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Machine Learning-Accelerated Method for Real-Time

Optimization of Micro Energy-Water-Hydrogen Nexus

Mostafa Goodarzi and Qifeng Li, Senior Member IEEE

Abstract—This paper explores the micro Energy-Water-
Hydrogen (m-EWH) nexus, an engineering system designed to
reduce carbon emissions in the power sector. The m-EWH
nexus leverages renewable energy sources (RES) to produce
hydrogen via electrolysis, which is then combined with carbon
captured from fossil fuel power plants to mitigate emissions. To
address the uncertainty challenges posed by RES, this paper
proposes a real-time decision-making framework for the
m-EWH nexus, which requires the rapid solution of large-scale
mixed-integer convex programming (MICP) problems. To this
end, we develop a machine learning-accelerated solution
method for real-time optimization (MARO), comprising three
key modules: (1) an active constraint and integer variable
prediction module that rapidly solves MICP problems using
historical optimization data; (2) an optimal strategy selection
module based on feasibility ranking to ensure solution
feasibility; and (3) a feature space extension and refinement
module to improve solution accuracy by generating new
features and refining existing ones. The effectiveness of the
MARO method is validated through two case studies of the
m-EWH nexus, demonstrating its capability to swiftly and
accurately solve MICP problems for this complex system.

Index Terms—Active constraints prediction, Energy water
hydrogen nexus, Feature expansion, Feature refinement, Green
hydrogen, Integer variables prediction, Machine learning,
Mixed-integer convex program, Real-time optimization.

NOMENCLATURE

Abbreviations

ACIVP Active Constraints and Integer Variables Prediction

AEL Alkaline Electrolysis

CCS Carbon Capture Systems

EDWF Electricity-Driven Water Facility

EWH Energy-Water-Hydrogen

FC Fuel Cell

FSER Feature Space Extension and Refinement

HDN Hydrogen Distribution Network

MARO Machine Learning-Accelerated Solution Method for

Real-Time Optimization

MICP Mixed-Integer Convex Programming

m-EWH Micro Energy-Water-Hydrogen

OMIO Online Mixed-Integer Optimization

PDN Power Distribution Network

PEM Proton Exchange Membrane

RES Renewable Energy Sources

SSFR Strategy Selection Based on Feasibility Ranking

W2H Wind-to-Hydrogen

WDN Water Distribution Network
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Parameters

η Constant efficiency of the pump

ξdge Carbon emission of a diesel generator factor

ξdsp Hydrogen tank disappearance factor

ξwe
p Energy for hydrogen production factor

ξwe
w Water for hydrogen production factor

ξfch Hydrogen for power generation by FC factor

ξ
χ
c Chemical production by captured carbon factor

ρχ Chemical production price

Awt Water tank area

dn Water demand at node n

dwe Water demand of water electrolysis

e1 to e4 Power for water production by desalination factors

pl, ql Active and reactive power load

pwind Wind power

PR Maximum reduced pressure value

rwq Head loss coefficient of pipe q

rij , xij Resistance and reactance of line ij

sij Maximum apparent power of line ij

shs Maximum apparent power of hydrogen system

vF, vR Forecasted and real wind speed

Variables

bdes, bp Binary variables related to desalination and pump

bfc, bwe Binary variables related to FC and water electrolysis

cdg Carbon emission of the diesel generator

ce Emitted carbon to the atmosphere

cs, cχ Captured carbon for storing and reusing

fdes Water production of desalination

fn, fq Water flow of node n and pipe q

fwt Water flow of water tank

hd Hydrogen demand of hydrogen loads

hfc Hydrogen demand of FC

hwe Hydrogen production by water electrolysis

Iχ Income from selling the chemical product

Iij Square of the current magnitude in line ij

pij , qij Active and reactive power of line ij

pdes Power of water desalination

pdg, qdg Active and reactive power of diesel generator

pfc FC output power

phs, qhs Active and reactive power of hydrogen system

pp Power demand of pump

psw, qsw Surplus active and reactive power of wind farm

pt Transferred power to the power network

pwe Power of water electrolysis

pwedg Power of diesel generator for water electrolysis

V ht Volume of hydrogen tank

V wt Volume of water tank

Vi Square voltage of bus i

yGq Head gains imposed by the pump in the pipe q

yn, y
wt Water head of the node n and the water tank
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I. INTRODUCTION

T
HIS paper expands on the EWH nexus, initially

introduced to mitigate carbon emissions on the power

generation side of power systems [1], where fossil fuel

power plants are equipped with CCS. Unlike conventional

hydrogen production, the EWH nexus concentrates on green

hydrogen from water electrolysis using RESs as an

eco-friendly alternative. We introduce the m-EWH nexus,

specifically designed for small communities like small

islands, isolated coastal cities, and remote villages, where a

single entity controls critical infrastructures. In these areas,

which heavily rely on diesel generators with carbon

emissions [2], [3], the m-EWH nexus emerges as a solution

to curb carbon emissions, foster RESs integration, and

address electrolysis’ water intensity by proposing water

network integration. Notably, our focus lies on the

distribution side, highlighting the interconnections of water

and power systems at this level, setting our study apart from

previous works centered on the generation side.

Different RES, such as solar, wind, hydro, biomass, and

geothermal, have been extensively studied in green hydrogen

production [4]. This paper focuses on wind energy and W2H

technology within the context of the m-EWH nexus. Notably,

certain previous studies examining W2H applications did not

consider wind uncertainty [5]–[8], relying instead on

day-ahead wind speed predictions that may deviate from

actual data [9]. Although several studies addressed wind

energy uncertainty through probabilistic [10], robust

optimization [11], and stochastic [12] methods, these

optimization models under uncertainty have some significant

limitations. For example, a deterministic approximation for a

large engineering system is typically computationally

intractable. In contrast, this paper proposes a real-time

approach to optimize the operation of the m-EWH nexus,

avoiding reliance on long-term wind forecasts exceeding 5

minutes. Instead of making decisions ahead-of-real-time, this

paper proposes to solve the optimal operation of the m-EWH

nexus in real-time, eliminating the reliance on long-term

(longer than 5 minutes) wind forecasts. Despite the slow

dynamics, hydrogen and water systems in the m-EWH nexus

face significant uncertainty due to reliance on renewable

energy, water scarcity, and variability in hydrogen demand,

making it impractical to rely solely on large-scale storage.

