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Abstract
Several classical adaptive optimization algorithms, such as line search and trust-region
methods, have been recently extended to stochastic settingswhere function values, gra-
dients, and Hessians in some cases, are estimated via stochastic oracles. Unlike the
majority of stochastic methods, these methods do not use a pre-specified sequence
of step size parameters, but adapt the step size parameter according to the estimated
progress of the algorithm and use it to dictate the accuracy required from the stochas-
tic oracles. The requirements on the stochastic oracles are, thus, also adaptive and
the oracle costs can vary from iteration to iteration. The step size parameters in these
methods can increase and decrease based on the perceived progress, but unlike the
deterministic case they are not bounded away from zero due to possible oracle fail-
ures, and bounds on the step size parameter have not been previously derived. This
creates obstacles in the total complexity analysis of such methods, because the oracle
costs are typically decreasing in the step size parameter, and could be arbitrarily large
as the step size parameter goes to 0. Thus, until now only the total iteration complex-
ity of these methods has been analyzed. In this paper, we derive a lower bound on
the step size parameter that holds with high probability for a large class of adaptive
stochastic methods. We then use this lower bound to derive a framework for analyzing
the expected and high probability total oracle complexity of any method in this class.
Finally, we apply this framework to analyze the total sample complexity of two partic-
ular algorithms, STORM (Blanchet et al. in INFORMS J Optim 1(2):92–119, 2019)
and SASS (Jin et al. in High probability complexity bounds for adaptive step search
based on stochastic oracles, 2021. https://doi.org/10.48550/ARXIV.2106.06454), in
the expected risk minimization problem.
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1 Introduction

The widespread use of stochastic optimization algorithms for problems arising in
machine learning and signal processing hasmade the stochastic gradientmethod and its
variants overwhelmingly popular despite their theoretical and practical shortcomings.
Adaptive stochastic optimization algorithms, on the other hand, borrow from decades
of advances in deterministic optimization research, and offer new paths forward for
stochastic optimization to be more effective and even more applicable. Adaptive algo-
rithms can avoid many of the practical deficiencies of contemporary methods (such as
the tremendous costs of tuning the step sizes of an algorithm for each individual appli-
cation) while possessing strong convergence and worst-case complexity guarantees in
surprisingly diverse settings.

Adaptive optimization algorithms have a long and successful history in determin-
istic optimization and include line search, trust-region methods, cubic regularized
Newton methods, etc. All these methods have a common iterative framework, where
at each iteration a candidate step is computed by the algorithm based on a local model
of the objective function and a step size parameter that controls the length of this can-
didate step. The candidate step is then evaluated in terms of the decrease it achieves
in the objective function, with respect to the decrease that it was expected to achieve
based on the model. Whenever the decrease is sufficient, the step is accepted and the
step size parameter may be increased to allow the next iteration to be more aggressive.
If the decrease is not sufficient (or not achieved at all) then the step is rejected and a
new step is computed using a smaller step size parameter. The model itself remains
unchanged if it is known that a sufficiently small step will always succeed, as is true,
for example with first- and second-order Taylor models of smooth functions. The anal-
ysis of such methods relies on the key property that the step size parameter is bounded
away from zero and that once it is small enough the step is always accepted and the
objective function gets reduced.

When stochastic oracles are used to estimate the objective function and its deriva-
tives, the models no longer have the same property as the Taylor models; steps that
decrease the model might not decrease the function, no matter how small the step
size is. Thus all stochastic variants of these methods recompute the model at each
iteration. The requirement on the stochastic model is then that it achieves a Taylor-like
approximation with sufficiently high probability. This also means that steps may get
rejected even if the step size parameter is small, simply because the stochastic oracles
fail to deliver desired accuracy. Despite this difficulty, one can develop and analyze
stochastic variants of adaptive optimization methods.

Recently developed stochastic variants of line search (whichwewill call step search,
since unlike the deterministic version the search direction has to change on each iter-
ation, thus the algorithm is not searching along a line) include [1–3, 22]. Stochastic
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trust-region methods have been analyzed in [4–6], and adaptive cubic regularized
methods based on random models has been analyzed in [1, 7]. For all these methods,
bounds on iteration complexity have been derived, either in expectation or in high
probability, under the assumption that stochastic oracles involved in estimating the
objective function deliver sufficiently high accuracy with sufficiently high probability.
While this probability is usually fixed, the accuracy requirement of the oracles is adap-
tive and depends on the step size parameter. Specifically, the smaller that parameter is,
the more accurate the oracles need to be, in order to maintain the Taylor-like behav-
ior of the model used by the algorithm. In most applications, having more accurate
stochastic oracles implies a higher per-iteration cost. Furthermore, unlike the deter-
ministic case, the step sizes in the stochastic case are not bounded away from zero
due to possible oracle failures, and bounds on the step size parameter have not been
previously derived. This creates significant difficulty in the analysis of the total oracle
complexity of such methods because the oracle costs could be arbitrarily large as the
step size parameter goes to zero.

In this paper, we derive a lower bound on the step size parameter for a general class
of stochastic adaptive methods that encompasses all the algorithms in the preceding
paragraph. This enables us to derive a bound on the total oracle complexity for any
algorithm within this class and specific stochastic oracles arising, for example, from
expected risk minimization. Our key contributions are as follows:

• Provide a high probability lower bound on the step size parameter for a wide class
of stochastic adaptive methods using a coupling argument between the stochastic
process generated by the algorithm and a one-sided random walk.

• Derive a framework for analyzing expected and high probability total oracle com-
plexity bounds for this general class of stochastic adaptive methods.

• Apply these bounds to STORM (Stochastic Trust-region Optimization with Ran-
domModels) [4] and SASS (Stochastic Adaptive Step Search) [22] to derive their
total sample complexity for expected risk minimization, and show they essen-
tially match the complexity lower bound of first-order algorithms for stochastic
non-convex optimization [8].

We note that there is a plethora of other algorithms in the literature that propose
different ways to adaptively vary the step sizes in stochastic optimization. Some of
these methods, such as [9, 10], have step size dynamics that are very different from
the framework studied in this paper, hence the analysis of this paper is not needed
or applicable. Some other adaptive methods, like [11–13], have step size dynamics
that are more similar. However, since these papers do not provide iteration complexity
bounds,we cannot obtain their sample complexity by directly applying our framework.
Nonetheless, it would be interesting to explore whether our step size lower bound can
be applied to the algorithms in these papers when a certain stopping time is specified.

We consider a continuous optimization problem of the form

min
x∈Rm

φ(x), (1)

where φ is possibly non-convex, (twice-)continuously differentiable with Lipschitz
continuous derivatives.Neither functionvaluesφ(x), nor gradients∇φ(x) are assumed
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to be directly computable. Instead, given any x ∈ R
m , it is assumed that stochastic

estimates of φ(x),∇φ(x), and possibly∇2φ(x) can be computed, and these estimates
may possess different levels of accuracy and reliability depending on the particular
setting of interest.

The adaptive stochastic algorithms that have been developed recently [1–6, 14, 15,
22] use these stochastic estimates to compute an ε-optimal point xε, which means
φ(xε)− inf x φ(x) ≤ ε if φ is convex or ‖∇φ(xε)‖ ≤ ε if φ is non-convex. In the next
section, we will introduce the general framework that encompasses these methods
and discuss particular examples in more detail. In Sect. 2.6, we discuss the stochastic
process generated by the algorithmic framework, including the stochastic step size
parameter. In Sect. 3, we derive a lower bound on the step size parameter which holds
in high probability. In Sect. 4, we use this lower bound to derive abstract expected
and high probability total oracle complexity for any algorithm in this framework. In
Sect. 5, we particularize these bounds to the specific examples of first-order STORM
[4] and SASS [22] algorithms to bound their total sample complexity when applied to
expected risk minimization. We conclude with some remarks in Sect. 6.

2 Algorithm framework and oracles

We now introduce and discuss an algorithmic framework for adaptive stochastic opti-
mization in Algorithm 1. The framework is assumed to have access to stochastic
oracles, that for any given point x can generate randomquantities f (x, ξ0) ≈ φ(x) (via
zeroth-order oracle), g(x, ξ1) ≈ ∇φ(x) (first-order oracle) and, possibly, H(x, ξ2) ≈
∇2φ(x) (second-order oracle). After we introduce the algorithm we will discuss the
general definition of an oracle that we use in this paper.

