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Machine Learning-Accelerated Method for Real-Time
Optimization of Micro Energy-Water-Hydrogen Nexus
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Abstract—This paper explores the micro Energy-Water-
Hydrogen (m-EWH) nexus, an engineering system designed to
reduce carbon emissions in the power sector. The m-EWH
nexus leverages renewable energy sources (RES) to produce
hydrogen via electrolysis, which is then combined with carbon
captured from fossil fuel power plants to mitigate emissions. To
address the uncertainty challenges posed by RES, this paper
proposes a real-time decision-making framework for the
m-EWH nexus, which requires the rapid solution of large-scale
mixed-integer convex programming (MICP) problems. To this
end, we develop a machine learning-accelerated solution
method for real-time optimization (MARO), comprising three
key modules: (1) an active constraint and integer variable
prediction module that rapidly solves MICP problems using
historical optimization data; (2) an optimal strategy selection
module based on feasibility ranking to ensure solution
feasibility; and (3) a feature space extension and refinement
module to improve solution accuracy by generating new
features and refining existing ones. The effectiveness of the
MARO method is validated through two case studies of the
m-EWH nexus, demonstrating its capability to swiftly and
accurately solve MICP problems for this complex system.

Index Terms—Active constraints prediction, Energy water
hydrogen nexus, Feature expansion, Feature refinement, Green
hydrogen, Integer variables prediction, Machine learning,
Mixed-integer convex program, Real-time optimization.
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ACIVP Active Constraints and Integer Variables Prediction
AEL Alkaline Electrolysis
CCS Carbon Capture Systems
EDWF  Electricity-Driven Water Facility
EWH  Energy-Water-Hydrogen

FC Fuel Cell

FSER  Feature Space Extension and Refinement

HDN  Hydrogen Distribution Network

MARO Machine Learning-Accelerated Solution Method for
Real-Time Optimization

MICP  Mixed-Integer Convex Programming

m-EWH Micro Energy-Water-Hydrogen

OMIO  Online Mixed-Integer Optimization

PDN Power Distribution Network

PEM Proton Exchange Membrane

RES Renewable Energy Sources

SSFR  Strategy Selection Based on Feasibility Ranking

W2H  Wind-to-Hydrogen

WDN  Water Distribution Network
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Parameters
n Constant efficiency of the pump
¢de Carbon emission of a diesel generator factor
gdsp Hydrogen tank disappearance factor
&p° Energy for hydrogen production factor
&ve Water for hydrogen production factor

ff Hydrogen for power generation by FC factor
£X Chemical production by captured carbon factor
pX Chemical production price
AM Water tank area
dp, Water demand at node n
ave Water demand of water electrolysis
e; to e, Power for water production by desalination factors
p', ¢ Active and reactive power load

p¥ind  Wind power

PR Maximum reduced pressure value
ry Head loss coefficient of pipe ¢
rij,%i; Resistance and reactance of line 4j

S4j Maximum apparent power of line ¢

shs Maximum apparent power of hydrogen system
v¥,v®  Forecasted and real wind speed

Variables

bdes P Binary variables related to desalination and pump
bfe, b Binary variables related to FC and water electrolysis
cds Carbon emission of the diesel generator

c® Emitted carbon to the atmosphere

c®,cX Captured carbon for storing and reusing
fdes Water production of desalination
fn, fg  Water flow of node n and pipe ¢
e Water flow of water tank
R4 Hydrogen demand of hydrogen loads
hfe Hydrogen demand of FC
hve Hydrogen production by water electrolysis
Ix Income from selling the chemical product
L Square of the current magnitude in line ¢j
Dij,Q; Active and reactive power of line 4j
pdes Power of water desalination
pde 98 Active and reactive power of diesel generator
pfe FC output power
pP, " Active and reactive power of hydrogen system
pP Power demand of pump
SW_ ¢ Surplus active and reactive power of wind farm
pt Transferred power to the power network
p¥e Power of water electrolysis
p“¥ede  Power of diesel generator for water electrolysis
yht Volume of hydrogen tank
pwt Volume of water tank
i Square voltage of bus ¢
(5} Head gains imposed by the pump in the pipe ¢
Yn, ¥yt  Water head of the node n and the water tank
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I. INTRODUCTION

HIS paper expands on the EWH nexus, initially
Tintroduced to mitigate carbon emissions on the power
generation side of power systems [1], where fossil fuel
power plants are equipped with CCS. Unlike conventional
hydrogen production, the EWH nexus concentrates on green
hydrogen from water electrolysis using RESs as an
eco-friendly alternative. We introduce the m-EWH nexus,
specifically designed for small communities like small
islands, isolated coastal cities, and remote villages, where a
single entity controls critical infrastructures. In these areas,
which heavily rely on diesel generators with carbon
emissions [2], [3], the m-EWH nexus emerges as a solution
to curb carbon emissions, foster RESs integration, and
address electrolysis’ water intensity by proposing water
network integration. Notably, our focus lies on the
distribution side, highlighting the interconnections of water
and power systems at this level, setting our study apart from
previous works centered on the generation side.