This paper proposes a real-time decision-making scheme

for hedging against uncertainty in the context of the m-EWH

nexus. A convex mathematical model for m-EWH is

employed to formulate the optimization problem as a

real-time decision-making process, resulting in a large-scale

MICP. Despite convexifying continuous non-convex

constraints, the presence of binary variables in the

optimization problem classifies it as MICP. Recently, there

has been significant interest in using machine learning to

address MICP. For example, in [13], they applied machine

learning to fine-tune hyperparameters in optimization

algorithms. Learning-based strategies have been explored to

develop efficient branching rules for solving mixed-integer

optimization problems [14]. A specialized method using

Fig. 1. Machine learning-accelerated for real-time optimization method.

neural networks has been proposed to solve MICP problems

with logical constraints [15]. On the theoretical side, in [16],

the authors analyzed the sample complexity involved in

selecting cutting planes to use during the branch-and-cut

algorithm of integer optimization solvers. Furthermore, in

[17], the authors examined the sample complexity of

learning high-quality hyperparameters in optimization

algorithms. Despite these extensive efforts to solve MICP

problems online, a gap remains between the solution times

and the accuracy constraints required by many applications.

To address the computational challenges of solving this

optimization problem in real-time with high accuracy, we

introduce MARO which comprises three distinct modules:

the ACIVP module, the SSFR module, and the FSER

module (as shown in Fig. 1). Utilizing historical data, the

ACIVP module maps input parameters to an optimal strategy

to determine optimal values for binary variables and a set of

active constraints [18]. The SSFR module ensures the

feasibility of the proposed machine learning-accelerated

approach. The FSER module enhances accuracy by

developing new features derived from the raw data generated

through offline optimization in the learning process. The

FSER module includes two components: feature refinement

and stage design and ordering. The feature refinement

method evaluates predicted features at each stage and refines

them as necessary. We delve into the impact of stage design

and ordering on the performance of the FSER module,

providing a comprehensive exploration of factors influencing

its efficacy. These three modules work together to reduce the

MICP problem to a smaller, continuous convex optimization

problem that can be solved rapidly, enabling the application

of MICP to online problems previously out of reach [19].

In summary, the main contribution and novelty of this paper

lie in the development of the MARO approach, which can

solve the MICP of the m-EWH nexus in real-time, ensuring

both high accuracy and solution feasibility. The rest of this

paper is organized as follows. Section II presents the system

design and mathematical model of the m-EWH nexus. The

optimization models for real-time operation are discussed in

section III. Section IV explains the online solution method.

Section V presents two case studies to validate this method.

Finally, conclusions and future works are drawn in section VI.

II. MATHEMATICAL MODELS OF m-EWH NEXUS

This section explains the different components and the

mathematical model of an m-EWH nexus. Fig. 2 shows a

typical m-EWH nexus that includes a power section (red), a
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Fig. 2. A typical m-EWH nexus for remote coastal area:→ power,→ water,
→ hydrogen, → carbon, → chemical product.

water section (blue), and a hydrogen section (green). This

m-EWH nexus is designed for small communities in remote

coastal cities/small islands, in which a unified entity controls

the entire system. A diesel generator, enhanced with

small-scale CCS [20], meets a significant portion of the PDN

demand, while a wind farm provides green energy for

electrolyzing water. Excess wind energy is fed into the PDN

for flexible loads like EDWFs. When there is a surplus of

wind energy, it can be transferred to the power grid, while

during periods of heavier load, the power grid supports

distribution-side loads. The water section includes the WDN

and EDWFs. The hydrogen section includes electrolysis,

HDN, methanation, and an FC unit. Hydrogen generated by

electrolysis is used in various applications, including

satisfying the hydrogen network’s demand, methanation to

reuse captured carbon, and converting unpredictable wind

energy into controllable energy through FC units. In the

following subsections, we explain the mathematical models

of different components of the m-EWH nexus.

A. Power Section

Power flow in the PDN can be modeled using several

formulations. The Distflow model involves bus variables

and branch variables and can be used to model both active

and reactive power flow in the PDN. The convex model of

the power section is expressed by [21]:

Vi,t − Vj,t = 2(rijpij,t + xijqij,t)− (r2ij + x2ij)Iij,t, (1a)

p2ij,t + q2ij,t ≤ Vi,tIij,t, (1b)

ViViIij,t + sij
2Vi,t ≤ sij

2(Vi + Vi) (1c)

p2ij,t + q2ij,t ≤ sij
2, (1d)

∑

k

(pki,t) + rijIij,t − pij,t = p
dg
i,t + pswi,t + phsi,t − pli,t, (1e)

∑

k

(qki,t) + xijIij,t − qij,t = q
dg
i,t + qswi,t + qhsi,t − qli,t, (1f)

pdg
i
, qdg

i
,Vi, Iij ≤ p

dg
i,t, q

dg
i,t ,Vi,t, Iij,t ≤ p

dg
i , q

dg
i ,Vi, Iij (1g)

pt
t = pwind

t − (pwe
t + psw

t ) + p
wedg
t . (1h)

c
dg
t = ξdg

c p
dg
t , (1i)

ce
t = c

dg
t − cs

t − c
χ
t , (1j)

Constraints (1a) to (1d) are related to Ohm’s law. The nodal

balance of active and reactive power can be determined by

(1e) and (1f), respectively. The upper and lower bounds for

variables are described by (1g). The m-EWH nexus may not

be able to capture all wind energy due to its volatility and

unpredictable characteristics. The power grid can serve as a

large energy storage system for capturing excess wind power,

as shown with (1h). Constraints (1i) and (1j) show the model

of carbon emissions resulting from diesel generation, which

consists of three parts: emitted parts, ones reused for chemical

production, and ones stored [22].