2.1 General algorithm

At each iteration, given xk , a stochastic local modelmk(xk+s) : Rm → R ofφ(xk+s)
is constructed using g(x, ξ1) and possibly H(x, ξ2). Using this model, a step sk(αk)

is computed so that m(xk + sk(αk)) is a sufficient improvement over mk(xk), where
αk is the step size parameter, which directly or indirectly controls the step length. The
iterate xk and the trial point x+

k = xk + sk(αk) are evaluated using the zeroth-order
oracle values f (xk, ξ0,k) and f (x+

k , ξ+
0,k). The algorithm then checks whether these

estimates suggest that sufficient improvement is attained. This is done by estimating
whether the function value decrease is large enough (usually involving a user-chosen
parameter θ ∈ (0, 1)) relative to the model decrease. If yes, then the step is deemed
successful, x+

k is accepted as the next iterate, and the parameter αk is increased up
to a multiplicative factor; otherwise, the step is deemed unsuccessful, the iterate does
not change, and αk is decreased by a multiplicative factor. Unlike in the deterministic
case, new calls to all oracles are made at each iteration even when the iterate does not
change.

For each method we give the form of mk(xk + s), in terms of gk = g(xk, ξ1,k)
and Hk = H(xk, ξ2,k), sk(αk) and the sufficient reduction criterion in terms of f 0k =
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f (xk, ξ0,k) and f +
k = f (x+

k , ξ+
0,k). Note that each time the oracle is called on some

point x , it generates a fresh estimate, even if the oracle has been called on the same
point x before—hence the dependence of ξ on k.

Algorithm 1 Algorithmic Framework for Adaptive Stochastic Optimization
0. Initialization

Choose θ ∈ (0, 1), γ ∈ (0, 1), αmax ∈ (0, ∞), x0 ∈ R
m , and α0 ∈ (0, αmax]. Set k ← 0.

1. Determine model and compute step
Construct a stochastic modelmk of φ at xk using f (xk , ξ0,k ), g(xk , ξ1,k ), and (optionally) H(xk , ξ2,k )

from probabilistic zeroth-, first-, and (optionally) second-order oracles. Compute sk (αk ) such that themodel
reduction mk (xk ) − mk (xk + sk (αk )) ≥ 0 is sufficiently large.
2. Check for sufficient reduction

Set x+
k ← xk+sk (αk ) and compute f (x+

k , ξ+
0,k ) as a stochastic estimate ofφ(x+

k ) using a probabilistic

zeroth-order oracle. Check if f (xk , ξ0,k ) − f (x+
k , ξ+

0,k ) is sufficiently large (e.g., relative to the model

reduction mk (xk ) − mk (x
+
k )) using a condition parameterized by θ .

3. Successful iteration
If sufficient reduction has been attained (alongwith other potential requirements), then set xk+1 ← x+

k
and αk+1 ← min{γ −1αk , αmax}.
4. Unsuccessful iteration

Otherwise, set xk+1 ← xk and αk+1 ← γαk .
5. Next iteration

Set k ← k + 1 and go to Step 1.

2.2 General oracles

Typically in the optimization literature, an oracle is a computational procedure that pro-
vides the algorithm with some (estimate of) required information about the objective
function. The oracle is endowed with some properties that the algorithm then utilizes.
For example, an oracle may be assumed to produce ∇φ(x) exactly—an assumption
that a relevant optimization algorithm (and its analysis) will make use of and with-
out which the algorithm may fail. Alternatively, an oracle may produce an estimate of
∇φ(x), in which case a relevant algorithmwill operate under some specific knowledge
about the properties of the estimate; e.g. that it is an unbiased estimate with variance
that is bounded as a function of ‖∇φ(x)‖, or that it is a deterministic estimator with an
error bounded by some known quantity. Algorithms and their analyses differ depend-
ing on the properties of the oracles they utilize. The algorithms analyzed in [1–7, 14,
15, 22] all fit into the framework of Algorithm 1 but under a variety of specific assump-
tions on the oracles that generate function, gradient and and Hessian estimates. These
assumptions are more complex than is typical in the literature, yet, they are shown
to be applicable in many settings. For some extensive discussion on these properties,
their comparison and specific examples we refer the reader, for example, to Cao et al.
[6]. Here we summarize the main ideas.

As presented above, the algorithmic framework described inAlgorithm 1 has access
to oracles that generate random quantities f (x, ξ0) ≈ φ(x) (zeroth-order oracle),
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g(x, ξ1) ≈ ∇φ(x) (first-order oracle) and, possibly, H(x, ξ2) ≈ ∇2φ(x) (second-
order oracle). Each of these oracles can have an input, an output and some intrinsic
properties. The input is typically the current iterate xk and the step size parameter
αk . These quantities, together with the intrinsic properties of the oracle, define the
probability space (and thus the distribution) of the random variable ξ . For example, in
the expected risk minimization setting, where the oracles are computed by averaging
a minibatch of samples, ξi (for i ∈ {0, 1, 2}) is the random minibatch used for the i th-
order oracle. The probability space and the distribution of ξi may depend on x and α,
since (aswewill see inSect. 5) the size of theminibatchmaydependon these quantities.
As another example, the first-order oracles can be computed using (randomized) finite
differences [16]. In this case, the probability space and the distribution of ξ1 may
depend on the current iterate, the step size parameter and the randomness in function
value estimates. In this example, the distribution of ξ1 may depend on the distribution
of ξ0. More examples of stochastic oracles can include robust gradient estimation [17,
18], SPSA [19], etc.

In summary, the oracles can be implemented in a variety of ways, depending on
the application, while the algorithmic framework can be agnostic to how exactly the
oracles are implemented. The algorithm operates under certain assumptions on the
accuracy and reliability of the oracles. The cost of implementing an oracle to satisfy
these requirements depends on the application, but it needs to be considered in an
overall complexity analysis, which is what we address in this paper. The general
oracles in this paper can be described at a high level as follows.

Definition 1 (Stochastic j th-order oracle) Given an input x ∈ R
n and the step size

parameter α, the oracle computes ϕ j (x, ξ j ), an estimate of the j th-order derivative
∇ jφ(x). In all the algorithms we consider, ‖ϕ j (x, ξ j ) − ∇ jφ(x)‖ is assumed to be
bounded by some quantity (which will be a function of α), with probability at least
1−δ j . Here, ξ j is a random variable defined on probability space (
 j ,F j , Pj )whose
distribution depends on the input x and α, and δ j is intrinsic to the oracle. The cost of
the oracle is also a function of x , α and δ j .

In this paper, we are interested in providing a simple way to upper bound the total
oracle cost of an algorithm. The exact oracle cost can be lower. For example, we will
bound the oracle cost by adding together the costs of the zeroth-, first-, (and optionally
second-) order oracles. However, if the oracles can be implemented based on a shared
sample set, our theory can be applied with small and simple adjustments to obtain
a better bound on the oracle cost (for example, by not double counting the shared
samples).

In the next subsection, we describe how various methods fit into the general frame-
work, and what specific requirements they have on the oracles. In this paper we
will use the specific notation where f (x, ξ0) = ϕ0(x, ξ0), g(x, ξ1) = ϕ1(x, ξ1) and
H(x, ξ2) = ϕ2(x, ξ2).
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2.3 Step searchmethod

In the case of the step search (SS) methods in [1, 3, 22] the particulars are as follows.
Quantities f 0k f +

k and gk are random outputs of the stochastic oracles and Hk is some
positive definite matrix (e.g., the identity).

• mk(xk + s) = φ(xk) + gTk s + 1
2αk

sT Hks,

• sk(αk) = −αk H
−1
k gk

• Sufficient reduction: f 0k − f +
k ≥ −θgTk sk(αk) − r

Note that although the true function value φ(xk) appears in the definition ofmk , we do
not need to know or query for it to run the algorithm because the function value is just a
constant that makes no difference when we minimize the model. Here θ ∈ (0, 1), and
r is a small positive number that compensates for the noise in the function estimates.
We will discuss the choice of r after we introduce conditions on the oracle outputs
f (x, ξ0) and g(x, ξ1).

• SS.0 (Step search, zeroth-order oracle). Given a point x , the oracle computes a
(random) function estimate f (x, ξ0) (where ξ0 = ξ0(x) is the randomness of the
oracle, which may depend on the current point x) such that

Pξ0

(|φ(x) − f (x, ξ0)| < ε f + t
) ≥ 1 − δ0(t),

for some ε f ≥ 0 and any t > 0.
• SS.1 (Step search, first-order oracle). Given a point x and the current step size
parameter α, the oracle computes a (random) gradient estimate g(x, ξ1) (where
ξ1 = ξ1(x, α) is the randomness of the oracle, which may depend on x and α)
such that

Pξ1

(‖g(x, ξ1) − ∇φ(x)‖ ≤ max{εg,min{τ, κα}‖g(x, ξ1)‖}
) ≥ 1 − δ1

for some nonnegative constants εg , κ , τ and δ1.

