contaminant reactions. Guan et al. [13] also found that
their simulation–optimization method successfully identified the true contamination source
in the presence of measurement error.
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Next, two types of decay reaction rate coefficients are considered to examine the
model’s accuracy. They are bulk and wall reaction rate coefficients Kb and Kw, respectively.
The first exemplifies a constant rate for reactions occurring in the bulk flow, while the
second is a pipe–wall reaction coefficient. The test assumes first-order reactions occurring
in both the bulk flow and at the pipe wall. In designing this test, both Kb (day−1) and Kw
(m/day) were selected to follow the set range [0.25, 0.5, 0.75, 1].

Figure 12 shows that the proposed BO model successfully identifies the assumed
contamination sources in the case of a single contamination source for Patterns 1 and 2,
with all different permutations. In Scenario K, which involves two simultaneous injections,
the model achieves 100% accuracy and specificity, except when the Kw values range from
0.5 to 1 m/day (Figure 12). The results indicate that higher values of Kw slightly decrease
accuracy. Conversely, the Kb coefficient does not significantly impact accuracy or specificity.
Two main factors are responsible for increasing the contribution and influence of the Kw
factor: a higher flow velocity and smaller pipe diameter. At a higher wall decay constant,
the wall rate coefficient accounts for the majority of total chlorine decay (loss), which
explains why Kw has a greater effect on the model’s ability to identify the correct solution
than Kb.
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5.4. Limitations and Recommendations for Further Development

The Bayesian optimization CSI model demonstrated remarkable robustness in han-
dling diverse water network complexities and pattern injection scenarios, with high accu-
racy and specificity in revealing the true characteristics of multiple contamination sources.
In the future, several key areas of improvement for the BO model should be investigated.

First, it is essential to acknowledge the limitations in EPANET water quality simulation,
which could have an effect on the accuracy of the CSI results. These limitations include the
numerical errors in the EPANET water quality simulation engine, the limited representation
of incomplete mixing at the network junctions, and the implementation of an advection-
based transport model rather than an advection–dispersion model that could accurately
simulate both Laminar and Turbulent flow regimes [46]. The latter is known to affect the
results of water quality optimization analyses, especially in the low-flow, dead-end zones
of WDSs [47].

Second, the examination and comparison of different surrogate models, such as Gradi-
ent Boosting and T-student, can present an opportunity for enhancing the model’s capabili-
ties. Evaluating the performance of other surrogate models against the presented RF_UCB
model can provide valuable insights into potential improvements in CSI performance.
Furthermore, optimizing the trade-off between exploration and exploitation within the
acquisition functions is essential for achieving better performance in a shorter timeframe.
Striking the right balance between these aspects is crucial to expedite the convergence to
optimal solutions.

Third, it is crucial to investigate how the presented CSI framework can be expanded
into a complete contamination response framework that combines CSI with the optimiza-
tion of response strategies. One possible approach to achieve this linkage is by incor-
porating the presented CSI within real-time water quality control frameworks [48]. The
latter may also include other components, such as the optimization of booster chlorination
systems [49,50].

Finally, it is worth investigating how the performance of the presented BO framework
compares to the performance of machine learning-based CSI approaches, such as Random
Forests and Neural Networks. This comparison will reveal the role of the acquisition
function formulation in driving the search for the optimal solution in BO. This comparison
will also help shed light on how the performance of simulation–optimization approaches
compares to that of direct simulation approaches involving data-driven models.

6. Conclusions

In the event of accidental or intentional contamination in the drinking water distribu-
tion system (WDS), it is crucial to quickly identify the contaminant source characteristics
to maintain high water quality and protect public health. These characteristics include
spatial location, duration, and concentration of the contaminant injection source. In this
study, a closed-loop simulation–optimization approach was developed to solve this inverse,
black-box, computationally expensive problem. Bayesian optimization (BO) served as the
optimization engine for the contamination source identification (CSO) framework, while
EPANET (WNTR) was used to simulate hydraulics and water quality dynamics within
the WDS.

A comprehensive comparison of various BO surrogate models and acquisition func-
tions was conducted. To demonstrate the proposed CSI framework, two different case
study WDSs, with different sizes and complexities, were employed. The investigation
included various injection patterns and locations. Overall, the presented BO framework
achieved outstanding performance in finding the contamination source characteristics for
all designated scenarios. The findings revealed that BO with Random Forest (RF) regression
as the surrogate model and the Upper Confidence Bound (UCB) as the acquisition func-
tion demonstrated the most effective performance in identifying contamination source(s)
quickly and with minimal evaluations.



Water 2024, 16, 168 21 of 23

To further evaluate the robustness of the proposed model, two uncertainty factors
were considered: noise added at monitoring stations and a decay reaction for the injected
contaminant. Random errors in sensor measurement data did not impact the determina-
tion of source patterns for all analyzed scenarios. Furthermore, the proposed approach
effectively identified contamination sources when both bulk and wall decay reactions were
considered for the small WDS. However, high wall decay rates appeared to negatively
impact the performance of the BO CSI framework, especially when the size of the WDS
is large.

In summary, Bayesian optimization is a promising approach for identifying contami-
nation source(s) in drinking water distribution networks. Continued research in this area
will help address the identified limitations and fully implement this approach in practi-
cal contamination response frameworks, which will significantly enhance our ability to
respond swiftly and effectively to water contamination events, ensuring the safety and
reliability of community drinking water systems.
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