Mathematical Programming
https://doi.org/10.1007/s10107-024-02078-z

FULL LENGTH PAPER

Series A ")

Check for
updates

Sample complexity analysis for adaptive optimization
algorithms with stochastic oracles

Billy Jin! . Katya Scheinberg’ - Miaolan Xie'

Received: 20 March 2023 / Accepted: 26 February 2024
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2024

Abstract

Several classical adaptive optimization algorithms, such as line search and trust-region
methods, have been recently extended to stochastic settings where function values, gra-
dients, and Hessians in some cases, are estimated via stochastic oracles. Unlike the
majority of stochastic methods, these methods do not use a pre-specified sequence
of step size parameters, but adapt the step size parameter according to the estimated
progress of the algorithm and use it to dictate the accuracy required from the stochas-
tic oracles. The requirements on the stochastic oracles are, thus, also adaptive and
the oracle costs can vary from iteration to iteration. The step size parameters in these
methods can increase and decrease based on the perceived progress, but unlike the
deterministic case they are not bounded away from zero due to possible oracle fail-
ures, and bounds on the step size parameter have not been previously derived. This
creates obstacles in the total complexity analysis of such methods, because the oracle
costs are typically decreasing in the step size parameter, and could be arbitrarily large
as the step size parameter goes to 0. Thus, until now only the total iteration complex-
ity of these methods has been analyzed. In this paper, we derive a lower bound on
the step size parameter that holds with high probability for a large class of adaptive
stochastic methods. We then use this lower bound to derive a framework for analyzing
the expected and high probability total oracle complexity of any method in this class.
Finally, we apply this framework to analyze the total sample complexity of two partic-
ular algorithms, STORM (Blanchet et al. in INFORMS J Optim 1(2):92-119, 2019)
and SASS (Jin et al. in High probability complexity bounds for adaptive step search
based on stochastic oracles, 2021. https://doi.org/10.48550/ARXIV.2106.06454), in
the expected risk minimization problem.

B Miaolan Xie
mx229 @cornell.edu

Billy Jin
bzj3@cornell.edu

Katya Scheinberg
ks2375@cornell.edu

School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Published online: 29 April 2024 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-024-02078-z&domain=pdf
http://orcid.org/0000-0001-8511-9649
https://doi.org/10.48550/ARXIV.2106.06454

B.Jinetal.

Keywords Nonlinear optimization - Stochastic optimization - Adaptive algorithm -
High probability - Sample complexity - Stochastic oracles

Mathematics Subject Classification 90C15 - 90C26 - 90C30

1 Introduction

The widespread use of stochastic optimization algorithms for problems arising in
machine learning and signal processing has made the stochastic gradient method and its
variants overwhelmingly popular despite their theoretical and practical shortcomings.
Adaptive stochastic optimization algorithms, on the other hand, borrow from decades
of advances in deterministic optimization research, and offer new paths forward for
stochastic optimization to be more effective and even more applicable. Adaptive algo-
rithms can avoid many of the practical deficiencies of contemporary methods (such as
the tremendous costs of tuning the step sizes of an algorithm for each individual appli-
cation) while possessing strong convergence and worst-case complexity guarantees in
surprisingly diverse settings.

Adaptive optimization algorithms have a long and successful history in determin-
istic optimization and include line search, trust-region methods, cubic regularized
Newton methods, etc. All these methods have a common iterative framework, where
at each iteration a candidate step is computed by the algorithm based on a local model
of the objective function and a step size parameter that controls the length of this can-
didate step. The candidate step is then evaluated in terms of the decrease it achieves
in the objective function, with respect to the decrease that it was expected to achieve
based on the model. Whenever the decrease is sufficient, the step is accepted and the
step size parameter may be increased to allow the next iteration to be more aggressive.
If the decrease is not sufficient (or not achieved at all) then the step is rejected and a
new step is computed using a smaller step size parameter. The model itself remains
unchanged if it is known that a sufficiently small step will always succeed, as is true,
for example with first- and second-order Taylor models of smooth functions. The anal-
ysis of such methods relies on the key property that the step size parameter is bounded
away from zero and that once it is small enough the step is always accepted and the
objective function gets reduced.

When stochastic oracles are used to estimate the objective function and its deriva-
tives, the models no longer have the same property as the Taylor models; steps that
decrease the model might not decrease the function, no matter how small the step
size is. Thus all stochastic variants of these methods recompute the model at each
iteration. The requirement on the stochastic model is then that it achieves a Taylor-like
approximation with sufficiently high probability. This also means that steps may get
rejected even if the step size parameter is small, simply because the stochastic oracles
fail to deliver desired accuracy. Despite this difficulty, one can develop and analyze
stochastic variants of adaptive optimization methods.

Recently developed stochastic variants of line search (which we will call step search,
since unlike the deterministic version the search direction has to change on each iter-
ation, thus the algorithm is not searching along a line) include [1-3, 22]. Stochastic

@ Springer

Sample complexity analysis for adaptive optimization...

trust-region methods have been analyzed in [4-6], and adaptive cubic regularized
methods based on random models has been analyzed in [1, 7]. For all these methods,
bounds on iteration complexity have been derived, either in expectation or in high
probability, under the assumption that stochastic oracles involved in estimating the
objective function deliver sufficiently high accuracy with sufficiently high probability.
While this probability is usually fixed, the accuracy requirement of the oracles is adap-
tive and depends on the step size parameter. Specifically, the smaller that parameter is,
the more accurate the oracles need to be, in order to maintain the Taylor-like behav-
ior of the model used by the algorithm. In most applications, having more accurate
stochastic oracles implies a higher per-iteration cost. Furthermore, unlike the deter-
ministic case, the step sizes in the stochastic case are not bounded away from zero
due to possible oracle failures, and bounds on the step size parameter have not been
previously derived. This creates significant difficulty in the analysis of the total oracle
complexity of such methods because the oracle costs could be arbitrarily large as the
step size parameter goes to zero.

In this paper, we derive a lower bound on the step size parameter for a general class
of stochastic adaptive methods that encompasses all the algorithms in the preceding
paragraph. This enables us to derive a bound on the total oracle complexity for any
algorithm within this class and specific stochastic oracles arising, for example, from
expected risk minimization. Our key contributions are as follows:

e Provide a high probability lower bound on the step size parameter for a wide class
of stochastic adaptive methods using a coupling argument between the stochastic
process generated by the algorithm and a one-sided random walk.

e Derive a framework for analyzing expected and high probability total oracle com-
plexity bounds for this general class of stochastic adaptive methods.

e Apply these bounds to STORM (Stochastic Trust-region Optimization with Ran-
dom Models) [4] and SASS (Stochastic Adaptive Step Search) [22] to derive their
total sample complexity for expected risk minimization, and show they essen-
tially match the complexity lower bound of first-order algorithms for stochastic
non-convex optimization [8].

We note that there is a plethora of other algorithms in the literature that propose
different ways to adaptively vary the step sizes in stochastic optimization. Some of
these methods, such as [9, 10], have step size dynamics that are very different from
the framework studied in this paper, hence the analysis of this paper is not needed
or applicable. Some other adaptive methods, like [11-13], have step size dynamics
that are more similar. However, since these papers do not provide iteration complexity
bounds, we cannot obtain their sample complexity by directly applying our framework.
Nonetheless, it would be interesting to explore whether our step size lower bound can
be applied to the algorithms in these papers when a certain stopping time is specified.
We consider a continuous optimization problem of the form

min ¢ (x), (D

xeRm

where ¢ is possibly non-convex, (twice-)continuously differentiable with Lipschitz
continuous derivatives. Neither function values ¢ (x), nor gradients V¢ (x) are assumed

@ Springer

B.Jinetal.

to be directly computable. Instead, given any x € R™, it is assumed that stochastic
estimates of ¢ (x), V¢ (x), and possibly V2¢> (x) can be computed, and these estimates
may possess different levels of accuracy and reliability depending on the particular
setting of interest.

The adaptive stochastic algorithms that have been developed recently [1-6, 14, 15,
22] use these stochastic estimates to compute an e-optimal point x,, which means
¢(xe) —infy p(x) < eif¢pisconvexor ||V (xe)|| < ¢ if ¢ is non-convex. In the next
section, we will introduce the general framework that encompasses these methods
and discuss particular examples in more detail. In Sect. 2.6, we discuss the stochastic
process generated by the algorithmic framework, including the stochastic step size
parameter. In Sect. 3, we derive a lower bound on the step size parameter which holds
in high probability. In Sect. 4, we use this lower bound to derive abstract expected
and high probability total oracle complexity for any algorithm in this framework. In
Sect. 5, we particularize these bounds to the specific examples of first-order STORM
[4] and SASS [22] algorithms to bound their total sample complexity when applied to
expected risk minimization. We conclude with some remarks in Sect. 6.