Different RES, such as solar, wind, hydro, biomass, and
geothermal, have been extensively studied in green hydrogen
production [4]. This paper focuses on wind energy and W2H
technology within the context of the m-EWH nexus. Notably,
certain previous studies examining W2H applications did not
consider wind uncertainty [5]-[8], relying instead on
day-ahead wind speed predictions that may deviate from
actual data [9]. Although several studies addressed wind
energy uncertainty through probabilistic [10], robust
optimization [11], and stochastic [12] methods, these
optimization models under uncertainty have some significant
limitations. For example, a deterministic approximation for a
large engineering system is typically computationally
intractable. In contrast, this paper proposes a real-time
approach to optimize the operation of the m-EWH nexus,
avoiding reliance on long-term wind forecasts exceeding 5
minutes. Instead of making decisions ahead-of-real-time, this
paper proposes to solve the optimal operation of the m-EWH
nexus in real-time, eliminating the reliance on long-term
(longer than 5 minutes) wind forecasts. Despite the slow
dynamics, hydrogen and water systems in the m-EWH nexus
face significant uncertainty due to reliance on renewable
energy, water scarcity, and variability in hydrogen demand,
making it impractical to rely solely on large-scale storage.

This paper proposes a real-time decision-making scheme
for hedging against uncertainty in the context of the m-EWH
nexus. A convex mathematical model for m-EWH is
employed to formulate the optimization problem as a
real-time decision-making process, resulting in a large-scale
MICP. Despite convexifying continuous non-convex
constraints, the presence of binary variables in the
optimization problem classifies it as MICP. Recently, there
has been significant interest in using machine learning to
address MICP. For example, in [13], they applied machine
learning to fine-tune hyperparameters in optimization
algorithms. Learning-based strategies have been explored to
develop efficient branching rules for solving mixed-integer
optimization problems [14]. A specialized method using
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Fig. 1. Machine learning-accelerated for real-time optimization method.

Strategies

neural networks has been proposed to solve MICP problems
with logical constraints [15]. On the theoretical side, in [16],
the authors analyzed the sample complexity involved in
selecting cutting planes to use during the branch-and-cut
algorithm of integer optimization solvers. Furthermore, in
[17], the authors examined the sample complexity of
learning high-quality hyperparameters in optimization
algorithms. Despite these extensive efforts to solve MICP
problems online, a gap remains between the solution times
and the accuracy constraints required by many applications.

To address the computational challenges of solving this
optimization problem in real-time with high accuracy, we
introduce MARO which comprises three distinct modules:
the ACIVP module, the SSFR module, and the FSER
module (as shown in Fig. 1). Utilizing historical data, the
ACIVP module maps input parameters to an optimal strategy
to determine optimal values for binary variables and a set of
active constraints [18]. The SSFR module ensures the
feasibility of the proposed machine learning-accelerated
approach. The FSER module enhances accuracy by
developing new features derived from the raw data generated
through offline optimization in the learning process. The
FSER module includes two components: feature refinement
and stage design and ordering. The feature refinement
method evaluates predicted features at each stage and refines
them as necessary. We delve into the impact of stage design
and ordering on the performance of the FSER module,
providing a comprehensive exploration of factors influencing
its efficacy. These three modules work together to reduce the
MICP problem to a smaller, continuous convex optimization
problem that can be solved rapidly, enabling the application
of MICP to online problems previously out of reach [19].

In summary, the main contribution and novelty of this paper
lie in the development of the MARO approach, which can
solve the MICP of the m-EWH nexus in real-time, ensuring
both high accuracy and solution feasibility. The rest of this
paper is organized as follows. Section II presents the system
design and mathematical model of the m-EWH nexus. The
optimization models for real-time operation are discussed in
section IIl. Section IV explains the online solution method.
Section V presents two case studies to validate this method.
Finally, conclusions and future works are drawn in section VI.

II. MATHEMATICAL MODELS OF m-EWH NEXUS

This section explains the different components and the
mathematical model of an m-EWH nexus. Fig. 2 shows a
typical m-EWH nexus that includes a power section (red), a
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Fig. 2. A typical m-EWH nexus for remote coastal area: — power, — water,
— hydrogen, — carbon,

water section (blue), and a hydrogen section (green). This
m-EWH nexus is designed for small communities in remote
coastal cities/small islands, in which a unified entity controls
the entire system. A diesel generator, enhanced with
small-scale CCS [20], meets a significant portion of the PDN
demand, while a wind farm provides green energy for
electrolyzing water. Excess wind energy is fed into the PDN
for flexible loads like EDWFs. When there is a surplus of
wind energy, it can be transferred to the power grid, while
during periods of heavier load, the power grid supports
distribution-side loads. The water section includes the WDN
and EDWFs. The hydrogen section includes electrolysis,
HDN, methanation, and an FC unit. Hydrogen generated by
electrolysis is used in various applications, including
satisfying the hydrogen network’s demand, methanation to
reuse captured carbon, and converting unpredictable wind
energy into controllable energy through FC units. In the
following subsections, we explain the mathematical models
of different components of the m-EWH nexus.

A. Power Section

Power flow in the PDN can be modeled using several
formulations. The Distflow model involves bus variables
and branch variables and can be used to model both active
and reactive power flow in the PDN. The convex model of
the power section is expressed by [21]:
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Constraints (la) to (1d) are related to Ohm’s law. The nodal
balance of active and reactive power can be determined by
(le) and (1f), respectively. The upper and lower bounds for
variables are described by (1g). The m-EWH nexus may not
be able to capture all wind energy due to its volatility and

unpredictable characteristics. The power grid can serve as a
large energy storage system for capturing excess wind power,
as shown with (1h). Constraints (1i) and (1j) show the model
of carbon emissions resulting from diesel generation, which
consists of three parts: emitted parts, ones reused for chemical
production, and ones stored [22].

