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ABSTRACT. We give a Chevalley formula for an arbitrary weight for the torus-equivariant K-group
of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an
application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small)
torus-equivariant quantum K-theory QKr(G/B) of a (finite-dimensional) flag manifold G/B; this
has been a longstanding conjecture about the multiplicative structure of QKr(G/B). In type
An—1, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite)
Schubert classes in the (non-equivariant) quantum K-theory QK (SL,/B); we also obtain very
explicit information about the coefficients in the respective Chevalley formula.

1. INTRODUCTION

This paper is concerned with a geometric application of the combinatorial model known as the
quantum alcove model, introduced in [28]. Its precursor, the alcove model of the first author and
Postnikov, was used to uniformly describe the highest weight Kashiwara crystals of symmetriz-
able Kac-Moody algebras [37], as well as the Chevalley formula for the equivariant K-theory of a
(finite-dimensional) flag manifold G/B [36]. More generally, the quantum alcove model was used to
uniformly describe certain crystals of affine Lie algebras (single-column Kirillov-Reshetikhin crys-
tals) and Macdonald polynomials specialized at ¢t = 0 [34, 35]. The objects of the quantum alcove
model (indexing the crystal vertices and the terms of Macdonald polynomials) are paths in the
quantum Bruhat graph on the Weyl group [4]. In this paper we complete the above picture, by
extending to the quantum alcove model the geometric application of the alcove model, namely the
K-theory Chevalley formula.

To achieve our goal, we need to consider the so-called semi-infinite flag manifold Qg associated
to a connected, simply-connected simple algebraic group G over C, with Borel subgroup B and
maximal torus 7' C B. We give a Chevalley formula for an arbitrary weight for the (T' x C*)-
equivariant K-group Kryc+(Qq) of Qg, which is described in terms of the quantum alcove model.
In [20] and [41], the Chevalley formulas for Kpyc-(Qg) were originally given in terms of the
quantum LS path model in the case of a dominant and an anti-dominant weight, respectively. For
a general (neither dominant nor anti-dominant) weight, there is no quantum LS path model, but
there is a quantum alcove model. Hence, in order to obtain a Chevalley formula for an arbitrary
weight, we first need to translate the formulas above to the quantum alcove model by using the
weight-preserving bijection between the two models given by Propositions 28 and 31. Starting from
these translated formulas (Theorems 29 and 32), we prove a Chevalley formula for Kpyc+(Qg)
(Theorem 33) for an arbitrary weight, based on the combinatorics of the quantum alcove model.
Furthermore, by examining this proof based on the Yang-Baxter equation for quantum Bruhat
operators, we were able to generalize quantum Yang-Baxter moves for the quantum alcove model
associated to a dominant weight (obtained in [29]) to the case of an arbitrary weight; see [21]
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and [22]. Here we should add that an inverse Chevalley formula, which describes the structure of
Kpyc+(Qg) as a module over the representation ring of 7' x C*, is obtained in [43], [24], and [31]
by an approach through the nil-DAHA (nil double affine Hecke algebra) in simply-laced types.

The study of the equivariant K-group of semi-infinite flag manifolds was started in [20]. A
breakthrough in this study is [16] and [17] (see also [19]), in which Kato established a certain
Z[P)-module isomorphism from the (small) T-equivariant quantum K-theory QK7 (G/B) of the
finite-dimensional flag manifold G/B onto the T-equivariant K-group Kr7(Qg) of Qg; here P
is the weight lattice generated by the fundamental weights wy, & € I. This isomorphism sends
each (opposite) Schubert class in QK7 (G/B) to the corresponding semi-infinite Schubert class in
K7(Qg); moreover, it respects the quantum multiplication in QK7 (G/B) with the line bundle
class [O¢q/p(—wy)] and the tensor product in K7(Qg) with the line bundle class [Oq, (wowy)] for
all k € I, where w, is the longest element of the Weyl group W of G. Based on this result, a
longstanding conjecture in [36] on the multiplicative structure of QKr(G/B), i.e., the Chevalley
formula (Theorem 49) for anti-dominant fundamental weights —wy, k € I, for QK7 (G/B), is
proved by our anti-dominant Chevalley formula for Kpxc+(Qg) under the specialization at g = 1.
Also, from the anti-dominant Chevalley formula for QK7 (G/B), we can deduce a Chevalley formula
for anti-dominant fundamental weights —wy, k € I\ J, for the T-equivariant quantum K-theory
QK7 (G/Py) of a partial flag manifold G/ Py, where P; D B is the parabolic subgroup corresponding
to a subset J C I, by making use of the Z[P]-algebra surjection from the polynomial version of
QKr(G/B) onto that of QKr(G/Py) established in [18]; see [23] and [25].

As another application of our Chevalley formula for QK7 (G/B), we can prove an important con-
jecture in [30] for the non-equivariant quantum K-theory QK (SL,,/B) of the flag manifold SL,,/B
of type A,—1 (Theorem 51): the quantum Grothendieck polynomials, introduced in [30], indeed
represent (opposite) Schubert classes in QK (SL,,/B). In this way, we generalize the results of [10],
where the quantum Schubert polynomials are constructed as representatives for (opposite) Schubert
classes in the quantum cohomology of SL,,/B. Therefore, we can use quantum Grothendieck poly-
nomials to compute structure constants in QK (SL,/B) with respect to the (opposite) Schubert
basis; in actual calculations, we just need to expand their products in the basis they form, which
is done by [30, Algorithm 3.28]; see [30, Example 7.4]. This is important, since computing even
simple products in quantum K-theory is notoriously difficult. Also, in our recent preprint [42],
the second and third authors proved a Pieri-type multiplication formula for quantum Grothendieck
polynomials (i.e., [30, Conjecture 6.7]), which is a vast generalization of the Chevalley formula
(or, equivalently, Monk-type multiplication formula) and enables us to compute many structure
constants to which the Chevalley formula does not apply. Finally, still for QK (SL, /B), we obtain
very explicit information about the coefficients in the respective Chevalley formula (Theorem 58,
Proposition 59, and Theorem 63).

Acknowledgments. C.L. was partly supported by the NSF grant DMS-1855592 and the Simons
Foundation grant #584738. S.N. was partly supported by JSPS Grant-in-Aid for Scientific Re-
search (B) 16H03920 and (C) 21K03198. D.S. was partly supported by JSPS Grant-in-Aid for
Scientific Research (C) 156K04803 and 19K03415. An extended abstract of this work has appeared
in the Proceedings of the 33rd international conference on Formal Power Series and Algebraic
Combinatorics [32].

2. BACKGROUND ON THE QUANTUM BRUHAT GRAPH AND ITS PARABOLIC VERSION

2.1. Root systems. Let g be a finite-dimensional simple Lie algebra over C with Cartan subal-
gebra . Denote by IIV = {a) },c; and II = {a; },c; the set of simple coroots and simple roots of
g, respectively, and set Q¥ := Y., Zay, Q¥ =3, Z>pa. Let ®, T, and &~ be the set of
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roots, positive roots, and negative roots of g, respectively, with § € ®* the highest root for the set
® of roots of g; we set p:= (1/2) > cqp+ @. For a € &, we set

{1 if v € dF,

al :=sgn(a)a € T,
1 ifaed, o] ()

sgn(a) :=

and denote by a the coroot of . Also, let w;, i € I, denote the fundamental weights for g, and
set P:=3, ;Zw; and P* := %", ; Z>ow;. Let W := (s; | i € I) be the (finite) Weyl group of g,
where s; is the simple reflection with respect to «; for i € I. We denote by £ : W — Z>( the length
function on W, by e € W the identity element, and by w, € W the longest element. For a € ®,
denote by s, € W the reflection with respect to a; note that s_, = s4.

Let J be a subset of I. We set Q; = Y .. ;Za;, ®; := &N Qy, @f = ®*tNQy, py =
(1/2) Zaeéj a. We denote by Wy := (s; | i € J) the parabolic subgroup of W corresponding to J,
and we identify W/W; with the corresponding set of minimal coset representatives, denoted by w:
note that if J = 0, then W7 = W is identical to W. For w € W, we denote by |w]| = |w]’ € W’
the minimal coset representative for the coset wWj in W/W;.

Let Wt := (s; | i € Lug), with I := I LU {0}, be the (affine) Weyl group of the untwisted affine
Lie algebra gy associated to g. For each & € QV, let tg € Wyt denote the translation by & (see [15,
Section 6.5]). Then, {tg | € € Qv} forms an abelian normal subgroup of Wy, in which tete = te ¢
holds for &, ¢ € @Y. Moreover, we know from [15, Proposition 6.5] that

Wa EW x {te [ £€QV} =W xQY;

note that sy = sgt_gv. We set Vv’azfo =W x QV'F, which is a subset of Ws.

2.2. The quantum Bruhat graph. We take and fix a subset J of I.
Definition 1. The (parabolic) quantum Bruhat graph QB(W7) is the (®T \ ®F)-labeled directed

graph whose vertices are the elements of W, and whose directed edges are of the form: w i> v
forw,v € W and B € &\ ®F such that v = |wsg|, and such that either of the following holds:
(i) L(v) = b(w) + 1; (ii) L(v) = L(w) +1—2{p— ps, BY). An edge satisfying (i) (resp., (ii)) is called
a Bruhat (resp., quantum) edge.

When J = (), we write QB(W) for QB(W@); note that in this case, W9 = W/, @a =0, py =0,
and that |w] = w for all w € W. The quantum Bruhat graph QB(W) originates in the Chevalley
formula for the quantum cohomology of flag manifolds [12].

Remark 2 (see [33, Remark 6.13]). For each v, w € W, there exists a directed path in QB(W )
from v to w.
For a directed path p : v = vg LN vy NN v = w in QB(WY), we define the weight
wt”(p) of p by
wt/(p)i= > B eQ";
1<k<l;
Vi —1 ﬂ—’“) v is

a quantum edge

when J = (), we write wt(p) for wt?(p). We know the following from [33, Proposition 8.1].

Proposition 3. Let v, w € W”’. If p and q are shortest directed paths in QB(W?) from v to w,
then wt’ (p) = wt’(q) modulo QY. In particular, if J =0, then wt(p) = wt(q).
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For v, w € W, we denote by £/ (v = w) the length of a shortest directed path in QB(W) from
w to v. When J = ), we write (v = w) for £%(v = w).

Assume that J = (). In this case, we denote by wt(w = v) the weight wt(p) of a shortest
directed path in QB(W) from w to v, which is independent of the choice of a shortest directed
path by Proposition 3. Also, we will use the shellability of the quantum Bruhat graph QB(W) with
respect to a reflection order on the positive roots [8], which we now recall.

Theorem 4 ([4]). Fiz a reflection order on ®+.

(1) For any pair of elements v,w € W, there is a unique directed path from v to w in the
quantum Bruhat graph QB(W) such that its sequence of edge labels is strictly increasing
(resp., decreasing) with respect to the reflection order.

(2) The path in (1) has the smallest possible length {(v = w).

2.3. Additional results. In this subsection, we fix a dominant weight A € P™, and set J = J) :=
{iel| (N af)y=0}CI Letv,w € W/, and let p be a shortest directed path in QB(W?) from
v to w. Then we deduce by Proposition 3 that (\, wt’(p)) does not depend on the choice of a
shortest directed path p. We write (A, wt’ (v = w)) for (A, wt’(p)).

Lemma 5 ([34, Lemma 7.2]). Keep the notation and setting above. Let o, 7 € W”. Then,
I\, wtd (o= 7)) = (A, wt(v = w)) for allv € oWy, w € TW).

Definition 6. For a rational number b € Q, we define QBy\ (W) (resp., QB (W)) to be the
subgraph of QB(W) (resp., QB(W)) with the same vertex set but having only those directed edges

of the form w Py for which b(\, V) € Z holds.

Lemma 7 ([34, Lemma 6.2]). Keep the notation and setting above. Let w AN ws~ be an edge
in QByr\(W) for some rational number b. Then there exists a directed path from |w] to |ws,]| in
QB (W) (possibly of length 0).

Lemma 8 ([34, Lemma 6.7]). Consider two directed paths in QB(W) between some w and v.
Assume that the first one is a shortest path, while the second one is in QByy (W), for some rational
number b. Then the first path is in QByy(W) as well.

We now recall [33, Proposition 7.2], which constructs the analogue of (one version of) the so-
called Deodhar lifts [7] for the quantum Bruhat graph; we will call them quantum right Deodhar
lifts.

Proposition 9 ([33]). Given v,w € W, there exists a unique element x € vW; such that {(w = x)
attains its minimum value as a function of x € vWj.

We refer also to [33, Theorem 7.1], stating that the mentioned minimum is, in fact, attained
by the minimum of the coset vW; with respect to the w-tilted Bruhat order <,, on W (see [4]).
Therefore, it makes sense to denote it by min(vWjy, <), although we will not use this stronger
result.