2 Algorithm framework and oracles

We now introduce and discuss an algorithmic framework for adaptive stochastic opti-
mization in Algorithm 1. The framework is assumed to have access to stochastic
oracles, that for any given point x can generate random quantities f (x, &) = ¢ (x) (via
zeroth-order oracle), g(x, &1) &~ V¢ (x) (first-order oracle) and, possibly, H (x, &) =~
V2¢(x) (second-order oracle). After we introduce the algorithm we will discuss the
general definition of an oracle that we use in this paper.

2.1 General algorithm

Ateach iteration, given xg, a stochastic local model my (xg +s5) : R — Rof ¢ (x +5)
is constructed using g(x, &1) and possibly H (x, &). Using this model, a step s (ok)
is computed so that m (xgx + si (o)) is a sufficient improvement over my (x;), where
oy is the step size parameter, which directly or indirectly controls the step length. The
iterate x; and the trial point x,:r = xp + sk (o) are evaluated using the zeroth-order
oracle values f(xx, & x) and f (x,j, 5&' «)- The algorithm then checks whether these
estimates suggest that sufficient improvement is attained. This is done by estimating
whether the function value decrease is large enough (usually involving a user-chosen
parameter 6 € (0, 1)) relative to the model decrease. If yes, then the step is deemed
successful, x,j' is accepted as the next iterate, and the parameter « is increased up
to a multiplicative factor; otherwise, the step is deemed unsuccessful, the iterate does
not change, and ¢y is decreased by a multiplicative factor. Unlike in the deterministic
case, new calls to all oracles are made at each iteration even when the iterate does not
change.

For each method we give the form of my(xx + s), in terms of g = g(xk, &1.x)
and Hy = H (xk, &2.x), sk (o) and the sufficient reduction criterion in terms of f,? =

@ Springer

Sample complexity analysis for adaptive optimization...

f(xk, &0.k) and fk+ =f (x,:r, é&f i)- Note that each time the oracle is called on some
point x, it generates a fresh estimate, even if the oracle has been called on the same
point x before—hence the dependence of & on k.

Algorithm 1 Algorithmic Framework for Adaptive Stochastic Optimization
0. Initialization

Choose 6 € (0, 1), y € (0, 1), amax € (0, 00), xg € R™, and o € (0, omax]. Set k < 0.
1. Determine model and compute step

Construct a stochastic model my, of ¢ at xj using f (xi, &0 x)» g(xk, §1,k)» and (optionally) H (xi, &2 k)
from probabilistic zeroth-, first-, and (optionally) second-order oracles. Compute sy (¢t) such that the model
reduction mpy (xx) — my (xr + sk (o)) > 0 is sufficiently large.
2. Check for sufficient reduction

Set x,j' < X +sk (g) and compute f(x,j', Sa'k) as a stochastic estimate of ¢ (x,j') using a probabilistic

zeroth-order oracle. Check if f(xg, &0 k) — f (x]j, g(;L 1) is sufficiently large (e.g., relative to the model
reduction my (xg) — my (x;r)) using a condition parameterized by 6.
3. Successful iteration

If sufficient reduction has been attained (along with other potential requirements), then set x| < x;’

lak, Omax }-

4. Unsuccessful iteration

and ot < min{y~

Otherwise, set x;4] < x; and o] < ya.
5. Next iteration
Setk < k + 1 and go to Step 1.

2.2 General oracles

Typically in the optimization literature, an oracle is a computational procedure that pro-
vides the algorithm with some (estimate of) required information about the objective
function. The oracle is endowed with some properties that the algorithm then utilizes.
For example, an oracle may be assumed to produce V¢ (x) exactly—an assumption
that a relevant optimization algorithm (and its analysis) will make use of and with-
out which the algorithm may fail. Alternatively, an oracle may produce an estimate of
V¢ (x),in which case a relevant algorithm will operate under some specific knowledge
about the properties of the estimate; e.g. that it is an unbiased estimate with variance
that is bounded as a function of || V¢ (x)||, or that it is a deterministic estimator with an
error bounded by some known quantity. Algorithms and their analyses differ depend-
ing on the properties of the oracles they utilize. The algorithms analyzed in [1-7, 14,
15, 22] all fit into the framework of Algorithm 1 but under a variety of specific assump-
tions on the oracles that generate function, gradient and and Hessian estimates. These
assumptions are more complex than is typical in the literature, yet, they are shown
to be applicable in many settings. For some extensive discussion on these properties,
their comparison and specific examples we refer the reader, for example, to Cao et al.
[6]. Here we summarize the main ideas.

As presented above, the algorithmic framework described in Algorithm 1 has access
to oracles that generate random quantities f(x, &y) =~ ¢(x) (zeroth-order oracle),

@ Springer

B.Jinetal.

g(x, &) ~ V¢(x) (first-order oracle) and, possibly, H(x, &) ~ V2¢(x) (second-
order oracle). Each of these oracles can have an input, an output and some intrinsic
properties. The input is typically the current iterate x; and the step size parameter
ak. These quantities, together with the intrinsic properties of the oracle, define the
probability space (and thus the distribution) of the random variable &. For example, in
the expected risk minimization setting, where the oracles are computed by averaging
a minibatch of samples, &; (fori € {0, 1, 2}) is the random minibatch used for the ith-
order oracle. The probability space and the distribution of & may depend on x and «,
since (as we will see in Sect. 5) the size of the minibatch may depend on these quantities.
As another example, the first-order oracles can be computed using (randomized) finite
differences [16]. In this case, the probability space and the distribution of £ may
depend on the current iterate, the step size parameter and the randomness in function
value estimates. In this example, the distribution of £ may depend on the distribution
of £y. More examples of stochastic oracles can include robust gradient estimation [17,
18], SPSA [19], etc.

In summary, the oracles can be implemented in a variety of ways, depending on
the application, while the algorithmic framework can be agnostic to how exactly the
oracles are implemented. The algorithm operates under certain assumptions on the
accuracy and reliability of the oracles. The cost of implementing an oracle to satisfy
these requirements depends on the application, but it needs to be considered in an
overall complexity analysis, which is what we address in this paper. The general
oracles in this paper can be described at a high level as follows.

Definition 1 (Stochastic jth-order oracle) Given an input x € R” and the step size
parameter o, the oracle computes ¢;(x, §;), an estimate of the jth-order derivative
V/g(x). In all the algorithms we consider, loj(x, &) — Vi (x)| is assumed to be
bounded by some quantity (which will be a function of «), with probability at least
1 —4;. Here, &; is arandom variable defined on probability space (£2;, F ;, P;) whose
distribution depends on the input x and o, and §; is intrinsic to the oracle. The cost of
the oracle is also a function of x, & and §;.

In this paper, we are interested in providing a simple way to upper bound the total
oracle cost of an algorithm. The exact oracle cost can be lower. For example, we will
bound the oracle cost by adding together the costs of the zeroth-, first-, (and optionally
second-) order oracles. However, if the oracles can be implemented based on a shared
sample set, our theory can be applied with small and simple adjustments to obtain
a better bound on the oracle cost (for example, by not double counting the shared
samples).

In the next subsection, we describe how various methods fit into the general frame-
work, and what specific requirements they have on the oracles. In this paper we
will use the specific notation where f(x, &) = ¢o(x, &), g(x, &1) = ¢1(x, &) and
H(x, &) = ¢a(x, &2).

@ Springer

Sample complexity analysis for adaptive optimization...

2.3 Step search method

In the case of the step search (SS) methods in [1, 3, 22] the particulars are as follows.
Quantities f,? f,;L and gy are random outputs of the stochastic oracles and Hy, is some
positive definite matrix (e.g., the identity).

o mp(vk +) = $0x) + gf s + 505" Hes,

o sp(ap) = —Olka_lgk
e Sufficient reduction: f,? - fk+ > —t9ngsk (o) — 1

Note that although the true function value ¢ (xx) appears in the definition of my, we do
not need to know or query for it to run the algorithm because the function value is just a
constant that makes no difference when we minimize the model. Here 6 € (0, 1), and
r is a small positive number that compensates for the noise in the function estimates.
We will discuss the choice of r after we introduce conditions on the oracle outputs

f(xv SO) and g(-xs sl)

e SS.0 (Step search, zeroth-order oracle). Given a point x, the oracle computes a
(random) function estimate f(x, &) (where &y = &p(x) is the randomness of the
oracle, which may depend on the current point x) such that

Pg, (I (x) — f(x,60)| < € +1) = 1= 8o(1),

for some €y > 0 and any ¢ > 0.

e SS.1 (Step search, first-order oracle). Given a point x and the current step size
parameter o, the oracle computes a (random) gradient estimate g(x, &) (where
&1 = &1(x, o) is the randomness of the oracle, which may depend on x and «)
such that

Pe, (Ilg(x, §1) — Vo (x)|| < max{eg, min{z, ka}llg(x, ENNY) = 1 — 8

for some nonnegative constants €, , T and 4.