B. Water Section

A convex-hull model for the water section of the m-EWH
nexus, including water desalination, mass flow conservation
law, pipe flow, water pumps, water tank, and pressure-reducing
valves, is given [23]-[26]:
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where Y = Yn,t —Ym,t +hq, and hy is the elevation difference
between nodes n and m. Constraint (2a) shows a convex-hull
model for head loss along a regular pipe. The equality of water
injection and water output at each node is guaranteed by (2b).
Equations (2c) and (2d) show a model of water desalination.
The convex model of a pipe with a pump is expressed by (2e)
to (2g). Each tank is modeled as a node using (2h) and (2i).
Pressure-reducing valve is modeled by (2j) to control the water
head pressure and the convex model of a pump is modeled by
(2k) and (21). The upper and lower levels of the variables are
shown by (2m) and (2n). Please refer to [23]-[25] for more
details on convex-hull formulation and accuracy.

C. Hydrogen Section

The following mathematical formulations describe the
hydrogen section of the m-EWH nexus, which includes water
electrolysis, an FC unit, a hydrogen tank, and a methanation
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where (3a) shows hydrogen production and (3b) represents
the required water for the electrolysis process. A mass
balance equation for H, is presented by (3c), which takes
into account dissipation rates and the demand for H in the
HDN. Constraint (3d) refers to the Hy consumption level of
FC units based on efficiency and conversion factors, and (3e)
presents the Hs systems’ inverter for reactive power support
[27]. The upper and lower levels of water electrolysis power,
hydrogen tank volume, and hydrogen rate of the FC unit are
shown in (3f) and (3g). The simultaneous operation of
electrolysis and FC units is avoided by (3i). The methanation
system combines the captured carbon with hydrogen to
generate C' H, using a Sabatier reaction [28]. we need 182 g
of hydrogen to recycle 1 kg of carbon, which can be
produced from 1.64 liters of water, based on the chemical
equation for this process (4Hy; + COy; — CHy + 2H50).
The income from selling chemical production is shown by
(3h). As AEL is the most mature technology and has a lower
installation cost than other water electrolysis technologies
[29], we chose to incorporate this technology into the
m-EWH nexus framework. Since AEL starting up takes
approximately 30 to 50 minutes each [30], [31], we consider
a l-hour interval sufficient to change the ON/OFF status.
The ON/OFF status of the AEL will be 0 for 7 continuous
time intervals, totaling 1 hour, after the switch has been
changed from ON to OFF, as indicated in (3j).

III. OPTIMIZATION MODELS FOR REAL-TIME OPERATION

The proposed m-EWH nexus requires actual wind speed to
hatch against issues that occur by wind uncertainty in
real-time optimal operation mode. This paper operates under
the assumption that 5-minute-ahead wind predictions can be
treated as real-time wind speeds, leading to the fixation of
all binary variables in the following 5 minutes. Since the FC,
desalination plant, and water pump can rapidly change their
operational status [23], [32], controlling these devices is
relatively straightforward. In contrast, AEL technology
(which requires startup time and minimum working capacity)
makes optimization more challenging. Optimization models
for other water electrolysis technologies, such as solid oxide
and PEM electrolysis, must be different. This section
presents two optimization models for the real-time operation

of the m-EWH nexus according to two different water
electrolysis technologies. The objective function of these
optimization models that minimizes carbon emissions and
wind power transfer to the power grid, while maximizing

revenue from the sale of chemical production is shown as:
T

b

t=1
where a; to a4 are the parameters that show the penalty [33] or
cost. The first and second terms of (4) aim to minimize power
transfer to the power grid and power generation by the diesel
generator, respectively. The third and fourth terms focus on
reducing carbon emissions and stored carbon. The final term
seeks to maximize income from selling the chemical product.
Solution methods to achieve real-time optimal solutions at high
speed are discussed in Section IV.

(alpi + aspi® + azcs + asc — Itx)v €]

A. Optimization Model for Real-Time Decision-Making of m-
EWH Nexus with AEL

AEL electrolysis is the most common water electrolysis
technology and has a cost advantage in terms of installation,
but it needs one hour for switching. Additionally, AEL
electrolysis requires a minimum operating capacity of 20%.
Due to the presence of devices such as water and hydrogen
tanks that can store and utilize these resources throughout
the day, an operation horizon of 24 hours should be
considered in the optimization model of m-EWH nexus.
Because of the time limitation associated with switching, we
must determine the status of AEL for the next hour (the
subsequent 7T* time steps) at every time step. Here, T* is set
to 12, considering a switching time of 60 minutes and a time
step of 5 minutes. The AEL status for the next hour is
calculated and fixed for the next time step. Other binary
variables can be changed in the following time step
optimization. Algorithm 1 and Fig. 3 illustrate this model.

