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Abstract: Sensors are a key component of water distribution networks due to their role in monitoring
system variables. Specifically, water quality (WQ) sensors are utilized to measure chlorine concen-
trations in order to maintain water quality standards. However, the prohibitive costs of deploying
these sensors constrain their ubiquitous use. As a result, WQ sensors are typically placed in a subset
of junctions that are selected via an optimization process. This study presents a framework for
optimizing WQ sensor placement to maximize chlorine concentration state estimation, that is, the
inference of water quality parameters at unmonitored junctions based on the measurements from
monitored junctions. This is performed by integrating a Dynamic Prediction Graph Neural Network
(DP-GNN) model with a Genetic Algorithm (GA). The DP-GNN model is trained to predict chlorine
concentrations at all junctions based on the measurements from sensors with different placements,
whereas the GA uses these predictions to find the optimal sensor placement. The framework perfor-
mance was tested by applying it to the C-town benchmark network, considering different numbers
of sensors. The results demonstrated the impact of different sensor placements on the prediction
accuracy of the DP-GNN model. Additionally, the results showed the framework’s ability to find the
sensor placement that maximizes the chlorine concentration state estimation performance.
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1. Introduction

Sensors are essential for the effective operation and management of water distribution
networks (WDNs). Sensors serve in monitoring flows, pressures, and detecting leaks [1], as
well as regulating network components such as pumps and valves. Recently, the reliance
on water quality (WQ) sensors has increased due to escalating concerns over public health
risks associated with accidental or intentional contamination within WDNs [2], in addition
to the gradual deterioration of water quality within these networks [3]. These sensors serve
in contamination detection and chlorine concentration monitoring. However, deploying
WQ sensors in WDNs poses a challenge due to their higher cost compared to flow and
pressure sensors [1]. To face this challenge, water quality sensors are strategically placed
at selected junctions to reduce costs without compromising the performance of the sensor
network [3]. This placement process is commonly approached as an optimization problem,
formally known as the sensor placement optimization (SPO) problem.

Several studies targeted the SPO problem by developing simulation–optimization
approaches to maximize contamination detection [2]. This approach utilizes physics-based
models, such as EPANET, for water and contamination transport simulations alongside opti-
mization algorithms for objective function optimization. The proposed methodologies vary
based on the number and nature of the objective functions, categorized as single or multi-
objective approaches. A comprehensive review of SPO methodologies for contamination
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detection was conducted by Hart and Murray [4]. In contrast, fewer studies have focused
on SPO for chlorine concentration estimation. In recent work, Łangowski and Brdys [3] and
Taha et al. [5] proposed methods to optimize WQ sensor placement to minimize chlorine
concentration prediction errors through Kalman filtering and a multi-objective optimization
approach, respectively.

Recently, Graph Neural Networks (GNNs) were introduced as an advancement over
traditional Artificial Neural Networks in handling complex graph-structured data. GNNs
excel in learning the underlying relationships between nodes and edges of a graph, making
them suitable for WDN applications. As a result, GNNs have been utilized in contamination
source identification and pressure and water loss estimation [6–8]. However, the application
of GNNs in WQ sensor placement optimization has not been explored yet. In this paper, we
aim to fill this gap by investigating the implementation of GNNs in solving the SPO problem.
This is achieved by developing an SPO framework integrating Dynamic Prediction Graph
Neural Networks (DP-GNN) [9] with a Genetic Algorithm (GA). This framework aims to
identify the optimal sensor placement that maximizes the accuracy of chlorine concentration
estimation based on limited sensor data.

2. Materials and Methods

The sensor placement optimization (SPO) framework integrates two models: (i) the
simulation model and (ii) the optimization model. The simulation model features a Dy-
namic Prediction Graph Neural Network (DP-GNN) model, while the optimization model
is represented by the Genetic Algorithm (GA). The DP-GNN is tailored to predict chlorine
concentrations (CCs) based on the data provided by any sensor configuration (i.e., sensor
design). It is constructed by stacking multiple Topology Adaptive Graph Convolution
Network (TAGCN) layers [10] alongside dense layers. A brief explanation of the DP-GNN
model is given in this paper, whereas a detailed explanation of the model assumptions,
structure, and hyperparameters can be found in [9].