In [1], e = 0 and §p(r) = 0, which means that the zeroth-order oracle is exact,
and r = 0. In [3], ¢y > 0 and §p(¢) = 0, which means that the zeroth-order ora-
cle has a bounded error with probability one, and r = 2e¢¢. In [22], €y > 0 and
8o(t) = e ™™ for some A > 0. This means there is no restriction on the error if it
is less than €y, and the tail of the error decays exponentially beyond €. In [22],
r > 2sup, Eg [1¢(x) — f(x, &)l].

In[1], e, =0and §; < % In 3, 22], €, > 0 and §; is sufficiently small with a
more complicated upper bound. In [1, 3], opax i finite, thus 7 is Kk ¥max. In [22], omax
is infinity, and 7 is simply assumed to be some constant intrinsic to the oracle.

2.4 Trust-region method
Stochastic trust-region (TR) methods that fall into the framework of Algorithm 1 have

been developed and analyzed in [4-6]. In the case of TR algorithms, £, £,", gk, and
(possibly) Hy are random outputs of the stochastic oracles, and

@ Springer

B.Jinetal.

mi(xx +5) = ¢ (i) + gl's + 557 Hys,
sk (@) = arg ming. ||s||<q; Mk (X +)
Sufficient reduction: =S
. J my (o) —my et (), — 7
Additional requirement for a successful iteration: ||gi|| > G20, for some 6 > O.

The requirements for the oracles are as follows. In the case of first-order analysis
in [4-6], the following first-order oracle is assumed to be available.

e TRI1.1 (First-order trust-region, first-order oracle). Given a point x and the current
trust-region radius o, the oracle computes a gradient estimate g(x, &1) (where
&1 = &1(x, o) is the randomness of the oracle, which can depend on x and «) such
that

]P)El (”g(x»%-l) = Vo) = €g +Keg05) >1-461.

Here, k., and 81 are nonnegative constants.
In the second-order analysis, the following first- and second-order oracles are used:

e TR2.1 (Second-order trust-region, first-order oracle). Given a point x and the
current trust-region radius o, the oracle computes a gradient estimate g(x, &1)
(where &1 = &1 (x, @) is the randomness of the oracle, which can depend on x and
«) such that

P, (llgx. 6 = YOI < € +kega®) 2 1= 81

Here, k., and §; are nonnegative constants.

e TR2.2 (Second-order trust-region, second-order oracle). Given a point x and the
current trust-region radius «, the oracle computes a Hessian estimate H (x, &)
(where & = & (x, o) is the randomness of the oracle, which can depend on x and
o) such that

Pe, (I1H (x,52) = Vo)l < €p + kepar) = 1 = 62.

Here, «.j and 8, are nonnegative constants.

€, and €, are assumed to equal O in [4, 5] but are allowed to be positive in [6].

In terms of the zeroth-order oracles, the three works make different assumptions.
Specifically, in [5], as in [1], the zeroth-order oracle is assumed to be exact. In [6] the
zeroth-order oracle is the same as in [22] (i.e. $8.0), and r > 2¢7 + % log 4. For the
first-order analysis in [4], however, the zeroth-order oracle is as follows (and » = 0).

e TR1.0 (First-order trust-region, zeroth-order oracle). Given a point x and the
current trust-region radius o, the oracle computes a function estimate f(x, &)
(where & = &p(x, o) is the randomness of the oracle, which can depend on x and
o) such that

P, (1£0r.60) = 9] < kep®) = 1=,
where «.y and §) are some nonnegative constants.

@ Springer

Sample complexity analysis for adaptive optimization...

For the second-order analysis in [4], the zeroth-order oracle requirements are tighter.

e TR2.0 (Second-order trust-region, zeroth-order oracle). Given a point x and the
current trust-region radius o, the oracle computes a function estimate f(x, &y)
(where &y = &y(x, o) is the randomness of the oracle, which can depend on x and
o) such that

P, (1, 80) = #(0)] < kep10®) = 1= 8
and

Eg, [£ (x,) — ¢(x)|] < kepoa®

where «.f1, kef2 and 8o are some nonnegative constants.

2.5 Cubicly regularized Newton method

The cubicly regularized (CR) Newton methods in [1, 7] also fit the framework of
Algorithm 1 with

o mi(xp +5) = ¢xx) +gls + 35" Hes + 5 lIs |,
o si(o) = argming my (x + 5), 2
f/?*f]j*‘r

e Sufficient reduction: G =i @) =

In [1], the zeroth-order oracle is assumed to be exact, that is fko = ¢(xx) and f,:“ =
¢ (xr + sx(ag)), and r = 0. In [7] the zeroth-order oracle and the choice of r are the
same as in [22]. In [1, 7], a version of the following first- and second-order oracles are
used. For specific implementation details, please refer to [1, 7].

e CR.1 (Cubicly regularized Newton, first-order oracle). Given a point x and the
current parameter «, the oracle computes a gradient estimate g(x, &1) (where §; =
&1 (x, @) is the randomness of the oracle, which can depend on x and «) such that

P, (V000 = g, &)1 < eg max {a, 1s12}) = 1 - 51,

where k. and §; are nonnegative constants, and s is defined in (2).

e CR.2 (Cubicly regularized Newton, second-order oracle). Given a point x, and
the current parameter «, the oracle computes a Hessian estimate H (x, &) (where
& = & (x, o) is the randomness of the oracle, which can depend on x and «) such
that

P, (V29 (0) = Hx,)51 < ko max fa Is]2}) = 1= 82,

where k., and §, are nononegative constants, and s is defined in (2).

It is apparent that all of the algorithms that we discussed above rely on oracles
whose accuracy requirements change adaptively with «. It is also clear that for many

@ Springer

B.Jinetal.

settings, a higher accuracy requirement leads to a higher oracle complexity. For exam-
ple, if a stochastic oracle is delivered via sample averaging, then more samples are
needed to provide a higher accuracy. Therefore, to bound the total oracle complexity
of the algorithm, we need to bound the accuracy requirement over the iterations, or
equivalently provide a lower bound for the parameter «.

2.6 Notions of the stochastic process

When applied to problem (1), Algorithm 1 generates a stochastic process (with respect
to the randomness underlying the stochastic oracles). Specifically, let (X;)x>0 be
the random iterates with realizations xi, let (Gg)r>0 be the gradient estimates with
realizations gi, and let (Ax)x>0 be the step size parameter values with realizations
ak. The prior works that analyze different methods belonging to the framework of
Algorithm 1 define this stochastic process rigorously, with appropriate filtrations.
Here for brevity, we will omit those details, as we do not use them in the analysis. We
now define a stopping time for the process.

Definition 2 (Stopping time) For ¢ > 0, let T, be the first time such that a specified
optimality condition is satisfied. For all the settings considered in this paper, T, =
min{k : ||V¢ (xx)| < e}if ¢ is non-convex, and T, = min{k : ¢ (x;) —inf, ¢ (x) < &}
if ¢ is strongly convex. We will refer to T, as the stopping time of the algorithm.

The following property is crucial in the analysis of algorithms in the framework of
Algorithm 1.

Assumption 1 (Properties of the stochastic process generated by the adaptive stochas-
tic algorithm) The random sequence of parameters A; generated by the algorithm
satisfies the following:

(i) Forall k, Ay € {y Ax_1, min{omax, ¥y "L Ar_1}}, and
(i) There exist constants @ > 0, and p > % such that for all iterations k,

P(Air1 =y Ak | Fio k < Too A <&@ = p.
Here, 7 denotes the filtration generated by the algorithm up to iteration k.

The algorithms in [1-6, 22] all satisfy Assumption 1, under appropriate lower bounds
on the oracle probabilities 8¢, §; (and 87). Also, without loss of generality, we will
assume that g > @, since if &9 < & we can simply define @ to be «g, as o is a
constant. In the next section, under Assumption 1, we derive a high probability lower
bound on o as a function of the number of iterations n, @, p, and y.

Throughout the remainder of this paper, we will use g to denote 1 — p.