Algorithm 1: Optimal operation of m-EWH nexus with AEL

Input: day ahead forecasted of wind speed and power/water demand
Wo = {010,010}, Bh = (., pT0), and
Do ={d;°,...,d°}
1 Solve the mixed-integer problem to determine the optimal ON/OFF
status for the initial hour of the day for AEL (Bge*);
2 fori=1to T do

3 Input real-time and day-ahead of wind speed and power/water
demand:F . . .
4 Wi ={v;", 04150 vhph vt =0k,
LF; LF; L, LF; LR
5 P]{:{pi;: 77Fp¢+717~~~7£i+'l]‘}afi =D
— i i i — JR.
6 Di_{di’,dijrl,...,di;_T} ,d;t =dg; ‘
7 Fix the binary variables related AEL for 7° upcoming times to
the values obtained in the previous optimization problem,
BY = B, ;
K3 1—1 >

8 Apply Algorithm 2 mentioned in subsection IV-A to find the
surrogate optimization problem;

9 Solve the surrogate optimization problem;

10 Update the optimal values for the binary variables related to
AEL for the next optimization problem;

11 end

The optimization model for the m-EWH nexus with AEL
technology is shown as follows:
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Fig. 3. Real-time optimization model for the m-EWH nexus with AEL
technology: the intervals that filled with green color show the ON/OFF status
of the AEL which should be fixed within the next 7" time intervals. The blue
circles are obtained in the current optimization problem (b%"f‘g:l) and will be
fixed in the following optimization problem (yellow circles).

min (4)

st (1)—(3)
b =by, Vie{l,.. T,
BbYe bdes bl € {0,1}. 5)

B. Optimization Model for Real-time Decision-Making of m-
EWH Nexus with PEM Technology

The m-EWH nexus may use other water electrolysis
technologies, such as solid oxide and PEM electrolysis.
Since solid oxide electrolysis is still in the research phase,
our focus is on PEM technology, which has recently gained
significant popularity [34]. PEM technology offers faster
switching times and the ability to operate without a
minimum load [29], [35]. As a result, we only need to solve
the following optimization problem at each time step:

min (4)
st (1) —(3),
BBy, bdes bl € {0,1}. (6)

IV. MACHINE LEARNING-ACCELERATED SOLUTION
METHOD

Since we propose to solve problems (5) and (6) in
real-time, the computation efficiency of the solution method
is critical. Even though we have convexified the non-convex
constraints in these problems, the binary variables and the
huge size still make the problem computationally challenging
using conventional optimization methods. This section
introduces the MARO approach, which is based on ACIVP, a
new and fast solution method for solving MICP problems
[19], to find the real-time optimal solution for the m-EWH
nexus. The MARO method consists of three modules: the
ACIVP module, the FSER module, and the SSFR module.
These three modules replace (5) and (6) with a smaller-scale
continuous convex optimization problem. The ACIVP
module ensures rapid speed, the SSFR module ensures
feasible solutions, and the FSER module enhances accuracy,
ensuring highly precise results. Detailed explanations of
these modules are provided in the following subsections.

A. ACIVP Module

We define active constraints as the set of constraints that are
satisfied as equalities at optimality [36]. By identifying the
active constraints, all other non-active constraints can be

removed since they do not influence the optimal solution.
Therefore, predicting active constraints can reduce the size
and complexity of a problem by removing redundant
constraints, which reduces overall solution time. However,
determining active constraints before solving an optimization
problem is a challenge. The ACIVP module method tackles
this by utilizing data-driven techniques to predict these
constraints. This approach involves solving offline
optimization problems, identifying relevant active constraints
post-solution, and employing data-driven methods to predict
future active constraints. Generally, the approach to
generating this dataset largely depends on the specific
practical application and available resources. Any solver or
optimization method can be used to solve the related
optimization problems. For example, using a distributed
approach can increase the speed of creating the dataset.
Notably, this predictive step occurs without solving the
online optimization problem, and solving offline optimization
problems does not notably impact the solution time of the
online prediction process.

The same applies to determining optimal values for binary
variables. The ACIVP method replaces the original problems
with a new optimization problem by forecasting binary
variables and active constraints using data-driven approaches,
allowing us to apply MICP to real-time operations that were
previously impractical. Fig. 4 illustrates this process for (6).
Using the ACIVP module, the original problem with M
constraints and binary variables is replaced by a surrogate
problem with a smaller number of constraints (n), and the
binary variables (b}, b, b b) are replaced by their
optimal values (bf*,b;”eib;‘“*,b?*). Similarly, we have an
equivalent process that applies to (5). So, we can update (2d)
- (2g), and (3f) and replace binary variables by their optimal
values. Now, the surrogate optimization problem is much
easier than the original one because it has a smaller number
of constraints and contains only continuous variables. We
define the optimal strategy as a set of binary variables in the
optimal values and active constraints. It is important to note
that, despite solving optimization problems involving
thousands of variables and constraints, the number of
strategies remains limited to a few dozen or fewer [18].
ACIVP maps the input data, including real-time and
forecasted values of wind speeds, water demand, and power
demand, to the corresponding optimal strategy. Exploring the
relationship between input and output data is achieved
through machine learning techniques like decision trees,
known for their effective classification performance.

P = H(p), (7

where ¢ and 1 are the input and output of the prediction

Input Data
v,d,p

Original Problem Surrogate Problem

All M constraint
-3

b?, be, bEes, bI¢ € {0,1}

Fig. 4. Surrogate the original problem using the ACIVP module: input data
are wind speed, water demand, and power demand.

n active constraints
m<<M)

bf = b}, b}¥® = by’

biles= pdes, b/ = bl
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model, respectively. The prediction model uses the dataset
I = {(¢1,%1), (p2,92), ..., (A7 ¥ary) }» Which is created
by solving offline optimization problems, for the training
task. Creating a robust and accurate hypothesis function
relies heavily on the quality of the training dataset, which is
constructed by solving offline optimization problems. The
process involves tackling Ny independent optimization
problems, leading to the generation of Ny distinct samples
that collectively form the training dataset. Particular attention
must be given to crafting a high-quality dataset to ensure the
resulting hypothesis function generalizes well to unseen data.
The sampling process continues until there is a large enough
set of distinct strategies. We use the missing strategies bound
method and the Good-Turing estimator for the sampling
procedure to build a training data set that covers all probable
strategies [18], [37]. Once we have completed sampling and
creating the dataset, we map its input data to its output data
using the prediction function in (7). Algorithm 2 shows the
ACIVP module for real-time optimal operation of the
m-EWH nexus.