The quantum Bruhat graph analogue of the second version of the Deodhar lifts was given in
[41, Proposition 2.25]; we will call these quantum left Deodhar lifts. The mentioned result is stated
based on the so-called dual v-tilted Bruhat order <) on W, introduced in [41, Definition 2.24]. It
is proved by reduction to [33, Theorem 7.1].

Proposition 10 ([41]). Given v,w € W, the coset wW has a unique mazimal element with respect
to =%, which is denoted by max(wWy, <¥).

s

For our purposes, the weaker version of this result, which is stated below, suffices; this is the
analogue of Proposition 9.
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Proposition 11. Given v,w € W, there exists a unique element x € wWj such that {(x = v)
attains its minimum value as a function of x € wWj.

The mentioned element is max(wWy, <¥). In [33] we gave a proof of Proposition 9, i.e., [33,

Proposition 7.2], which is independent of [33, Theorem 7.1], mentioned above; this proof was based
on [33, Lemmas 7.4, 7.5]. Likewise, Proposition 11 can be proved independently of Proposition 10,
as an immediate consequence of the analogues of the mentioned lemmas. These analogues are
stated as Lemmas 23 and 24 in Section 3.4, and are also needed in the proof of Lemma 25 in that
section.

3. BACKGROUND ON THE COMBINATORIAL MODELS

Throughout this section, A is a dominant weight whose stabilizer is the parabolic subgroup W
of W for a subset J C I.
3.1. Quantum LS paths.
Definition 12 ([34]). A quantum LS path n € QLS()) is given by two sequences
(1) (0=10b1 <by <b3 <--- <b <bp1=1); (6(n) =01, 02, ..., 00=1(n)),

where by, € Q, o, € W7, and there is a directed path in QBbk)\(W‘]) from op_1 to op, for each
k=2,...,t. The elements oy, are called the directions of n, while t(n) and k(n) are the initial and
final directions, respectively.

This data encodes the sequence of vectors
(2) up = (b1 — bp)oA, ..., ug:= (bg — ba)og A, wuy := (ba — by)or\.
We can view the quantum LS path 7 as a piecewise-linear path given by the sequence of points
0, up, g1+ U, .., U+ -+ us.

There is also a standard way to express n as amap 7 : [0,1] — by with n(0) = 0 (where b, = Rz X
is the real part of the dual Cartan subalgebra), but we do not need this here. The endpoint of the
path, also called its weight, is wt(n) :=n(1) = ug + - - - + u.

We define the (tail) degree function (cf. [34, Corollary 4.8]) by
t
(3) deg(n) :=— > (1= bp){\, wts(oh_1 = o%)) .
k=2

Given w € W, we define «(n,w) € W, called the initial direction of n with respect to w, by the
following recursive formula:

wo ‘= w,
(4) wy = min(opWy, 2y,_,) fork=1,...,t,

v(n,w) == wy .

Also, we set

(5) En,w) = Zwt(wk,l = wy) ,
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(6) deg,, (1) == — Y (1 = b)(\, wt(wg—_1 = wy)) .
k=1

Given v € W, we define k(n,v) € W, called the final direction of n with respect to v, by the
following recursive formula:
Vt+1 =V,
(7) v = max(op Wy, <5, ) fork=1,...¢,
k(n,v) =1 .
Also, we set

t

(8) C(na U) = ZWt(Ukt = Uk?-‘rl) .

k=1

3.2. The quantum alcove model. We say that two alcoves are adjacent if they are distinct and

have a common wall. Given a pair of adjacent alcoves A and B, we write A 5, B for B € @ if the
common wall is orthogonal to 8 and § points in the direction from A to B. Recall that alcoves are
separated by hyperplanes of the form

Hgy={pebg|(nB")=1}.
We denote by sg; the affine reflection in this hyperplane.

The fundamental alcove is defined as
Ao ={pebp|0<(u,a¥)y <1 forallacd}.

Definition 13 ([36]). An alcove path is a sequence of alcoves (Ao, A1, ..., Ap) such that A;_1 and
A;j are adjacent, for j =1,...,m. We say that (Ao, A1, ..., Ap) is reduced if it has minimal length
among all alcove paths from Ay to Ap,.

Let A be any weight, and Ay, = A, + A the translation of the fundamental alcove A, by the
weight A.

Definition 14 ([36]). The sequence of roots I'(\) = (1, B2, - .., Bm) is called a A-chain (of roots),
respectively reduced A-chain, if

Ay = A, —p1 A, —B2, . —Bm A, = A,

18 an alcove path, respectively reduced alcove path.

A reduced alcove path (Ag = Ao, A1,..., Ay = A_)) defines a total order on the hyperplanes,
to be called A-hyperplanes, which separate A, from A_,. This total order is given by the sequence

Hg, , for i = 1,...,m, where Hg, _;, contains the common wall of A;_; and A;. Note that
(X, BY) >0, and that the integers I;, called heights, have the following ranges:

(9) 0<L<ANB)—1if Bed®t, and 1< <(\B)) if ied.

Note also that a reduced A-chain (f,...,3y) determines the corresponding reduced alcove path,

and hence we can identify them as well.
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Remark 15. An alcove path corresponds to the choice of a word for an element of the affine Weyl
group W/, = W x @ (corresponding to the Langlands dual g¥ of g) sending A, to A_j [36, Lemma
5.3]. For A\ dominant, another equivalent definition of a reduced alcove path/A-chain, based on a
root interlacing condition which generalizes a similar condition characterizing reflection orders, can

be found in [37, Definition 4.1, Proposition 10.2].

When ) is dominant, we have a special choice of a reduced A-chain in [37, Section 4], which we
now recall.

Proposition 16 ([37]). Given a total order I = {1 <2 < --- <r} on the set of Dynkin nodes, one
may express a coroot ¥ = >"_, ¢, in the Z-basis of simple coroots. Consider the total order on
the set of A\-hyperplanes defined by the lexicographic order on their images in Q" under the map

1
10 Hg —(l,c1,...,¢).
( ) B, l'_><A7B\/>(7017 7C)
This map is injective, thereby endowing the set of A-hyperplanes with a total order, which is a
reduced A-chain. We call it the lexicographic (lex) A-chain, and denote it by I'jex(N).

The rational number I/(\, 3) is called the relative height of the A\-hyperplane Hg _;. By defini-
tion, the sequence of relative heights in the lex A-chain is weakly increasing.

The objects of the quantum alcove model are defined next. This model was introduced in [28] and
then used in [34, 35] in connection with Kirillov-Reshetikhin crystals and Macdonald polynomials
specialized at ¢ = 0. Here we consider a generalization of it, by letting A be any weight, as opposed
to only a dominant weight, as originally considered; another aspect of the generalization is making
the model depend on a fixed element w € W, such that the initial model corresponds to w being
the identity element e. In addition to w, we fix an arbitrary A-chain I'(A) = (81, ..., Bm), and set
T =88, Ti = 88, 1,

Definition 17 ([28]). A subset A = {j1 < jo < ---<js} of [m] :={1,...,m} (possibly empty) is
a w-admissible subset if we have the following directed path in the quantum Bruhat graph QB(W):

6 8 8 .
(11) (w,A):  w 1 wrj, 92| wrj T, ﬂ) RLCTIN Wrj Ty -+ T

=: end(w, A) .

s

We let A(w,T'(X)) be the collection of all w-admissible subsets of [m].

We now associate several parameters with the pair (w, A). The weight of (w, A) is defined by

(12) wt(w, A) = —wrj, -7, (=A).
Given the height sequence (l1,...,l,;,) mentioned above, we define the complementary height

sequence (I1,...,0n) by li := (X, B8/) — ;. Given A = {j1 <--- < js} € A(w,T'(N)), we set
A" ={gji € Alwrj - rj_, >wrj 15}
in other words, we record the quantum steps in the path II(w, A) given by (11). We also define

(13) down(w, A) := Z 1Y € @V, height(w, A) := Z sgn(ﬁj)l;.

JEA~ jEA-

For examples, we refer to [27, 34].
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3.3. Galleries. In this section, we recall from [36, Appendix| the reformulation of the alcove model
in terms of so-called galleries, which are similar, but not equivalent, to the LS-galleries of Gaussent-
Littelmann [13]. We also extend this concept to the quantum alcove model, as described in Sec-
tion 3.2.

Definition 18 ([36]). A gallery is a sequence v = (Fy, Ao, F1, A1, Fo, ..., Fp, Apm, Fpy1) such
that Ao, ..., An are alcoves; F; is a codimension 1 common face of the alcoves A;_1 and A;, for
i=1,...,m; Fy is a vertex of the first alcove Ag; and F,y1 is a vertex of the last alcove Ap,. If
Fr+1 = {u}, then the weight p is called the weight of the gallery, and is denoted by wt(vy). We say
that a gallery is unfolded if A;—1 # A;, fori=1,...,m.

A A-chain I'(\) corresponds to an alcove path from A, to A_y (cf. Definition 14), and thus
determines an unfolded gallery

Y(A) = (Fo = {0}, Ao = Ao, Fi, A1, Fo, ..., Fryy Apy = A_y, Frp1 = {=)});
see [36, Lemma 18.3]. We fix such structures.

We can define several operations on galleries v = (Fy, Ao, F1, A1, Fa, ..., Fuy Apy Fing1)-
First, we consider the translation v 4 p for a weight u, and the image w(7y) under a Weyl group
element w € W. Then, as in [36, Section 18.1], we define the tail-flip operators f;, fori =1,... ,m.
To this end, let 7; be the affine reflection with respect to the affine hyperplane containing the face
F;. The operator f; sends the gallery v to the gallery

fl(’y) = (F07 A07 FluAlv "'7Ai—17Filzﬂu A;a E/+15 ;+15 "')A;fnv r,n+1)7

where A} := 7i(A;) and F] := 73(Fj), for j = i,...,m + 1. In other words, f; leaves the initial
segment of the gallery from Ay to A;_1 intact, and reflects the remaining tail by 7;. Clearly, the
operators f; commute.

Given a subset A = {j1 < j2 <--- < js} of [m], we associate with it the gallery ~v(w, A) :=
wfj -+ fj.(7(X)). For obvious reasons, we call the elements of A folding positions.

Proposition 19. (1) We have
Wt(wa A) = _Wt(’Y(wa A)) :

(2) The first alcove of y(w,A) is w(A,), and the last alcove is v(As) + wt(y(w, A)), where
v :=end(w, A).

Proof. Part (1) is a slight extension of [36, Lemma 18.4], whose proof is completely similar. The
first part of (2) is straightforward. For the second part of (2), assuming first that w is the identity
element e, we proceed by induction on the cardinality of A. The base case A = () is obvious. Using
the above notation, let A = {j = js}, and r; = r; + p, where r; is the corresponding non-affine
reflection. Then the last alcove in y(e, A) is

ri(A) = 1i(AN) + i =1j(Ao) +1j(=A) + p = 75(Ao) +75(=A) = 75(Ao) +wt(7(e, 4))

which verifies the statement. We continue in this way, by adding js—1 > -+ > ji to A, in this
order, and by applying w at the end. O

Definition 20. Consider two galleries
7:(F07A07F1a-"7Am7Fm+1)a V/Z(F(/)’ é)aFia"'vA;ﬂn 'r/n—i-l)v

such that Fp11 = Fj) and Ay, = Af,. Under these conditions, their concatenation v *~' is defined
i the obvious way:

’y*’y/Z: (Fo, Ao, Fl,...,Am:Aé), F{,...,Afm, 7/n+1)‘
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3.4. Additional shellability results. In [39, Section 4.3], we constructed a reflection order <,
on ®T which depends on A. The bottom of the order <, consists of the roots in ®* \ ®%. For
two such roots a and f3, define @ < 8 whenever the hyperplane H, o) precedes H g ) in the lex
A-chain (see Proposition 16). This forms an initial section (see [8]) of <). The top of the order
<, consists of the positive roots in ®, and we fix any reflection order for them. We refer to the
reflection order <) throughout.

Remark 21. It is not hard to see that, in the lex A-chain, the order on the A-hyperplanes Hg _; with
the same relative height (not necessarily equal to 0) is given by the order <, on the corresponding
roots 8. We will use this fact implicitly below.

We recall [34, Lemma 6.6], which characterizes the quantum right Deodhar lifts in shellability
terms.

Lemma 22 ([34]). Consider o,7 € W7 and wy € W;. Write min(tWy, Z5u,) € TW; as T,
with w'; € Wy.

(1) There is a unique directed path in QB(W) from cwy to some x € TW; whose edge labels
are increasing with respect to <, and lie in ®1\ @j. This path ends at Tw';.

(2) Assume that there is a directed path from o to T in QBy\(W?”) for some b € Q. Then the
path in (1) from owy to Tw'; is in QByy(W).

In order to state the analogue of Lemma 22 for the quantum left Deodhar lifts, namely Lemma 25,
we need the reverse of the reflection order <y, which is denoted <3 (this has all the roots in @JJF at
the beginning). It is well-known that <3 is a reflection order as well. We also need the following two
lemmas, which are proved in the same way as their counterparts in [33], namely Lemmas 7.4 and 7.5
in this paper.