In [1], ε f = 0 and δ0(t) ≡ 0, which means that the zeroth-order oracle is exact,
and r = 0. In [3], ε f > 0 and δ0(t) ≡ 0, which means that the zeroth-order ora-
cle has a bounded error with probability one, and r = 2ε f . In [22], ε f > 0 and
δ0(t) = e−λt for some λ > 0. This means there is no restriction on the error if it
is less than ε f , and the tail of the error decays exponentially beyond ε f . In [22],
r > 2 supx Eξ0 [ |φ(x) − f (x, ξ0)| ].

In [1], εg = 0 and δ1 < 1
2 . In [3, 22], εg > 0 and δ1 is sufficiently small with a

more complicated upper bound. In [1, 3], αmax is finite, thus τ is καmax. In [22], αmax
is infinity, and τ is simply assumed to be some constant intrinsic to the oracle.

2.4 Trust-regionmethod

Stochastic trust-region (TR) methods that fall into the framework of Algorithm 1 have
been developed and analyzed in [4–6]. In the case of TR algorithms, f 0k , f

+
k , gk , and

(possibly) Hk are random outputs of the stochastic oracles, and
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• mk(xk + s) = φ(xk) + gTk s + 1
2 s

T Hks,
• sk(αk) = argmins: ‖s‖≤αk mk(xk + s)

• Sufficient reduction:
f 0k − f +

k +r
mk (xk)−mk (xk+sk (αk ))

≥ θ

• Additional requirement for a successful iteration: ‖gk‖ ≥ θ2αk , for some θ2 > 0.

The requirements for the oracles are as follows. In the case of first-order analysis
in [4–6], the following first-order oracle is assumed to be available.

• TR1.1 (First-order trust-region, first-order oracle). Given a point x and the current
trust-region radius α, the oracle computes a gradient estimate g(x, ξ1) (where
ξ1 = ξ1(x, α) is the randomness of the oracle, which can depend on x and α) such
that

Pξ1

(‖g(x, ξ1) − ∇φ(x)‖ ≤ εg + κegα
) ≥ 1 − δ1.

Here, κeg and δ1 are nonnegative constants.

In the second-order analysis, the following first- and second-order oracles are used:

• TR2.1 (Second-order trust-region, first-order oracle). Given a point x and the
current trust-region radius α, the oracle computes a gradient estimate g(x, ξ1)
(where ξ1 = ξ1(x, α) is the randomness of the oracle, which can depend on x and
α) such that

Pξ1

(
‖g(x, ξ1) − ∇φ(x)‖ ≤ εg + κegα

2
)

≥ 1 − δ1.

Here, κeg and δ1 are nonnegative constants.
• TR2.2 (Second-order trust-region, second-order oracle). Given a point x and the
current trust-region radius α, the oracle computes a Hessian estimate H(x, ξ2)
(where ξ2 = ξ2(x, α) is the randomness of the oracle, which can depend on x and
α) such that

Pξ2 (‖H(x, ξ2) − ∇φ(x)‖ ≤ εh + κehα) ≥ 1 − δ2.

Here, κeh and δ2 are nonnegative constants.

εh and εg are assumed to equal 0 in [4, 5] but are allowed to be positive in [6].
In terms of the zeroth-order oracles, the three works make different assumptions.

Specifically, in [5], as in [1], the zeroth-order oracle is assumed to be exact. In [6] the
zeroth-order oracle is the same as in [22] (i.e. SS.0), and r > 2ε f + 2

λ
log 4. For the

first-order analysis in [4], however, the zeroth-order oracle is as follows (and r = 0).

• TR1.0 (First-order trust-region, zeroth-order oracle). Given a point x and the
current trust-region radius α, the oracle computes a function estimate f (x, ξ0)
(where ξ0 = ξ0(x, α) is the randomness of the oracle, which can depend on x and
α) such that

Pξ0

(
| f (x, ξ0) − φ(x)| ≤ κe f α

2
)

≥ 1 − δ0,

where κe f and δ0 are some nonnegative constants.
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For the second-order analysis in [4], the zeroth-order oracle requirements are tighter.

• TR2.0 (Second-order trust-region, zeroth-order oracle). Given a point x and the
current trust-region radius α, the oracle computes a function estimate f (x, ξ0)
(where ξ0 = ξ0(x, α) is the randomness of the oracle, which can depend on x and
α) such that

Pξ0

(
| f (x, ξ0) − φ(x)| ≤ κe f 1α

3
)

≥ 1 − δ0

and

Eξ0 [| f (x, ξ0) − φ(x)|] ≤ κe f 2α
3

where κe f 1, κe f 2 and δ0 are some nonnegative constants.

2.5 Cubicly regularized Newtonmethod

The cubicly regularized (CR) Newton methods in [1, 7] also fit the framework of
Algorithm 1 with

• mk(xk + s) = φ(xk) + gTk s + 1
2 s

T Hks + 1
3αk

‖s‖3,
• sk(αk) = argmins mk(xk + s), (2)

• Sufficient reduction:
f 0k − f +

k +r
mk (xk)−mk (xk+sk (αk ))

≥ θ .

In [1], the zeroth-order oracle is assumed to be exact, that is f 0k = φ(xk) and f +
k =

φ(xk + sk(αk)), and r = 0. In [7] the zeroth-order oracle and the choice of r are the
same as in [22]. In [1, 7], a version of the following first- and second-order oracles are
used. For specific implementation details, please refer to [1, 7].

• CR.1 (Cubicly regularized Newton, first-order oracle). Given a point x and the
current parameter α, the oracle computes a gradient estimate g(x, ξ1) (where ξ1 =
ξ1(x, α) is the randomness of the oracle, which can depend on x and α) such that

Pξ1

(
‖∇φ(x) − g(x, ξ1))‖ ≤ κeg max

{
α, ‖s‖2

})
≥ 1 − δ1,

where κeg and δ1 are nonnegative constants, and s is defined in (2).
• CR.2 (Cubicly regularized Newton, second-order oracle). Given a point x , and
the current parameter α, the oracle computes a Hessian estimate H(x, ξ2) (where
ξ2 = ξ2(x, α) is the randomness of the oracle, which can depend on x and α) such
that

Pξ2

(
‖(∇2φ(x) − H(x, ξ2))s‖ ≤ κeh max

{
α, ‖s‖2

})
≥ 1 − δ2,

where κeh and δ2 are nononegative constants, and s is defined in (2).

It is apparent that all of the algorithms that we discussed above rely on oracles
whose accuracy requirements change adaptively with α. It is also clear that for many
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settings, a higher accuracy requirement leads to a higher oracle complexity. For exam-
ple, if a stochastic oracle is delivered via sample averaging, then more samples are
needed to provide a higher accuracy. Therefore, to bound the total oracle complexity
of the algorithm, we need to bound the accuracy requirement over the iterations, or
equivalently provide a lower bound for the parameter α.

2.6 Notions of the stochastic process

When applied to problem (1), Algorithm 1 generates a stochastic process (with respect
to the randomness underlying the stochastic oracles). Specifically, let (Xk)k≥0 be
the random iterates with realizations xk , let (Gk)k≥0 be the gradient estimates with
realizations gk , and let (Ak)k≥0 be the step size parameter values with realizations
αk . The prior works that analyze different methods belonging to the framework of
Algorithm 1 define this stochastic process rigorously, with appropriate filtrations.
Here for brevity, we will omit those details, as we do not use them in the analysis. We
now define a stopping time for the process.

Definition 2 (Stopping time) For ε > 0, let Tε be the first time such that a specified
optimality condition is satisfied. For all the settings considered in this paper, Tε =
min{k : ‖∇φ(xk)‖ ≤ ε} if φ is non-convex, and Tε = min{k : φ(xk)− inf x φ(x) ≤ ε}
if φ is strongly convex. We will refer to Tε as the stopping time of the algorithm.

The following property is crucial in the analysis of algorithms in the framework of
Algorithm 1.