Algorithm 2: Solving the MICP of the m-EWH Using the ACTVP

Input: wind speed, water demand, and power loads

1 Use (7) to find the optimal strategy including optimal values for
binary va*riables and active constraints
W = {bY", by, b bl S}

2 Update (2d) - (2g), and (3f) using optimal binary variables;

3 Remove the redundant constraints;

4 Develop a surrogate optimization problem;

5 Solve the surrogate optimization problem, which is smaller and
continues, to obtain the optimal operation of m-EWH nexus;

Although the ACIVP module is promising and has been
shown to solve some MICPs very quickly [18], it relies on
its ability to identify optimal strategies accurately. Applying
only the ACIVP module to solve the m-EWH nexus problem
may be high risk since m-EWH is a large-scale, complex
system [19]. Predicting active constraints and binary
variables is much more challenging than predicting quantities
that follow clear patterns, like power demands, since the
relationship between inputs, including wind speed, water
demand, and power demand, and outputs, such as active
constraints and binary variables, is not yet well-established.
The resulting optimal solutions can be discredited if the
accuracy of the ACIVP module is not high enough,
regardless of how fast they are generated. Therefore, the
ACIVP module might not always make accurate predictions,
potentially resulting in sub-optimal or infeasible solutions. It
is particularly concerning for our real-time model, where any
infeasibility or inaccuracy could cause problems. In the
following subsections, we discuss the feasibility and
accuracy issues of the ACIVP module and propose two
modules to enhance them.

B. SSFR Module

The accuracy of the ACIVP module may be unsatisfactory
for large-scale, complex problems [19] like (5) and (6).
Therefore, the model may not always provide accurate
predictions, leading to sub-optimal or infeasible solutions. To
address this risk, [18] suggests selecting the k-most likely

classes instead of relying solely on the best-predicted class.
The k-most likely classes method entails mapping input data
to the k-most optimal strategies and then calculating the
sub-optimality and infeasibility of these k strategies to
determine the best one. However, determining the
appropriate value of k can be challenging. Additionally, in
the optimal operation of the m-EWH nexus, we solve 288
optimization problems daily, with each problem solved every
5 minutes, and the optimal solution is consistently updated.
Consequently, the optimal solution at each time slot has a
minor impact on the overall optimal operation and can be
adjusted in subsequent time steps. Thus, sub-optimality is
not a significant issue for the optimal operation. Instead,
improving feasibility probability is more critical. To address
this, we introduce the SSFR module. This module employs a
ranking approach where all strategies are classified and
ranked based on their mappings in the classification section
of the ACIVP module. Starting with the highest-ranked
strategy, the SSFR evaluates the feasibility of each one until
it finds the first feasible optimal strategy. As a result, this
strategy is selected as the optimal strategy, ensuring feasible
outcomes for the surrogate problem. Algorithm 3 shows how
the SSFR identifies the best optimal strategy that ensures
feasibility.

Algorithm 3: SSFR module to select the best feasible strategy

Input: wind speed, water demand, and power loads
1 for ¢ =1 to Ny, do

2 find v; using (7) which is the i-most likely optimal strategy;
3 if the surrogate problem using v; is feasible then

4 | gotostep 7;

5 end

6 end

7 1; is the best optimal strategy that is feasible;

C. FSER Module

The effectiveness of the ACIVP module crucially hinges on
its ability to identify optimal strategies accurately. However,
the ACIVP module may exhibit unsatisfactory accuracy
when applied to large-scale problems. Although we have
previously demonstrated the ability to reach a feasible
optimal strategy, enhancing the accuracy of the ACIVP
module remains a significant challenge. In response, we
propose the FSER module to improve the accuracy of the
ACIVP solution for addressing the complex optimal
operation problem of the m-EWH nexus. Since the additional
features can enhance learning performance [38], we propose
to improve the accuracy of the ACIVP module by expanding
the feature space. In the proposed FSER module, the input
and output layers of each stage are designed with different
learning targets, namely newly developed features, to correct
mapping model learning errors. Through solving offline
optimization problems, various types of raw data, such as
optimal values of binary variables, are generated. An
additional feature is introduced at each stage of the FSER
module using raw data to improve learning accuracy. It
depends on the learning targets to determine how many
stages are needed in each case. Similar to (7), the prediction
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functions map the input data of each stage to the output
data. These prediction functions for the FSER module are:

F1 = HISER (), Stage 1

®)

O =HISR({p, Fy, Fo, ..., F—1}), Stage K
where F; is predicted as the first stage output. F; is then
added as an additional feature in stage two to enhance the
accuracy of JFj, which is an output of the second stage. At
the end of the final stage, all of the output data are predicted.
Algorithm 4 and Fig. 5 show the FSER module for improving
the prediction accuracy of the optimal strategy.

