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Abstract
Identifying tool wear state is essential for machine operators as it assists in informed decisions for timely tool replacement
and subsequent machining operations. As each wear state corresponds to a unique mitigation strategy, timely identification is
vital while implementing solutions to minimize tool wear. The paper presents a novel Human Guided-eXplainable Artificial
Intelligence (HG-XAI) approach for identifying the tool wear state by integrating human intelligence and eXplainable AI
with a pre-trained Convolutional Neural Network (CNN), Efficient-Net-b0 model. The tool wear states were identified based
on different wear mechanisms during the machining of IN718. The study considers four distinct tool wear states, i.e., Flank,
Flank+BUE, Flank+Face, and Chipping, representing abrasion, adhesion, diffusion, and fracture wear mechanisms. The
image-based datasets were created to depict various tool wear states by machining IN718 at varying surface speeds. The
effectiveness of the proposed HG-XAI approach was evaluated by comparing its prediction accuracy with a standalone
Efficient-Net-b0 model lacking human intelligence and XAI. Further, the scalability of the HG-XAI approach was examined
by predicting wear states from images acquired at different cutting parameters. The results from the present study showed
that the HG-XAI approach can predict the tool wear state with an accuracy of 93.08% and is scalable to variations in cutting
conditions. Also, the proposed approach can be extended while developing vision-based on-machine tool wear monitoring
systems.
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Introduction

Machining of Nickel-Based Superalloys (NBSAs) is char-
acterized by rapid work hardening, low thermal diffusivity,
and extreme abrasive behavior (Pleta et al. 2014). Tool
wear progression is stochastically influenced in this case
and varies considerably even under identical machining con-
ditions (Potthoff et al. 2023a; Kumar et al. 2023). Such
variation of tool wear can be attributed to the simultaneous
occurrence of multiple wear mechanisms, including abra-
sion, adhesion, and diffusion (Thakur et al. 2009). It results
in significantly different tool wear states such as flank wear,
crater wear, excessive built-up edge formation, or chipping
than conventionally reported in the literature (Sarıkaya et al.
2021). The existing numerical or computational models are

3 School of Computing and Data Science, FLAME University,
Pune, Maharashtra 412115, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-024-02476-2&domain=pdf
https://orcid.org/0000-0002-2973-4652
https://orcid.org/0000-0003-1663-0675
https://orcid.org/0000-0002-7175-2758
http://orcid.org/0000-0001-5103-9480
https://orcid.org/0000-0002-3431-0483
https://orcid.org/0000-0002-4793-1406


Journal of Intelligent Manufacturing

ineffective for toolwear state identification duringmachining
NBSAs due to the variability in wear progression, presence
of multiple wear states, complex wear geometry with curved
portions, and intricate tool-workpiece interactions (Liang et
al. 2019; Pimenov et al. 2023). The traditional wear monitor-
ing solutions presented in the literature consider flank wear
only and cannot be employed readily during the machining
of NBSAs. Therefore, a unique monitoring and identifica-
tion strategy is imperative to identify the tool wear states,
guide the timely replacement, and avoid consequences such
as poor surface finish, higher cutting forces, catastrophic tool
failure, or damage to the machine tool. The periodic inspec-
tion of tool wear by humans or machine operators can be
an alternative to predictive monitoring systems. It involves
human judgments to identify wear patterns, dominating wear
mechanisms, wear progression, and anomalies that might not
be apparent from computational models.

Over the years, manufacturers relied on experienced
human operators to identify and mitigate tool wear dur-
ing machining operations. The perception and agility of
experienced machine operators can achieve robust detec-
tion abilities despite variations in tool-work materials or
cutting conditions (Yan et al. 2023). However, continuous
monitoring involving humans is impractical as decisions are
subjected to consistency, fatigue, distraction, and skillset
variations (Zhang and Wang 2016). The shortage of expe-
rienced operators and retirements due to aging populations
further restrict the availability of skilled human resources. In
recent years, researchers have been conceptualizing resilient
human-centric manufacturing systems that combine the
agility of humans with the precision of computational mod-
els through Information and Communication Technologies
(ICT) (Yao et al. 2022; Zhang and Van Luttervelt 2011).
The present work attempts to augment computational models
with human intelligence to predict and categorize tool wear
states more effectively during the machining of NBSAs than
standalone computational models.