3 High probability lower bound for the step size parameter

The following theorem provides a high probability lower bound for o.

@ Springer

Sample complexity analysis for adaptive optimization...

Random Walk compared against Lower Bound Minimum of Random Walk compared against Lower Bound

10° 4 10°

1071 4 1071

Step Sizes
Step Sizes

—=- random walk, 7=0.7 ~== min of random walk, 7=0.7
lower bound, v=0.7

-2

7 --- random walk, y=0.8 10 —== min of random walk, 7=0.8

—— lower bound, 7=08 —— lower bound, 7=08
~=- random walk, 7=0.9 ~—== min of random walk, 7=0.9 \
—— lower bound, 7=0.9 lower bound, v=0.9

0 200 400 600 800 1000 0 200 400 600 800 1000
n n

—— lower bound, y=0.7

(a) Comparing the random walk trajec- (b) Comparing the minimum wvalue

tory with the theoretical lower bound for attained so far by the random walk curves

various values of 7. in Figure la with the theoretical lower
bounds

Fig. 1 Tllustration of Theorem 1

Theorem 1 Suppose Assumption 1 holds for Algorithm 1. For any positive integer n,
any @ > 0, with probability at least 1 —n=® — cn= 17 ywe have

(1+w)logy p, n —(1+w)logy p, 1/y

either T, < nor min a; > a*(n) :=ayy =ayn
1<k<n

2J/pq
(1-2/p9)?

The proof of this theorem involves two steps. First, in Sect. 3.1, we show that for
n < Tg, the sequence of step size parameters A generated by the algorithm can be
coupled with a random walk on the non-negative integers. This reduces the problem to
that of bounding the maximum value of a one-sided random walk in the first n steps.
We then derive a high probability upper bound on this maximum value in Sect. 3.2.

Before moving to its proof, we illustrate the theorem using some plots and comment
on some implications of the theorem.

where ¢ = andq =1— p.

Ilustration of Theorem 1. Figure 1a illustrates the high probability bound provided
by Theorem 1. The solid curves depict the lower bounds given by the theorem for
a =1,0 =1, p = 0.8, and for varying values of y. In comparison, the dotted
lines correspond to one-sided random walks Z that start at @ = 1. At each step,
Zi11 = y 2, with probability 1 — p, and 2,1 = min{1, y~!Z;} with probability
p- The proof of Theorem 1 shown later implies that there is a coupling between the
sequence of parameters Ay generated by the algorithm and Zj, such that Ay > Z, in
other words, the sequence of parameters .A; generated by the algorithm stochastically
dominates Z.

Remarks on Theorem 1.

1. Forfixed n, y, and &, the lower bound is a function of p. Itincreases as p increases.
Specifically, the exponent of n changes with p, and the exponent goes to 0 as p
goes to 1. Hence as p goes to 1, this lower bound simplifies to &y, which matches
the lower bound in the deterministic case.

@ Springer

B.Jinetal.

2. When p is close to 1 (i.e. when the stochastic oracles are highly reliable), this
lower bound decreases slowly as a function of 7, since the exponent of n is close
to 0. Alternatively, when the stochastic oracles are not highly reliable, increasing
the value of y allows the algorithm to maintain a slow decrease of the step size.

3. Enlarging y as p decreases makes intuitive sense for the algorithm. When p is
large, an unsuccessful step is more likely to be caused by the step size being too
large rather than the failure of the oracles to deliver the desired accuracy. On the
other hand, when p is small, unsuccessful iterations are likely to occur even when
the step size parameter is already small. Thus in the latter case, larger y values
help avoid an erroneous rapid decrease of the step size parameter.

4. If we choose y = (%)

1
-1
and w = 1, then the minimum step size is lower

bounded by o"zyn_% with high probability. This coincides with the typical choice
of the step size decay schemes for the stochastic gradient method applied to non-
convex functions.

The theorem implies that we can even bound « by a constant times & with high
probability, provided we set y as a function of n.

Corollary 1 Let Assumption 1 hold for Algorithm 1, then for any positive integer n,
any w > 0, and any B < %, if

log(28)

1 /1) TFelogn
y>max{ =, | — ,
2 \2¢q
then with probability at least 1 —n=® — cn~11®) ywhere ¢ = 2P e have

(1-2/p*’

eitherT, < nor min oy > Ba.
1<k<n

Proof This follows from Theorem 1 by substituting in the specified value of y. O

In the remainder of this section, we prove Theorem 1 in two steps.

3.1 Step 1: reduction to random walk

We will use a coupling argument to obtain the reduction to a random walk.

Let {A;}72, denote the random sequence of parameter values (whose realization is
{ak },‘:io), for Algorithm 1. Let us assume, WLOG, that 4y = yj a, for some integer
j < 0. (Recall here that 0 < y < 1.) Then we observe that Ay = y '@, where
{Yk},‘zio is a random sequence of integers, with I_’o = j < 0, which increases by one
on every unsuccessful step, and decreases by one on every successful step. Moreover,
by Assumption 1, whenever k < T, and Y; > 0, the probability that it decreases by

@ Springer

Sample complexity analysis for adaptive optimization...

one is at least p. Define Y as follows:

Yeio1—1 wp.p

Yo=Y ifk<T.,, Y=
k k - k Yio14+1 wp. l—p

ifk>T.. (3)

In other words, Y follows the algorithm until 7%, and then behaves like a random walk
with downward drift p after 7. We now couple {¥;}2) with a random walk {Z;}22
which stochastically dominates Y.

Consider the following one-sided random walk {Z;}??,, defined on the non-
negative integers.

Zr+1, wp.1—p,
Zo=0, Ziy1=3Zr—1, wp.p,ifZ; > 1, 4
0, w.p. p, if Z; = 0.

Lemma 1 There exists a coupling between Zy and Yy, where Zy. stochastically domi-
nates Y.

Proof of Lemma 1 Initially, Zy = 0 and Yy < 0. For each k, we show how to update
Zi to Zj41 according to how Y changes to Y1 1. We consider two cases depending
on whether k < T, or k > Tg.

Case 1: k < T;. If Yy < —1, we update Zi41 from Z; according to Eq. 4, inde-
pendently of how Y; changes to Yx41. If Y5 > 0, then we first check if Y increased
or decreased. Let p’ be the probability that Yz = Y; — 1 on this sample path. Since
Yr > 0, we know by Assumption 1 that p’ > p. Now, if Y3 = Y; + 1, then we set
Zi+1 = Zi + 1. On the other hand, if Yy = Y; — 1, then we set Zy41 = Z + 1
with probability 1 — %, and Z;+1 = max{Z; — 1, 0} with probability %. Note that
these probabilities are well-defined because p’ > p.

Case 2: k > T. If Y1 = Y + 1, then set Zyy1 = Zi + 1. Otherwise, if
Yit1 = Yr — 1, then set Zy 41 = max{Z; — 1, 0}.

Observe that under this coupling, Z; > Yj on every sample path. Moreover, {Z}
and {Yy} have the correct marginal distributions. For Yy, this is easy to see, since
it evolves according to its true distribution and we are constructing Z; from it. For
Zi, on any step with k > T,, Zi41 evolves from Z; correctly according to Eq. 4
by construction. On a step with k < T there are two cases: (1) ¥ < —1, and
(2) Yx = 0. In the first case, the update from Z; to Z;4; clearly follows Eq. 4.
This is also true in the second case, since there the probability that Z; increases is
(1=p)+pU-L)=1-p.

To summarize, we have exhibited a coupling between {Z;} and {Y}}, under which
Zi > Y on any sample path. O

3.2 Step 2: upper-bounding the maximum value of the random walk

We now derive a high probability upper bound on the maximum value reached by the
random walk.

@ Springer

B.Jinetal.

Definition 3 Let N (I, n) be the random variable that denotes the number of times
Zi =l in the first n steps of the random walk.

By definition of N (I, n), we have N (/, n) > 0 if and only if state / is visited in the
first n steps of the random walk. The next proposition upper bounds the probability
that N(I,n) > 0.

Proposition1 Let g = 1 — p. We have

—(a/p) <g)’+ 2/pa
1—(g/p)! 2prq

Proof First, observe that P(N (I, n) > 0) remains unchanged if we change the state
space from {0, 1,2, ...} to {0, 1,2, ..., [} and modify the walk to hold in state / with
probability ¢ (instead of moving from / to [+ 1 with that probability). This defines a
Markov chainon {0, 1, 2, ..., [}, and let P be its transition matrix. Noting that P(;f‘l is
the probability that the Markov chain is in state [at time m, we see that

P(N(,n) >0) < (n—1+1) T2 29)'.