Lemma 23. Assume that {(x = v), as a function of x € wWy, has a minimum at © = x9. Then
the path from xq to v with increasing edge labels with respect to <3 (cf. Theorem 4 (1)) has all its
labels in @1\ ©7.

Lemma 24. Assume that the paths with increasing edge labels from two elements xg,r1 in wWjy
tov (cf. Theorem 4 (1)) have all labels in @\ ®F. Then zg = 1.

Lemma 25. Consider o,7 € W7 and wy € Wj;. Write max(ocWy,=<%,,,) € oWy as ow';, with
wf] e Wjy.

(1) There is a unique directed path in QB(W) from some x € oWy to Twy whose edge labels
are increasing with respect to <} and lie in @\ (IDj. This path starts at ow’;.

(2) Assume that there is a directed path from o to T in QB (W) for some b € Q. Then the
path in (1) from ow’; to Twy is in QByy(W).

Proof. The proof is completely similar to that of Lemma 22 i.e., [34, Lemma 6.6], based on Lem-
mas 23, 24, 8, and Theorem 4 (2). O

4. CHEVALLEY FORMULAS FOR SEMI-INFINITE FLAG MANIFOLDS

Consider a connected, simply-connected simple algebraic group G over C, with Borel subgroup
B = TN, maximal torus 7', and unipotent radical N. The semi-infinite flag manifold Q3" associ-
ated to G is an ind-scheme of infinite type whose set of C-valued points is G(C((z)) )/ (T(C) - N(C((2))));
note that Q2" is an inductive limit of copies of the (reduced) closed subscheme Qg of infinite type,
introduced in [11, Section 4.1] (for details, see [17] and also [19]). In this paper, we concentrate on

the semi-infinite Schubert (sub)variety Qg = Qa(e) C Q' corresponding to the identity element
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e € W, which we also call the semi-infinite flag manifold. Also, for each z € T/V,ffo =W x QV'T,
one has the corresponding semi-infinite Schubert (sub)variety Qg (z) C Qg, which is the closure
of the orbit under the Iwahori subgroup I C G(C[z]) through the (7' x C*)-fixed point labeled by
x (in exactly the same way as in [20, Section 4.2] and [43, Section 2.3]). The (T' x C*)-equivariant
K-group Kryxc+(Qg) of Qg has a topological (in the sense of [20, Proposition 5.11]) Z|q, ¢~ ][ P]-
basis of semi-infinite Schubert classes, and its multiplicative structure is determined by a Chevalley
formula, which expresses the tensor product of a semi-infinite Schubert class with the class of a
line bundle. In [20] and [41], the Chevalley formulas were given in the case of a dominant and an
anti-dominant weight A, respectively. These formulas were expressed in terms of the quantum LS
path model. We will express them in terms of the quantum alcove model based on the lexicographic
A-chain. The goal is to generalize these formulas for an arbitrary weight A, and we will also see
that an arbitrary A-chain can be used. Throughout this section, W is the stabilizer of A\, and we
use freely the notation of Section 2.

More precisely, the (7' xC*)-equivariant K-group Krxc+(Qg) is the Z[q, ¢~!][P]-submodule of the
Laurent series (in ¢~!) extension Z((q¢~1))[P] ®214-171P) K1xc+(Qc) of the equivariant (with respect
to the Iwahori subgroup I, together with the loop rotation action of C*) K-group Ki,c«(Qg)
of Qg, introduced in [20], consisting of all infinite linear combinations of the classes [Oq, )],

x € W§O =W x QY of the structure sheaf of the semi-infinite Schubert variety Qg (z)(C Qg)
with coefficient a, € Z[g,q~'][P] such that the sum ) cw>0 |az| of the absolute values |ag| lies
af

in Z>o[P]((g~1)); see [20, Section 5] for details. Here Z[P] is the group algebra of P, spanned by
formal exponentials e* for p € P, with efe” = e**”, and it is identified with the representation
ring of T. Note that for each = € VVazf0 and v € P, the twisted semi-infinite Schubert class
[Oq (V)] - [Oqe(x)]; defined by the tensor product in Ky, ¢.(Qg), indeed lies in Krxc+(Qg); this
is seen by using [21, Theorem 5.16] and (the proof of) [20, Corollary 5.12]. We also consider the
Z[q,q |[P]-submodule K’ -.(Qg) of Krxc+(Qg) consisting of all finite linear combinations of

the classes [Oqg )], T € W=, with coefficients in Z[q, ¢~ ][P].

af
The T-equivariant K-groups of Qg, denoted by K7(Qg) and K/.(Q¢), are obtained from the
Kryc+(Qa) and K ~(Qg), respectively, by the specialization ¢ = 1. Hence the Chevalley
formulas for K7(Qg) (for arbitrary weights) and K7.(Q¢) (for anti-dominant weights) are obtained
from the corresponding ones for Kpyc+(Qg) by setting ¢ = 1. More precisely, the T-equivariant K-
group K7(Qg) is defined to be the Z[P]-module HwGVV%O Z[P]|Oq ()] (direct product) consisting

of all infinite linear combinations of the classes [Oq )], = € W§07 with coefficients in Z[P]; note
that for each v € P, a Z[P]-linear endomorphism [Oq,(v)] - ® of K7(Qg) is induced from the
Z|q,q '][P)-linear endomorphism [Oq, )] - ® of Krxc+(Qga) by the specialization (of coefficients)
at ¢ = 1. Also, K/.(Qg) is defined to be the Z[P]-submodule of K7(Q¢) consisting of all finite

linear combinations of the classes [Oq ()], T € VVaZfO7 with coefficients in Z[P].

4.1. Chevalley formula for dominant weights. We start with the Chevalley formula for dom-
inant weights, which was derived in terms of semi-infinite LS paths in [20], and then restated in
[41, Corollary C.3] in terms of quantum LS paths.

Let A = ) .c; Aiw; be a dominant weight. We denote by Par()) the set of I-tuples of partitions
X = (X(i))ie[ such that y(® is a partition of length at most \; for all i € I. For x = (X(i))iel €
Par()\), we set |x| := Ziel|x(i)|, with |x(?| the size of the partition x(?. Also, set t(x) :=
Yicr Xgi)a;/ € QY-+, with Xgi) the first part of the partition y().
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Theorem 26 ([20, 41]). Let x = wte € W3° = W x Q¥+, Then, in Krxc-(Qg), we have
[0 (—wed)] - [Oqua)] =

= Z Z qdegw(n)%/\’g)f‘x‘em(m[OQG(L(nvw)ts+s(n,w)+b<x))]’
nEQLS(A) xePar(\)

Remark 27. The original Chevalley formula for a dominant weight, as stated in [41, Corollary C.3],
is in terms of a slightly different version of quantum LS paths. They can be recovered from those
in Definition 12 simply by replacing the numbers b; with 1 — b; (arranged increasingly) and by
reversing the second sequence in (1); indeed QByy(W) is identical to QB _y»(W). The same
observation applies to the original Chevalley formula for an anti-dominant weight, as stated in [41,
Theorem 1]; see Theorem 30 below.

We now translate this formula in terms of the quantum alcove model for the lex A-chain T'jex(A).
To this end, given w € W, we construct a bijection A — 1 between A(w, I'ex(A)) and QLS(A), for
which several properties are then proved.

In order to construct the forward map, let A = {j1 < --- < js} be in A(w,[ex(A)). The
corresponding heights are within the first range in (9). Consider the weakly increasing sequence of
relative heights

L
14 hi =L~ €0,1)NQ, i=1,...,s.
Let 0 < by < -+ < by < 1 be the distinct nonzero values in the set {h1,...,hs}, and let by := 0,
bir1:=1. For k =1,...,t, let I := {1 <i < s | h; = by}; these sets are all non-empty, except
perhaps ;.
Recall the path II(w, A) in QB(W) given by (11). We divide this path into subpaths correspond-

ing to the sets I, and record the last element in each subpath; more precisely, for k =0,...,t, we
define the sequence of Weyl group elements

—

Wi =W H T

i€l U---Uly,

where the non-commutative product is taken in the increasing order of the indices ¢; in particular,
wo :=w. For k=1,...,t, let o3 := |wp| € W’. We can now define the forward map as

(w, A) = 1= ((b1,b2, ..., b, bey1); (01,...,01))
We will verify below that the image is in QLS()).

The inverse map is constructed using the quantum right Deodhar lift and the related shellability
property of the quantum Bruhat graph. We begin with a quantum LS path n € QLS()) of the
form (1). Letting wo = w, define the lifts

(15) wg, = min(oxWy, <w,_,) fork=1,...,t.

By Lemma 22, for each k = 1,...,t, there is a unique directed path from wy_1 to wy in QB,, (W)
with labels in &7 \ ,I)er’ which are increasing with respect to the reflection order <. Let us
replace each label 3 in this path with the pair (8, bi()\, 8)), where the second component is in
{0,1,..., (X, BY) =1}, by the definition of QB ,(W). Thus, each such pair defines a A-hyperplane.
By concatenating these paths, we obtain a directed path in QB(W) starting at w, together with a
sequence of A\-hyperplanes. We will show that this sequence is lex-increasing, and thus it defines a
w-admissible subset.
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Proposition 28. The map A — n constructed above is a bijection between A(w,Tex(N)) and
QLS(N). It maps the corresponding parameters in the following way:

(16) wt(w, A) = wt(n), end(w,A) =t(n,w), down(w,A)=&(n,w), —height(w, A) = deg,,(n).

Proof. We start by showing that the forward map is well-defined. By the definition of relative
height, the subpath of II(w, A) from wy_1 to wy is in QB \(W). Thus, Lemma 7 implies that
n € QLS(A). For the well-definedness of the inverse map, it suffices to prove that the constructed
sequence of \-hyperplanes is lex-increasing. Indeed, the relative heights of the A-hyperplanes are
the numbers bg, and hence they weakly increase by construction; on the other hand, within the
same relative height, the A-hyperplanes increase because of the compatibility of the reflection order
< with the lex A-chain (see Remark 21).

To show that the two maps are mutually inverse, the crucial fact to check is that the forward
map composed with the backward one is the identity. This follows from the uniqueness part in
Lemma 22 (1), after recalling again Remark 21. In particular, the subsequence wy € W of the
original path II(w, A) in QB(W) is reconstructed by the inverse map via (15); furthermore, this
construction is identical with the one in (4), on which the definitions of «(n, w), £(n, w), and deg,,(n)
are based. Thus, the last three properties in (16) follow. To be more precise, for the last one we
note that, if the relative height of the A\-hyperplane Hg, ; is by (for j € A, cf. (14)), then we have

(17) (L= bR\ BY) = (N BY) — 1 =1

Finally, the weight preservation follows via the same argument as in the proof of [39, Proposi-
tion 4.18], which extends to the present setup by [39, Remark 4.19]. Indeed, the above construction
of the map from A(w, I'ex(A)) to QLS()N) is completely similar to that of the map in the mentioned
proof. O

We translate the formula in Theorem 26 to the quantum alcove model via Proposition 28.

Theorem 29. Let X be a dominant weight, I'iex(X) the lex A-chain, and let x = wtg € Wio. Then,
in Kpwo+(Qg), we have

[OQG(_WO)\)] ) [OQG(JT)] =

> S g heisht )-8 —Ixlgwt(w.A) [OQc (end(w,4) e+ o ar+i00)) -
AGA(wyrlex()‘)) xGW

4.2. Chevalley formula for anti-dominant weights. We continue with the Chevalley formula
for an anti-dominant weight A, which was derived in terms of quantum LS paths in [41, Theorem 1].

Theorem 30 ([41]). Let A be an anti-dominant weight, and let x = wte € Wio' Then, in
K 0+ (Qa) C Krxe+(Qg), we have

[Oqs (=wod)] - [Oqe )] =

L(v)—b(w) ,—de —(, -
- Z Z (—1)HW)—tw) = deg(m—A) g t(n)[OQG(thC(n@)]-

vEW neQLS(—\)
K(n,v)=w

We now translate this formula in terms of the quantum alcove model for the lex A-chain I'ex(N),
which is defined just as the reverse of the lex (—\)-chain described in Proposition 16; note that the
alcove path corresponding to the former (ending at A, — \) is just the translation by —\ of the
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alcove path corresponding to the latter (ending at A, + \). Given w € W, we construct a bijection
A — (n,v) between A(w, T'iex(A)) and the set

QLS (—=A) :={(n,v) | n € QLS(=A), v € W, k(n,v) = w}.

The construction of the bijection is very similar to the one above, in the dominant case, and so
we only highlight the differences. In order to construct the forward map, let A = {j; < --- < js} be
in A(w, T'ex(A)). The corresponding heights are within the second range in (9), while the relative
heights h;, defined as in (14), belong to (0,1] N Q. The numbers by are defined in the same way,
for k=1,...,t+ 1, as are the sets I, for kK = 2,...,t 4+ 1; all of the latter are non-empty, except
perhaps I;+1. Then, for k =1,...,t+ 1, we define

—
Wy = W H rj,  (in particular, wy 1= w),
i€lU---Uly,

and the forward map as
(w, A) — (n:= ((b1,b2,...,bs,biy1); (01,...,0¢)), weg1), where oy := |wg] .