Assumption 1 (Properties of the stochastic process generated by the adaptive stochas-
tic algorithm) The random sequence of parameters Ak generated by the algorithm
satisfies the following:

(i) For all k, Ak ∈ {γAk−1,min{αmax, γ
−1Ak−1}}, and

(ii) There exist constants ᾱ > 0, and p > 1
2 , such that for all iterations k,

P(Ak+1 = γ −1Ak | Fk, k < Tε, Ak ≤ ᾱ) ≥ p.

Here, Fk denotes the filtration generated by the algorithm up to iteration k.

The algorithms in [1–6, 22] all satisfy Assumption 1, under appropriate lower bounds
on the oracle probabilities δ0, δ1 (and δ2). Also, without loss of generality, we will
assume that α0 ≥ ᾱ, since if α0 < ᾱ we can simply define ᾱ to be α0, as α0 is a
constant. In the next section, under Assumption 1, we derive a high probability lower
bound on αk as a function of the number of iterations n, ᾱ, p, and γ .

Throughout the remainder of this paper, we will use q to denote 1 − p.

3 High probability lower bound for the step size parameter

The following theorem provides a high probability lower bound for αk .
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Fig. 1 Illustration of Theorem 1

Theorem 1 Suppose Assumption 1 holds for Algorithm 1. For any positive integer n,
any ω > 0, with probability at least 1 − n−ω − cn−(1+ω), we have

either Tε < n or min
1≤k≤n

αk ≥ α∗(n) := ᾱγ γ (1+ω) log1/2q n = ᾱγ n−(1+ω) log1/2q 1/γ ,

where c = 2
√
pq

(1−2
√
pq)2

and q = 1 − p.

The proof of this theorem involves two steps. First, in Sect. 3.1, we show that for
n < Tε, the sequence of step size parameters Ak generated by the algorithm can be
coupled with a randomwalk on the non-negative integers. This reduces the problem to
that of bounding the maximum value of a one-sided random walk in the first n steps.
We then derive a high probability upper bound on this maximum value in Sect. 3.2.

Beforemoving to its proof, we illustrate the theorem using some plots and comment
on some implications of the theorem.

Illustration of Theorem 1. Figure 1a illustrates the high probability bound provided
by Theorem 1. The solid curves depict the lower bounds given by the theorem for
ᾱ = 1, ω = 1, p = 0.8, and for varying values of γ . In comparison, the dotted
lines correspond to one-sided random walks Zk that start at ᾱ = 1. At each step,
Zk+1 = γZk with probability 1 − p, and Zk+1 = min{1, γ −1Zk} with probability
p. The proof of Theorem 1 shown later implies that there is a coupling between the
sequence of parametersAk generated by the algorithm and Zk , such thatAk ≥ Zk , in
other words, the sequence of parametersAk generated by the algorithm stochastically
dominates Zk .

Remarks on Theorem 1.

1. For fixed n, γ , and ᾱ, the lower bound is a function of p. It increases as p increases.
Specifically, the exponent of n changes with p, and the exponent goes to 0 as p
goes to 1. Hence as p goes to 1, this lower bound simplifies to ᾱγ , which matches
the lower bound in the deterministic case.

123



B. Jin et al.

2. When p is close to 1 (i.e. when the stochastic oracles are highly reliable), this
lower bound decreases slowly as a function of n, since the exponent of n is close
to 0. Alternatively, when the stochastic oracles are not highly reliable, increasing
the value of γ allows the algorithm to maintain a slow decrease of the step size.

3. Enlarging γ as p decreases makes intuitive sense for the algorithm. When p is
large, an unsuccessful step is more likely to be caused by the step size being too
large rather than the failure of the oracles to deliver the desired accuracy. On the
other hand, when p is small, unsuccessful iterations are likely to occur even when
the step size parameter is already small. Thus in the latter case, larger γ values
help avoid an erroneous rapid decrease of the step size parameter.

4. If we choose γ =
(

1
2q

)− 1
4
and ω = 1, then the minimum step size is lower

bounded by ᾱγ n− 1
2 with high probability. This coincides with the typical choice

of the step size decay schemes for the stochastic gradient method applied to non-
convex functions.

The theorem implies that we can even bound α by a constant times ᾱ with high
probability, provided we set γ as a function of n.

Corollary 1 Let Assumption 1 hold for Algorithm 1, then for any positive integer n,
any ω > 0, and any β < 1

2 , if

γ ≥ max

⎧
⎨

⎩
1

2
,

(
1

2q

) log(2β)
(1+ω) log n

⎫
⎬

⎭
,

then with probability at least 1 − n−ω − cn−(1+ω), where c = 2
√
pq

(1−2
√
pq)2

,we have

eitherTε < nor min
1≤k≤n

αk ≥ βᾱ.

Proof This follows from Theorem 1 by substituting in the specified value of γ . ��

In the remainder of this section, we prove Theorem 1 in two steps.

3.1 Step 1: reduction to randomwalk

We will use a coupling argument to obtain the reduction to a random walk.
Let {Ak}∞k=0 denote the random sequence of parameter values (whose realization is

{αk}∞k=0), for Algorithm 1. Let us assume, WLOG, that A0 = γ j ᾱ, for some integer

j ≤ 0. (Recall here that 0 < γ < 1.) Then we observe that Ak = γ Ȳk ᾱ, where
{Ȳk}∞k=0 is a random sequence of integers, with Ȳ0 = j ≤ 0, which increases by one
on every unsuccessful step, and decreases by one on every successful step. Moreover,
by Assumption 1, whenever k < Tε and Ȳk ≥ 0, the probability that it decreases by
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one is at least p. Define Yk as follows:

Yk = Ȳk if k ≤ Tε, Yk =
{
Yk−1 − 1 w.p. p

Yk−1 + 1 w.p. 1 − p
if k > Tε. (3)

In other words, Yk follows the algorithm until Tε, and then behaves like a randomwalk
with downward drift p after Tε. We now couple {Yk}∞k=0 with a random walk {Zk}∞k=0
which stochastically dominates Yk .

Consider the following one-sided random walk {Zk}∞k=0, defined on the non-
negative integers.

Z0 = 0, Zk+1 =

⎧
⎪⎨

⎪⎩

Zk + 1, w.p. 1 − p,

Zk − 1, w.p. p, if Zk ≥ 1,

0, w.p. p, if Zk = 0.

(4)

Lemma 1 There exists a coupling between Zk and Yk, where Zk stochastically domi-
nates Yk.

Proof of Lemma 1 Initially, Z0 = 0 and Y0 ≤ 0. For each k, we show how to update
Zk to Zk+1 according to how Yk changes to Yk+1. We consider two cases depending
on whether k < Tε or k ≥ Tε.

Case 1: k < Tε. If Yk ≤ −1, we update Zk+1 from Zk according to Eq. 4, inde-
pendently of how Yk changes to Yk+1. If Yk ≥ 0, then we first check if Yk increased
or decreased. Let p′ be the probability that Yk+1 = Yk − 1 on this sample path. Since
Yk ≥ 0, we know by Assumption 1 that p′ ≥ p. Now, if Yk+1 = Yk + 1, then we set
Zk+1 = Zk + 1. On the other hand, if Yk+1 = Yk − 1, then we set Zk+1 = Zk + 1
with probability 1 − p

p′ , and Zk+1 = max{Zk − 1, 0} with probability p
p′ . Note that

these probabilities are well-defined because p′ ≥ p.
Case 2: k ≥ Tε. If Yk+1 = Yk + 1, then set Zk+1 = Zk + 1. Otherwise, if

Yk+1 = Yk − 1, then set Zk+1 = max{Zk − 1, 0}.
Observe that under this coupling, Zk ≥ Yk on every sample path. Moreover, {Zk}

and {Yk} have the correct marginal distributions. For Yk , this is easy to see, since
it evolves according to its true distribution and we are constructing Zk from it. For
Zk , on any step with k ≥ Tε, Zk+1 evolves from Zk correctly according to Eq. 4
by construction. On a step with k < Tε there are two cases: (1) Yk ≤ −1, and
(2) Yk ≥ 0. In the first case, the update from Zk to Zk+1 clearly follows Eq. 4.
This is also true in the second case, since there the probability that Zk increases is
(1 − p′) + p′(1 − p

p′ ) = 1 − p.
To summarize, we have exhibited a coupling between {Zk} and {Yk}, under which

Zk ≥ Yk on any sample path. ��

3.2 Step 2: upper-bounding themaximum value of the randomwalk

We now derive a high probability upper bound on the maximum value reached by the
random walk.
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Definition 3 Let N (l, n) be the random variable that denotes the number of times
Zk = l in the first n steps of the random walk.