P(N(,n) > 0) <Y Py,)

m=lI

The matrix P is explicitly diagonalized in [20] (Section XVI.3). By (3.16) in that
section,

pm _ L=/p) (q>’ 8 ()2Z[SmHl][smHl][ZNCOS’“] . (6)

=@/ \p 1= 2/pq cos £

r=I1

The absolute value of the sum appearing in (6) can of course be bounded above by

i NN
—1-2/pg - 2/Pq

and this readily yields
1—@/p) (q) 2p g\ "
Py S ——— (—) +— (—) V™. @)
"=/ \p) 1 =2ypg \p
Summing (7) overm = [, ..., n and using (5), we obtain the bound on P(N (/, n) > 0)
claimed in the proposition. O

Remark 1 The bound for Proposition 1 is essentially tight, as the decay of P(N (I, n) >
0) is not faster than geometric; ¢ is a lower bound.

With the above proposition at hand, Theorem 1 is proved by choosing an appropriate
level I, for which P(N(l, n) = 0) is high.

@ Springer

Sample complexity analysis for adaptive optimization...

Proof of Theorem 1 Let ¢ = 1 — p. By Proposition 1, we have:

1 - ! 2
POV = 0) < 0= 1 D A () %(2@’.

In other words,

l

1—(q/p)*' \p (1 —2pq)?
l
q 2./pq .
1l—n(ZL) - Y204,
=i (,,) TEEN

Let a > 0 be a parameter to be set later, and take / = [alog(n)]. Then, the above
inequality implies:

alog(n)
o (q> 2IPL_ ggyatozn

P(N(,n)=0)> —= -
p (1 —-2/pq)?
— | — plm@loe(D) _ 2Jrq = log(1/29)
(1 -2pq9)?

In going from the first line to the second, we used the following fact about logarithms:

logn _ palogx _ ,—alog(l —_ 1+ P 1y _
xalogn _ palogx _ p—alog(1/x) et q — m. Then, alog(a) > alog(ﬁ) =
1 4+ w, so

2./
PNy =0) = 1—n = —PL_p=(to),
(1 =2{pq)
i ili o _ op—(Ho) 2P
In other words, with probability at least 1 — n cn with ¢ = Nk

the random walk will remain below [= [(1 + w) log; /2 11 in the first n steps. By
construction of the coupling, with the above probability, we know the o parameter
in the algorithm either remains above y (#0271 = o [(IF+@)Iog12 M5 throughout the
first n steps, or the algorithm has reached its stopping time in n steps. O

It is natural to ask if the theory extends to the case where the factors for increasing
and decreasing the step size are different. The main challenge in this case is that the
stochastic process of the step sizes is now modeled by a random walk whose step
length going up is different than the step length going down. If it turns out that the
hitting probability P(N (/,n) > 0) can be bounded for the more general one-sided
random walks, we believe the theory in our paper can be extended similarly. We will
leave it as a subject for future research.

@ Springer

B.Jinetal.

4 Expected and high probability total oracle complexity

We now use the tools derived in the previous section to obtain abstract expected and
high probability upper bounds on the total oracle complexity of Algorithm 1. In Sect.
5, we will derive concrete bounds for the total oracle complexity of two specific
algorithms (STORM and SASS), and the specific oracles arising in expected risk
minimization.

The cost of an oracle call may depend on the step size parameter « and the prob-
ability parameter 1 — &, thus we denote the cost by oc(¢, 1 — §). We will use oc(w)
in the paper to simplify the notation because for all algorithms in the class, § can be
treated as a constant. Moreover, the cost of an oracle call is a non-increasing function
of « for all algorithms developed so far that fit into the framework.

Assumption 2 oc(«) is non-increasing in .
Definition 4 (Total oracle complexity) For a positive integer n, let TOC(n) be the

random variable which denotes the total oracle complexity of running the algorithm
for n iterations. In other words,

TOC(n) = Z oc(Ap).
k=1

4.1 Abstract expected total oracle complexity

We now proceed to bound TOC(min{7¢, n}) in expectation, where n is an arbitrary
positive integer.

Theorem 2 Let Assumptions 1 and 2 hold in Algorithm 1. For any positive integer n,
we have

n l
E[TOC(min{T., n})] <n Emin {1, n (%) + %(2(1)1 . oc(&yl) + noc(@).

Proof First, observe that if the oy parameters are all above some value «* in the first n
steps, then by Assumption 2, TOC(n) < n - oc(a™®). Therefore, for any integer [> 0,
we have

P(TOC(min{7,, n}) > n - oc(@y')) < P(N(+ 1,n) > 0). (8)

By Proposition 1,

1+1
q 2Jrq 141
P(N(l+1,n)>0)§n<p> +(1_2 pq)2(2q))

@ Springer

Sample complexity analysis for adaptive optimization...

This implies
I+1
29
P(TOC(min{T;, n}) > n - oc(@y’)) <min {1, n (1) + iz(zq)l+1)
P (1 -2pq)

By the definition of expectation,

E[TOC(min{T¢, n})]

n-oc(@y™)
- Z i - P(TOC(min{7;, n}) = i)
i=0
n—1
< > P (TOCmin(Te, n)) € (1 oc@y), n - oc(@y 1) - noc@y' ")
=0

+ P (TOC(min{T,, n}) € [0, n oc(@)]) - n oc(&@)

3
|
-

<Yp (TOC(min{Tg, n)) > n oc(o"zyl)> -noc@y'™) + noc@)

=0
n—1 I+1
. q 2{/pq I+1 = I+l -
< mini l,n| = + —29) -noc(ay’ ™) +noc(a).
= { (p) (1-2ypg)*

4.2 Abstract high probability total oracle complexity

We now proceed to bound TOC(T;) in high probability, using Theorem 1.

Theorem 3 Let Assumptions 1 and 2 hold in Algorithm 1. For any w > 0 and positive
integer n, with probability at least | —P(T, > n) —n~® — cn~ (179,

TOC(T,) < n - oc(a*(n)),

(o) 10100 1Y and ¢ is as defined in Theorem 1.

log(28)
. 1 log
If y is chosen to be at least max {%, (!) (Herloen ,for some B < %, then a*(n) >

where a*(n) = ayn

2q 2

Ba, thus with probability at least | — P(T, > n) —n~® — cn~ (1),
TOC(T:) < n -oc(Ba).

Proof Let TOC,y (n) be the total oracle complexity of the first n iterations with the
corresponding sequence of parameters ¢ induced by the one-sided random walk (that
is, the sequence defined by oy = &yzk, where Z; is defined in Sect. 3.1). In other

@ Springer

B.Jinetal.

words,
n
TOCw(n) = Y oc(@y™).
k=1

With probability 1 — P(T; > n), we have T, < n, which implies
TOC(T,) < TOCw(Te) < TOGw(n).

Here, the first inequality is by Lemma 1 and Assumption 2, and the second inequality
isby T, <n.

The same arguments used in the proof of Theorem 1 show that with probability at
least 1 —n~® — cn~(1+9) e have ming<x<p &yzk > a™(n). Thus, with at least this
probability, TOCyy (1) < n - oc(a™*(n)).

Putting these together with a union bound, the result follows.

The second part of the theorem follows from substituting in the specific choice of

y. i

5 Applying to STORM and SASS

In this section, we demonstrate how the generic oracle complexity bounds in the
previous section can be applied to concrete combinations of oracles and algorithms.
We will consider the specific setting of expected risk minimization and two algorithms,
first-order STORM and SASS, which are described earlier in the paper and fully
analyzed in [4, 22], respectively. For each case, we will state the bounds on oc(w)
as a function of «, and use those bounds in conjunction with the known bounds on
T, (that have been derived in previous papers), to obtain a bound on the total oracle
complexity for each algorithm.

The results we obtain are the first ones that bound the total oracle complexity of
STORM and SASS, and we show that both algorithms are essentially near optimal in
terms of total gradient sample complexity. When deriving these results, for simplicity
of presentation, we omit most of the constants involved in the specific bounds on 7
and specific conditions on various algorithmic constants. For all such details, we refer
the reader to [4, 22]. We will include short comments regarding these constants, but
otherwise replace them with a O(-) notation.

Problem Setting: Expected risk minimization (ERM) can be written as
min ¢ (x) = Eg~pll(x, d)].
xeR™M

Here, x represents the vector of model parameters, d is a data sample following
distribution D, and I (x, d) is the loss when the model parameterized by x is evaluated
on data point d. This problem is central in supervised machine learning and other
settings such as simulation optimization [21]. For this problem, itis common to assume
the function ¢ is L-smooth and is bounded from below, and gradients of functions

@ Springer

Sample complexity analysis for adaptive optimization...