Numerous methods have been proposed in the literature
to monitor tool wear states. These methods can be broadly
classified into indirect and direct approaches. The indirect
approaches correlate process signatures such as forces (Shah
et al. 2023), vibrations (Shen et al. 2021), acoustic emissions
(Shen et al. 2021), temperature (He et al. 2021), and surface
roughness (Potthoff et al. 2023b) with tool wear states. These
approaches utilize computational models to determine tool
wear-related parameters from the data accumulated through
single or multiple sensors. However, the sensor data is sus-
ceptible to significant noise and outliers, which may yield
poorly fitted correlations and lowered prediction accuracy of
the models (Zhang and Zhang 2013). The other limitation
of online tool wear monitoring solutions is the requirement
of manual fine-tuning of threshold values by experts having
an understanding of the wear phenomenon with variations in

tools, workmaterials, or process parameters. It is challenging
to ensure the onsite availability of such human resources for
manual adjustments (Wright and Bourne 1988; Wang et al.
2016). Alternatively, direct approaches are considered more
reliable and accurate as they observe tool conditions explic-
itly by capturing images using an optical sensor, camera, or
microscope (Dai and Zhu 2018). The images are analyzed for
changes in appearance, geometric shape, and surface prop-
erties of the cutting tool.

Recent advancements in machine vision technologies
linked to image acquisition hardware, image processing
techniques, and deep learning algorithms favor direct mon-
itoring approaches. The image processing algorithms aug-
mentedwithmachine vision hardware can effectively capture
cutting-edge images for measuring the width and area of
flank wear (Peng et al. 2021; Agarwal et al. 2022) and depth
of crater wear (Prasad and Ramamoorthy 2001). The tool
wear state is classified as initial, intermediate, and worn-out
based on themeasured flank and crater wear values (Agarwal
et al. 2022). The image enhancement operations minimize
reflections, and image binarization detects wear area bound-
aries. The optimal parameters and techniques for both steps
can vary on a case-to-case basis, limiting the generalizability
of image processing algorithms (García-Pérez et al. 2023).
These challenges are addressed by integrating deep learning
algorithmswithmachine vision systems. Deep learning algo-
rithms utilize labeled image datasets having cutting edges
with variations of wear patterns for model training. Bergs
et al. (2020) developed a Convolutional Neural Network
(CNN) model using diverse cutting tool images captured
with a microscopic camera followed by image enhance-
ment, labeling, and training to classify tool types and detect
the flank wear area. The cutting inserts during the turning
operation are categorized as acceptable (OK) or unaccept-
able (NOK) using a trained Efficient-Net-b4 algorithm. The
model achieved 97.8%accuracywith round inserts but lacked
scalability to rhombic inserts (García-Pérez et al. 2023).
Martínez-Arellano et al. (2019) encoded the time-series force
signals into images using the Gramian Angular Summation
Fields (GASF) technique and categorized wear phases of the
end mill as break-in, steady, severe, and failure with a test
accuracy of 80%.

The ‘black box’ nature of deep learning algorithms
restricts utilities as the logic for reaching a particular decision
is not provided, leading to a lack of trust among users. In the
case of predictions with lower confidence, a computational
tool explaining model predictions can be integrated with
humans to enrich the decision-making. Zhang et al. (2018)
presented a Function Context Behavior Principle State and
Structure (FCBPSS) framework for product design problems
to explain the learning mechanism and information abstrac-
tion through various layers of deep learning architecture.
Further, the researchers developed eXplainable Artificial
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Intelligence (XAI) tools to extract layer-specific information
from the network architecture and identify the most influen-
tial features or factors leading to a particular decision (Lee et
al. 2022). The additional information provided by XAI tools
can be utilized by humans while making final predictions.
Post-hoc explanation techniques such asGradient ClassActi-
vation Maps (Grad-CAM) (Selvaraju et al. 2017), Local
Interpretable Model-agnostic Explanation (LIME) (Ribeiro
et al. 2016), and SHapely Additive exPlanation (SHAP)
(Lundberg and Lee 2017) are developed to explain CNN
model predictions. Among these techniques, Grad-CAM has
been commonly employed with CNN models to provide
visual explanations in the formof a feature/attentionmap. For
example, Papenberg et al. (2023) used Grad-CAM to analyze
the ability of CNN while identifying various wear regions
from the input image of an end mill. The Grad-CAM results
showed that wear on the tool face was significantly relevant
for CNN compared to cutting-edge chipping. García-Pérez
et al. (2023) generated attention maps using Grad-CAM for
visualizing worn regions of turning inserts for evaluating the
final classification decision of a CNNmodel. It was observed
that the model focuses on the correct wear region for round
inserts but fails to identify the same for rhombic inserts. The
featuremaps obtained usingGrad-CAMcan be used to deter-
mine inter-class probability scores from the Softmax layer of
CNN architecture to show the confidence level in classifica-
tion decisions (Zhao et al. 2023).