By definition of N (l, n), we have N (l, n) > 0 if and only if state l is visited in the
first n steps of the random walk. The next proposition upper bounds the probability
that N (l, n) > 0.

Proposition 1 Let q = 1 − p. We have

P(N (l, n) > 0) ≤ (n − l + 1)
1 − (q/p)

1 − (q/p)l+1

(
q

p

)l
+ 2

√
pq

(1 − 2
√
pq)2

(2q)l .

Proof First, observe that P(N (l, n) > 0) remains unchanged if we change the state
space from {0, 1, 2, . . .} to {0, 1, 2, . . . , l} and modify the walk to hold in state l with
probability q (instead of moving from l to l + 1 with that probability). This defines a
Markov chain on {0, 1, 2, . . . , l}, and let P be its transition matrix. Noting that Pm

0,l is
the probability that the Markov chain is in state l at time m, we see that

P(N (l, n) > 0) ≤
n∑

m=l

Pm
0,l . (5)

The matrix P is explicitly diagonalized in [20] (Section XVI.3). By (3.16) in that
section,

Pm
0,l = 1 − (q/p)

1 − (q/p)l+1

(
q

p

)l
− 2q

l + 1

(
q

p

) l−1
2

l∑

r=1

[
sin πr

l+1

] [
sin πrl

l+1

] [
2
√
pq cos πr

l+1

]m

1 − 2
√
pq cos πr

l+1

. (6)

The absolute value of the sum appearing in (6) can of course be bounded above by

l∑

r=1

(2
√
pq)m

1 − 2
√
pq

= l
(2

√
pq)m

1 − 2
√
pq

and this readily yields

Pm
0,l ≤ 1 − (q/p)

1 − (q/p)l+1

(
q

p

)l
+ 2p

1 − 2
√
pq

(
q

p

) l+1
2

(2
√
pq)m . (7)

Summing (7) overm = l, . . . , n and using (5), we obtain the bound onP(N (l, n) > 0)
claimed in the proposition. ��
Remark 1 The bound for Proposition 1 is essentially tight, as the decay ofP(N (l, n) >

0) is not faster than geometric; ql is a lower bound.

With the above proposition at hand, Theorem1 is proved by choosing an appropriate
level l, for which P(N (l, n) = 0) is high.
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Proof of Theorem 1 Let q = 1 − p. By Proposition 1, we have:

P(N (l, n) > 0) ≤ (n − l + 1)
1 − (q/p)

1 − (q/p)l+1

(
q

p

)l
+ 2

√
pq

(1 − 2
√
pq)2

(2q)l .

In other words,

P(N (l, n) = 0) ≥ 1 − (n − l + 1)
1 − (q/p)

1 − (q/p)l+1

(
q

p

)l
− 2

√
pq

(1 − 2
√
pq)2

(2q)l

≥ 1 − n

(
q

p

)l
− 2

√
pq

(1 − 2
√
pq)2

(2q)l .

Let a > 0 be a parameter to be set later, and take l = �a log(n)�. Then, the above
inequality implies:

P(N (l, n) = 0) ≥ 1 − n

(
q

p

)a log(n)

− 2
√
pq

(1 − 2
√
pq)2

(2q)a log(n)

= 1 − n1−a log( p
q ) − 2

√
pq

(1 − 2
√
pq)2

n−a log(1/(2q)).

In going from the first line to the second, we used the following fact about logarithms:
xa log n = na log x = n−a log(1/x). Let a = 1+ω

log(1/2q)
. Then, a log( p

q ) ≥ a log( 1
2q ) =

1 + ω, so

P(N (l, n) = 0) ≥ 1 − n−ω − 2
√
pq

(1 − 2
√
pq)2

n−(1+ω).

In other words, with probability at least 1 − n−ω − cn−(1+ω) with c = 2
√
pq

(1−2
√
pq)2

,

the random walk will remain below l = �(1 + ω) log1/2q n� in the first n steps. By
construction of the coupling, with the above probability, we know the α parameter
in the algorithm either remains above γ �a log n�ᾱ = γ �(1+ω) log1/2q n�ᾱ throughout the
first n steps, or the algorithm has reached its stopping time in n steps. ��

It is natural to ask if the theory extends to the case where the factors for increasing
and decreasing the step size are different. The main challenge in this case is that the
stochastic process of the step sizes is now modeled by a random walk whose step
length going up is different than the step length going down. If it turns out that the
hitting probability P(N (l, n) > 0) can be bounded for the more general one-sided
random walks, we believe the theory in our paper can be extended similarly. We will
leave it as a subject for future research.
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4 Expected and high probability total oracle complexity

We now use the tools derived in the previous section to obtain abstract expected and
high probability upper bounds on the total oracle complexity of Algorithm 1. In Sect.
5, we will derive concrete bounds for the total oracle complexity of two specific
algorithms (STORM and SASS), and the specific oracles arising in expected risk
minimization.

The cost of an oracle call may depend on the step size parameter α and the prob-
ability parameter 1 − δ, thus we denote the cost by oc(α, 1 − δ). We will use oc(α)

in the paper to simplify the notation because for all algorithms in the class, δ can be
treated as a constant. Moreover, the cost of an oracle call is a non-increasing function
of α for all algorithms developed so far that fit into the framework.

Assumption 2 oc(α) is non-increasing in α.

Definition 4 (Total oracle complexity) For a positive integer n, let TOC(n) be the
random variable which denotes the total oracle complexity of running the algorithm
for n iterations. In other words,

TOC(n) =
n∑

k=1

oc(Ak).

4.1 Abstract expected total oracle complexity

We now proceed to bound TOC(min{Tε, n}) in expectation, where n is an arbitrary
positive integer.

Theorem 2 Let Assumptions 1 and 2 hold in Algorithm 1. For any positive integer n,
we have

E[TOC(min{Tε, n})] ≤ n
n∑

l=1

min

{

1, n

(
q

p

)l
+ 2

√
pq

(1 − 2
√
pq)2

(2q)l

}

· oc(ᾱγ l) + n oc(ᾱ).

Proof First, observe that if the αk parameters are all above some value α∗ in the first n
steps, then by Assumption 2, TOC(n) ≤ n · oc(α∗). Therefore, for any integer l ≥ 0,
we have

P(TOC(min{Tε, n}) > n · oc(ᾱγ l)) ≤ P(N (l + 1, n) > 0). (8)

By Proposition 1,

P(N (l + 1, n) > 0) ≤ n

(
q

p

)l+1

+ 2
√
pq

(1 − 2
√
pq)2

(2q)l+1.
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This implies

P(TOC(min{Tε, n}) > n · oc(ᾱγ l)) ≤ min

{

1, n

(
q

p

)l+1

+ 2
√
pq

(1 − 2
√
pq)2

(2q)l+1

}

.

By the definition of expectation,

E[TOC(min{Tε, n})]

=
n·oc(ᾱγ n)∑

i=0

i · P(TOC(min{Tε, n}) = i)

≤
n−1∑

l=0

P

(
TOC(min{Tε, n}) ∈ (n · oc(ᾱγ l), n · oc(ᾱγ l+1)]

)
· n oc(ᾱγ l+1)

+ P (TOC(min{Tε, n}) ∈ [0, n oc(ᾱ)]) · n oc(ᾱ)

≤
n−1∑

l=0

P

(
TOC(min{Tε, n}) > n oc(ᾱγ l)

)
· n oc(ᾱγ l+1) + n oc(ᾱ)

≤
n−1∑

l=0

min

{

1, n

(
q

p

)l+1

+ 2
√
pq

(1 − 2
√
pq)2

(2q)l+1

}

· n oc(ᾱγ l+1) + n oc(ᾱ).

��

4.2 Abstract high probability total oracle complexity

We now proceed to bound TOC(Tε) in high probability, using Theorem 1.

Theorem 3 Let Assumptions 1 and 2 hold in Algorithm 1. For any ω > 0 and positive
integer n, with probability at least 1 − P(Tε > n) − n−ω − cn−(1+ω),

TOC(Tε) ≤ n · oc(α∗(n)),

where α∗(n) = ᾱγ n−(1+ω) log1/2q 1/γ , and c is as defined in Theorem 1.

If γ is chosen to be at leastmax

{
1
2 ,
(

1
2q

) log(2β)
(1+ω) log n

}

for some β < 1
2 , then α∗(n) ≥

βᾱ, thus with probability at least 1 − P(Tε > n) − n−ω − cn−(1+ω),

TOC(Tε) ≤ n · oc(βᾱ).