For the inverse map, we start with (n,v) € QLS,,(—)), and construct the sequence wy, for k =
1,...,t+1, via the quantum left Deodhar lifts, as in (7). By Lemma 25, for each k = 1,...,t there
is a unique directed path from wy to wry1 in QB,, (W) with labels 3| for 3 € @~ \ @, which are
increasing with respect to the reflection order <3. Like in the dominant case, by concatenating these
paths we obtain a directed path in QB(W) starting at w, together with a sequence of A-hyperplanes
(B, br(\, BY)), where /3 are the above labels, and the second component is in {1,..., (), B3¥)}.

Proposition 31. The map A — (n,v) constructed above is a bijection between A(w,ex(N)) and
QLS,,(—A). It maps the corresponding parameters in the following way:

(18) wt(w, A) = —wt(n), end(w,A) =v, down(w,A) = {(n,v), height(w, A) = deg(n).

Proof. This proof is completely similar to that of Proposition 28, and so we highlight the minor
differences. To show that the two maps are mutually inverse, we use the uniqueness part in
Lemma 25 (1).

Another difference is concerned with proving height(w, A) = deg(n). Note first that
height(w, A) = height(w, A),

where A is the subset of A which corresponds to ignoring the A-hyperplanes of relative height equal
to 1; indeed, the contribution of each such hyperplane is 0, see (13). Thus, height(w, A) is defined
based on shortest directed paths in QB(W) from wy_1 to wy, for k = 2,...,t. Comparing with the
definition (3) of deg(n), where o, := |wy |, and using Lemma 5, as well as the analogue of (17), the
desired equality is proved. ]

We translate the formula in Theorem 30 to the quantum alcove model via Proposition 31. We
use the notation |A| to indicate the cardinality of the set A.

Theorem 32. Let A be an anti-dominant weight, I'ex () the lex A-chain, and let x = wte € Wio.
Then, in K c«(Qa) C Krxc-(Qg), we have

[OQG(_wO)\)] ) [OQG(JJ)] =

Z (_1)|A|q—height(w,A)—()\7§>ewt(w,A)[
AE'A(wvrlex()‘))

OQG (end(wvA)t§+down(w,A) )] :
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4.3. Chevalley formula for arbitrary weights. We now state the Chevalley formula for an
arbitrary weight A = >, ; \jw;; this is the natural common generalization of Theorems 29 and

32. In order to exhibit the general formula, let Par(\) denote the set of I-tuples of partitions
X = (x);er such that x® is a partition of length at most max();,0).

Theorem 33. Let A be an arbitrary weight, I'(\) an arbitrary reduced A\-chain, and let x = wte €
W§O =W x QY. Then, in Krxc+(Qg), we have
[OQG(*U}O)‘” : [OQg(m)] =

n(A) —height(w,A)—(\,§)— wt(w,A
Z Z (—1) ( )q eight(w,A)—(A.&) —[x| gwt(w )[OQG(end(wvA)tE-!—down(w,A)+L(X))]7
AeA(w,I'(N) xePar())

where n(A), for A= {ji1 <--- < js}, is the number of negative roots in {f;,,...,0j,}

Example 34. Assume that g is of type Ay, and A = wy —wsy. Then, I'(\) := (a1, —a2) is a reduced
A-chain. Assume that w = s; = sq,. In this case, we see that A(s,I'(\)) = {0, {1}, {2}, {1,2}},
and we have the following table:

A | n(A) | height

—

s1,A) | wt(s1,A) | end(s1, A) | down(s1, A)

@ 0 0 81)\ S1 0
{1} 0 1 A e ay
{2} 1 0 51\ 5152 0

{1,2} | 1 1 A S92 ay

Also, we identify Par(\) with Z>¢. Therefore, we obtain
[OQG(_MO)‘)] ’ [OQG(Slt.g)] =

Z q<)\7£>m{eSI)\[OQG(Slt5+maY)] + qileA [OQG(t€+a1v+ma1v)]

mGZZO

AZ0 A={1}

+ (_1)esl>\[OQG(5152t§+maY)] + (_1)q_1e)‘ [OQg($2t6+aY+77La\l/)]} .

A={2} A={1,2}

As an immediate consequence of Theorem 33, we obtain the semi-infinite analog of the duality
formulas [36, Theorems 8.6 and 8.7], which hold in K7(Qg) (not in Krxc+(Qg)). For ¢ € QV'F,
we define the following Z[P]-linear operator (acting on the right) on K7(Qg):

[OQG(I)] le = [OQG(th)]v xr € War;

we also consider an arbitrary (possibly, infinite) sum, with coefficients in Z[P], of the operators t,
¢ € QV'F, which is a well-defined operator on K7(Qg). Now, for an arbitrary A € P, we introduce
the following operator on K7(Qg):

Cop(A) == Z (—1)”(A)eWt(w’A)tdown(w7A) for v,w e W.
A€A(w,T(N))
end(w,A)=v

Then, we can express the general Chevalley formula for ¢ = 1, that is, the general Chevalley formula
for K7(Qgq), as:

[OQG(_wOA)} : [OQG(JD)] = Z [OQG(U)] CZ)()‘) Z t§+L(x)
veW x€Par(X)



A GENERAL CHEVALLEY FORMULA FOR SEMI-INFINITE FLAG MANIFOLDS 15

for an arbitrary A € P and z = wt¢ € WaZfO_

Corollary 35. Let A € P. Forv,w € W, we have the following equalities for the operators ci,(\):

(19) ch(N) = (1) 8 el (waA)),
(20) ch (V) = (=1 n(cey (<),

where ((w,v) denotes the length of a shortest directed path from w to v in QB(W), while n : e* —
e ot and 0 : te > t_yc for pe P and ( € Q¥

Proof. Equalities (19) and (20) can be proved by arguments similar to those in the proofs of [36,
Theorems 8.6 and 8.7], respectively; in addition, we make use of the following facts about QB(1V):

e the maps w — ww, and w — wow are anti-automorphisms of QB(W);
e the lengths of all paths from w to v in QB(1/) have the same parity.

For the latter fact, we refer to [4, Section 6]. More precisely, by using the argument in the last
paragraph of the proof of [4, Theorem 6.4], including the related setup, we can show that any
path from w to v in QB(W) can be transformed into the unique label-increasing one by using [4,
Lemma 6.7], combined with removing loops of length 2. The needed fact immediately follows. [

Remark 36. By combining equations (19) and (20), we obtain
Cu(=wo) = On(cipl s, (V)

w WoWWo

which is the semi-infinite analog of [36, Corollary 8.8]. This equality can also be explained (as in
the geometric proof of [36, Proposition 8.9]) by using the Dynkin diagram automorphism induced
by “—w,”; see [24, Remark A .4].

5. PROOF OF THEOREM 33

5.1. Quantum Bruhat operators at “q = 1”. Let 9V be the highest coroot for the set ®V
= {a" | @ € ®} of roots of g"; the element ¥ should not be confused with the coroot 8" of the
highest root @ for the set @ of roots of g. Let h := (p, ¥") + 1 denote the Coxeter number of gV,
and consider the group algebra Z[P/h] D Z[P]. We set K7(Qq) = K1(Qqg) ®z(p) Z[P/h]; recall
that the T-equivariant K-group K7 (Qg) consists of all (possibly infinite) linear combinations of
the classes [Oq )], T € WazfO =W x QV>", with coefficients in Z[P]. For a positive root 8 € &+,
we define a Z[P/h]-linear operator Qs on K7(Qg) by:

[Oqc (wsste) if w 2 wsg is a Bruhat edge in QB(WW),
(21) Qs[Oqq (wte)) = [(’)QG(wth£+ﬂv)] if w5 wsp is a quantum edge in QB(W),
0 otherwise,

where w € W and & € Q¥'F. Also, we set Q_g := —Qg for § € ®T. For a weight v € P, we define
(22) X [0quute)] = €""Oqg(wie)]

where w € W and &€ € QV'F. For i € I, we define

(23) til0qq()] = [Oqgt,]  for o€ Wi

The following lemma is easily shown; cf. [36, Equations (10.3)—(10.5)].

Lemma 37.
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(1) We have Qiﬁ =0 for f € T\ I, where 11 = {a; };cs is the set of simple roots. Fori € I,
we have Qiai =1, Qu;Q-a, = Q_q,Qa, = —ti, and
(Xai + Qai)(x_ai + Q*ai) = (X_ai + Q*ai)(xai + Qai) =1-t.

(2) We have XVXF = XKtV for u,v € P.
(3) We have QgX? = X%¥Qg forv € P and € ®.

We set
(24) Rg:=XP(XP +Qp)X* forBed.

Proposition 38. The family {Rg | B € @} satisfies the Yang-Baxter equation. Namely, if a, 5 € ®
satisfy (o, V) <0, or equivalently, (B, ") <0, then

(25) RaRsaﬁRSQSBa T RsBaR,B = RﬁRSBa T RSQSﬁaRsa,BRa .

Proof. We set ﬁg =1+ Qg for g € ®. It follows from [4, Corollary 4.4] that the family {ﬁg |
B e (I>+} satisfies the Yang-Baxter equation; to apply this corollary, in view of the Z[P]-module
isomorphism from QK7(G/B) = Kr(G/B) ®zp) Z[P][Q] onto K7(Q¢), explained in Section 6
below, we take a field k containing the ring Z[Q"V'"] = Z[Q; | i € I] of formal power series in the
variables Q; = Q%, i € I, and a k-valued multiplicative function E on ®* given by E(w;) == Q;
for each 7 € I.

In order to prove that the family {ﬁg | B € <I>} also satisfies the Yang-Baxter equation, we make
use of the following observation. Noting that the leftmost operator (say ﬁa) on the left-hand side
of the Yang-Baxter equation is identical to the rightmost operator on the right-hand side of the
equation, we multiply both sides of the Yang-Baxter equation by the operator R_,, on the left and
on the right. If v is not a simple root (resp., @ = «; for some i € I), then the leftmost two operators
ﬁ_aﬁa on the left-hand side and the rightmost two operators ﬁaﬁ_a on the right-hand side are
both identical to 1 (resp., 1 —t;) by Lemma 37 (1). Here we remark that the operator 1 — t; on
Kr(Qg) is invertible, with its inverse (1 —t;)™! = 1 +t; +t? + ---, and commutes with ﬁy for
all v € ®. Hence, in the case that a = «;, we can remove the operator 1 — t; from both sides of
the equation by multiplying both sides by the inverse (1 —t;)~!. With this observation, the same
argument as for [36, Lemma 9.2] shows that the family {F{g | B € <I>} also satisfies the Yang-Baxter
equation.

Now our assertion can be proved in exactly the same as [36, Theorem 10.1]; use the commutation
relations in Lemma 37 instead of [36, Equations (10.3)—(10.5)] in the proof of [36, Theorem 10.1]. O

Remark 39. The Yang-Baxter property, as stated in Proposition 38, is a weaker version of the
similar property in [36, Definition 9.1]. Indeed, the additional requirement in the mentioned defi-
nition is that R_, = (R)~!. By Lemma 37, this still holds in our case if « is not a simple root,
whereas R_, = (1 —t;)(Rq) ™! when a = o; for some i € I.

Let A € P be an arbitrary weight. Recall that a reduced A-chain I' = (f4, ..., 3;,) corresponds
to the following reduced alcove path:

(26) Ao=Ag 20 Ay 22 0 A — A (= A — N).

Remark 40. Let I be a reduced A-chain, and let I be an arbitrary (not necessarily reduced) -
chain. We deduce from the proof of [36, Lemma 9.3] that " can be obtained from I by a sequence
of the following two procedures (YB) and (D):

(YB) for a, 8 € ® such that {a, 3Y) < 0, or equivalently, (3, ") < 0, one replaces a segment of
the form o, 5,3, sasga, ..., sga, B by B, sga, ..., 54530, saf3, a;
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(D) one deletes a segment of the form 3, —3 for g € ®.

5.2. Quantum Bruhat operators for generic ¢. For simplicity of notation, we write [Oq G(:r)]
as [z] for x € W§0 =W x QV". For B € ® and k € Z, we define a Z|[q, ¢~!][P/h]-linear operator
Qg on Kpscs (Qc) := Krxc+(Qq) ®Z(g,q-1][P] Z[q,q '][P/h] as follows; recall that, by definition,
the (T' x C*)-equivariant K-group Krxc+(Qg) consists of all infinite linear combinations of the

classes [z], = € Y/V(ffo7 with coefficients a, € Z[q, ¢ !][P] such that the sum > pew=0 |az| of the
af
absolute values |a;| lies in Z>o[P](¢')):
sgn(B)[uspte] it u L usg is a Bruhat edge in QB(W),

(27)  Qpurlute] = sgn(B)q~ Sgn(ﬁ)k[u55t§+|mv] it L usg is a quantum edge in QB(W),

0 otherwise,
where v € W and € € QY. For a weight v € P, we define
(28) X¥[ute] = "/ [ute],
where u € W and ¢ € QY. The following lemma is shown in the same way as Lemma 37.
Lemma 41.