The review of previous literature related to tool wear
monitoring using machine vision shows that the studies esti-
mate tool wear parameters (flank wear width and area) or
classify the wear state (i.e., initial/intermediate/worn-out)
or condition (i.e., OK/NOK; worn/unworn). The literature
does not include any study classifying tool wear states
(i.e., flank, crater, built-up edge, or chipping) represent-
ing wear mechanisms during the machining of NBSAs.
The present work utilizes a CNN-based image classifica-
tion model using Efficient-Net-b0 to classify wear states
commonly observed during the machining of NBSAs. The
literature also highlighted lower prediction or classification
accuracy despite advancements in machine vision technolo-
gies, including using XAI to understand model predictions.
It is observed that the higher accuracy models also lack scal-
ability and struggle to adapt to newer sets of images with
differences in the image acquisition system, tool geome-
try, and tool-workpiece material combination. As inferences
corresponding to the wear state prediction are unclear, corre-
lationwith the wearmechanism and deployment of a suitable
mitigation strategy is challenging. Therefore, the present
work proposes augmenting XAI as a support system for
human decisions with a trained deep learning (CNN) model.
HG-XAI algorithm enables machine operators or humans to
efficiently determine toolwear states during themachining of
NBSAs through anXAI-based decision-support system. Fig-

ure1 shows the difference between traditional vision-based
approaches presented in previous studies andHG-XAI devel-
oped in this work. Further, the study also recognizes the
unavailability of a labeled image dataset representing wear
states during the machining of NBSAs. Hence, a labeled
dataset is also generated to capture wear state evolution from
the beginning to the end of tool life during the end milling
of Inconel 718 (IN718). Section2 outlines four distinct tool
wear states based on the wear mechanisms observed during
the machining of IN718. The elements for developing the
HG-XAI approach are outlined in Sect. 3 along with train-
ing of the Efficient-Net-b0 model. Section4 compares the
prediction abilities and scalability of the HG-XAI approach
with the standalone Efficient-Net-b0model. The summary of
contributions from the present work is enumerated in Sect. 5.

Generation of labeled datasets

The prediction and generalization abilities of vision-based
CNN models in identifying tool wear states depend on the
quality and diversity of image datasets used during the train-
ing. Vision-based tool wear monitoring has been extensively
studied for Stainless Steel (Zhang and Zhang 2013), Tita-
nium (Hu et al. 2019), and IN718 alloys (García-Pérez et al.
2023) with numerous datasets publicly available for bench-
marking the classification or regression models (Pan et al.
2023). The publicly available datasets are intended for clas-
sifying the wear zones or tool conditions, primarily based
on the flank wear width. Also, these datasets are developed
by performing the slot-cutting operation using linear tool-
paths with a focus on monitoring the bottom cutting edge
of an end mill. The present work considers the machining
of IN718, which results in wear patterns repeating stochasti-
cally at a significantly higher rate than other metals (Potthoff
et al. 2023a). Therefore, a trochoidal toolpath is commonly
employed to reduce radial engagement, prolong the tool life,
and allow higher depths of cut (Pleta et al. 2014). The wear
phenomenon is analyzed for side-cutting edges due to their
dominance during material removal action. As wear image
datasets are unavailable for side cutting edges of an insert
with a trochoidal toolpath, a newer case-specific dataset is
required to identify tool wear states while machining IN718.