Proof Let TOCrw(n) be the total oracle complexity of the first n iterations with the
corresponding sequence of parameters αk induced by the one-sided randomwalk (that
is, the sequence defined by αk = ᾱγ Zk , where Zk is defined in Sect. 3.1). In other
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words,

TOCrw(n) =
n∑

k=1

oc(ᾱγ Zk ).

With probability 1 − P(Tε > n), we have Tε ≤ n, which implies

TOC(Tε) ≤ TOCrw(Tε) ≤ TOCrw(n).

Here, the first inequality is by Lemma 1 and Assumption 2, and the second inequality
is by Tε ≤ n.

The same arguments used in the proof of Theorem 1 show that with probability at
least 1 − n−ω − cn−(1+ω), we have min1≤k≤n ᾱγ Zk ≥ α∗(n). Thus, with at least this
probability, TOCrw(n) ≤ n · oc(α∗(n)).

Putting these together with a union bound, the result follows.
The second part of the theorem follows from substituting in the specific choice of

γ . ��

5 Applying to STORM and SASS

In this section, we demonstrate how the generic oracle complexity bounds in the
previous section can be applied to concrete combinations of oracles and algorithms.
Wewill consider the specific setting of expected riskminimization and two algorithms,
first-order STORM and SASS, which are described earlier in the paper and fully
analyzed in [4, 22], respectively. For each case, we will state the bounds on oc(α)

as a function of α, and use those bounds in conjunction with the known bounds on
Tε (that have been derived in previous papers), to obtain a bound on the total oracle
complexity for each algorithm.

The results we obtain are the first ones that bound the total oracle complexity of
STORM and SASS, and we show that both algorithms are essentially near optimal in
terms of total gradient sample complexity. When deriving these results, for simplicity
of presentation, we omit most of the constants involved in the specific bounds on Tε

and specific conditions on various algorithmic constants. For all such details, we refer
the reader to [4, 22]. We will include short comments regarding these constants, but
otherwise replace them with a O(·) notation.
Problem Setting: Expected risk minimization (ERM) can be written as

min
x∈Rm

φ(x) = Ed∼D[l(x, d)].

Here, x represents the vector of model parameters, d is a data sample following
distributionD, and l(x, d) is the loss when the model parameterized by x is evaluated
on data point d. This problem is central in supervised machine learning and other
settings such as simulation optimization [21]. For this problem, it is common to assume
the function φ is L-smooth and is bounded from below, and gradients of functions
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∇x l(x, d) can be computed for any d ∼ D, so we will consider this setting in this
section.

In this setting, the zeroth- and first-order oracles are usually computed as follows:

f (x,S) = 1

|S|
∑

d∈S
l(x, d), g(x,S) = 1

|S|
∑

d∈S
∇x l(x, d), (9)

where S is the “minibatch"—that is a set of i.i.d samples from D. Generally, |S| can
be chosen to depend on x .

In what follows we will refer to the total number of times an algorithm computes
l(x, d) for a specific x and d as its total function value sample complexity and the
number of times the algorithm computes ∇l(x, d) as its total gradient sample com-
plexity. The total (oracle or sample) complexity of the algorithm is defined as the sum
of these two quantities.

5.1 Total sample complexity of first-order STORM

Wefirst consider the first-order stochastic trust-regionmethod (STORM) as introduced
and analyzed in [4]. The algorithm uses zeroth- and first-order oracles defined in
TR1.0 and TR1.1 in Sect. 2. Trust-region algorithms are usually applied to nonconvex
functions and the stopping timeofSTORMis defined as Tε = min{k : ‖∇φ(xk)‖ ≤ ε}.
In Section 3.3 of [4], it is shown that Assumption 1 is satisfied with ᾱ = ε

ζ
, where

ζ is a moderate constant that depends on κeg , L and some constant chosen by the
algorithm.

In [4], the oracle costs of STORM in the ERM setting are briefly discussed under
the following assumptions on l(x, d).

• Function value: It is assumed that there is some σ f ≥ 0 such that for all x ,
Vard∼D [l(x, d)] ≤ σ 2

f .• Gradient: It is assumed that Ed∼D[∇x l(x, d)] = ∇φ(x), and that there is some
σg ≥ 0 such that for all x ,

Ed∼D ‖∇x l(x, d) − ∇φ(x)‖2 ≤ σ 2
g . (10)

The cost of each oracle call is the number of samples in the associated minibatch S.
By applying Chebyshev’s inequality it is easy to bound the oracle costs of TR1.0 and
TR1.1.

• Cost of TR1.0 with parameter α: oc0(α) = σ 2
f

δ0κ
2
e f α

4 ,

• Cost of TR1.1 with parameter α: oc1(α) = σ 2
g

δ1κ2egα
2 .

Below we substitute the specific oracle costs into Theorem 2 to obtain the expected
total sample complexity for the first-order STORM algorithm. Specifically, we will
bound the total sample complexity of STORME[TOC(min{Tε, n})]byderivingbounds
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on the expectation of the total function value sample complexity TOC0 and the total
gradient sample complexity TOC1, where

TOC0(n) =
n∑

k=1

oc0(Ak), TOC1(n) =
n∑

k=1

oc1(Ak) and TOC(n) = TOC0(n) + TOC1(n).

Theorem 4 (Expected total sample complexity bound of first-order STORM) Let p =
1 − δ0 − δ1 and q = 1 − p. For the first-order STORM algorithm, for any iteration

number n ∈ Z
+, and γ > (2q)

1
4 , we have

E[TOC(min{Tε, n})] ≤ O
(

n logp/q(n)

(
σ 2
f

ε4
n4 logq/p γ + σ 2

g

ε2
n2 logq/p γ

))

.

If γ ≥
(
q
p

) log c
log n

for some constant c > 1 (so that nlogq/p γ ≤ c), the above simplifies

to be

E[TOC(min{Tε, n})] ≤ n log(n) · O
(

σ 2
f

ε4
+ σ 2

g

ε2

)

. (11)

Proof ByTheorem2, the total expected cost of the zeroth-order oracle over n iterations
is bounded above by:

E[TOC0(min{Tε, n})] ≤ n
n∑

l=1

min

{

1, n

(
q

p

)l
+ 2

√
pq

(1 − 2
√
pq)2

(2q)l

}

· oc0(ᾱγ l) + n oc0(ᾱ)

≤ n
n∑

l=1

min

{

1, n

(
q

p

)l}

· oc0(ᾱγ l)

︸ ︷︷ ︸
=:A

+ 2n
√
pq

(1 − 2
√
pq)2

n∑

l=1

(2q)l · oc0(ᾱγ l)

︸ ︷︷ ︸
=:B

+n oc0(ᾱ).

For the zeroth-order oracle, oc0(α) = σ 2
f

δ0κ
2
e f α

4 = O(
σ 2
f

α4 ). We use this to calculate

upper bounds for A and B. First, we consider A. Note that min{1, n(
q
p )l} = 1, if and

only if l ≤ logp/q(n). Therefore,
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A ≤
log p

q
(n)

∑

l=1

oc0(ᾱγ l) + n
∑

l≥log p
q

(n)

(
q

p

)l
oc0(ᾱγ l)

≤
log p

q
(n)

∑

l=1

O
(

σ 2
f

ᾱ4γ 4l

)

+ n
∑

l≥log p
q

(n)

(
q

p

)l
O
(

σ 2
f

ᾱ4γ 4l

)

≤ O
(

σ 2
f

ᾱ4

)⎛

⎜
⎝

log p
q

(n)

∑

l=1

1

γ 4l + n
∑

l≥log p
q

(n)

(
q

p

)l 1

γ 4l

⎞

⎟
⎠

≤ O
(

σ 2
f

ε4

)(

log p
q
(n) ·

(
1

γ 4

)log p
q

(n)

+ n

(
q

pγ 4

)log p
q

(n) 1

1 − q
pγ 4

)

= O
(

σ 2
f

ε4
log p

q
(n) n

log p
q

(
1

γ 4

))

= O
(

σ 2
f

ε4
log p

q
(n) n

4 log q
p

γ

)

.

Next we bound B. We have

B =
n∑

l=1

(2q)l · oc0(ᾱγ l ) ≤
∞∑

l=0

(2q)l O
(

σ 2
f

ᾱ4γ 4l

)

≤ O
(

σ 2
f

ε4

)(
1

1 − 2q · 1
γ 4

)

= O
(

σ 2
f

ε4

)

.