(1) We have Qg Q4+, =0 for B € @\ (ILU (=1I)) and k,l € Z, where I1 = {o; }icr is the set
of simple roots.

(2) We have XVXF = XKtV for u,v € P.

(3) We have Qg X” = X*8"Qgy, forv e P, B € ®, and k € Z.

We set
(29) Ror :=XP(X? + Qap)X?  for € ®and k€ Z.
Let
(30) = Ay oA, T2y O g

be a sequence of adjacent alcoves (note that Ag is not necessarily identical to A,). For an arbitrary
sequence of integers k = (ki, ko, ..., kp), we set

(31) RE,k = Rﬁmykm Rﬁmflvkmfl T R52,k‘2 R51,k‘1'

By the same argument as for [36, Proposition 14.5], we can prove the following proposition; notice
that in the proof of [36, Proposition 14.5], they use only the commutation relations corresponding to
those in Lemma 41(2),(3), together with some facts about central points of alcoves [36, Lemmas 14.1
and 14.2].

Proposition 42. Keep the notation and setting above. Then, for u € W and £ € QYT

(32) Reklute] = Z e Q5 ky, o Qi ks, Qs by, [Ute]s
A:{jlv"'7j8}
where A = {j1,...,js} runs over all subsets of [m] := {1,2,...,m}, and pa € P is a weight

depending only on A. In particular, if Ay = Ao and Ay, = A_y for a weight X € P, then us =
TiTjy -+ Tj (= A) for A= {j1,....Js} C [m].

Definition 43. Let = be as in (30), and u € W. A subset A = {j1 < o < e < js} of
[m] = {1,...,m} (possibly empty) is a u-admissible subset (with respect to Z) if there exists a
directed path of the form (11) (with w replaced by u) in the quantum Bruhat graph QB(W); we
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define end(u, A) € W in the same manner as in (11). Let A(u,Z) denote the collection of all
u-admissible subsets of [m].

Let = be as in (30), and u € W. For A € A(u, E), we define wt(u, A), A~, and down(u, A) (resp.,
n(A)) in exactly the same way as in Section 3.2 (resp., Theorem 33). Let k = (ki, k2, ..., kn) be
an arbitrary sequence of integers. For A = {j; < ja <--- < js} € A(u,E), we set

heighty (u, A) = Z sgn(pB;)k;.
JEA~
Then the next corollary follows from Proposition 42, together with the definition of Qg , and the
definitions of A(u, Z), n(A), heighty (u, A), end(u, A), down(u, A), wt(u, A) above.
Corollary 44. Keep the notation and setting above. Then,
(33) RE,k[Utf] = Z (_1)n(A)q— heightk(u,A)e—uuA [end(ua A)tE—Fdown(u,A)];
AcA(u,=)
note that if Ay = Ao and Ay, = A_) for some weight X € P (that is, if 2 is a A-chain), then
—upg = wt(u, A).

Now, let «, 3 € ® be such that (o, V) < 0, or equivalently, (3, a¥) < 0. Let

2 Ag Ay B g
be a sequence of adjacent alcoves (note that Ay is not necessarily A,) with
b1 = a, Bo = sa3, B3 = sasga, ..., Pm-1=8sga, By =270
Then we have a sequence of adjacent alcoves of the form:
©:Ag=DBy B 2 ... " A = By,
where
v = 06, V2 =S80, ..., Ym—2 = Sa530Q, Ym—1 = Saf, Ym = Q.

Proposition 45. Let = and © be as above. Assume thatk = (k1,ka, ..., kpn) andl= (I1,1l2,...,Ly)
are sequences of integers satisfying the condition that

(34) <m Hﬂp,kp> n (ﬂ Hyp,z,,> # 0.
p=1 p=1

Then the equality Rz x = Reg 1 holds.

In the proof of Proposition 45, we use the following.

Lemma 46. Keep the notation and setting of Proposition 45. Let A € A(u,Z). If B € A(u,Z)
(resp., B € A(u,0)) satisfies down(u, A) = down(u, B), then heighty (u, A) = heightys(u, B),
where kP .=k (resp., kB :=1).

Proof. If B € A(u,E) (resp., B € A(u,0)), then we set 37 := 8, (vesp., B :=,) for 1 <p <m.
We have

Z sgn(By) 8, = Z |Ba]Y = down(u, A) = down(u, B)

a€A~ a€EA~

=D 1871 = D sen(8)(B)".

beB~ beB~

(35)



A GENERAL CHEVALLEY FORMULA FOR SEMI-INFINITE FLAG MANIFOLDS 19

Let us take an element x in the (non-empty) intersection (34). Then we have (u, 8)) = k, for
1 < p < m. Also, if we write k? as kP = (kP k8,... kD), then (u, (ﬁf)v) = kf for 1 <p<m.
Therefore, we see that

heighty (u, A) = Y sgn(Ba)ka = Y sgn(Ba)(p, BY)

a€A— a€EA~
35 .
DS sen(B2) (. (85)) = 3 sen(BP)kE = heightyes (u, B),
beB~ beB—
as desired. ]

Proof of Proposition 45. We show that Rz x[ut¢] = Re[ute] for each v € W and £ € QV'". Fix
uwe W and £ € QV'F arbitrarily, and write Rz k[ut¢] and Re 1[ute] as:

Rexlute) = Y awc(@Witcd,  Renluted = Y buclg)lvte,
veEW, (eQV:+ vEW, (eQVT

where a, ¢(g) and b, ¢(q) are elements of Z[q, ¢~ '][P]; it suffices to show that a, ¢(q) = by (q) for
all v € W and ¢ € QV>F. By Corollary 44, we have for v € W and ¢ € Q"'

Ay ¢ (Q) = Z (_1)n(A)q— heightk(uvA)e—uuA7
AcA(u,=)
end(u,A)=v, {+down(u,A)=C¢
bv,C (Q) = Z (_1)n(A)q— heightl(uzA)e—uuA .
AcA(u,0)

end(u,A)=v, {+down(u,A)=¢

From Lemma 46, we see that the function A — heighty (u, A) is constant on the subset {A €
A(u,E) | end(u, A) = v, £ + down(u, A) = (}. Hence it follows that

(36) avc(q) = qCve Z (—1)"(A)97““A = qc'vvCauC(l)
AcA(u,E)
end(u,A)=v, é+down(u,A)=C

for some integer C,, € Z. Similarly, we deduce that
(37) buc(q) = ¢"v< > (—1)"Wemura = gPucp, (1)

A€A(u,0)
end(u,A)=v, é+down(u,A)=C

for some integer D, € Z. Here we see from Proposition 38 that a, (1) = b, ¢(1); note that
the specialization of the operator Qg at ¢ = 1 is identical to Qg given by (21), and hence the
specialization of the operator Rg, at ¢ = 1 is identical to Rg given by (24). Therefore, we find that

ayc(q) =0 < byc(q) =0.

Hence it remains to show that if a, ¢(¢q) # 0, or equivalently, if b, ¢(q) # 0, then C, c = D, ¢; notice
that in this case,

{A € Au,E) | end(u, A) = v, £ + down(u, A) = (} #0,
{A € A(u,0) | end(u, A) = v, £ 4+ down(u, A) = (} # 0.

Also, we deduce from Lemma 46 that if A € A(u,E) and B € A(u,©) satisfy down(u, A) =
down(u, B), then heighty (u, A) = height;(u, B). From these, we obtain C,, ¢ = D, ¢. This completes
the proof of Proposition 45. O
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5.3. Proof of Theorem 33. Fix w € W. Let A € P be an arbitrary weight, and let
-5 B2 —Bm

(38) F:AOIAO A1 L Am:A_)\

be an arbitrary (not necessarily reduced) A-chain of roots, where A_y = A, — \. Let Hg, _;, be the
common wall of A;_1 and A; for i =1,2,...,m. We set

(39) L=\ BY) — 1

for i = 1,2,...,m, and then 1 := (ZNIJQ, . ,l~m); note that height(w, A) = heighty(w, A) for A €
A(w,T). If we set

Gf(w,f) =

4 n — hei, w,A)—|x|— wt(w

(40) S ST (1)) g heisht )X =00 ) [endl (1, A)e . doven(un,A) 4]
x€Par()) A€A(w,I)

for £ € QV'T, then we see by Corollary 44 that
(41) Gr(w,§) = Y ¢ XN IR[wtes ).

x€Par(\)

Let " be as in (38). Let , B € ® be such that (o, 8Y) < 0, or equivalently, (3, a¥) < 0. Assume
that there exist 1 < u <t < m such that

(42) Bu=a, Put1=S3aBs Put2=Sa5sa, ..., Pio1=35sa, Pr=7;
we set

(43) X:={12,...,u—-1}, Yi={uu,...,t—-1t}, Z:={t+1,t+2,...,m}.
Let

(44) I':Ag=By — B — 24 ... 4 B ™ B =A_,
be the A-chain obtained by applying the procedure (YB) in Remark 40 to

(ﬁua Bu—l-la cee 7/815—17 /Bt)
in I'; that is, v, = B, for all p € X U Z, and

(7u77u+17 o 77t—177t> - (5t75t—17 ey Bu-‘rl:ﬁu)

45
(45) = (B, spq,...,50530, 543, ).

Let H,, _i; be the common wall of B;_1 and B; for i = 1,2,...,m. We set EZ = (\ ) — ki
for i = 1,2,...,m, and then k := (k1,k2,...,kn); note that height(w, B) = height;(w, B) for
B e A(w,T").

Proposition 47. Keep the notation and setting above. Then, R.7 = R
Gr/(w, &) for all £ € QVT.

™ and Gr(w,§) =

Proof. We see from (the last sentence of) [36, Lemma 5.3] that the sequences of hyperplanes Hg, _;,,
t=1,2,...,m, and H,, ,, 1 = 1,2,...,m, coincide, except that the segments corresponding to
i=wu,u+1,...,t —1,t are reversed. It follows from [29, Lemma 3.5] that

t t
(ﬂ Hﬁp:lp> N <ﬂ H’Yp»kp> 7& @
p=u pP=u
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If 11 is an element of this (non-empty) intersection, then —\ — p is an element of the intersection

t t
(ﬂ H p»%) n (ﬂ H’va%p>;
b=u pP=u

in particular, this intersection is non-empty. Therefore, by applying Proposition 45 to the subprod-
ucts in Rj.7 and R, ¢ corresponding to the subset Y of [ ] (i-e., the parts changed by the procedure

(YB)), we deduce that Rpy=R Therefore, we obtain

'k
Gr(w, &)= Y ¢ X OORGlwte ol = D aXITRIRG pwtey )]
x€Par(\) x€Par(\)
= GF/ (wa 5)7
as desired. (]

Let A € P be as above. VVesetRH = R+

ri> with I' a reduced A-chain and 1 given by (39); by

Al

Proposition 47 and Remark 40, we see that the operator REI does not depend on the choice of a
reduced A-chain I'. For simplicity of notation, we write [Oq (v)] as [v] for v € P.

Theorem 48. Let x = wi¢ € Waf , withw € W and £ € QV'". Let A € P be an arbitrary weight,
and let I' be an arbitrary reduced A-chain. Then,

(46) [Fwod] - [e] = Y g XN ORN [wie )
xEPar(\)

Proof. If A is a dominant (resp., anti-dominant) weight, then equation (46) follows from Theorem 29
(resp., Theorem 32) and (41), together with the fact that the operator R[q)‘] does not depend on the
choice of a reduced A-chain I'; recall that the lex A-chain I'jex(A) is a reduced A-chain.

Now, let A € P. Then, A = A" + \~, where
= Zmax(()\, o)), 0)w;, AT = Zmin(()\, o), 0)w;;
icl il
note that A* is dominant and A\~ is anti-dominant. Let I'* be reduced A*-chains, respectively, and

write them as:
-8 =B,
Ly ... Al = A_y+,

7 -/
_61 L. Brn//

+:AO:A6

I A, = A "= A
we have 8/ € @ forall 1 <7 <m/, and 8/ € &~ for all 1 <i < m”. Let Hg 1 be the common
wall of A, ; and A} for i = 1,2,...,m/, and let Hgy 1 be the common wall of A” , and A7 for
i=1,2,...,m". Let Iy be the concatenation of I'" and I'", that is,

7181 DY 75771//

_5777,’ —Pm
Am/ = A,/\+ LT o Ap = A—/\7

r+ I'— (shifted by —A+)

OtAO:AO

where m = m/ +m”, and

Al for 0 <¢ <m/,

(47) A =
Al =T form! <i<m=m'+m",
[ for 0 <i<m/,

(48) lBl: /! / - / "
gl form’ <i<m=m'+m".
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If we denote by Hg, _;, the common wall of A;_1 and A; for i =1,2,...,m, then

(19) l {l; for 0 <7 < m/,

w4+ N (B,,)Y) form/ <i<m=m'+m".