Tool wear states for IN718

ISO 8688-2 (1989) describes various states of tool wear evo-
lution during the end milling operation. As the machining of
IN718 is characterized by significant Built-Up Edge (BUE)
formation and frequent cutting-edge chipping in addition
to rapid flank wear, the definition of wear states requires
appropriate modifications. The present work considers four
commonly observed tool wear states associated with the
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Fig. 1 Traditional and proposed
solutions for monitoring tool
wear during machining of
NBSAs

machining of IN718; Flankwear (Flank), Flankwearwith the
formation of BUE (Flank+BUE), Flank wear accompanied
with deterioration of the rake face (Flank+Face) and Cutting
edge chipping (Chipping). The flankwear is characterized by
progressivewear of the cutting edge due to the rubbing action
with the work material. The lower thermal conductivity and
intense friction at the chip-tool interface result in elevated
temperature and BUE formation on the wear land. The BUE
eventually separates from the cutting edge with continued
machining, resulting in a gradual material loss from the rake
face. The harsh thermal cycles and suddenly increased cut-
ting forces due to BUE formation or tool wear result in the
cutting edge being chipped off. Figure2 shows the schematic
representation and actual wear state images along the side
cutting edge of an end mill insert.

Machining experiments

The trochoidal toolpath experiments were conducted on a
3-axis vertical milling machine (OKUMA Genos M560-V)
using a 2-flute indexable end mill with carbide inserts and
IN718 workpiece material. In the present study, the machin-
ing experiments were performed at three surface speed
values: 25, 45, and 60m/min, while the other parameters,
such as feed per tooth, step depth, and type of tool path, were
kept constant. These machining parameters were selected
based on the cutting tool manufacturer’s recommendations
(Coromant 2023). Table 1 outlines themachining conditions,
cutting tool specifications, and toolpath parameters used dur-
ing the experiments for generating different tool wear states
during the machining of IN718. The 40mm width x 1mm
height slots were machined during the test, and the number

of passes completed before the tool failure was recorded. The
volume of material removed in each pass was 842.4 mm3.
The experimental setup is shown in Fig. 3. The cutting tool
was removed from the machine spindle after each pass, and
images of side cutting edges depicting tool wear were cap-
tured. The subsequent section explains the image acquisition
setup and criteria followed for labeling various wear states.

Image acquisition and labeling

Thehigh-resolutionmicroscopic images of theworn area on a
side cutting edge for both insertswere captured offline using a
Dino-Lite digital microscope arrangement depicted in Fig. 4.
The Dino-Lite microscope has a compact and lightweight
construction, compatible with most operating systems, and
can be operated remotely usingwired orwireless connections
through the in-built software. The Dino-Lite microscope was
preferred as subsequent study plans to integrate the pro-
posed algorithm with a vision-based on-machine wear state
detection system. The tool was placed horizontally with the
side flank area under the view of a vertically mounted lens
arrangement in a controlled lighting environment, as shown
in Fig. 4a. A ring-type LED lightning system was used to
adjust the illumination intensity by controlling four-quarter
sections of a ring. Two images were captured after each
pass corresponding to both inserts of a cutting tool. The
images were captured at a resolution of 2592 x 1944 and
a magnification factor of 200x offers a field of view of 1–
2mm, eliminating the need for a separate Region Of Interest
(ROI) extraction. The greater Depth of Field (DOF) com-
bines multiple images acquired at different focus distances
to effectively capture depth features like crater and chipping
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Fig. 2 Schematic and actual
images of tool wear states

Table 1 Design of experiment Test Surface speed Passes completed Insert Images captured
No. (m/min) before tool failure (n) (i) (n*i)

1 25 30 2 60

2 45 14 28

3 60 10 20

Trochoidal step size : 1.5 mm

Axial depth of cut : 1mm

Feed per tooth : 0.25 mm/tooth

Slot width : 40mm

Volume removed in each pass : 842.4 mm3

Cutting tool diameter : 15.875 mm

Helix angle : 30◦

Fig. 3 Machining setup for tool wear experiments

in the final image. Figure4b shows one of the sample images
acquired using the camera setup at these parameters.

The dataset with a total of 108 (60 + 28 + 20) images
was generated by performing experiments at three surface
speeds of 25, 45, and 60m/min. TheRegionOf Interest (ROI)

was subsequently extracted by cropping each captured image
to a size of 800 x 800 pixels to depict the wear area. The
dataset was labeled by involving several human experts with
an understanding of ISO 8688-2 tool wear standards and sev-
eral years of experience inmachining, as detailed in Sect. 2.1.
Further, ‘tool not worn’ category was not considered due to
the higher initial tool wear rate during machining. It has been
observed that the flank wear increases exponentially during
the initial machining period using a new tool (Agarwal et
al. 2022). Figure5 shows labeled image datasets for one of
the inserts generated after each pass during the machining of
IN718 at the surface speed of 25m/min. It can be seen that
the amount of progressive flank wear increases initially (pass
1–4). A series of flank+BUE and flank+face wear stages are
apparent during subsequent passes (pass 5–18), primarily due
to the formation of BUE and separation from the insert sur-
face subsequently. Finally, cutting-edge chipping is observed
from passes 19–30 due to the material loss from the insert
surface.