Using these bounds on A and B in the expression for E[TOC0(min{Tε, n})], we obtain
theboundon the total functionvalue sample complexity asO

(
σ 2
f

ε4
n log p

q
(n) n

4 log q
p

γ
)
.

A similar calculation using the cost of the first-order oracle yields the bound

O
(

σ 2
g

ε2
n log p

q
(n) n

2 log q
p

γ
)

for E[TOC1(min{Tε, n})]. Since TOC(min{Tε, n}) =
TOC0(min{Tε, n}) + TOC1(min{Tε, n}) by definition, the result follows. ��

Let us discuss the implications of Theorem 4. In [8], a lower bound on the total
gradient sample complexity for stochastic optimization of non-convex, smooth func-
tions is derived and shown to be, in the worst case, C

ε4
, for some positive constant C .

This complexity lower bound holds even when exact function values φ(x) are also
available. We note that the definition of complexity in [8] is the smallest number of
sample gradient evaluations required to return a point x with E[‖∇φ(x)‖] ≤ ε, which
is different from TOC(Tε) which we are aiming to bound here. We believe that the
lower bound in [8] applies to our definition as well, but this is a subject of a separate
study.

In [4], it is shown that E[Tε] ≤ C1
ε2

for some C1 sufficiently large that

depends on δ1, δ0, κeg, L and some algorithmic constants. Thus, if n = C1
ε2
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in inequality (11) of Theorem 4 , as long as γ is sufficiently large, we obtain

E[TOC(min{Tε, n})] ≤ O
(

(
σ 2
f

ε6
+ σ 2

g

ε4
) log( 1

ε
)

)
. In particular, the total gradient sam-

ple complexity is O
(

σ 2
g

ε4
log
( 1

ε

)
)
, which essentially matches the complexity lower

bound as described in [8] up to a logarithmic factor. The total function value sample
complexity is worse than that of the gradient if σ 2

f is large. However, if σ
2
f ≤ O(σ 2

g ε2)

(which often happens in practice since σg usually scales with the dimension of the
problem, and tends to be much larger than σ f ), the total sample complexity bound of
STORM matches the lower bound up to a logarithmic factor.

We note now that choosing n = C1
ε2

in Theorem 4 does not in fact guarantee that
Tε < n, since for STORM, only a bound on E[Tε] has been derived. However, this
statement can be made true in probability, thanks to Theorem 3, by simply applying
Markov inequality for n = C2

C1
ε2

(where C2 > 1).

Theorem 5 (High probability total sample complexity bound of first-order STORM)
For the first-order STORM algorithm applied to expected risk minimization, let n be
chosen such that n ≥ C2

C1
ε2

( for some C1 sufficiently large so that C1
ε2

≥ E[Tε], and
any C2 > 1), and γ be chosen so that γ ≥ max

{
1
2 ,
(

1
2q

) log(2β)
(1+ω) log n

}

( for some β ≤ 1
2 ,

and any ω > 0). Then, with probability at least 1 − 1
C2

− O(n−ω),

TOC(Tε) ≤ O
(

σ 2
f

ε6
+ σ 2

g

ε4

)

. (12)

Proof The theorem is a simple application of Theorem 3 to the specific setting. ��
Remark 2 1. Compared to the expected total sample complexity bound, this high

probability bound is smaller by a log factor.
2. In [5], a first-order trust-region algorithm similar to STORM with the same first-

order oracle (i.e. TR1.1 with εg = 0), but with an exact zeroth-order oracle (i.e.
TR1.0 with κe f = δ0 = 0) is analyzed. In this case, it is shown that P(Tε >

n) ≤ exp(−C1n) (for some constant C1 that depends on δ1), for any n ≥ C2
ε2

(with
some sufficiently large C2). Using a similar application of Theorem 3, we can
show that as long as γ is sufficiently large, the total gradient sample complexity

of that trust-region algorithm is bounded above byO(
σ 2
g

ε4
) with probability at least

1−exp(−C1n)−O(n−ω) (which is a significant improvement over the probability
in Theorem 5).

3. Another first-order trust-region algorithm, with weaker oracle assumptions than
those in [5] is introduced and analyzed in [6]. This algorithm relies on the first-
order oracle as described in TR1.1 and the zeroth-order oracle as described in
SS.0. For this algorithm, it is shown that P(Tε > n) ≤ 2 exp(−C1n) + exp(−C2)

(C2 being any positive constant), where n = C3
C2
ε2

for some sufficiently large C3
and some positive C1 that depends on δ0 and δ1. Thus, again, using Theorem 3
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we can show that as long as γ is sufficiently large, the total sample complexity of

the first-order trust-region algorithm in [6] is bounded above byO(
σ 2
f

ε6
+ σ 2

g

ε4
) with

probability at least 1 − 2 exp(−C1n) − exp(−C2) − O(n−ω).
4. In the event where σg and σ f are not known and need to be estimated, the implica-

tions are as follows. Consider the first-order oracle for STORM (TR1.1)—there is
a constant κeg which in general can be arbitrarily large. Its value affects the value
of ᾱ, which in turn affects the total complexity bound, but theory still applies. Ear-
lier in this section, we saw that the sample cost of TR1.1 depends on σg

κeg
, which

means that underestimating σg (and using a smaller sample size) is equivalent to
using a correct value for σg and obtaining an oracle with a larger κeg than what one
would have had with the correct σg . In this case, the price of underestimating σg is
directly reflected in the complexity bounds. On the other hand, the same situation
does not quite apply to σ f because the corresponding κe f cannot be arbitrarily
large (at least not in the STORM analysis).

5.2 Total sample complexity of SASS

We now consider the SASS algorithm,1 analyzed in [3, 22] and described in Sect. 2.3.
By Proposition 1, 2 and 4 of [22], Assumption 1 is satisfied, with ᾱ as given in the
propositions.

In the empirical risk minimization setting, the following assumptions on l(x, d)

are made in [22].

• Function value: It is assumed that |l(x, d) − φ(x)| is a subexponential random
variable and that there is some σ f ≥ 0 such that for all x , Vard∼D [l(x, d)] ≤ σ 2

f .
For example, if l(x, d) is uniformly bounded, then |l(x, d) − φ(x)| is subexpo-
nential.

• Gradient: It is assumed that Ed∼D[∇x l(x, d)] = ∇φ(x), and that for some
Mc, Mv ≥ 0 and for all x ,

Ed∼D ‖∇x l(x, d) − ∇φ(x)‖2 ≤ Mc + Mv ‖∇φ(x)‖2 . (13)

This assumption is fairly general and is studied in the literature [23].

For non-convex functions, the stopping time is defined as Tε = min{k :
‖∇φ(xk)‖ ≤ ε}, same as in the case of STORM. For strongly convex functions,
the stopping time is defined as Tε = min{k : φ(xk) − inf x φ(x) ≤ ε}. To achieve the
desired accuracy, oracles SS.0 and SS.1 have to be sufficiently accurate in the sense
that ε f and εg have to be sufficiently small with respect to ε. In the case of expected
risk minimization, the oracles can be implemented for any ε f and εg by choosing an
appropriate mini-batch size. Thus, here we will first fix ε and then discuss the oracles
that deliver sufficient accuracy for such ε, for the theory in [22] to apply.

Oracle costs per iteration In [22], it is shown that given the desired convergence
tolerance ε, sufficiently accurate oracles SS.0 and SS.1 can be implemented for any
step size parameter α as follows:

1 This algorithm was also referred to as ALOE in [22]. Its name has been changed to SASS since [22].
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• Zeroth-order oracle: Proposition 5 of [22] shows that a sufficiently accurate zeroth-
order oracle can be obtained by using a minibatch of size

oc0(α) =
{
O(σ 2

f /ε
4), for the non-convex case,

O(σ 2
f /ε

2), for the strongly convex case.
(14)

Note that the cost of the zeroth-order oracle is independent of α.
• First-order oracle: Proposition 6 of [22] implies that a sufficiently accurate first-
order oracle can be obtained by using a minibatch of size

oc1(α) =
⎧
⎨

⎩

O
(
Mc
ε2

+ Mv

min{τ,κα}2
)

, for the non-convex case,

O
(
Mc
ε

+ Mv

min{τ,κα}2
)

, for the strongly convex case.
(15)

The cost of the first-order oracle is indeed non-increasing in α, so Assumption
2 is satisfied. For simplicity of the presentation and essentially without loss of
generality, we will assume τ ≥ κᾱ.