AlgOl‘ithm 4: FSER module for improving the accuracy

Input: Input data: wind speed, water demand, and power loads
1 Define a new feature (F71) and predict it base on (8):
Fi = Hl;SER(Lp);
2 fori=1to K —2do
3 Develop new features using (8):
Fit1 = HER (@, F1, o Fi)s

4 end
5 Predict the optimal strategy by using all of the developed features:
¥ =HER{ o, F1, Fa, ..., Fc—1}):

While the ACIVP module uses (7) to predict the optimal
values of all binary variables and the set of active constraints
in one stage, the proposed FSER module includes C different
stages and uses (8) to improve the accuracy of the prediction.
In the first stage, the proposed method predicts a portion of
binary variables in 7, which is used as an additional feature
in the next stage. The input data of stage 2 will be updated with
this value to improve its accuracy in the prediction of F5 which
contains another portion of binary variables. The process will
continue to the last stage, where all binary variables and active
constraints will be predicted more accurately. After that, the
related constraints will be updated and the surrogate problem
will be developed. To conduct a successful analysis, it will be
necessary to revise the initial dataset into K datasets using the
following approach: T'FSER —

{erh A7}, Hena b AP ) Stage 1
({9917]:1-,1}7 {]:211})7 ey ({Lp-vd7f17/\/—d}7 {}-‘Z,Nd})v Stage 2
(rs s Femra b AFcad)s - onis - Fooin b {Fe ). Stage K

In the FSER module, the learning errors of the ACIVP
module diminish gradually, leading to an increase in
accuracy. However, achieving high accuracy in feature
prediction at each stage can be challenging. To address this
challenge, we propose a feature refinement method to
enhance feature prediction, further improving the accuracy.
Besides, The architecture of the FSER module, which
focuses on incorporating more features and expanding the
feature space to enhance learning accuracy, may have

Stage 1 Stage 2 Stage X
H [ Input data ] E _‘b[ Input data Input data
; 4 : .7 @ Fy, e, Froy
; ¥ : ¥

'
g

VA i
o !
! Use (10) to predict !
P ¥ )

: H
i Use (10) to predict ||
\ Fy !

Use (10) to predict
] 7,

Fig. 5. FSER module for improving the prediction accuracy.

different stages and features depending on the application.
We explain the feature refinement and stage design in the
following subsection.

1) Enhancing Efficiency of FSER using Feature Refinement

The feature refinement method evaluates the predicted
features at each stage and refines them as necessary.
Algorithm 5 and Fig. 6 illustrate the iterative process of
feature refinement.

Algorithm 5: Feature development and refinement

Input: Input data
Define the first feature (F7) and predict it base on (8):
F1 = HPE (0);
2 Define the second feature (F2) and predict it base on (8):
Fy = HEER (g, F);
while rrue do
Develop the feature checker using /1 = HII;SER(QO, F2);
if |./—‘/1 - ]‘—1‘ < ¢ then
‘ break;
end
Fi+ Flu
go to line 2;

-

[N I .

10 end
11 Fp and Fo are final developed refine features;

Initially, we generate F; by mapping the original input data.
Subsequently, we create 5 by mapping both the original input
data and F;. We then construct a feature checker (F'1) by
mapping the original input data and F5. It allows us to provide
feedback to evaluate the accuracy of predicting F, refining
it as necessary. If 7’y closely matches Fi, the two developed
features are considered accurate. Otherwise, we replace JF;
with F’; and iterate this process until this criterion is met.

2) Stage Design and Ordering of FSER Module

This section proposes different methods for designing the
FSER module to enhance the accuracy. Different scenarios
are proposed to create new features, determine the number of
stages, and develop the FSER module.

« Physical Features: New features can be created through
consideration of the physical interpretation of the
problem. The suggested design is beneficial for solving
problems that involve various types of equipment with
binary variables in their models. We begin by predicting
binary variables related to a specific piece of equipment.
This prediction is then used as a feature to enhance the
accuracy of predicting another set of binary variables
associated with other types of equipment. This
procedure continues until the final stage. For example,
the mathematical model of the m-EWH nexus contains
binary variables for four equipment types: pumps,
desalination, FC, and electrolysis. Therefore, we can
divide the binary variables into four groups based on
their physical meaning, and each group of these four
groups is assigned to a specific stage. The features are

Fig. 6. Feature development and refinement.
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Sell the product

TABLE 1 Emitted carbon
FEATURE SELECTION METHODS AND CORRESPONDING FEATURES
Method  Ngtage Features
Physical 5 bP* ples® pfet pwe S
Time 289 bY", bles” it p¥e 4S8 v k€ {1,...,288}
Number 2017 bf, ., bdes*  pfer  p¥e oS v ke {1,...,288)
Coupled 3 {bP*, bdes™} [bfc* p¥e*} 45

{F1, Fo, F3, Fu, Fs} = {bltJ*vb(tjes*’bgc*vb;ve*v'yts}' We
develop a five-stage FSER module for our optimization
model, which improves the accuracy.