Data augmentation

The training of CNN-based classification models requires
a large amount of datasets. It necessitates removing a
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Fig. 4 Offline image acquisition
module

Fig. 5 Labeled image dataset for one sample insert at surface speed of 25m/min

considerable volume of material by performing numerous
experiments and acquiring many images to produce suffi-
cient datasets representing all tool wear states. It can be
time-consuming and cost-intensive during IN718 machining
due to higher unit material removal costs. Hence, meeting the
labeled dataset requirement through end-milling experiments
is not practical, and employing data augmentation techniques
can be an effective alternative. The present work utilizes var-
ious image augmentation techniques, such as horizontal and
vertical motion blur (Nath et al. 2023), flipping, rotation,
Gaussian Noise (Mandelbrot 1971), Salt & Pepper Noise
(Azzeh et al. 2018), SpeckleNoise (López-Martínez andFab-
regas 2003) that augment and expand the image datasets as
shown in Fig. 6. The captured images were blurred horizon-
tally and vertically using a kernel size of 3x3 and 5x5. The
images were rotated at the step angle of 10◦, and flipped
horizontally as well as vertically. Additionally, the images
were exposed to artificial noises to resemble the potential
variations encountered during an on-machine image acquisi-
tion integrated with the milling machine. Gaussian noise was
introduced with a mean of zero and a standard deviation of
0.01 (Moghaddam and Jamzad 2007). Similarly, Salt & Pep-
per and Speckle noise were added to the imagewith a 2% and
10% noise intensity. Upon augmentation, the originally cap-
tured dataset of 60 images with a surface speed of 25m/min

was expanded to 4,400 images, comprising 1,100 images
in each tool wear class. The image augmentation operations
were not performed on labeled image datasets for the surface
speeds of 45 and 60m/min. These datasets were developed
for benchmarking the model performance under conditions
similar to the practical implementation and assessing the scal-
ability.

Human-Guided-XAI (HG-XAI) approach

Several CNN-based models have been developed and pre-
sented in the literature to perform real-time classification
tasks on the manufacturing shop floor. In the previous work,
co-authors comprehensively evaluated various deep-learning
architectures for surface defect detection of machined com-
ponents (Singh et al. 2023). The Efficient-Net-b0 model
outperformed on evaluation metrics, such as accuracy, pre-
cision, and recall during the evaluation. Based on this study,
the present work considered Efficient-Net-b0 as a baseline
model for developing the HG-XAI approach to identify tool
wear states. Efficient-Net-b0 is an effective CNN model
demonstrating robust computational abilities with better
generalization and prediction accuracy during image-based
classification tasks (Tan and Le 2019). Efficient-Net-b0 com-
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Fig. 6 Data augmentation for different categories of tool wear

prises convolutional andpooling layers culminating in aFully
connected layer as shown in Fig. 7. The convolutional layer
detects various local features in an image, while a pooling
layer merges semantically similar features. The model pro-
cesses input and generates output as arrays or feature maps.
The feature maps from the last convolutional layer highlight
the regions of an input image that contribute the most to the
classification results. The fully connected layer computes
the weighted sum of array information from the last con-
volutional layer, which generates the output classification
category by analyzing relationships between image features
and respective classes. Finally, the Softmax layer normalizes
raw scores from the preceding layer and performs elemental
operations to estimate probability distribution over all cate-
gories. The class with the highest probability score is chosen
as the classification result. The feature maps can also be rep-
resented using Grad-CAM to understand the classification
results further (refer to Fig. 7).