B. Water Section

A convex-hull model for the water section of the m-EWH

nexus, including water desalination, mass flow conservation

law, pipe flow, water pumps, water tank, and pressure-reducing

valves, is given [23]–[26]:

Ŷ





≤ (2
√
2− 2)rwq fqfq,t + (3− 2

√
2)rwq f

2

q,

≥ (2
√
2− 2)rwq fqfq,t − (3− 2

√
2)rwq f

2

q
,

≥ 2rwq fqfq,t − rwq f
2

q,

≤ 2rwq fqfq,t + rwq f
2

q
.

(2a)

∑

m

fnm,t = fdesn,t − dn,t + fwt
n,t, (2b)

pdes
t = e× f des

t , (2c)

e =





e1, 0 ≤ fdest ≤ 0.25bdest f
des

e2, 0.25bdest f
des ≤ fdest ≤ 0.5bdest f

des

e3, 0.5bdest f
des ≤ fdest ≤ 0.75bdest f

des

e4, 0.75bdest f
des ≤ fdest ≤ bdest f

des

(2d)

Ŷ + yGq,t − rwq (fq,t)
2 ≥M(bpq,t − 1), (2e)

Ŷ + yGq,t − rwq fqfq,t ≤M(1− b
p
q,t), (2f)

0 ≤ fq,t ≤ b
p
q,tfq, (2g)

V wt
n,t+1 = V wt

n,t + fwt
n,t, (2h)

Awt
n (ywt

n,t+1 − ywt
n,t) = fwt

n,t, (2i)

− PR ≤ Ŷ ≤ PR, (2j)

ηp
p
i,t ≥ 2.725× (a1(fq,t)

2 + a0fq,t) (2k)

ηp
p
i,t ≤ 2.725× (a1fq + a0)fq,t, (2l)

fdes
n
, fwt

n
, V wt

n ≤ fdesn,t , f
wt
n,t, V

wt
n,t ≤ f

des

n , f
wt

n , V
wt

n , (2m)

y
n
, f

p
≤ yn,t, fp,t,≤ yn, fp, (2n)

where Ŷ = yn,t−ym,t+hq , and hq is the elevation difference

between nodes n and m. Constraint (2a) shows a convex-hull

model for head loss along a regular pipe. The equality of water

injection and water output at each node is guaranteed by (2b).

Equations (2c) and (2d) show a model of water desalination.

The convex model of a pipe with a pump is expressed by (2e)

to (2g). Each tank is modeled as a node using (2h) and (2i).

Pressure-reducing valve is modeled by (2j) to control the water

head pressure and the convex model of a pump is modeled by

(2k) and (2l). The upper and lower levels of the variables are

shown by (2m) and (2n). Please refer to [23]–[25] for more

details on convex-hull formulation and accuracy.

C. Hydrogen Section

The following mathematical formulations describe the

hydrogen section of the m-EWH nexus, which includes water

electrolysis, an FC unit, a hydrogen tank, and a methanation
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system:

hwe
t = ξwe

p pwe
t (3a)

dwe
t = ξwe

w hwe
t , (3b)

V ht
t+1 = (1− ξdsp)V ht

t + (hwe
t − hfc

t − hd
t), (3c)

pfc
t = ξfc

h h
fc
t , (3d)

(pwe
t − pfc

t )
2 + (qhs

t )
2 ≤ (shs)2, (3e)

bfc
t h

fc, bwe
t p

we ≤ hfc
t , p

we
t ≤ bfc

t h
fc
, bwe

t p
we, (3f)

V ht ≤ V ht
t ≤ V

ht
(3g)

I
χ
t = ρχ ξχc c

χ
t . (3h)

bwe
t + bfc

t ≤ 1, (3i)

T s∑

l=0

(
bwe
t+l

){
= 0, if bwe

t − bwe
t−1 < 0

≥ 0, if bwe
t − bwe

t−1 ≥ 0
, (3j)

where (3a) shows hydrogen production and (3b) represents

the required water for the electrolysis process. A mass

balance equation for H2 is presented by (3c), which takes

into account dissipation rates and the demand for H2 in the

HDN. Constraint (3d) refers to the H2 consumption level of

FC units based on efficiency and conversion factors, and (3e)

presents the H2 systems’ inverter for reactive power support

[27]. The upper and lower levels of water electrolysis power,

hydrogen tank volume, and hydrogen rate of the FC unit are

shown in (3f) and (3g). The simultaneous operation of

electrolysis and FC units is avoided by (3i). The methanation

system combines the captured carbon with hydrogen to

generate CH4 using a Sabatier reaction [28]. we need 182 g
of hydrogen to recycle 1 kg of carbon, which can be

produced from 1.64 liters of water, based on the chemical

equation for this process (4H2 + CO2 → CH4 + 2H2O).

The income from selling chemical production is shown by

(3h). As AEL is the most mature technology and has a lower

installation cost than other water electrolysis technologies

[29], we chose to incorporate this technology into the

m-EWH nexus framework. Since AEL starting up takes

approximately 30 to 50 minutes each [30], [31], we consider

a 1-hour interval sufficient to change the ON/OFF status.

The ON/OFF status of the AEL will be 0 for T s continuous

time intervals, totaling 1 hour, after the switch has been

changed from ON to OFF, as indicated in (3j).