« Temporal Features: Another approach to dividing
binary variables and active constraints is based on
temporal features. A dataset consisting of 7 time steps
is examined, and binary variables are divided into 7T
distinct groups, thereby generating 7 novel features.
This design can be suitable for solving problems that
involve multi-periodic operations. The binary variables
associated with the first time step will be predicted and
used as supplementary features in the second stage. This
process will persist until the final stage. For example,
the m-EWH nexus model has four types of binary
variables over 7 time steps. We can group the binary
variables into 7 groups based on time and assign each
group to a specific stage. So, the set of new features is
Fio = (b2 b0 b by A5V vV ke {1,2,., T}

e Number of Binary Variables Features: Another
method for categorizing binary variables involves
dividing them based on their quantity. Our proposal
suggests dividing the binary variables into /K groups,
where each group has an equal number of binary
variables, regardless of their physical interpretation.
This process results in /C separate stages within the
dataset, each containing K distinct features. Since this
design is based on the number of facilities with binary
variables in their models, it will differ for different
m-EWH nexus case studies.

o Correlation Features: We propose to predict a certain
binary variable and use it as a new feature for the
prediction of another binary variable that shares some
high degree of interdependence. The new features could
provide a more comprehensive understanding of the
underlying relationships and improve accuracy and
performance. For example, (3i) indicates a strong
relationship between binary variables of FC units and
electrolysis in a m-EWH nexus operation. Predicting
one variable early and using it as an additional feature
for predicting the other can improve accuracy.

Table I summarizes the stage design method and provides a
clear overview of all selected features, including the number
of stages (ranging from 3 to 2017 stages) and justifications for
their inclusion based on relevant parameters.

V. CASE STUDY

A. Introducing Test Beds
We demonstrate the robustness of the proposed method by
examining it on two test beds as shown in Fig. 7 and Fig. 8.

Fig. 8. A m-EWH nexus for a small stand-alone island

The IEEE 13-bus system with an 8-node EPANET WDN can
represent a small stand-alone coastal city and the 33-bus
distribution system with a 13-node Otsfeld WDN can be
used for a remote small island. The first case study has
41474 constraints and 107717 variables, while the second
has 82947 constraints and 246536 variables. Power, water,
and hydrogen systems are distinct entities on a larger scale,
and they have conflicts between them, making their
collaboration impractical. Training data sets are built by
solving offline optimization problems using wind speed and
load data. 24-hour wind speed curves are extracted between
2008 and 2022 [39] and interpolated wusing spline
interpolation every five minutes. 24-hour nodal load curves
of power demand, excluding water pumps and desalination,
are also extracted [40] and interpolated every five minutes.
The same data collection can be used for practical systems
until the m-EWH nexus concept is widely adopted. Once the
m-EWH nexus becomes more common, real operational data
from existing m-EWH systems can be collected and used.
Upon dataset construction, we evaluate the proposed
methods using real data, including actual wind speed and
load data, derived from the Midcontinent Independent
System Operator [41]. For each case study, we utilize these
data to determine the optimal operation of the m-EWH
nexus, incorporating two distinct water electrolysis
technologies. The optimal operations are obtained by solving
the related optimization problems using the MOSEK solver
through Yalmip. All simulations are performed in the
MATLAB R2019b environment on a system with an Intel
Core 17-9700 CPU running at 3 GHz and 16 GB of RAM.

B. Importance of Online Optimization for m-EWH Nexus

We employ real-time optimization models from section III to
achieve optimal operation of the proposed m-EWH nexus.
Fig. 9 illustrates the optimal operation for the initial three
consecutive time intervals. The black line denotes the power
load demand, encompassing the water pump, desalination,
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Fig. 9. m-EWH nexus optimal operation in three consecutive time steps (00:05, 00:10, 00:15). First row: the first case study (AEL: solid line. PEM: dashed

line), second row: the second case study (AEL: solid line. PEM: dashed line).

and PDN loads. Red represents diesel power generation,
green shows available wind energy after water electrolysis,
blue indicates power demand for electrolysis, cyan represents
FC unit power, and orange depicts diesel generator power for
AEL electrolysis when wind energy is low. In this figure, the
dashed line corresponds to the m-EWH nexus with PEM
water electrolysis, while the solid line corresponds to the
m-EWH nexus with AEL water electrolysis. This figure
underscores the critical need for real-time optimal operation
of the m-EWH nexus, as any deviation between forecasted
and actual wind speeds can significantly impact optimal
operation. Therefore, it is imperative to solve the related
optimization problem rapidly to adjust the system’s operation
for optimal performance. By implementing the real-time
optimal operation of the proposed m-EWH nexus, we can
significantly reduce costs while achieving a better balance
between supply and demand, leading to more efficient
resource management. This system enhances sustainability
by capturing and reusing all carbon emissions, contributing
to a more resilient and environmentally friendly energy
infrastructure. Additionally, it maximizes wind energy
harvesting without compromising grid stability. The m-EWH
nexus effectively addresses capacity limitations that often
lead to renewable energy curtailments, ensuring the smooth
and reliable integration of wind energy into the grid. These
advancements result in a more sustainable, cost-effective,
and robust energy system.