It is effective to associate humans in the decision-making
process as CNN models cannot address inherent process
variations and scalability issues. Considering the challenges
associated with CNN models in classifying images contain-
ing multiple wear state features while machining IN718,
augmenting humans in the decision-making can be effective.
The HG-XAI involves human intelligence with additional
inferences provided by the CNN model in making subtle
decisions for imageswithmultiplewear conditions or images
categorized with lower probability scores. HG-XAI requires
a trained Efficient-Net-b0 model, integrating the Grad-CAM
algorithm with the last convolutional layer for generating

feature maps, prediction probabilities for each class from the
Softmax layer, and threshold level (Pmax ) for bifurcating the
decision-making process. HG-XAI uses the Pmax score or
probability of predicted class as a threshold for determin-
ing whether a computational model or humans will make
predictions from the image. The output of the Efficient-Net-
b0 will be accepted as a final decision for images classified
with Pmax score greater than the defined threshold level. The
images with a prediction probability smaller than Pmax will
be sent to humans for decision-making. The feature infor-
mation is extracted from the last convolutional layer using
the Grad-CAM algorithm for these images and provided to
the human. HG-XAI approach displays feature maps along
with captured images for cases with probability less than
the threshold value (Pmax ). The comparison of the feature
map and captured image enables humans to appreciate algo-
rithm errors and predict the correct wear class. It is assumed
that humans have sufficient skill sets or are provided with
adequate training to identify tool wear states correctly. The
overall flow of information while implementing the HG-XAI
algorithm is shown in Fig. 7.

Efficient-Net-b0model

Tan and Le (2019) presented Efficient-Net-b0 architecture
with a rethinking model-based scaling at the International
Conference on Machine Learning (ICML) in 2019. It uses
the compound coefficient technique for network scaling and
showed exceptional performance for image classification
tasks in various domains (Papenberg et al. 2023; Singh et
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Fig. 7 Elements of HG-XAI tool wear state identification framework

al. 2023). The network architecture consisting of various
layers is shown in the top portion of Fig. 7. The training
of Efficient-Net-b0 for classifying tool wear states during
the machining of IN718 is the first step in developing the
HG-XAI framework. The model training is accomplished
using an augmented image dataset generated by performing
end-milling experiments at the surface speed of 25m/min.
The prediction accuracy and generalization abilities of the
Efficient-Net-b0model are critical in determining thenumber
of images correctly classified with higher prediction proba-
bilities. The model also determines the number of images
sent to humans for decision-making.

The optimum performance of Efficient-Net-b0 during the
training can be achieved by selecting appropriate hyperpa-
rameters such as learning rate, number of epochs, batch size,
training/validation split ratio, and validation frequency. The
optimizer selection is another critical element in attaining
superior prediction abilities for image-based CNN models.
The optimizer utilizes adaptive learning rates to adjust the
step size dynamically, leading to faster convergence and effi-
cient model training (Cheng et al. 2023). The present work
considers three typical optimizers, RootMean Squared Prop-
agation (RMSProp), Adaptive Moment Estimation (Adam),
and Stochastic Gradient Descent Momentum (SGDM) for
CNN model training. RMSProp employs an exponentially
weighted moving average to adjust gradient accumulation

adaptively (Xu et al. 2021) and quick convergence for prob-
lems with convex solution space. Adam is a variant of the
RMSProp combining momentum and bias correction for
achieving robust and efficient prediction abilities. Adam
overcomes the slower convergence issue of RMSProp by
introducing momentum variable (Zaheer and Shaziya 2019).
SGDM is another optimizer preferred for image classifica-
tion tasks with small image datasets. SGDM is less sensitive
to most hyperparameter variations and requires fine-tuning
the momentum and learning rate (Ye et al. 2018). The hyper-
parameters are varied in the following range for achieving
desired performance of the Efficient-Net-b0 model (Wilson
and Martinez 2003); learning rate values—0.01, 0.005, and
0.001; epochs—30, 40, and 50; batch size - 32, 64, and 128;
training/validation split ratio—70/30, 80/20, and 90/10; val-
idation frequency—10, 25, and 50; and momentum—0.9.

Training and optimizer selection

The training of the Efficient-Net-b0 model was conducted
using an augmented image dataset generated at a surface
speed of 25m/min. The augmented dataset contains 4400
images with 1100 images in each wear class. From the
augmented dataset, 4000 images were utilized during train-
ing, and 400 images were reserved for the model testing.
The details of computational resources used during the
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Table 2 Computational resources for CNN training

Software Platform : MATLAB - 2021b

CPU Processor : Intel i9 Processor

Operating System : Windows 10 Pro - 64-bit

RAM : 64 GB

model training are summarized in Table 2. The experimental
trials were performed to achieve consistent model perfor-
mance. The satisfactory model performance was obtained at
the following hyperparameters: learning rate—0.01; batch
size—32; training/validation split ratio—80/20; validation
frequency—50 iterations. The hyperparameters were not
changed while evaluating the optimizers. The accuracy
scores and the corresponding hyperparameters for all three
optimizers are detailed in Table 3. It can be seen that the train-
ing accuracy achieved using all three optimizers is identical.