III. OPTIMIZATION MODELS FOR REAL-TIME OPERATION

The proposed m-EWH nexus requires actual wind speed to

hatch against issues that occur by wind uncertainty in

real-time optimal operation mode. This paper operates under

the assumption that 5-minute-ahead wind predictions can be

treated as real-time wind speeds, leading to the fixation of

all binary variables in the following 5 minutes. Since the FC,

desalination plant, and water pump can rapidly change their

operational status [23], [32], controlling these devices is

relatively straightforward. In contrast, AEL technology

(which requires startup time and minimum working capacity)

makes optimization more challenging. Optimization models

for other water electrolysis technologies, such as solid oxide

and PEM electrolysis, must be different. This section

presents two optimization models for the real-time operation

of the m-EWH nexus according to two different water

electrolysis technologies. The objective function of these

optimization models that minimizes carbon emissions and

wind power transfer to the power grid, while maximizing

revenue from the sale of chemical production is shown as:
T∑

t=1

(
a1p

t
t + a2p

dg
t + a3c

e
t + a4c

s
t − I

χ
t

)
, (4)

where a1 to a4 are the parameters that show the penalty [33] or

cost. The first and second terms of (4) aim to minimize power

transfer to the power grid and power generation by the diesel

generator, respectively. The third and fourth terms focus on

reducing carbon emissions and stored carbon. The final term

seeks to maximize income from selling the chemical product.

Solution methods to achieve real-time optimal solutions at high

speed are discussed in Section IV.

A. Optimization Model for Real-Time Decision-Making of m-

EWH Nexus with AEL

AEL electrolysis is the most common water electrolysis

technology and has a cost advantage in terms of installation,

but it needs one hour for switching. Additionally, AEL

electrolysis requires a minimum operating capacity of 20%.

Due to the presence of devices such as water and hydrogen

tanks that can store and utilize these resources throughout

the day, an operation horizon of 24 hours should be

considered in the optimization model of m-EWH nexus.

Because of the time limitation associated with switching, we

must determine the status of AEL for the next hour (the

subsequent T s time steps) at every time step. Here, T s is set

to 12, considering a switching time of 60 minutes and a time

step of 5 minutes. The AEL status for the next hour is

calculated and fixed for the next time step. Other binary

variables can be changed in the following time step

optimization. Algorithm 1 and Fig. 3 illustrate this model.

Algorithm 1: Optimal operation of m-EWH nexus with AEL

Input: day ahead forecasted of wind speed and power/water demand

W0 = {vF0
1
, ..., v

F0
T
}, PL

0
= {p

L,F0
1

, ..., p
L,F0
T
}, and

D0 = {dF0
1
, ..., d

F0
T
}

1 Solve the mixed-integer problem to determine the optimal ON/OFF

status for the initial hour of the day for AEL (Bwe*
0 );

2 for i = 1 to T do

3 Input real-time and day-ahead of wind speed and power/water
demand:

4 Wi = {v
Fi
i , v

Fi
i+1

, ..., v
Fi
i+T
}, v

Fi
i = vR

i ,

5 P
L
i = {p

L,Fi
i , p

L,Fi
i+1

, ..., p
L,Fi
i+T
} , p

L,Fi
i = pL,R

i ,

6 Di = {d
Fi
i , d

Fi
i+1

, ..., d
Fi
i+T
} , d

Fi
i = dR

i ;

7 Fix the binary variables related AEL for T s upcoming times to
the values obtained in the previous optimization problem,
B

we
i = Bwe*

i−1
;

8 Apply Algorithm 2 mentioned in subsection IV-A to find the
surrogate optimization problem;

9 Solve the surrogate optimization problem;
10 Update the optimal values for the binary variables related to

AEL for the next optimization problem;
11 end

The optimization model for the m-EWH nexus with AEL

technology is shown as follows:
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Fig. 3. Real-time optimization model for the m-EWH nexus with AEL
technology: the intervals that filled with green color show the ON/OFF status
of the AEL which should be fixed within the next T s time intervals. The blue
circles are obtained in the current optimization problem (bwe*

T s+1
) and will be

fixed in the following optimization problem (yellow circles).

min (4)

s.t (1)− (3)

bwe
t = bwe*

t , ∀ t ∈ {1, ..., T s},
b

p
t , b

we
t , b

des
t , bfc

t ∈ {0, 1}. (5)

B. Optimization Model for Real-time Decision-Making of m-

EWH Nexus with PEM Technology

The m-EWH nexus may use other water electrolysis

technologies, such as solid oxide and PEM electrolysis.

Since solid oxide electrolysis is still in the research phase,

our focus is on PEM technology, which has recently gained

significant popularity [34]. PEM technology offers faster

switching times and the ability to operate without a

minimum load [29], [35]. As a result, we only need to solve

the following optimization problem at each time step:

min (4)

s.t (1)− (3),

b
p
t , b

we
t , b

des
t , bfc

t ∈ {0, 1}. (6)

IV. MACHINE LEARNING-ACCELERATED SOLUTION

METHOD

Since we propose to solve problems (5) and (6) in

real-time, the computation efficiency of the solution method

is critical. Even though we have convexified the non-convex

constraints in these problems, the binary variables and the

huge size still make the problem computationally challenging

using conventional optimization methods. This section

introduces the MARO approach, which is based on ACIVP, a

new and fast solution method for solving MICP problems

[19], to find the real-time optimal solution for the m-EWH

nexus. The MARO method consists of three modules: the

ACIVP module, the FSER module, and the SSFR module.

These three modules replace (5) and (6) with a smaller-scale

continuous convex optimization problem. The ACIVP

module ensures rapid speed, the SSFR module ensures

feasible solutions, and the FSER module enhances accuracy,

ensuring highly precise results. Detailed explanations of

these modules are provided in the following subsections.

A. ACIVP Module

We define active constraints as the set of constraints that are

satisfied as equalities at optimality [36]. By identifying the

active constraints, all other non-active constraints can be

removed since they do not influence the optimal solution.

Therefore, predicting active constraints can reduce the size

and complexity of a problem by removing redundant

constraints, which reduces overall solution time. However,

determining active constraints before solving an optimization

problem is a challenge. The ACIVP module method tackles

this by utilizing data-driven techniques to predict these

constraints. This approach involves solving offline

optimization problems, identifying relevant active constraints

post-solution, and employing data-driven methods to predict

future active constraints. Generally, the approach to

generating this dataset largely depends on the specific

practical application and available resources. Any solver or

optimization method can be used to solve the related

optimization problems. For example, using a distributed

approach can increase the speed of creating the dataset.