C. Evaluating the Solution Time of the MARO Method

Solving the m-EWH nexus optimization problems through
conventional approaches is a lengthy process that requires
over 15 minutes. Employing the proposed methods, we can
replace the initial problem with a surrogate one, and achieve
optimal real-time operation of the m-EWH nexus in just a
few seconds. Table II compares the solution times of
conventional approaches, the OMIO method [19], and the
proposed MARO method for two case studies. The
conventional approach involves solving the MICP directly
using established optimization solvers. In contrast, OMIO, a

leading academic solution method, enhances solution speed
by leveraging machine learning techniques. It learns the
mapping between key problem parameters and an encoded
optimal solution for integer variables and active constraints.
On the other hand, the MARO method comprises three
modules designed to accelerate solution times, ensure a
feasible solution, and maintain high result accuracy. Table II
illustrates the superior efficacy of the OMIO and MARO
methods. The current assumption is that a 5-minute ahead
wind speed prediction is sufficiently accurate, and
simulations are conducted based on this assumption.
According to Table II, if we have access to wind speed
predictions with a lead time of 1 minute or less, the MARO
method demonstrates the capability to achieve optimal
operation of the m-EWH nexus. This is possible because the
required solution time for this method is only a few seconds.
The solution times of the OMIO and MARO methods are
similar after finding the surrogate problem. Both methods
can solve the optimization problem in seconds. However, the
key difference lies in the accuracy of finding optimal values
for binary variables and active constraints, where the MARO
method enhances the feasibility and accuracy. In the
following subsection, we will compare and discuss these
differences.

TABLE I
SOLUTION TIME OF OPTIMIZATION METHODS

Solution Time (s)

Case Study — Time  —~ vermonal  OMIO MARO
0005 936,41 T62 163
AEL “00:70 89216 182 147
Fire 015 914,53 132 183
00:05 592.70 124 107
PEM “00:10  562.99 T30 L.I9
0015 984,50 115 138
0005 129441 780 303
AEL “00:T0 126374 300 367
Second 0015 1986.70 296 311
00:05 873.07 305 286
PEM ~00:10 87320 260 286
0015 T011.04 317 298
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TABLE III
FEASIBILITY ASSESSMENT OF OMIO AND MARO METHODS

OMIO (k-most optimal) (%)

Case =1 k=10 =70 MARO (SSFR module) (%)
1 73 90 95 100
i 69 91 94 100
TABLE IV
ACCURACY ASSESSMENT OF OMIO AND MARO METHODS
MARO (%)

Case  OMIO (%) Physical Time Number Coupled

1 77.58 98.92 94.53 88.72 94.17

I 7491 97.73 93.17 87.32 93.46

D. Feasibility and Accuracy Evaluation

This section evaluates the potential shortcomings of the
ACIVP module, which may occasionally result in inaccurate
predictions and suboptimal or infeasible solutions. Table III
compares the feasibility percentages of the OMIO method,
which relies only on ACIVP, and the proposed MARO
method. This table demonstrates that the k-most optimal
strategy in OMIO method increases feasibility from 73% (for
k = 1 which is the only ACIVP module) to 90% (for k = 10)
and 95% (for k = 20) in the first case study, and from 69%
to 91% and 94% in the second case study. Ultimately, the
SSFR module in the proposed MARO method achieves a
feasibility rate of 100%, demonstrating its effectiveness in
improving the feasibility of the proposed method.

After refining the feasibility, we introduced the FSER
module as a means to enhance the accuracy. This strategy
includes developing new features with iterative refinement
through multiple stages, to increase overall accuracy. The
first design is a physical features-based design, resulting in a
five-stage MARO with stages related to the pump, water
desalination, FC units, water electrolysis, and active
constraints. The second design is based on time, dividing
binary variables into 288 time intervals of 24 hours. This
results in a 289-stage MARO with 288 stages related to
binary variables and one stage related to active constraints.
The third design is based on the number of binary variables.
Binary variables are divided into two groups to create a
three-stage MARO. The last one is based on correlation,
combining FC units and water electrolysis into one group
and water pumps and desalination into another, resulting in a
three-stage MARO with two stages related to binary
variables and one stage related to active constraints. Table IV
displays the accuracy of each design. This table shows that
the proposed MARO method increases the accuracy. Out of
four suggested design types, the physical design shows the
greatest level of precision with a score of 98.92%.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a machine learning-accelerated
method for real-time optimization of the m-EWH nexus,
aiming to reduce carbon emissions while maximizing wind
energy utilization. By utilizing wind energy, hydrogen can be
produced through electrolysis along with captured carbon to
mitigate power sector carbon emissions. The paper develops

MICP models and control strategies based on water
electrolysis technology to achieve optimal operation. To
address the computational challenges involved in solving
MICP, the paper introduces the MARO method, which
comprises three modules. The ACIVP module predicts
binary variable values and a limited set of constraints likely
to contain all active constraints based on historical
optimization data. Furthermore, the MARO method enhances
feasibility and accuracy by implementing the SSFR and
FSER modules. The SSFR module ensures the feasibility of
the solution, increasing the feasibility probability to around
70%. The FSER module incorporates a multi-stage design
with iterative refinement to develop new features, resulting in
a 27.44% improvement in accuracy. Two case studies of the
m-EWH nexus validate the proposed system and solution
method, demonstrating significant reductions in solution time
and improvements in accuracy and feasibility. This enables
real-time optimal operation of the m-EWH nexus, effectively
addressing the intermittent nature of wind energy and power
demand.

In future work, we aim to explore contingencies in power,
water, and hydrogen systems to ensure secure and resilient
operations. We will evaluate the application of the MORA
method in security-constrained optimization problems,
focusing on identifying critical contingencies and solving
these problems efficiently. To further enhance system
intelligence and reduce computational costs, we plan to
explore and compare machine learning classification methods
for accurately predicting active constraints and binary
variables. Additionally, we will explore hybrid optimization
methods that combine metaheuristics with traditional
techniques to improve solution robustness. Finally, we intend
to collaborate with public administration experts to address
potential regulatory challenges.
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