We will show that
(50) [—woA] - [z] = Gry(w, §).
From Theorems 29 and 32, we see that

(51) [~woA] - [a] = [~woA™] - [~woAT] - [2]

= Z Z q height(w,A)—()\Jr,§>—|x|ewt(w,A)[_wo)\—] ’ [end(w7 A)t§+down(w,A)+L(X)]
A€ A(w,I't) yePar(AT)

SO I e

A€ A(w,I't) BeA(end(w,A),I'") y ePar(AT)

x q~ height (w,A)— (AT, £)—|x|—height(end(w,A),B)—(A~, £+down(w,A)+t(x))
X ewt(w,A)-i—wt(end(w,A),B) [end(end(w¢ A)> B>t§+down(w,A)+L(x)+down(end(w,A),B)];

note that (A~, ¢(x)) = 0 and Par(A*) = Par()\). We have a natural bijection from the set {(A4, B) |
A€ A(w,T), B € A(end(w, A),I'")} onto A(w,I'g) given by concatenating A € A(w,I'") with
B € A(end(w, A),I'"), which we denote by A x B. In addition, it is easily verified that

n(A* B) = |B|, down(w,A)+ down(end(w,A), B) = down(w, A * B),
end(end(w, A), B) = end(w, A x B),

and

height(w, A) + height(end(w, A), B) + (A~, down(w, A))

= 2 ()Y —5) = D (L BN =)+ Y (8))

JEA~ jEB~ JEA™
=D (B =1) = D (N By = (A, (B)Y) = 1)
JjEA— JEB~

= height(w, A * B) by (48) and (49).

On another hand, consider the galleries y(w, A) and ~y(end(w, 4), B) + wt(y(w, A)), which are
constructed based on I't and T'~, respectively (cf. Section 3.3). By Proposition 19 (2), these
galleries can be concatenated (cf. Definition 20). Moreover, by the construction of these galleries,
we have

’V(wv A) * (’Y(end(w’A)’ B) + Wt(V(wﬂ A))) = ’V(wa Ax B) )

where v(w, A % B) is constructed based on I'g. By considering the weights of the two sides, and by
applying Proposition 19 (1), we derive

wt(w, A) + wt(end(w, A), B) = wt(w, A x B).
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We conclude that the right-hand side of (51) is identical to Gr,(w, &), as desired. Hence, by (41),
we have

(52) [_wo)‘] ’ [iL‘] = GFo (’U),f) = Z q_IXI_O\7£> RFOIO [wtf-‘m(x)] )
xEPar(\)

where 1y is given by (39) for Ty (see also (49)).

Now, let I' be an arbitrary reduced A-chain, with 1 given by (39) for this I'. Because the
concatenation I'g above of I'" and I'™ is a A-chain, there exists a sequence I'g,I'1,...,I'; = I" of
A-chains such that I'; is obtained from I';_; by applying either (YB) or (D) for each t =1,2,...,s
(see Remark 40). For t = 1,2,...,s, let I; be given by (39) for I';. We show that

(53) Rp 5., =Rpj forallt=1,2...s.

If T'; is obtained from I';_; by applying (YB), then it follows from Proposition 47 that Rth i, =

RFJ{ Assume that I'; is obtained from I';_; by applying (D).

Claim 48.1. For 0 < u < s, the A-chain I'y, does not contain both of the roots a;; and —a; for any
1el.

Proof of Claim 48.1.  We show this claim by induction on 0 < v < s. Assume that u = 0. Let
i € I, and assume that (\, ;') > 0; note that (AT, a) > 0 and (A7, ;") = 0. We see from (9)
(see also [36, Lemma 6.2]) that I't contains «;, but does not contain —a;, and that I'" contains
neither a; nor —a;. Hence the concatenation I'g of I'T and I'™ contains «;, but does not contain
—a;. Similarly, if (\,«f) < 0 (resp., = 0), then I'y contains —a;, but does not contain «a; (resp.,
Iy contains neither «; nor —ay;).

Assume that v > 0. If I, is obtained from I',_; by applying (D), then it is obvious by our
induction hypothesis (for I',_;) and the definition of (D) that I', does not contain both of the
roots ; and —q; for any i € I. Assume that I',, is obtained from I',_; by applying (YB). Then we
deduce by the definition of (YB) that the roots appearing in I';, are the same as those appearing
in I';,_1. It follows from this fact and our induction hypothesis (for I';,_1) that I";, does not contain
both of the roots «; and —aq; for any ¢ € I. This proves Claim 48.1. 1

Now, let us show (53) in the case that I'; is obtained from I';_; by applying (D). In this case,
a product of the form Rg;R_g for some § € ® and k € Z appears (at the part corresponding
to the part in I'—; deleted by (D)) in R, 3 . We deduce by Claim 48.1 that 5 ¢ ITU (—II).

Hence it follows from Lemma 41 that RgrR_g 1 is the identity map. Therefore, we also obtain

R. & =R, 5 in this case. Thus we have shown (53), which implies that
Teo1,li—1 Tt
A
(54) RFOIO - RFIIl - = RFS;IVS - RFI - R([] ]
Combining (52) and (54), we obtain (46). This completes the proof of Theorem 48. O

Theorem 33 follows from Theorem 48 and (41).

6. THE QUANTUM K-THEORY OF FLAG MANIFOLDS

Y.-P. Lee defined the (small) quantum K -theory of a smooth projective variety X, denoted by
QK (X) (see [26]). This is a deformation of the ordinary K-ring of X, analogous to the relation
between quantum cohomology and ordinary cohomology. The deformed product is defined in terms
of certain generalizations of Gromov-Witten invariants (i.e., the structure constants in quantum
cohomology), called quantum K -invariants of Gromov-Witten type.
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In order to describe the (small) T-equivariant quantum K-theory QKr(G/B), for the finite-
dimensional flag manifold G/ B, we associate a (Novikov) variable Qj, to each simple coroot oy, with
kel={1,...,r}, and let Z|Q] := Z[Q1,...,Q:], Z[Q] := Z[Q1, ..., Q.]; given £ = dya) +--- +
dyay in QY let Q¢ := Q' .- Q% . Also, let Z[P)[Q] := Z[P] ® Z|Q] and Z[P][Q] := Z|P] ® Z[Q],
where the group algebra Z[P] of P was defined at the beginning of Section 4. We define QKr(G/B)
to be the Z[P][Q]-module K7(G/B) ®zp) Z[P][Q] (O Kr(G/B) ®zp) Z|P][Q]) equipped with the
quantum multiplication, denoted by -, where Kp(G/B) denotes the ordinary T-equivariant K-
theory of G/B. The algebra QKr(G/B) has a Z[P][(Q)]-basis given by the classes [O"], w € W, of
the structure sheaf of the (opposite) Schubert variety X* C G/B of codimension ¢(w).

6.1. Main results. It is proved in [16] that there exists a Z[P]-module isomorphism from QKr(G/B)
onto K7(Q¢) that respects the quantum multiplication in QK7 (G/B) and the tensor product in
K1 (Qg). More precisely, the isomorphism respects the quantum multiplication in Q K7(G/B) with
the line bundle class [Og/p(—ws)] and the tensor product in K7(Qg) with the line bundle class
[Oqe (womy)], for all k € I; in our notation, the line bundle O/ g(—v) over G/ B for v € P denotes
the G-equivariant line bundle constructed as the quotient space G xZC,, of the product space G xC,,
by the usual (free) left action of B, given by b.(g,u) := (gb*,bu) for b € B and (g,u) € G x C,,
where C, is the one-dimensional B-module of weight v € P. Here we remark that in order to
translate the Chevalley formula in K7(Q¢g) for fundamental weights into the one in the quantum
K-theory of G/B, we need to consider Kr(G/B) ®zp] Z[P][Q] (O Kr(G/B) ®zp Z[P][Q]); for
example, in type A,, the tensor product in K7(Qg) with the line bundle class [(’)Q o (—woek)] for
1 <k <r+1 corresponds to the quantum multiplication with the class ﬁ[()@ /B(€k)]; where
€ = Wi —wk—1, With g := 0, w41 := 0, and Q41 := 0 (see [40, Section 5] for details). Also, note
that the isomorphism above sends each (opposite) Schubert class [O*]Q¢ (multiplied by a mono-
mial Q¢ in the Novikov variables) in QK7 (G/B) to the semi-infinite Schubert class [Oqe(uwte)] in
K7(Qg) for w € W and € € QV"*; in our notation, this map sends e*[O™]Q¢ to e "[O0qg (wte)| for
we W, € QVT, and u € P. These results and the special case that A = —w}, of the formula in
Theorem 32 imply the Chevalley formula for Q K7 (G/B), stated below. We also use the well-known
fact that [O%] =1 — e %*[Oq/p(~wt)] in QK7 (G/B).

Theorem 49. Let k € I, and fix a reduced (—wy)-chain I'(—wy). Then, in QK1 (G/B), we have
forw e W,

(55) [O*]-[0%] =

=(1- ew(Wk)—wk)[Ow] + Z (_1)|A\_1 Qdown(w’A)e_wk_Wt(w’A) [Oend(w’A)] :
AeA(w,I'(—wy))\{0}

Remark 50. The non-equivariant version of (55) (obtained by setting all equivariant coefficients
e” to 1) was conjecturally stated in a slightly different form as [36, Conjecture 17.1], which we now
explain. The quantum Bruhat operators defined in [4] were used. These are operators @)z indexed
by positive roots 3, which are defined on the group algebra of the Weyl group W over Z[Q]; the

action of g on w € W corresponds to the edge w LN wsg of QB(W) (if we do not have this edge in
QB(W), then we define Q3(w) := 0). Let the reduced (—wy},)-chain in Theorem 49 be (51, ..., Bm),
and note that its reverse is a reduced wy-chain. The formula in [36, Conjecture 17.1] was expressed
via the action of the operator
1—-(1-@Qp,) - (1-Qp).

By expanding the above product and acting on w, we obtain an alternating sum of Qg, - - Q/gjl (w)
for w-admissible subsets {j1 < -+ < js} in A(w,I'(—wyg)) \ {0}. This gives precisely the non-
equivariant version of (55).
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Let us now turn to the type A,,_; flag manifold Fl,, := SL,,/B and its (non-equivariant) quantum
K-theory QK (Fl,) = K(Fl,) ® Z[Q], where Z[Q] = Z[Q1,...,Qn_1]. In [30], the first author
and Maeno defined the so-called quantum Grothendieck polynomials, denoted by 053 for w € Sy;
the quantum Grothendieck polynomial @8 is defined to be the image of the classical Grothendieck
polynomial &,, under the K-theoretic quantization map @ for each w € S,,. According to the
Monk-type multiplication formula (i.e., [30, Theorem 6.4]) for quantum Grothendieck polynomials,
whose proof is based on intricate combinatorics, these polynomials multiply precisely as stated by
(the non-equivariant version of) the quantum K-Chevalley formula (55); note that in the ordinary
non-equivariant K-theory K(Fl,), the (opposite) Schubert class [O"] is identical to the class of
the structure sheaf of the Schubert variety X, ., C Fl, of codimension ¢(w) for each w € W = S,,.

Let us add an explanation about the coincidence between our quantum K-Chevalley formula (55)
for (opposite) Schubert classes and the Monk-type multiplication formula for quantum Grothendieck
polynomials. Note first that the order in which the transpositions are applied in [30, Theorem 6.4]
is precisely the one given by the reduced (—wy)-chain I'(—wy) defined in Section 6.2, i.e., the
reverse of the chain (56). Having observed this, the difference between the two formulas consists
of the fact that the former is based on the Weyl group 5, while the latter is based on the infinite
symmetric group S,o. We address this difference below.