V,l(x,d) can be computed for any d ~ D, so we will consider this setting in this
section.
In this setting, the zeroth- and first-order oracles are usually computed as follows:

1

f(x’S)ZE

Yolx.d), gx.8) = é > Vil(x.d),)

deS deS

where S is the “minibatch"—that is a set of i.i.d samples from D. Generally, |S| can
be chosen to depend on x.

In what follows we will refer to the total number of times an algorithm computes
l(x, d) for a specific x and d as its total function value sample complexity and the
number of times the algorithm computes VI(x, d) as its total gradient sample com-
plexity. The total (oracle or sample) complexity of the algorithm is defined as the sum
of these two quantities.

5.1 Total sample complexity of first-order STORM

We first consider the first-order stochastic trust-region method (STORM) as introduced
and analyzed in [4]. The algorithm uses zeroth- and first-order oracles defined in
TR1.0 and TR1.1 in Sect. 2. Trust-region algorithms are usually applied to nonconvex
functions and the stopping time of STORM is defined as 7, = min{k : ||V (xx)| < e}.
In Section 3.3 of [4], it is shown that Assumption 1 is satisfied with @ = £, where
¢ is a moderate constant that depends on k., L and some constant chosen by the
algorithm.

In [4], the oracle costs of STORM in the ERM setting are briefly discussed under
the following assumptions on /(x, d).

e Function value: It is assumed that there is some oy > 0 such that for all x,
Vargp [[(x,d)] < (r]%.

e Gradient: It is assumed that E;.p[V,l(x,d)] = V¢ (x), and that there is some
og > 0 such that for all x,

Egp IVil(x,d) — Ve < 0. (10)

The cost of each oracle call is the number of samples in the associated minibatch S.
By applying Chebyshev’s inequality it is easy to bound the oracle costs of TR1.0 and
TRI1.1.

2

e Cost of TR1.0 with parameter «: 0co (@) = m,
ef
2

e Cost of TR1.1 with parameter o 0Ci (&) = -5 5.
1KGo

Below we substitute the specific oracle costs into Theorem 2 to obtain the expected
total sample complexity for the first-order STORM algorithm. Specifically, we will
bound the total sample complexity of STORM E[TOC(min{7,, n})] by deriving bounds

@ Springer

B.Jinetal.

on the expectation of the total function value sample complexity TOCy and the total
gradient sample complexity TOC;, where

TOCo(n) = Y 0co(Ag), TOC (n) = Y oci (Ar) and TOC(n) = TOCy(n) + TOC; ().
k=1 k=1

Theorem 4 (Expected total sample complexity bound of first-order STORM) Let p =
1 —68g — 81 and g = 1 — p. For the first-order STORM algorithm, for any iteration

numbern € 2", and y > (Zq)%, we have

2 2
(o2
E[TOC(min{T,, n})] < O (n log,,/, () (n*%p? 4 & p2logy/ V)))
&

loge
1 . .
Ify > (%) " for some constant ¢ > 1 (so that n'%/rY < ¢), the above simplifies
to be

0_2 02
E[TOC(min{T,, n})] < nlog(n) - O <—£ + —§> . (11)
I &

Proof By Theorem 2, the total expected cost of the zeroth-order oracle over n iterations
is bounded above by:

n I
E[TOCo(min{Te,n})] <n ;min {1, n (%) + %(2@1}

-oco(@y') + nocy(@)
n 1
<n Zmin {l, n (Z) } . oco(&yl)
=1 p

=A

ZnJ_

T 2ypa? 2 Z (29)" - oco(ay") +n 0co(@).

=B

For the zeroth-order oracle, ocy(x) = (’)(o 7). We use this to calculate

O’
upper bounds for A and B. First, we cons1der A. Note that min{1, n(F) } =1, if and
only if / < log /4 (n). Therefore,

@ Springer

Sample complexity analysis for adaptive optimization...

logg(n) /
A< > oq@yh+n D (Z) oco(ay’)
=1 [>log p (n)
q
log p (n)
q o2 l o2
f q S
< O\——5|+n <_> O\ ==
; (a4y41) Z p aty4

Next we bound B. We have

- I BN ! oj i 1 i
B=Y"(Qq) oc@y) <) g O e =0\w i) =0l)
I=1 1=0 y

Using these bounds on A and B in the expression for E[TOCq(min{7, n})], we obtain
2

. . 4logq y
the bound on the total function value sample complexity as O <Z—{: nlogp (n)n P
q

A similar calculation using the cost of the first-order oracle yields the bound
2 21
O(Z—gnlogp(n)n °g3y> for E[TOC (min{T,, n})]. Since TOC(min{T,n}) =
q
TOCy(min{7¢, n}) + TOC; (min{T;, n}) by definition, the result follows. O

Let us discuss the implications of Theorem 4. In [8], a lower bound on the total
gradient sample complexity for stochastic optimization of non-convex, smooth func-
tions is derived and shown to be, in the worst case, 8%, for some positive constant C.
This complexity lower bound holds even when exact function values ¢ (x) are also
available. We note that the definition of complexity in [8] is the smallest number of
sample gradient evaluations required to return a point x with E[||V¢ (x)||] < &, which
is different from TOC(7,) which we are aiming to bound here. We believe that the
lower bound in [8] applies to our definition as well, but this is a subject of a separate
study.

In [4], it is shown that E[T,] < % for some C; sufficiently large that

depends on &1, 8, keg, L and some algorithmic constants. Thus, if n = C—21
&

@ Springer

B.Jinetal.

in inequality (11) of Theorem 4 , as long as y is sufficiently large, we obtain

2 2
E[TOC(min{T, n})] < O ((Z—é + :—i) log(%)) . In particular, the total gradient sam-

2
ple complexity is O (Z—ﬁ log (é) , which essentially matches the complexity lower

bound as described in [8] up to a logarithmic factor The total function Value sample
complexity is worse than that of the gradient if 0 is large. However, if o2 7= 0(0282)
(which often happens in practice since o, usually scales with the dimension of the
problem, and tends to be much larger than o f), the total sample complexity bound of
STORM matches the lower bound up to a logarithmic factor.

We note now that choosing n = % in Theorem 4 does not in fact guarantee that
T, < n, since for STORM, only a bound on E[7;] has been derived. However, this
statement can be made true in probablhty, thanks to Theorem 3, by simply applying
Markov inequality for n = C2 L (where Cy > 1).

Theorem 5 (High probability total sample complexity bound of first-order STORM)

For the first-order STORM algorlthm applied to expected risk mlmmzzation let n be

chosen such that n > C2 L (for some C| sufficiently large so that ‘ > E[T;], and
log(28)

any Co > 1), and y be chosen so that y > max {%, (L) TFw) logn } (for some B < %

2q

and any w > 0). Then, with probability at least 1 — Clz — O™ ?),
2 o2
TOC(T) <O =+ = | (12)
e e

Proof The theorem is a simple application of Theorem 3 to the specific setting. O

Remark2 1. Compared to the expected total sample complexity bound, this high
probability bound is smaller by a log factor.

2. In [5], a first-order trust-region algorithm similar to STORM with the same first-
order oracle (i.e. TR1.1 with €, = 0), but with an exact zeroth-order oracle (i.e.
TR1.0 with k,s = 8o = 0) is analyzed. In this case, it is shown that P(T, >
n) < exp(—Cin) (for some constant C; that depends on 41), for any n > % (with
some sufficiently large C»). Using a similar application of Theorem 3, we can
show that as long as y is sufficiently large, the total grzadient sample complexity

of that trust-region algorithm is bounded above by (’)(Z—ﬁ) with probability at least
1 —exp(—Cin) —O(n~) (which is a significant improvement over the probability
in Theorem 5).

3. Another first-order trust-region algorithm, with weaker oracle assumptions than
those in [5] is introduced and analyzed in [6]. This algorithm relies on the first-
order oracle as described in TR1.1 and the zeroth-order oracle as described in
SS.0. For this algorithm, it is shown that P(7T; > n) < 2exp(—Cin) + exp(—C2)
(C3 being any positive constant), where n = C3 % for some sufficiently large C3
and some positive Cp that depends on §p and §1. Thus, again, using Theorem 3

@ Springer

Sample complexity analysis for adaptive optimization...

we can show that as long as y is sufficiently large, the total sample complexity of
2

the first-order trust-region algorithm in [6] is bounded above by O(Z—é + Z—ﬁ) with
probability at least 1 — 2 exp(—Cin) — exp(—C2) — O(n~?).