2.1. Simulation Model Training

To train the DP-GNN, a large dataset of events encompassing varying junction de-
mands, sensor designs, and chlorine injection rates was randomly generated. These events
were then simulated by the Python interface of EPANET (WNTR) to extract CC data from
all junctions. Since the DP-GNN model is supposed to learn the relationship between the
sensor and non-sensor junctions, the latter were introduced by masking the CC data for
selected junctions. This masking process involves randomly selecting sensor numbers and
locations, thereby masking the CC of the remaining junctions.

The DP-GNN assumes that flow sensors exist at all junctions; hence, the demands are
known, resulting in an input vector of [Qn, Cn, Jn] for each junction within an event (i.e.,
graph). In this vector, Q denotes the demand, C represents the CC value or 0 if unknown,
and J indicates the junction type, a binary value which is set to 1 for monitored junctions
and 0 otherwise. In addition to the junction input vector, the edge adjacency matrix (A) that
represents the node-to-node connection through graph edges is defined in the DP-GNN
model. The DP-GNN model was trained to reduce the normalized root mean square error
(nRMSE) shown in Equation (1). The assessment of the DP-GNN model performance
for individual junctions in different events (i.e., graphs) was performed using the mean
absolute percentage error (MAPE) described by Equation (1).

nRMSE =

[
∑G

g=1 ∑N
n=1

(
Cn − Ĉn

)2/N
]1/2

∑G
g=1

(
∑N

n=1 Cn

)
/N

(1)

where Cn and Ĉn are the actual and predicted chlorine concentrations, and G and N are the
total number of graphs and junctions.
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2.2. Optimization Model

The GA was utilized in this paper due to its wide use in SPO studies [1–3]. The GA
follows the natural selection mechanisms to evolve from suboptimal solutions to optimal
ones. In the context of this paper, the GA starts by providing several sensor placements
(i.e., sensor designs) to the trained DP-GNN. Subsequently, the DP-GNN utilizes this
information to define the sensor numbers and locations. Then, it runs to predict the CCs
for non-sensor junctions, calculate the nRMSE, and report it back to the GA. The GA
minimizes the nRMSE through iterative refinement to identify the optimal sensor design.
The GA parameters used in this study are shown in Table 1.

Table 1. Genetic Algorithm optimization parameters used in the paper.

Optimization Parameter Value Optimization Parameter Value

Population size 5000 Crossover probability 0.8
Number of generations 100 Mutation probability 0.2

Parents percentage 1%

3. Results and Discussion

The proposed SPO framework was applied to the C-town benchmark network detailed
in [9] to test its performance. Three different scenarios were examined to represent the
diverse sensor placement criteria commonly encountered in real-world situations. In
scenario 1 (S1), 3 sensors were assumed to be placed in the network, whereas 5 and
10 sensors were assumed in S2 and S3, respectively. The SPO framework results were
assessed against the sensor placements generated by the Spectral Clustering (SC) approach.
In these scenarios, 1000 different events encompassing a range of demands and chlorine
injection rates were considered.

Figure 1 illustrates the one-to-one plot depicting the results for each scenario, con-
trasting the sensor placements derived from the SC approach against those generated
by the SPO framework. The x-axis represents the actual chlorine concentrations (CCs),
while the y-axis represents the corresponding CC predictions made by the DP-GNN model.
Additionally, the nRMSE is indicated in each subplot, providing a quantitative measure of
the prediction accuracy.
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By examining the left and right panels of each subplot, it becomes evident that the
sensor design proposed by the SPO framework exhibits lower nRMSE compared to those
derived from the SC approach. This trend persists across all three scenarios. Furthermore,
Figure 1 shows that the increased number of sensors (e.g., from S1 to S2) resulted in
more accurate DP-GNN model predictions. Interestingly, the optimal sensor design of
S1 outperformed the sensor design produced by the SC approach in S2, although fewer
sensors were used. This highlights the superiority of the SPO framework over the clustering
approach. Nevertheless, the disparity in nRMSE between the two approaches diminishes
with the addition of more sensors. This phenomenon can be attributed to the diminishing
benefit of optimization when the objective function is insensitive to the design variables.
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