In view of the conjectural presentation (cf. [30, Theorem 3.10]) of QK (F,,) proposed by Kirillov

and Maeno, we consider the quotient ring Z[Q][z]/I%; here Z[Q][#] denotes Z[Q1, . . ., Qn-1][z1,- .., 0],

~

and I is the ideal of Z[Q][z] generated by the specialization at @, = 0 of the images E} under
the K-theoretic quantization map @ of the elementary symmetric polynomials ej, 1 < &k < n,
where e}! denotes the elementary symmetric polynomial of degree k in the variables zq,..., 2z,
(for details, see [30, Section 3]). Note that our quantum K-Chevalley formula is in terms of the
quantum Bruhat graph QB(S,) on the n-th symmetric group S,,, while the Monk-type multipli-
cation formula is in terms of the quantum Bruhat graph QB(S4) on the infinite symmetric group
Seo = Upr_1 Sm. Hence, in order to prove the coincidence between them, we need to show that if
w € Spy1 but w ¢ S, then the associated quantum Grothendieck polynomial 69 = @(ﬁw) lies in
the (defining) ideal I;Z for the quotient ring Z[Q][x]/I¥; recall that &% € Z[Q1, ..., Qul[z1, ... xn] C
Z[Q1,...,Qun][z1,...,xs) for w € Sp41. For this purpose, it suffices to show that if w € S,41 but
w ¢ Sp, then &% = @(Qﬁw) lies in the ideal of Z[Q1,...,@Qn][z1,...,x,] generated by the images
E\}j = @(eﬁ), 1 <k < n. This can be shown by an argument which is similar to one for quantum
Schubert polynomials in the proof of [10, Lemma 5.7], but which is based on [30, Theorem 5.3]
instead of [10, Proposition 5.4] (we refer the reader to [30, Appendix B] for a proof in the torus-
equivariant case); we also use the fact that for w € S, 41\ Sp, the associated classical Grothendieck
polynomial &, lies in the ideal I,, of Z[z] := Z[z1, ..., x,]| generated by the elementary symmetric
polynomials e}, 1 < k < n, which follows since the ordinary K-theory K (Fli,) of Fl, has a presen-
tation of the form Z[x]/I,,, and the classical Grothendieck polynomial &,, represents the (opposite)
Schubert class [O"] in K(Fl,) for each w € S,, under this presentation.

We are now ready to state our main result of this paper, which settles the main conjecture (i.e.,
Conjecture 7.1) in [30].

Theorem 51. For eachw € Sy, the quantum Grothendieck polynomial @8 represents the (opposite)
Schubert class [O"] in QK (Fl,)= K(Fl,) @ Z[Q1, ..., Qn-1].

Proof of Theorem 51. Weset Z[Q] = Z[Q1, . .., Qn-1], Z[Q] = Z[Q1, - - ., Qn-1], Z]|Ql1oc := Z[Q][(1—
Q). (1=Qn_1)""] € Z[Q], and Z[Qlioc|z] := Z[Qlioc|w1, - - -, #n]. Let (I¥)1oc denote the ideal
of Z[Qlioc[x] generated by the specialization at @, = 0 of the £} for 1 < k < n. We know from
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[30, Remark 3.27] that the residue classes modulo (I;; )hm of the quantum Grothendieck polynomi-
als 9, w € S, form a Z[Q]ic-basis of the quotient ring Z[Qlioc[2]/(I¢)ioe; we refer the reader
to [40, Appendix B] for a detailed proof of this fact in the torus-equivariant case. Hence it fol-
lows that the residue classes modulo 1 . of the Qi w, w € Sy, form a Z[Q]-basis of the quotient
ring Z[Q][z]/I¥ = Z[Q] D2[Qe (Z[Q10c[T 1/(I€)10e). Also, we know that the (opposite) Schubert
classes [O"], w € S, form a Z[Q]-basis of QK (Fl,) = K(Fl,) ® Z[Q]. Therefore, we can define a
Z[Q]-module isomorphism @ from Z[Q][2]/I¥ to QK (FI,) by: ®(6% mod I¢) = [O¥] for w € Sy.

Here we consider the quotient ring Z[x] /I, where I, is, as above, the ideal of Z[z] generated by
the elementary symmetric polynomials e, 1 < k < n. We can easily verify by direct computation
(the well-known fact) that the quotient rlng Z[z]/ I, is generated as an algebra over Z by the residue
classes modulo I, of the classical Grothendieck polynomials &,, = 1— Hf 1(I=z;) for1 <k <n—1.
Since the specialization at @1 = = @n-1 = 0 of the quantum Grothendieck polynomial Qﬁsk is
identical to the classical Grothendleck polynomial &, for each 1 < k < n—1 and the specialization
at Q1 = -+ = @Qp—1 = 0 of Ek is e for each 1 < k < n by [30, Proposition 3.22], it follows
that the spec1al1zat10n at Q1 = -+ = Qn—1 = 0 of the quotient ring Z[Q][z]/1 19 is isomorphic
to the quotient ring Z[x]/I,. Also, note that Z[Q] [x]/fg is finitely generated as a module over
Z[Q] since it is generated by &% mod I¢ for w € Sn, as mentioned above; again we refer the
reader to [40, Appendix B]| for the proof of the finite generation in the torus-equivariant case.
Therefore, we can apply Nakayama’s lemma (see [9, Corollary 4.8]) to deduce that the quotient
ring Z[Q][2]/I% is generated as an algebra over Z[Q], which is a Noetherian integral domain such
that the ideal (Q1, ..., Qn—1) is contained in the Jacobson radical, by the residue classes modulo TSR
of the quantum Grothendieck polynomials 6%, 1 <k <n-—1. Hence, from the coincidence between
the quantum K-Chevalley formula (obtained from formula (55)) for opposite Schubert classes in the
non-equivariant QK (Fl,) and the Monk-type multiplication formula, together with the property
above, for quantum Grothendieck polynomials, we deduce that the Z[Q]-module isomorphism &
is, in fact, a Z[Q]-algebra isomorphism such that ®(6% mod I¥) = [0¥] for all w € S,. This
completes the proof of the theorem. O

Remark 52. Instead of the complete Noetherian integral domain Z[Q], we can use the Noetherian
integral domain Z[Q]joc, which is a localization S~1(Z[Q]) of Z[Q] with respect to the multiplicative
set S =14+ (Q1,...,Qn—1) (cf. [14, Appendix A]). We know from [2, Chapter 3, Exercise 2] that
the ideal S~Y(Q1,..., Q) is contained in the Jacobson radical of S™YZ[Q]) = Z[Q]ie. Also, as
mentioned in the proof above, the residue classes modulo (If;? )loc Of the quantum Grothendieck
polynomials @8, w € Sy, form a Z[Q])pc-basis of the quotient ring Z[Q]ioc[z]/ ([7(,‘? )loc; in particular,
the quotient ring Z[Q)ioc[z]/ (L? )loc is a finitely generated module over Z[Q]ioc. Thus, we can apply
Nakayama’s lemma to the quotient ring Z[Q]ioc[2]/ (I )ioe, and hence the same argument as in
the proof above shows that the quotient ring Z[Qlioc[z]/(I¢)ioe is isomorphic to the subalgebra
K(Fl,) ® Z|Qioc of QK(Fl,) = K(Fl,) ® Z]Q]. Here observe that by [2, Remark on page
110], the quotient ring Z[Q]ioc[x]/ (I,? )loc can be thought of as a subalgebra of the quotient ring

Z[Q][x]/ I¥: in contrast, it is closely related to the finiteness result of Anderson-Chen-Tseng (see
[1, Proposition 9]) that K (Fl,) ® Z[Q]iec is indeed a subalgebra of QK (Fl,,) = K(Fl,) ® Z[Q].

Theorem 51 leads to an important application of quantum Grothendieck polynomials: computing
the structure constants in QK (F'l,) with respect to the (opposite) Schubert basis. More precisely,
the computation reduces to expanding the products of these polynomials in the basis they form.
This is achieved by [30, Algorithm 3.28], which can be easily programmed; see also [30, Example 7.4].
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This application extends the similar one of Schubert polynomials, Grothendieck polynomials, and
quantum Schubert polynomials, which was the main motivation for defining these polynomials.

6.2. The type A quantum K-Chevalley coefficients. This section refers entirely to type A, _1,
more precisely to QK (Fl,). Given a degree d = (dy,...,dp—1), let N;,;flw be the coefficient of

G QZ"_’ll [O0"] in the expansion of [O%]-[O"], for k € [ = {1,...,n—1}. Based on Theorem 49
and results in [27], we describe more explicitly the quantum K-Chevalley coefficients N, ;j,;flw, where
the index k is fixed in this subsection. We need more background and notation.

We start by recalling an explicit description of the edges of the quantum Bruhat graph on the
Weyl group W of type A,_1, namely the symmetric group S,. The permutations w € S, are
written in one-line notation w = w(1) - - - w(n). For simplicity, we use the same notation (4, j) with
1 <i < j <nfor the positive root a;; = &; — &; and the reflection s,,;, which is the transposition
ti; of i and j; in particular, we write w- (4, j) for wt;;, where w € S,,. We need the circular order <;

on [n] :={1,...,n} starting at ¢, namely i <; i+1 <; -+ <; n <; 1 <; -+ <; i — 1. It is convenient
to think of this order in terms of the numbers 1, ..., n arranged clockwise on a circle. We make the
convention that, whenever we write a < b < ¢ < ---, we refer to the circular order <=~<,. We also

consider the reverse circular order <! starting at 7, namely ¢ <} i—1 <7 --- <I' 1 <I'n <7 --- < i+1,
and use the same conventions.

Proposition 53 ([27]). For w € S,, and 1 < i < j < n, we have an edge w ) (i,7) if and
only if there is no | such that i <1 < j and w(i) < w(l) < w(j).

It is proved in [36, Corollary 15.4] that, given our fixed k € I, we have the following reduced
wg-chain I'(wyg):

((k,k+1), (k,k+2), ey (kym),
(k—1Lk+1), (k—1,k+2), ..., (k—1,n),
(LE+1),  (LE+2), ..., (Ln)).
Alternatively, we can use the following reduced wy-chain I'(wy):
((k,k+1), (k—1Lk+1), ..., (LLk+1),
(56) (k,E+2), (k—1,k+2), ..., (1,k+2),
(kin),  (k—1m), ..., (Ln)).

We will also need a reduced (—wy)-chain I'(—wy ), and we choose it to be just the reverse of I'(zy).
Similarly, we define another reduced (—wy)-chain I'(—wy) as the reverse of I (wy).

Given v,w € S, we write vZw whenever there is a path from v to w in QB(S,) with edges
labeled by a subsequence of I'(wy). We also write v2w (or wSv) whenever there is a path from w
to v in QB(S,,) with edges labeled by a subsequence of I'(—wy).

We consider the following conditions on a pair (v, w) of permutations in S, ; the first two appeared
in [27, Section 4.1].

Condition Al. For any pair of indices 1 <1i < j < k, both statements below are false:
v(i) =w(), o) <w() <wli).
Condition A2. For every index 1 <14 < k, we have
w(i) = min{w(j) | i < j <k},

where the minimum is taken with respect to the circular order <, ;) on [n] starting at v(3).
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Condition A1'. For any pair of indices n > i > j > k + 1, both statements below are false:
v(i) =w(g), (i) <" w(f) <" w(i).
Condition A2'. For every index n > i > k + 1, we have
w(i) = min{w(j) | i >j > k+1},

where the minimum is taken with respect to the reverse circular order <7, on [n] starting at v (7).

It is clear that Conditions A1 and A2, respectively A1’ and A2, are equivalent. We also consider
similar conditions obtained by swapping the orders <. and <", which we label B1, B2, B1’, B2/,
respectively.

Proposition 54. We have vZw if and only if the pair (v,w) satisfies Conditions Al and Al’.
Moreover, the corresponding path v = vy, v1, ..., Uy, = w in QB(S,) (with edges labeled by a
subsequence of I'(wy,) ) is unique, and we have

vo(7) 2v1(i) 2o Rum(i)  for 1<i <k,
vo(7) 2" v1(3) 2" - 2" wp(i) for n>i>k41.

Proof. Given vZw, the pair (v,w) satisfies Condition Al by [27, Lemma 4.8 (1)]. On another
hand, the given path from v to w in QB(S,) with edges labeled by a subsequence of I'(wy) can
be transformed into a similar path with edges labeled by a subsequence of I'(wy). Indeed, by
comparing the structures of I'(wy) and I'(wy), we can see that the first sequence of roots can be
transformed into the second one by repeatedly swapping successive orthogonal roots; this implies
that we can realize the mentioned transformation of paths in QB(S,) by swapping successive
commuting transpositions. We will prove Condition A1’ based on the new path. The first part
is immediate. Now assume for contradiction that v(i) <" w(j) <" w(i) forn > ¢ > j > k+ 1.
Examining the sequence of transpositions that involve position 7, we can see that one of them
violates the criterion in Proposition 53.

Now assume that the pair (v,w) satisfies Conditions A1 and A1’. By [27, Lemma 4.8 (2)], there
exists a unique path v = vy, v1, ..., vy, in QB(S,) with v,,(i) = w(i) for ¢ = 1,..., k. Moreover,
the stated property of the entries v;(i) for a fixed i € {1,...,k} is part of the same lemma.
Meanwhile, the case of i € {k+ 1,...,n} is proved in a similar way, by using the the path labeled
by a subsequence of I"(wj) which is obtained from the above one. Finally, based on the first part
of this proof, the pair (v, v,,) satisfies Condition A1’, which further implies that v, = w. O

Remark 55. (1) Fix v € W = S, and a representative o of a parabolic coset modulo W\ (5. It
is easy to see that there is a unique permutation w € oWp () such that the pair (v,w) satisfies
Conditions Al and A1’. Indeed, the equivalent Conditions A2 and A2’ lead to an algorithm which

suitably reorders the entries o(1), ..., o(k) and o(k + 1), ..., o(n), respectively. More precisely,
we iterate the construction of w(i) given by Condition A2 for i = 1,...,k, and the construction
given by Condition A2’ for i = n, ...,k + 1. This reordering algorithm is explained in more detail

in [27]; see Remark 4.5 and Example 4.6 therein.