4. In the event where o, and o ¢ are not known and need to be estimated, the implica-
tions are as follows. Consider the first-order oracle for STORM (TR1.1)—there is
a constant kg which in general can be arbitrarily large. Its value affects the value
of &, which in turn affects the total complexity bound, but theory still applies. Ear-
lier in this section, we saw that the sample cost of TR1.1 depends on :72, which
means that underestimating o, (and using a smaller sample size) is equivalent to
using a correct value for o, and obtaining an oracle with a larger k., than what one
would have had with the correct o,. In this case, the price of underestimating oy is
directly reflected in the complexity bounds. On the other hand, the same situation
does not quite apply to o because the corresponding ks cannot be arbitrarily
large (at least not in the STORM analysis).

5.2 Total sample complexity of SASS

We now consider the SASS algorithm,1 analyzed in [3, 22] and described in Sect. 2.3.
By Proposition 1, 2 and 4 of [22], Assumption 1 is satisfied, with & as given in the
propositions.

In the empirical risk minimization setting, the following assumptions on /(x, d)
are made in [22].

e Function value: It is assumed that |/(x, d) — ¢ (x)| is a subexponential random
variable and that there is some oy > 0 such that for all x, Varg~p [[(x, d)] < o2,
For example, if /(x, d) is uniformly bounded, then |/(x, d) — ¢ (x)| is subexpo-
nential.

e Gradient: It is assumed that E;.p[V,l(x,d)] = V¢ (x), and that for some

M., M, > 0 and for all x,
Egp IVl (x,d) — Vo)|I> < Mc + My, Vo ()% (13)

This assumption is fairly general and is studied in the literature [23].

For non-convex functions, the stopping time is defined as 7, = min{k
IV (xx)|| < e}, same as in the case of STORM. For strongly convex functions,
the stopping time is defined as 7, = minf{k : ¢ (xz) — inf, ¢ (x) < e}. To achieve the
desired accuracy, oracles SS.0 and SS.1 have to be sufficiently accurate in the sense
that €y and €, have to be sufficiently small with respect to €. In the case of expected
risk minimization, the oracles can be implemented for any €y and €, by choosing an
appropriate mini-batch size. Thus, here we will first fix ¢ and then discuss the oracles
that deliver sufficient accuracy for such ¢, for the theory in [22] to apply.

Oracle costs per iteration In [22], it is shown that given the desired convergence
tolerance ¢, sufficiently accurate oracles SS.0 and SS.1 can be implemented for any
step size parameter « as follows:

I This algorithm was also referred to as ALOE in [22]. Its name has been changed to SASS since [22].

@ Springer

B.Jinetal.

e Zeroth-order oracle: Proposition 5 of [22] shows that a sufficiently accurate zeroth-
order oracle can be obtained by using a minibatch of size

(’)(cr/% /84), for the non-convex case,

ocp(a) = { (14)

(’)(o]% /%), for the strongly convex case.

Note that the cost of the zeroth-order oracle is independent of «.
e First-order oracle: Proposition 6 of [22] implies that a sufficiently accurate first-
order oracle can be obtained by using a minibatch of size

@ @) (% ﬁ) , for the non-convex case, (15)
oCj(x) = ;
@) (% + ﬁ) , for the strongly convex case.

The cost of the first-order oracle is indeed non-increasing in «, so Assumption
2 is satisfied. For simplicity of the presentation and essentially without loss of
generality, we will assume 7 > ka.

Substituting these bounds into Theorem 2, we obtain the following expected total
sample complexity.

Theorem 6 (Expected total sample complexity of SASS) For the SASS algorithm
applied to expected risk minimization, for any iteration number n € 7, and any

y > (2q)%, we have

e Non-convex case:
szf MC logp (%)
E[TOC(min{T;, n)] < O\ =g -n+ — -n+My-n|n "4 logp(n) | |.
& & q

e Strongly convex case:

2 M logp<i>
E[TOC(min{T;, n})] < O - -n+TC~n+Mv~n noa\r? logp(n)) .
q

|3

logc

Zlogn logp (75
Moreover, if y > (%)21 ¢ for some constant ¢ > 1 (so that n Ogg(yz) < c¢), the
above simplifies to
e Non-convex case:
. of M,
E[TOC(min{T.,n})] <O (n - +t—=+ M, log(n) . (16)
I3 I3

@ Springer

Sample complexity analysis for adaptive optimization...

e Strongly convex case:

~

oz M,
E[TOC(min{T,,n})] < O |n) + - + Mylog(n))). (17)

Proof Since the cost of each call to the zeroth-order oracle (14) is independent of «,
the total function value sample complexity over n iterations is simply obtained by
multiplying (14) by n.

The cost of the first-order oracle (15) consists of two parts, ocj (o) = ocy 1(@) +
ocy 2(a). The first part, ocy 1 («), is O(%). Since this is independent of «, the total
contribution of this part to the total gradient sample complexity over n iterations is
nocy,1(c), which is bounded by (’)(< n).

The second part of the cost of the first-order oracle is ocj 2 («) = O(W)
By Theorem 2, the total expected cost over n iterations from this part is bounded above
by:

n 1 2\/—
n min{1,n (2) + ———=2q) } -0C1,2(5l)/l) +nocy (@)
,; : P —2/p9)?
<n Zmin {l, n <
=1

I
) } -ocya(@yh)

A

< R

2n¢_
(1=2/pq) 4

<2q>1 -oc 2(@y’) +noci 2 (@).

||M=

=:B

Note that the expression above only involves ocj 2(«) for ¢ < «. Therefore, by
our earlier assumption that T > «¢a, we have ocj (o) = (Kzaz) = (’)(%) (since x
is a constant). We now use this to calculate upper bounds for A and B. Usmg similar
arguments as the proof of Theorem 4, we have

M, £ M
A= O(— logp(n)n gi(ﬂ)) and B :(9(_—;).
a

Together with the previous arguments, the result follows. O

In [22], the iteration bound on 7 is shown to be % + log, Jy % in the non-convex

case, and C» log% + logy /,, 2 in the strongly convex case (for some C; and C;
sufficiently large) in high probability. Thus, we can select n appropriately and derive
the high probability bound on the total sample complexity of SASS using Theorem 3.

Theorem 7 (High probability total sample complexity of SASS) For the SASS algo-
rithm applied to expected risk minimization, let n > % +logy), % in the non-convex

case, and n > Cp log % + logy /,, %0 in the strongly convex case.

@ Springer

B.Jinetal.

For any @ > 0, with probability at least 1 — 2exp (—C3n) — O(n~%) (for some
Cz > 0), we have

e Non-convex case:

2
1 (o 7)) Gf Mc Mv
TOC(Ty) < O <(8_2 +10g1/}/ E) . (8_4 + 8_2 + m)) . (18)

e Strongly convex case:
2 2(1+w) logy, (¥)
1 o M, 1 24
TOC(Ty) < O ((log +logy, a_—0> . (; + =<4+ M, <log 7))) .
€ a € € €
(19)

log(28) 1
1 1 o g .
Ify € |:max {%, (ﬁ)(Fevlogn } , (;—O) «] , where B is any constant smaller than

oL and c is any constant in (0, 1), the above simplifies to

—

e Non-convex case:

2
1 oy M. M,
TOC(T) <O (8_2 : (8_4 + 2 + F)) . (20)
e Strongly convex case:
1 (oF M. M,
TOUT,) =O(\log—- | 5 +—+—5]]- (21)
g e £ B

Proof The bounds (18) and (19) follow by using (14) and (15) in Theorem 3, and
Theorem 3.8 of [22].

The bounds (20) and (21) follow from (18) and (19), respectively, by using the fact
that y lies in the appropriate range and logl Jy 2 < cnwithc € (0, 1).

In the non-convex case, we have 2 + logl/y 3= (’)() and W =
(9(%) when y lies in the specified range. It is worth noting that ¢ € (0, 1) implies
there issomen = (9(5—2) that satisfies n > 5—2 +logy 22 The result for the strongly
convex case follows similarly. O

Remark3 1. We consider some of the implications of Theorem 7 below. Similar
implications hold for the expected total sample complexity.

e In the non-convex case, from (20), the total function value sample complexity
2
is O :—é) and the total gradient sample complexity is O (% +) In

particular, the total gradient sample complexity matches that of SGD, and
it essentially matches the complexity lower bound as described in [8] (for a
different definition of complexity). Specifically, if o y = 0 (i.e., function values

@ Springer

Sample complexity analysis for adaptive optimization...

are exact), the lower bound in [8] applies and the total sample complexity of
SASS matches it.
o If M. = 0 (sometimes referred to as the interpolation case), then the total gra-

dient sample complexity reduces to O (%) Hence, the total gradient sample

complexity matches that of SGD under interpolation [23, 24].
e In the strongly convex case, the total function value sample complexity is
2

O(Z—£ log %) and the total gradient sample complexity is O((% + M) log %).
In particular, the total gradient sample complexity matches that of SGD up to
a logarithmic term.