Notably, this predictive step occurs without solving the

online optimization problem, and solving offline optimization

problems does not notably impact the solution time of the

online prediction process.

The same applies to determining optimal values for binary

variables. The ACIVP method replaces the original problems

with a new optimization problem by forecasting binary

variables and active constraints using data-driven approaches,

allowing us to apply MICP to real-time operations that were

previously impractical. Fig. 4 illustrates this process for (6).

Using the ACIVP module, the original problem with M

constraints and binary variables is replaced by a surrogate

problem with a smaller number of constraints (n), and the

binary variables (b
p
t , b

we
t , b

des
t , bfc

t ) are replaced by their

optimal values (b
p*
t , b

we*
t , bdes*

t , bfc*
t ). Similarly, we have an

equivalent process that applies to (5). So, we can update (2d)

- (2g), and (3f) and replace binary variables by their optimal

values. Now, the surrogate optimization problem is much

easier than the original one because it has a smaller number

of constraints and contains only continuous variables. We

define the optimal strategy as a set of binary variables in the

optimal values and active constraints. It is important to note

that, despite solving optimization problems involving

thousands of variables and constraints, the number of

strategies remains limited to a few dozen or fewer [18].

ACIVP maps the input data, including real-time and

forecasted values of wind speeds, water demand, and power

demand, to the corresponding optimal strategy. Exploring the

relationship between input and output data is achieved

through machine learning techniques like decision trees,

known for their effective classification performance.

ψ = H(ϕ), (7)

where ϕ and ψ are the input and output of the prediction

Fig. 4. Surrogate the original problem using the ACIVP module: input data
are wind speed, water demand, and power demand.
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model, respectively. The prediction model uses the dataset

Γ = {(ϕ1, ψ1), (ϕ2, ψ2), ..., (ϕNd
, ψNd

)}, which is created

by solving offline optimization problems, for the training

task. Creating a robust and accurate hypothesis function

relies heavily on the quality of the training dataset, which is

constructed by solving offline optimization problems. The

process involves tackling Nd independent optimization

problems, leading to the generation of Nd distinct samples

that collectively form the training dataset. Particular attention

must be given to crafting a high-quality dataset to ensure the

resulting hypothesis function generalizes well to unseen data.

The sampling process continues until there is a large enough

set of distinct strategies. We use the missing strategies bound

method and the Good–Turing estimator for the sampling

procedure to build a training data set that covers all probable

strategies [18], [37]. Once we have completed sampling and

creating the dataset, we map its input data to its output data

using the prediction function in (7). Algorithm 2 shows the

ACIVP module for real-time optimal operation of the

m-EWH nexus.

Algorithm 2: Solving the MICP of the m-EWH Using the ACIVP

Input: wind speed, water demand, and power loads
1 Use (7) to find the optimal strategy including optimal values for

binary variables and active constraints

È = {bp*
t , b

we*
t , bdes*

t , bfc*
t , µ

S};
2 Update (2d) - (2g), and (3f) using optimal binary variables;
3 Remove the redundant constraints;
4 Develop a surrogate optimization problem;
5 Solve the surrogate optimization problem, which is smaller and

continues, to obtain the optimal operation of m-EWH nexus;

Although the ACIVP module is promising and has been

shown to solve some MICPs very quickly [18], it relies on

its ability to identify optimal strategies accurately. Applying

only the ACIVP module to solve the m-EWH nexus problem

may be high risk since m-EWH is a large-scale, complex

system [19]. Predicting active constraints and binary

variables is much more challenging than predicting quantities

that follow clear patterns, like power demands, since the

relationship between inputs, including wind speed, water

demand, and power demand, and outputs, such as active

constraints and binary variables, is not yet well-established.

The resulting optimal solutions can be discredited if the

accuracy of the ACIVP module is not high enough,

regardless of how fast they are generated. Therefore, the

ACIVP module might not always make accurate predictions,

potentially resulting in sub-optimal or infeasible solutions. It

is particularly concerning for our real-time model, where any

infeasibility or inaccuracy could cause problems. In the

following subsections, we discuss the feasibility and

accuracy issues of the ACIVP module and propose two

modules to enhance them.

B. SSFR Module

The accuracy of the ACIVP module may be unsatisfactory

for large-scale, complex problems [19] like (5) and (6).

Therefore, the model may not always provide accurate

predictions, leading to sub-optimal or infeasible solutions. To

address this risk, [18] suggests selecting the k-most likely

classes instead of relying solely on the best-predicted class.

The k-most likely classes method entails mapping input data

to the k-most optimal strategies and then calculating the

sub-optimality and infeasibility of these k strategies to

determine the best one. However, determining the

appropriate value of k can be challenging. Additionally, in

the optimal operation of the m-EWH nexus, we solve 288

optimization problems daily, with each problem solved every

5 minutes, and the optimal solution is consistently updated.

Consequently, the optimal solution at each time slot has a

minor impact on the overall optimal operation and can be

adjusted in subsequent time steps. Thus, sub-optimality is

not a significant issue for the optimal operation. Instead,

improving feasibility probability is more critical. To address

this, we introduce the SSFR module. This module employs a

ranking approach where all strategies are classified and

ranked based on their mappings in the classification section

of the ACIVP module. Starting with the highest-ranked

strategy, the SSFR evaluates the feasibility of each one until

it finds the first feasible optimal strategy. As a result, this

strategy is selected as the optimal strategy, ensuring feasible

outcomes for the surrogate problem. Algorithm 3 shows how

the SSFR identifies the best optimal strategy that ensures

feasibility.