(2) Given a pair (v, w) which satisfies Conditions A1l and Al’, the construction of the unique
path from v to w in Proposition 54 is given by [27, Algorithm 4.9]; this is a greedy type algorithm.

We have the following corollary of Proposition 54.
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Corollary 56. We have v w if and only if the pair (v, w) satisfies Conditions Bl and B1'. More-
over, the corresponding path w = vy, Um—1, .., vo = v in QB(S,) (with edges labeled by a subse-
quence of I'(—wy,) ) is unique, and we have

(57) vo(1) R w1 (3) X" 2o (i) for 1<i<k,
(58) vo(1) 2v(d) 2+ 2op(i)  for n>i>k+1.

Proof. We use the involution on W given by w +— w® := wow, which maps (quantum) edges of
QB(W) to reverse (quantum) edges with the same labels, cf. [33, Proposition 4.4.1]. Therefore, we
have vZw if and only if v°Zw®. Letting i° :== n+1—1, we have w°(i) = w(i)°, and we note that the
involution ¢ — ¢° on [n] maps the order <; to <J,. Therefore, Conditions Al and A1’ correspond
to Conditions B1 and B1’ under this involution. We conclude that the statements of the corollary
are translations of those in Proposition 54. O

Remark 57. By analogy with Remark 55 (1), Conditions B2 and B2’ lead to a corresponding
reordering algorithm. Furthermore, there is an algorithm for constructing the unique path in
QB(Sy,) in Corollary 56 which is completely similar to [27, Algorithm 4.9], cf. Remark 55 (2).

We are now ready to prove the main result of this section, which completely determines the
quantum K-Chevalley coefficients N, Lfk’flw.

Theorem 58. For QK (Fl,), we always have Ngk’flw € {0,+1}. More precisely, for every v and
parabolic coset aWp () not containing v, there are unique d and w € oWp (1} (determined via the

algorithms in Remark 57 and (55), cf. also Proposition 59) such that N;j,;flw = £1 (the sign is as
in (55)). Meanwhile, if v € oW g1y, then all the mentioned coefficients are 0.

Proof. Fix v and a parabolic coset oW\ (). By (55) and Corollary 56, a necessary condition to

have N, ;’k’flw # 0 for w € oW\ () is that w satisfies Conditions B1 and B1’. The unique such w in
oWn (k) is constructed via the reordering algorithm mentioned in Remark 57. Using Corollary 56
again, we know that there is a unique w-admissible subset A € A(w,'(—wy)) with end(w, A) = v;
this can be constructed via the second algorithm mentioned in Remark 57. If v € oWp (4, then
we have w = v and A = (), but the corresponding term does not appear in the right-hand side of
the non-equivariant version of (55). Otherwise, the corresponding degree d = (di,...,d,—1) and
the sign of N, = £1 are calculated based on (55). O

We will now show that the degree d in Theorem 58 can be determined based on v and w only,
that is, without constructing the respective path in QB(S,,) from w to v. We use the notation | - |
to indicate the cardinality of a set.

Proposition 59. Given a pair (v,w) satisfying Conditions Bl and B1l’, with v # w, the unique
degree d = (dy,...,dn—1) for which N;;’fiw = =+1 is expressed as follows:

{I{jljﬁi, v(g) <w(@)}i ifiefl,... kY,
{7 13> v(G) >w@} ific{k,....n—1}.

Proof. Consider i,j € {1,...,k}. It follows from Corollary 56, and particularly (57), that at most
one of the roots (j,1) in I'(—wy) (for [ > k) labels a quantum edge in the corresponding path from
w to v; moreover, this happens if and only if v(j) < w(j). On the other hand, the simple root
a; = (1,74 1) appears in the decomposition of (j,1) if and only if j < i. This gives the formula for
d; with ¢ € {1,...,k}. The proof is completely similar for i € {k,...,n — 1}, based on (58). O

i =

Example 60. Consider v = 12534 in S5, k = 2, and 0 = 34125 in W/\M2}. The reordering algorithm
in Remark 57 outputs w = 43215 € oWy (). The second algorithm mentioned in Remark 57
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determines the following path from w to v in QB(S5); its edges are labeled by a subsequence of
I'(—w3), which corresponds to an admissible subset A:

I (15 I 14) I (24 I 23 I

Thus, we have down(w, A) ), and hence d = (1,2, 1,0); in fact, it is easier to determine

d based on Proposition 59. F mally, we have N, Sv;lw =—1.

Remark 61. Analogous results to Proposition 54 and the algorithms in Remark 55 were given for
type C in [27], and for types B, D in [38]; they were used in connection with affine crystals and
Macdonald polynomials. In addition, they can be used to obtain more explicit information about
the quantum K-Chevalley coefficients in the respective types, by analogy with the above approach
in type A.

6.3. Minimum and maximum degrees in type A. Given the expansion of a product of two
Schubert classes in quantum cohomology, there is interest in the following questions: are there
minimum and maximum degrees, and do the degrees form intervals? These facts were proved to
be true for type A Grassmannians, where there is a single quantum variable () (see [44]). For a
partial flag manifold G/P, only the existence of a minimum power is known, which was proved to
be the smallest degree of a rational curve between general translates of the corresponding Schubert
varieties [6]. Below we address these questions for the expansion of [O%] - [O"] in QK (F1,), for a
fixed ke I ={1,...,n—1}.

We use the notation above; in particular, recall that v - (i,j) stands for vt;;, where v € S,,.
We consider the set of roots in I'(—wy,), for which we use the same notation, and we denote the
corresponding linear order by <; in other words, we have (1,n) <--- < (L,k+1) <--- < (k,n) <

< (k,k+1). We also consider the following partial order on these roots: (a,b) =< (¢,d) whenever
c<a<k<b<difc<a<k<b<d, then we write (a,b) < (c,d).

Given a permutation v € S, we define
Ty :={(i,7) e T(—wy) | v LGN (1,7) is a quantum edge} .
For A C I'(—wy), we write I'4 := ', N A. In particular, if

lVA I\ l\ I\A A
l\i((l,b) . , <<(C d) B I >(G,,b)7 <<(C,d) : 7<<(C,d) : I \U B .

We use implicitly the quantum Bruhat graph criterion in Proposition 53.

Lemma 62. The sets of roots I'y, and Ff(c’d) have maxima and minima with respect to the partial
order <.

Proof. Due to the structure of I'(—wy), it suffices to show that, if (p,q) and (r, s) belong to T, or

Ff(c’d), where p < r < k < q < s, then so do (p, s) and (r,q). We have v(p) > v(r) > v(q) > v(s),
which implies the mentioned statement. ]

We fix w € S,,, and use Lemma 62 in the following constructions based on I'y,, which is assumed
to be non-empty. Define the sequence of roots (p1,q1), ..., (pr,qr) recursively by

(59) (p1,q1) == max<ly, (Di+1,@+1) = male“qf(pl’m) ’
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fori=1,...,L — 1, where riera) _ g, Also, let (r,s) := min<T'y,. For 1 <i < j <n, let
d(i,7):=(0,...,0,1,...,1,0,...,0)
—— —— ——
i—1 times j—¢ times n—j times
be the degree corresponding to the root «;.

We consider the non-zero degrees d = (dy, . . .,d,—1) which occur in the expansion of [O%]-[O"],

i.e., for which N, ;’k’flw # 0 for some v € S,,. We assume that I';, # ), because otherwise there are no
non-zero degrees. The following is the main result about the mentioned degrees.

Theorem 63. Among the considered degrees, there is a maximum and a minimum one, with respect
to the componentwise order. They are

dipi,q1) +---+d(pr,qr) and d(r,s),

respectively.

Example 64. Consider n = 4, w = 4321, and k = 2. We have I', = {(1, 3), (1,4), (2,3), (2,4)} =
I'(—wg). Thus, by Theorem 63, the maximum and minimum degrees are (1,2,1) and (
respectively.

Remark 65. (1) In quantum cohomology, the minimum degree in the corresponding Chevalley
formula [12] is the same as in quantum K-theory, while the maximum degree is d(p1,q1), cf.
Theorem 63.

(2) The non-zero degrees which occur in the expansion of [O%¢] - [O"] generally do not form an
interval (between the minimum and the maximum one). Indeed, continuing Example 64, it is easy
to see that (0,2,0) is not a degree in the corresponding expansion.

To prove Theorem 63, we need the following lemmas.
Lemma 66. Consider an edge v AN (,7) in QB(Sy) labeled by (i,j) € I'(—wy), and the subset
A of the roots in I'(—wy) occurring after some root o > (i,7). Then we have
iy ST o TG, €T,
depending on the edge labeled (i,7) being or not being a quantum edge, respectively.

Proof. Let (a,b) € Ff_(ij). If (a,b) < (i,7), then the statement is obvious, and so we are left with
(

the cases i =a <b< jori<a<j<b. Assume first that v z—”) v-(i,7) is a quantum edge. The
case i = a < b < j is easily ruled out, because it would imply v(i) > v(j) > v(b), which contradicts
the quantum property of the edge labeled by (i,7). Similarly for the case ¢ < a < j = b, and
so we are left with the case ¢ < a < j < b. But then the same quantum edge property implies
v(i) > v(a) > v(j), which makes it impossible to have (a,b) € [';,.(; j); so this case is ruled out, too.

We now assume that v M v - (i,7) is a cover of the Bruhat order. This means that there
is no entry with value between v(i) and v(j) among v(i + 1),...,v(j — 1); we will use this fact
implicitly below. We again start with the case i = a < b < j. We must have v(b) < v(i) < v(j),
which in turn implies (a,b) € T',. Similarly for the case i < a < j = b, and so we are left with
the case i < a < j < b. The fact that (a,b) € I'y.(; ;) implies v(b) < v(i) < v(j) < v(a), and then
(a,b) € T'y,. O
Lemma 67. Assume that we have a path in QB(S,) starting at w with edges labeled by roots
(i1,71) < -+ < (i1, 51) in I'(—wy), in this order. Then we have

>(il7‘jl) >(i ’j )a<<(i57js) >(ilvjl) >(7, ,j )
Fw'(ilvjl)'“(ilajl) S or Pw~(i17j1)~~-(iz,jz) S P
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depending on the path containing or not containing a quantum step, respectively, where in the first
case (ig, js) is the label of the last quantum step.

Proof. We iterate the result in Lemma 66. g

Proof of Theorem 63. By (55), the terms in the expansion of [O%¢] - [O"] are indexed by paths in
QB(S),) starting at w with edges labeled by roots in I'(—wy}), in the corresponding order <. Fix
such a path, and let (p),¢}) < -+ < (p),,q,,) be the labels of its quantum steps; then the degree
corresponding to this path is d(p,q}) + -+ + d(p,, q),)-

By Lemma 67, all (p},q}) are in Iy, and we have (p),,q,,) < -+ < (ph,db) < (P}, q}). By the
construction (59), we have (p/, ¢}) = (p1,q1). Combining the above facts, we have (p), ¢5) < (p1,q1),
and by invoking again (59), we derive (ph,q5) =< (p2,¢z2). Continuing in the same way, we deduce
m < L, and (p},q}) < (pi,q) for alli =1,...,m.

On another hand, it is easy to see that the path starting at w with labels (p1,q1), ..., (pr,qL),
in this order, is indeed a path in QB(.S,,) whose steps are all quantum ones; note that (pr,qr) <
-+ < (p2,92) < (p1,q1). This concludes the proof related to the maximum degree. The statement
about the minimum degree is immediate based on the corresponding construction. O

Corollary 68. Among the terms in the quantum K -Chevalley formulas for the expansion of [O%¢]-
[OY], where k € I is fired and w € W, there is a mazimum degree (with respect to the componentwise
order), namely

dpax = (1,2,..., k=1, k..., k k—1,...,2,1),
N——

n+1—2k times

where k := min(k,n — k). The mazimum is attained (among other instances) for any w,v with
w(i@) =n+1—1iand v(i) =1 fori <k ori>n—k, while v(i) = w(i) for k <i <n—k. The
mazximum total degree is k(n — k).

Proof. If w,v are as stated, then there is a path in QB(S,,) from w to v consisting only of quantum
edges, which are labeled by (1,n), ..., (k,n + 1 — k). On another hand, in the construction (59)
corresponding to the quantum K-Chevalley formula for [O%] - [O%], it is clear that we have L < k
and (p1,q1) < (1,n), ..., (pr,qr) = (L,n+ 1 — L). This implies the stated result. O

Remark 69. The maximum total degree in Corollary 68 is equal to the (complex) dimension of the
Grassmannian consisting of the k-dimensional subspaces in C", that is, the length of the maximum
element in W1\},
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