2. Our framework can be applied to the convex setting as well. We focus on the non-
convex and strongly convex settings in this paper for brevity and to cleanly illustrate
how our framework can be applied, since the convex case requires some additional
complications in the presentation. These complications are present in the previous
papers that analyze iteration complexity bounds, and are not specific to this paper.
For example, the stopping time in the convex setting for SASS is defined in terms
of two parameters ¢ = (gg, 1) as follows: T, = min{k : ¢(X;) — p(x*) <
goor [[Vo(Xpl < er}

6 Conclusion

We analyzed the behavior of the step size parameter in Algorithm 1, an adaptive
stochastic optimization framework that encompasses a wide class of algorithms ana-
lyzed in recent literature. We derived a high probability lower bound for this parameter,
and as a result, developed a simple strategy for controlling this lower bound.

For many settings, having a fixed lower bound on the step size parameter implies
an upper bound on the cost of the oracles that compute the gradient and function
estimates. We developed a framework to analyze the expected and high probability
total oracle complexity for this general class of algorithms, and illustrated the use
of it by deriving total sample complexity bounds for two specific algorithms—the
first-order stochastic trust-region (STORM) algorithm [4] and a stochastic step search
(SASS) algorithm [22] in the expected risk minimization setting. We showed that the
sample complexity of both these algorithms essentially matches the complexity lower
bound of first-order algorithms for stochastic non-convex optimization [8], which was
not known before.

Acknowledgements The authors wish to thank James Allen Fill for pointing out useful references and
the proof of Proposition 1. This work was partially supported by NSF Grants TRIPODS 17-40796, CCF
2008434, CCF 2140057 and ONR Grant N00014-22-1-2154. Billy Jin was partially supported by NSERC
fellowship PGSD3-532673-2019.

@ Springer

B.Jinetal.

References

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

Cartis, C., Scheinberg, K.: Global convergence rate analysis of unconstrained optimization meth-
ods based on probabilistic models. Math. Program. 169(2), 337-375 (2017). https://doi.org/10.1007/
s10107-017-1137-4

Paquette, C., Scheinberg, K.: A stochastic line search method with expected complexity analysis. SIAM
J. Optim. 30(1), 349-376 (2020)

Berahas, A.S., Cao, L., Scheinberg, K.: Global convergence rate analysis of a generic line search
algorithm with noise. SIAM J. Optim. 1489-1518 (2019)

Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis of a stochastic
trust-region method via supermartingales. INFORMS J. Optim. 1(2), 92-119 (2019)

. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Complexity and global rates of trust-region methods

based on probabilistic models. IMA J. Numer. Anal. 38(3), 1579-1597 (2018)

Cao, L., Berahas, A.S., Scheinberg, K.: First-and Second-Order High Probability Complexity Bounds
for Trust-Region Methods with Noisy Oracles (2022). arXiv:2205.03667

Scheinberg, K., Xie, M.: Stochastic adaptive regularization method with cubics: a high probability
complexity bound. In: Winter Simulation Conference (2023)

Arjevani, Y., Carmon, Y., Duchi, J.C., Foster, D.J., Srebro, N., Woodworth, B.: Lower Bounds for
Non-convex Stochastic Optimization (2019). arXiv:1912.02365

Kingma, D.P,, Ba, J.: Adam: A Method for Stochastic Optimization (2014). arXiv:1412.6980

Tan, C., Ma, S., Dai, Y.-H., Qian, Y.: Barzilai-Borwein step size for stochastic gradient descent. In:
Advances in Neural Information Processing Systems, vol. 29, pp. 685-693. Curran Associates Inc.,
NY (2016)

Rinaldi, F.,, Vicente, L., Zeffiro, D.: Stochastic trust-region and direct-search methods: a weak tail
bound condition and reduced sample sizing (2023). arXiv:2202.11074

Shashaani, S., Hashemi, E.S., Pasupathy, R.: Astro-df: a class of adaptive sampling trust-region algo-
rithms for derivative-free stochastic optimization. SIAM J. Optim. 28(4), 3145-3176 (2018)

Regier, J., Jordan, M.I.,, McAuliffe, J.: Fast black-box variational inference through stochastic
trust-region optimization. Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 2399-2408. Curran Associates Inc., NY (2017)

Berahas, A.S., Xie, M., Zhou, B.: A Sequential Quadratic Programming Method with High Probability
Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization (2023). https://doi.
org/10.48550/ARXIV.2301.00477

Menickelly, M., Wild, S.M., Xie, M.: A Stochastic Quasi-Newton Method in the Absence of Common
Random Numbers (2023). https://doi.org/10.48550/ARX1V.2302.09128

Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of
gradient approximations in derivative-free optimization. Found. Comput. Math. 22, 507-560 (2021)
Anscombe, FEJ.: Rejection of outliers. Technometrics 2, 123-146 (1960)

Yin, D., Chen, Y., Kannan, R., Bartlett, P.: Byzantine-robust distributed learning: towards optimal
statistical rates. In: International Conference on Machine Learning, pp. 5650-5659. PMLR (2018)
Spall, J.C.: Stochastic optimization and the simultaneous perturbation method. In: Proceedings of the
31st Conference on Winter Simulation: Simulation—A Bridge to the Future—Volume 1. WSC °99,
pp. 101-109. Association for Computing Machinery, New York, NY, USA (1999). https://doi.org/10.
1145/324138.324170

Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley (1968). http://
www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/0471257087

Kim, S., Pasupathy, R., Henderson, S.G.: A guide to sample average approximation. In: Handbook of
simulation optimization, pp. 207-243. Springer (2015)

Jin, B., Scheinberg, K., Xie, M.: High probability complexity bounds for line search based on stochastic
oracles. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.) Advances in
Neural Information Processing Systems, vol. 34, pp. 9193-9203 (2021). https://proceedings.neurips.
cc/paper/2021/file/4cb811134b9d39fc3104bd06ce7S5abad- Paper.pdf

Bottou, L., Curtis, FE., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM
Rev. 60(2), 223-311 (2018)

Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation algorithms for machine
learning. In: Advances in Neural Information Processing Systems 24: 25th Annual Conference on
Neural Information Processing Systems 2011. Proceedings of a Meeting Held 12-14 December 2011,

@ Springer

https://doi.org/10.1007/s10107-017-1137-4
https://doi.org/10.1007/s10107-017-1137-4
http://arxiv.org/abs/2205.03667
http://arxiv.org/abs/1912.02365
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2202.11074
https://doi.org/10.48550/ARXIV.2301.00477
https://doi.org/10.48550/ARXIV.2301.00477
https://doi.org/10.48550/ARXIV.2302.09128
https://doi.org/10.1145/324138.324170
https://doi.org/10.1145/324138.324170
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/0471257087
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike04-20&path=ASIN/0471257087
https://proceedings.neurips.cc/paper/2021/file/4cb811134b9d39fc3104bd06ce75abad-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/4cb811134b9d39fc3104bd06ce75abad-Paper.pdf

Sample complexity analysis for adaptive optimization...

Granada, Spain, pp. 451-459 (2011). http://papers.nips.cc/paper/4316-non-asymptotic-analysis-of-
stochastic-approximation-algorithms-for-machine-learning

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://papers.nips.cc/paper/4316-non-asymptotic-analysis-of-stochastic-approximation-algorithms-for-machine-learning
http://papers.nips.cc/paper/4316-non-asymptotic-analysis-of-stochastic-approximation-algorithms-for-machine-learning

	Sample complexity analysis for adaptive optimization algorithms with stochastic oracles
	Abstract
	1 Introduction
	2 Algorithm framework and oracles
	2.1 General algorithm
	2.2 General oracles
	2.3 Step search method
	2.4 Trust-region method
	2.5 Cubicly regularized Newton method
	2.6 Notions of the stochastic process

	3 High probability lower bound for the step size parameter
	3.1 Step 1: reduction to random walk
	3.2 Step 2: upper-bounding the maximum value of the random walk

	4 Expected and high probability total oracle complexity
	4.1 Abstract expected total oracle complexity
	4.2 Abstract high probability total oracle complexity

	5 Applying to STORM and SASS
	5.1 Total sample complexity of first-order STORM
	5.2 Total sample complexity of SASS

	6 Conclusion
	Acknowledgements
	References