Algorithm 3: SSFR module to select the best feasible strategy

Input: wind speed, water demand, and power loads
1 for i = 1 to Nψ do
2 find Èi using (7) which is the i-most likely optimal strategy;
3 if the surrogate problem using Èi is feasible then

4 go to step 7;
5 end

6 end

7 Èi is the best optimal strategy that is feasible;

C. FSER Module

The effectiveness of the ACIVP module crucially hinges on

its ability to identify optimal strategies accurately. However,

the ACIVP module may exhibit unsatisfactory accuracy

when applied to large-scale problems. Although we have

previously demonstrated the ability to reach a feasible

optimal strategy, enhancing the accuracy of the ACIVP

module remains a significant challenge. In response, we

propose the FSER module to improve the accuracy of the

ACIVP solution for addressing the complex optimal

operation problem of the m-EWH nexus. Since the additional

features can enhance learning performance [38], we propose

to improve the accuracy of the ACIVP module by expanding

the feature space. In the proposed FSER module, the input

and output layers of each stage are designed with different

learning targets, namely newly developed features, to correct

mapping model learning errors. Through solving offline

optimization problems, various types of raw data, such as

optimal values of binary variables, are generated. An

additional feature is introduced at each stage of the FSER

module using raw data to improve learning accuracy. It

depends on the learning targets to determine how many

stages are needed in each case. Similar to (7), the prediction
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functions map the input data of each stage to the output

data. These prediction functions for the FSER module are:



F1 = HFSER
1 (ϕ), Stage 1

...

ψ = HFSER
K ({ϕ,F1,F2, . . . ,FK−1}), Stage K

(8)

where F1 is predicted as the first stage output. F1 is then

added as an additional feature in stage two to enhance the

accuracy of F2, which is an output of the second stage. At

the end of the final stage, all of the output data are predicted.

Algorithm 4 and Fig. 5 show the FSER module for improving

the prediction accuracy of the optimal strategy.

Algorithm 4: FSER module for improving the accuracy

Input: Input data: wind speed, water demand, and power loads
1 Define a new feature (F1) and predict it base on (8):

F1 = HFSER
1

(φ);
2 for i = 1 to K− 2 do

3 Develop new features using (8):

Fi+1 = HFSER
i+1

(φ,F1, . . . ,Fi);
4 end

5 Predict the optimal strategy by using all of the developed features:

È = HFSER
K

({φ,F1,F2, . . . ,FK−1});

While the ACIVP module uses (7) to predict the optimal

values of all binary variables and the set of active constraints

in one stage, the proposed FSER module includes K different

stages and uses (8) to improve the accuracy of the prediction.

In the first stage, the proposed method predicts a portion of

binary variables in F1, which is used as an additional feature

in the next stage. The input data of stage 2 will be updated with

this value to improve its accuracy in the prediction of F2 which

contains another portion of binary variables. The process will

continue to the last stage, where all binary variables and active

constraints will be predicted more accurately. After that, the

related constraints will be updated and the surrogate problem

will be developed. To conduct a successful analysis, it will be

necessary to revise the initial dataset into K datasets using the

following approach: ΓFSER =



({ϕ1}, {F1,1}), . . . , ({ϕNd
}, {F1,Nd

}) Stage 1

({ϕ1,F1,1}, {F2,1}), . . . , ({ϕNd
,F1,Nd

}, {F2,Nd
}), Stage 2

...

({ϕ1, . . . ,FK−1,1}, {FK,1}), . . . , ({ϕNd
, . . . ,FK−1,Nd

}, {FK,Nd
}). Stage K

In the FSER module, the learning errors of the ACIVP

module diminish gradually, leading to an increase in

accuracy. However, achieving high accuracy in feature

prediction at each stage can be challenging. To address this

challenge, we propose a feature refinement method to

enhance feature prediction, further improving the accuracy.

Besides, The architecture of the FSER module, which

focuses on incorporating more features and expanding the

feature space to enhance learning accuracy, may have

Fig. 5. FSER module for improving the prediction accuracy.

different stages and features depending on the application.

We explain the feature refinement and stage design in the

following subsection.

1) Enhancing Efficiency of FSER using Feature Refinement

The feature refinement method evaluates the predicted

features at each stage and refines them as necessary.

Algorithm 5 and Fig. 6 illustrate the iterative process of

feature refinement.

Algorithm 5: Feature development and refinement

Input: Input data
1 Define the first feature (F1) and predict it base on (8):

F1 = HFSER
1

(φ);
2 Define the second feature (F2) and predict it base on (8):

F2 = HFSER
2

(φ,F1);
3 while true do

4 Develop the feature checker using F ′
1 = H′FSER

1 (φ,F2);
5 if |F ′

1 −F1| ≤ ϵ then

6 break;
7 end

8 F1 ← F ′
1;

9 go to line 2;
10 end

11 F1 and F2 are final developed refine features;

Initially, we generate F1 by mapping the original input data.

Subsequently, we create F2 by mapping both the original input

data and F1. We then construct a feature checker (F ′
1) by

mapping the original input data and F2. It allows us to provide

feedback to evaluate the accuracy of predicting F1, refining

it as necessary. If F ′
1 closely matches F1, the two developed

features are considered accurate. Otherwise, we replace F1

with F ′
1 and iterate this process until this criterion is met.

2) Stage Design and Ordering of FSER Module

This section proposes different methods for designing the

FSER module to enhance the accuracy. Different scenarios

are proposed to create new features, determine the number of

stages, and develop the FSER module.

• Physical Features: New features can be created through

consideration of the physical interpretation of the

problem. The suggested design is beneficial for solving

problems that involve various types of equipment with

binary variables in their models. We begin by predicting

binary variables related to a specific piece of equipment.

This prediction is then used as a feature to enhance the

accuracy of predicting another set of binary variables

associated with other types of equipment. This

procedure continues until the final stage. For example,

the mathematical model of the m-EWH nexus contains

binary variables for four equipment types: pumps,

desalination, FC, and electrolysis. Therefore, we can

divide the binary variables into four groups based on

their physical meaning, and each group of these four

groups is assigned to a specific stage. The features are

Fig. 6. Feature development and refinement.
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TABLE I
FEATURE SELECTION METHODS AND CORRESPONDING FEATURES

Method NStage Features

Physical 5 b
p*
t , b

des*
t , bfc*

t , b
we*
t , µS

Time 289 b
p*

k
, bdes*
k , bfc*

k , b
we*
k , µS, ∀ k ∈ {1, ..., 288}

Number 2017 b
p*

4k−3
, bdes*

4k−2
, bfc*

4k−1
, bwe*

4k , µ
S, ∀ k ∈ {1, ..., 288}

Coupled 3 {bp*, bdes*}, {bfc*, bwe*}, µS

{F1,F2,F3,F4,F5} = {b
p*
t , b

des*
t , bfc*

t , bwe*
t , γS

t }. We

develop a five-stage FSER module for our optimization

model, which improves the accuracy.