Substituting these bounds into Theorem 2, we obtain the following expected total
sample complexity.

Theorem 6 (Expected total sample complexity of SASS) For the SASS algorithm
applied to expected risk minimization, for any iteration number n ∈ Z

+, and any

γ > (2q)
1
2 , we have

• Non-convex case:

E[TOC(min{Tε, n})] ≤ O
(

σ 2
f

ε4
· n + Mc

ε2
· n + Mv · n

(

n
log p

q

(
1

γ 2

)

log p
q
(n)

))

.

• Strongly convex case:

E[TOC(min{Tε, n})] ≤ O
(

σ 2
f

ε2
· n + Mc

ε
· n + Mv · n

(

n
log p

q

(
1

γ 2

)

log p
q
(n)

))

.

Moreover, if γ ≥
(
q
p

) log c
2 log n

for some constant c > 1 (so that n
log p

q
( 1

γ 2
) ≤ c), the

above simplifies to

• Non-convex case:

E[TOC(min{Tε, n})] ≤ O
(

n

(
σ 2
f

ε4
+ Mc

ε2
+ Mv log(n)

))

. (16)
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• Strongly convex case:

E[TOC(min{Tε, n})] ≤ O
(

n

(
σ 2
f

ε2
+ Mc

ε
+ Mv log(n)

))

. (17)

Proof Since the cost of each call to the zeroth-order oracle (14) is independent of α,
the total function value sample complexity over n iterations is simply obtained by
multiplying (14) by n.

The cost of the first-order oracle (15) consists of two parts, oc1(α) = oc1,1(α) +
oc1,2(α). The first part, oc1,1(α), is O(Mc

ε2
). Since this is independent of α, the total

contribution of this part to the total gradient sample complexity over n iterations is
n oc1,1(α), which is bounded by O(Mc

ε2
n).

The second part of the cost of the first-order oracle is oc1,2(α) := O( Mv

min{τ,κα}2 ).
By Theorem 2, the total expected cost over n iterations from this part is bounded above
by:

n
n∑

l=1

min

{

1, n

(
q

p

)l
+ 2

√
pq

(1 − 2
√
pq)2

(2q)l

}

· oc1,2(ᾱγ l) + n oc1,2(ᾱ)

≤ n
n∑

l=1

min

{

1, n

(
q

p

)l}

· oc1,2(ᾱγ l)

︸ ︷︷ ︸
=:A

+ 2n
√
pq

(1 − 2
√
pq)2

n∑

l=1

(2q)l · oc1,2(ᾱγ l)

︸ ︷︷ ︸
=:B

+noc1,2(ᾱ).

Note that the expression above only involves oc1,2(α) for α ≤ ᾱ. Therefore, by
our earlier assumption that τ ≥ κᾱ, we have oc1,2(α) = O( Mv

κ2α2 ) = O(Mv

α2 ) (since κ

is a constant). We now use this to calculate upper bounds for A and B. Using similar
arguments as the proof of Theorem 4, we have

A = O
(
Mv

ᾱ2 log p
q
(n) n

log p
q

(
1

γ 2

))

and B = O
(
Mv

ᾱ2

)
.

Together with the previous arguments, the result follows. ��
In [22], the iteration bound on Tε is shown to be

C1
ε2

+ log1/γ
α0
ᾱ
in the non-convex

case, and C2 log 1
ε

+ log1/γ
α0
ᾱ

in the strongly convex case (for some C1 and C2
sufficiently large) in high probability. Thus, we can select n appropriately and derive
the high probability bound on the total sample complexity of SASS using Theorem 3.

Theorem 7 (High probability total sample complexity of SASS) For the SASS algo-
rithm applied to expected risk minimization, let n ≥ C1

ε2
+ log1/γ

α0
ᾱ
in the non-convex

case, and n ≥ C2 log 1
ε

+ log1/γ
α0
ᾱ
in the strongly convex case.
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For any ω > 0, with probability at least 1 − 2 exp (−C3n) − O(n−ω) (for some
C3 > 0), we have

• Non-convex case:

TOC(Tε) ≤ O
((

1

ε2
+ log1/γ

α0

ᾱ

)
·
(

σ 2
f

ε4
+ Mc

ε2
+ Mv

ε4(1+ω) log2q (γ )

))

. (18)

• Strongly convex case:

TOC(Tε) ≤ O
((

log
1

ε
+ log1/γ

α0

ᾱ

)
·
(

σ 2
f

ε2
+ Mc

ε
+ Mv

(
log

1

ε

)2(1+ω) log2q (γ )
))

.

(19)

If γ ∈
[

max

{
1
2 ,
(

1
2q

) log(2β)
(1+ω) log n

}

,
(

ᾱ
α0

) 1
cn

]

,where β is any constant smaller than

1
2 , and c is any constant in (0, 1), the above simplifies to

• Non-convex case:

TOC(Tε) ≤ O
(

1

ε2
·
(

σ 2
f

ε4
+ Mc

ε2
+ Mv

β2

))

. (20)

• Strongly convex case:

TOC(Tε) ≤ O
(

log
1

ε
·
(

σ 2
f

ε2
+ Mc

ε
+ Mv

β2

))

. (21)

Proof The bounds (18) and (19) follow by using (14) and (15) in Theorem 3, and
Theorem 3.8 of [22].

The bounds (20) and (21) follow from (18) and (19), respectively, by using the fact
that γ lies in the appropriate range and log1/γ

α0
ᾱ

≤ cn with c ∈ (0, 1).

In the non-convex case, we have 1
ε2

+ log1/γ
α0
ᾱ

= O( 1
ε2

) and Mv

ε
4(1+ω) log2q (γ ) =

O(Mv

β2 ) when γ lies in the specified range. It is worth noting that c ∈ (0, 1) implies

there is some n = O( 1
ε2

) that satisfies n ≥ C1
ε2

+ log1/γ
α0
ᾱ
. The result for the strongly

convex case follows similarly. ��
Remark 3 1. We consider some of the implications of Theorem 7 below. Similar

implications hold for the expected total sample complexity.

• In the non-convex case, from (20), the total function value sample complexity

is O
(

σ 2
f

ε6

)
and the total gradient sample complexity is O

(
Mc
ε4

+ Mv

ε2

)
. In

particular, the total gradient sample complexity matches that of SGD, and
it essentially matches the complexity lower bound as described in [8] (for a
different definition of complexity). Specifically, if σ f = 0 (i.e., function values

123



Sample complexity analysis for adaptive optimization...

are exact), the lower bound in [8] applies and the total sample complexity of
SASS matches it.

• If Mc = 0 (sometimes referred to as the interpolation case), then the total gra-

dient sample complexity reduces toO
(
Mv

ε2

)
. Hence, the total gradient sample

complexity matches that of SGD under interpolation [23, 24].
• In the strongly convex case, the total function value sample complexity is

O(
σ 2
f

ε2
log 1

ε
) and the total gradient sample complexity isO((Mc

ε
+ Mv) log 1

ε
).

In particular, the total gradient sample complexity matches that of SGD up to
a logarithmic term.

2. Our framework can be applied to the convex setting as well. We focus on the non-
convex and strongly convex settings in this paper for brevity and to cleanly illustrate
how our framework can be applied, since the convex case requires some additional
complications in the presentation. These complications are present in the previous
papers that analyze iteration complexity bounds, and are not specific to this paper.
For example, the stopping time in the convex setting for SASS is defined in terms
of two parameters ε = (ε0, ε1) as follows: Tε = min{k : φ(Xk) − φ(x∗) ≤
ε0 or ‖∇φ(Xk)‖ ≤ ε1}.

6 Conclusion

We analyzed the behavior of the step size parameter in Algorithm 1, an adaptive
stochastic optimization framework that encompasses a wide class of algorithms ana-
lyzed in recent literature.We derived a high probability lower bound for this parameter,
and as a result, developed a simple strategy for controlling this lower bound.

For many settings, having a fixed lower bound on the step size parameter implies
an upper bound on the cost of the oracles that compute the gradient and function
estimates. We developed a framework to analyze the expected and high probability
total oracle complexity for this general class of algorithms, and illustrated the use
of it by deriving total sample complexity bounds for two specific algorithms—the
first-order stochastic trust-region (STORM) algorithm [4] and a stochastic step search
(SASS) algorithm [22] in the expected risk minimization setting. We showed that the
sample complexity of both these algorithms essentially matches the complexity lower
bound of first-order algorithms for stochastic non-convex optimization [8], which was
not known before.
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