• Temporal Features: Another approach to dividing

binary variables and active constraints is based on

temporal features. A dataset consisting of T time steps

is examined, and binary variables are divided into T
distinct groups, thereby generating T novel features.

This design can be suitable for solving problems that

involve multi-periodic operations. The binary variables

associated with the first time step will be predicted and

used as supplementary features in the second stage. This

process will persist until the final stage. For example,

the m-EWH nexus model has four types of binary

variables over T time steps. We can group the binary

variables into T groups based on time and assign each

group to a specific stage. So, the set of new features is

Fk = {b
p*

k , b
des*
k , bfc*

k , bwe*
k , γS

k}, ∀ k ∈ {1, 2, .., T }.

• Number of Binary Variables Features: Another

method for categorizing binary variables involves

dividing them based on their quantity. Our proposal

suggests dividing the binary variables into K groups,

where each group has an equal number of binary

variables, regardless of their physical interpretation.

This process results in K separate stages within the

dataset, each containing K distinct features. Since this

design is based on the number of facilities with binary

variables in their models, it will differ for different

m-EWH nexus case studies.

• Correlation Features: We propose to predict a certain

binary variable and use it as a new feature for the

prediction of another binary variable that shares some

high degree of interdependence. The new features could

provide a more comprehensive understanding of the

underlying relationships and improve accuracy and

performance. For example, (3i) indicates a strong

relationship between binary variables of FC units and

electrolysis in a m-EWH nexus operation. Predicting

one variable early and using it as an additional feature

for predicting the other can improve accuracy.

Table I summarizes the stage design method and provides a

clear overview of all selected features, including the number

of stages (ranging from 3 to 2017 stages) and justifications for

their inclusion based on relevant parameters.

V. CASE STUDY

A. Introducing Test Beds

We demonstrate the robustness of the proposed method by

examining it on two test beds as shown in Fig. 7 and Fig. 8.

Fig. 7. A m-EWH nexus for a small stand-alone coastal city

Fig. 8. A m-EWH nexus for a small stand-alone island

The IEEE 13-bus system with an 8-node EPANET WDN can

represent a small stand-alone coastal city and the 33-bus

distribution system with a 13-node Otsfeld WDN can be

used for a remote small island. The first case study has

41474 constraints and 107717 variables, while the second

has 82947 constraints and 246536 variables. Power, water,

and hydrogen systems are distinct entities on a larger scale,

and they have conflicts between them, making their

collaboration impractical. Training data sets are built by

solving offline optimization problems using wind speed and

load data. 24-hour wind speed curves are extracted between

2008 and 2022 [39] and interpolated using spline

interpolation every five minutes. 24-hour nodal load curves

of power demand, excluding water pumps and desalination,

are also extracted [40] and interpolated every five minutes.

The same data collection can be used for practical systems

until the m-EWH nexus concept is widely adopted. Once the

m-EWH nexus becomes more common, real operational data

from existing m-EWH systems can be collected and used.

Upon dataset construction, we evaluate the proposed

methods using real data, including actual wind speed and

load data, derived from the Midcontinent Independent

System Operator [41]. For each case study, we utilize these

data to determine the optimal operation of the m-EWH

nexus, incorporating two distinct water electrolysis

technologies. The optimal operations are obtained by solving

the related optimization problems using the MOSEK solver

through Yalmip. All simulations are performed in the

MATLAB R2019b environment on a system with an Intel

Core i7-9700 CPU running at 3 GHz and 16 GB of RAM.

B. Importance of Online Optimization for m-EWH Nexus

We employ real-time optimization models from section III to

achieve optimal operation of the proposed m-EWH nexus.

Fig. 9 illustrates the optimal operation for the initial three

consecutive time intervals. The black line denotes the power

load demand, encompassing the water pump, desalination,
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Fig. 9. m-EWH nexus optimal operation in three consecutive time steps (00:05, 00:10, 00:15). First row: the first case study (AEL: solid line. PEM: dashed
line), second row: the second case study (AEL: solid line. PEM: dashed line).

and PDN loads. Red represents diesel power generation,

green shows available wind energy after water electrolysis,

blue indicates power demand for electrolysis, cyan represents

FC unit power, and orange depicts diesel generator power for

AEL electrolysis when wind energy is low. In this figure, the

dashed line corresponds to the m-EWH nexus with PEM

water electrolysis, while the solid line corresponds to the

m-EWH nexus with AEL water electrolysis. This figure

underscores the critical need for real-time optimal operation

of the m-EWH nexus, as any deviation between forecasted

and actual wind speeds can significantly impact optimal

operation. Therefore, it is imperative to solve the related

optimization problem rapidly to adjust the system’s operation

for optimal performance. By implementing the real-time

optimal operation of the proposed m-EWH nexus, we can

significantly reduce costs while achieving a better balance

between supply and demand, leading to more efficient

resource management. This system enhances sustainability

by capturing and reusing all carbon emissions, contributing

to a more resilient and environmentally friendly energy

infrastructure. Additionally, it maximizes wind energy

harvesting without compromising grid stability. The m-EWH

nexus effectively addresses capacity limitations that often

lead to renewable energy curtailments, ensuring the smooth

and reliable integration of wind energy into the grid. These

advancements result in a more sustainable, cost-effective,

and robust energy system.

C. Evaluating the Solution Time of the MARO Method

Solving the m-EWH nexus optimization problems through

conventional approaches is a lengthy process that requires

over 15 minutes. Employing the proposed methods, we can

replace the initial problem with a surrogate one, and achieve

optimal real-time operation of the m-EWH nexus in just a

few seconds. Table II compares the solution times of

conventional approaches, the OMIO method [19], and the

proposed MARO method for two case studies. The

conventional approach involves solving the MICP directly

using established optimization solvers. In contrast, OMIO, a

leading academic solution method, enhances solution speed

by leveraging machine learning techniques. It learns the

mapping between key problem parameters and an encoded

optimal solution for integer variables and active constraints.

On the other hand, the MARO method comprises three

modules designed to accelerate solution times, ensure a

feasible solution, and maintain high result accuracy. Table II

illustrates the superior efficacy of the OMIO and MARO

methods. The current assumption is that a 5-minute ahead

wind speed prediction is sufficiently accurate, and

simulations are conducted based on this assumption.

According to Table II, if we have access to wind speed

predictions with a lead time of 1 minute or less, the MARO

method demonstrates the capability to achieve optimal

operation of the m-EWH nexus. This is possible because the

required solution time for this method is only a few seconds.

The solution times of the OMIO and MARO methods are

similar after finding the surrogate problem. Both methods

can solve the optimization problem in seconds. However, the

key difference lies in the accuracy of finding optimal values

for binary variables and active constraints, where the MARO

method enhances the feasibility and accuracy. In the

following subsection, we will compare and discuss these

differences.

TABLE II
SOLUTION TIME OF OPTIMIZATION METHODS

Case Study Time
Solution Time (s)

Conventional OMIO MARO

First

AEL
00:05 936.41 1.62 1.63
00:10 892.16 1.82 1.47
00:15 914.53 1.32 1.83

PEM
00:05 592.70 1.24 1.07
00:10 562.99 1.31 1.19
00:15 984.50 1.15 1.38

Second

AEL
00:05 1294.41 2.89 3.03
00:10 1263.74 4.09 3.67
00:15 1986.70 2.96 3.11

PEM
00:05 873.07 3.03 2.86
00:10 873.20 2.69 2.86
00:15 1011.04 3.17 2.98
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TABLE III
FEASIBILITY ASSESSMENT OF OMIO AND MARO METHODS

Case
OMIO (k-most optimal) (%)

MARO (SSFR module) (%)
k = 1 k = 10 k = 20

I 73 90 95 100

II 69 91 94 100

TABLE IV
ACCURACY ASSESSMENT OF OMIO AND MARO METHODS

Case OMIO (%)
MARO (%)

Physical Time Number Coupled

I 77.58 98.92 94.53 88.72 94.17

II 74.91 97.73 93.17 87.32 93.46

D. Feasibility and Accuracy Evaluation

This section evaluates the potential shortcomings of the

ACIVP module, which may occasionally result in inaccurate

predictions and suboptimal or infeasible solutions. Table III

compares the feasibility percentages of the OMIO method,

which relies only on ACIVP, and the proposed MARO

method. This table demonstrates that the k-most optimal

strategy in OMIO method increases feasibility from 73% (for

k = 1 which is the only ACIVP module) to 90% (for k = 10)

and 95% (for k = 20) in the first case study, and from 69%
to 91% and 94% in the second case study. Ultimately, the

SSFR module in the proposed MARO method achieves a

feasibility rate of 100%, demonstrating its effectiveness in

improving the feasibility of the proposed method.

After refining the feasibility, we introduced the FSER

module as a means to enhance the accuracy. This strategy

includes developing new features with iterative refinement

through multiple stages, to increase overall accuracy. The

first design is a physical features-based design, resulting in a

five-stage MARO with stages related to the pump, water

desalination, FC units, water electrolysis, and active

constraints. The second design is based on time, dividing

binary variables into 288 time intervals of 24 hours. This

results in a 289-stage MARO with 288 stages related to

binary variables and one stage related to active constraints.

The third design is based on the number of binary variables.

Binary variables are divided into two groups to create a

three-stage MARO. The last one is based on correlation,

combining FC units and water electrolysis into one group

and water pumps and desalination into another, resulting in a

three-stage MARO with two stages related to binary

variables and one stage related to active constraints. Table IV

displays the accuracy of each design. This table shows that

the proposed MARO method increases the accuracy. Out of

four suggested design types, the physical design shows the

greatest level of precision with a score of 98.92%.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a machine learning-accelerated

method for real-time optimization of the m-EWH nexus,

aiming to reduce carbon emissions while maximizing wind

energy utilization. By utilizing wind energy, hydrogen can be

produced through electrolysis along with captured carbon to

mitigate power sector carbon emissions. The paper develops

MICP models and control strategies based on water

electrolysis technology to achieve optimal operation. To

address the computational challenges involved in solving

MICP, the paper introduces the MARO method, which

comprises three modules. The ACIVP module predicts

binary variable values and a limited set of constraints likely

to contain all active constraints based on historical

optimization data. Furthermore, the MARO method enhances

feasibility and accuracy by implementing the SSFR and

FSER modules. The SSFR module ensures the feasibility of

the solution, increasing the feasibility probability to around

70%. The FSER module incorporates a multi-stage design

with iterative refinement to develop new features, resulting in

a 27.44% improvement in accuracy. Two case studies of the

m-EWH nexus validate the proposed system and solution

method, demonstrating significant reductions in solution time

and improvements in accuracy and feasibility. This enables

real-time optimal operation of the m-EWH nexus, effectively

addressing the intermittent nature of wind energy and power

demand.

In future work, we aim to explore contingencies in power,

water, and hydrogen systems to ensure secure and resilient

operations. We will evaluate the application of the MORA

method in security-constrained optimization problems,

focusing on identifying critical contingencies and solving

these problems efficiently. To further enhance system

intelligence and reduce computational costs, we plan to

explore and compare machine learning classification methods

for accurately predicting active constraints and binary

variables. Additionally, we will explore hybrid optimization

methods that combine metaheuristics with traditional

techniques to improve solution robustness. Finally, we intend

to collaborate with public administration experts to address

potential regulatory challenges.
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