The validation dataset consists of 800 images (20% of
4000 for training), with 200 images in each tool wear class.
The dataset was utilized for the performance assessment of
the model and to select an appropriate optimizer while clas-
sifying previously unseen images. The classification results
for three optimizers are compared using confusion matrices
shown in Fig. 8. The confusion matrix compares predictions
of a classification model with the ground truth or the actual
class. The entries along the diagonal are correct predictions,
while off-diagonal entries show misclassifications. It can be
seen that misclassifications were obtained during the val-
idation experiments for all the optimizers with RMSProp
showing the highest number of misclassifications. The mis-
classifications were reduced using the Adam optimizer, and
the best performance was obtained using the SGDM opti-
mizer. It is challenging to comment on the prediction abilities
of the optimizers as the variations were marginal in results.
The classification accuracy of all three optimizers was con-
sistent across the Flank, Flank+BUE, and Chipping wear
categories. However, misclassifications in the Flank+Face
wear category for each optimizer necessitated further inves-
tigations. The inferences about CNN model predictions can
be obtained using various tools offering explainability for the
results. The presentwork employed theGrad-CAMapproach
to understandCNNmodel predictions (Selvaraju et al. 2017).

TheGrad-CAMalgorithmwas integratedwith theEfficient-
Net-b0model to analyze reasons for the consistent misclassi-
fications in the Flank+Face wear class and evaluate a suitable
optimizer for the model developed herein. The integration
facilitates the identification of dominant features and pat-
terns in the image used for decision-making. A tool wear
image was input to the trained Efficient-Net-b0 model, and
feature maps in the last convolutional layer were used to gen-
erate a gradient feature map representing specific regions in

the gradient color varying from red to blue. The red rep-
resents the dominant features, while the blue represents the
least important features in the decision-making by themodel.
These feature maps are stored using a transparent image for-
mat and combined with the tool wear image to identify the
dominant features. The stepwise process of implementing
the Grad-CAM algorithm with the CNN model is shown in
Fig. 9.

A dataset of 24 distinct images (6 images in each tool
wear class) was selected randomly, and their respective fea-
turemapswere generated using all three optimizers, as shown
in Fig. 10. The first set of columns represents the input image
dataset, and the subsequent sets represent feature map infor-
mation used by RMSProp, Adam, and SGDM optimizers. It
can be seen that the features used for arriving at the Efficient-
Net-b0 model output are noticeably inconsistent while using
RMSProp and Adam optimizers when compared with input
images. It can be seen that many predictions are made using
random features in an input image, and the algorithm fails
to detect appropriate features. Nevertheless, the SGDM opti-
mizer predictions are consistent with input image features
for all 24 cases. This further substantiates results obtained
in Fig. 8, where the least misclassifications were observed
using the SGDM optimizer. It can be concluded that the
explainability using the Grad-CAM algorithm can be piv-
otal for optimizer selection and help better generalize the
Efficient-Net-b0model for tool wear classification tasks. The
Efficient-Net-b0 model trained with the SGDM optimizer
was used further for integration with the HG-XAI frame-
work.

Implementation of HG-XAI

It is shown in the literature that the wear patterns during
the machining of IN718 are stochastically influenced and
vary considerably even under identical machining conditions
(Potthoff et al. 2023a). CNN models such as Efficient-Net-
b0 cannot address these issues effectively due to the shortage
of training datasets and the presence of features with differ-
ent wear types in a single image. It is also shown that these
models are not scalable and prediction accuracy is lowered
considerably at conditions different than training (García-
Pérez et al. 2023). The HG-XAI approach shown in Fig. 7
introduces humans in the decision-making to identify wear
states accurately for maximizing machining efficiency and
productivity. The test image dataset was provided as input to
the trained Efficient-Net-b0modelwith the SGDMoptimizer
discussed in the previous subsection. HG-XAI approach
extracts the probability values for the predicted class Pmax

from the Softmax layer of a trainedmodel for an input image.
The feature map information is extracted from the last con-
volutional layer for images with Pmax values lower than the
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Fig. 8 Confusion matrices for the three optimizers

Fig. 9 Generating Gradient Class Activation Map (Grad-CAM) for an input image

Fig. 10 Comparison of feature
maps for optimizers
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Table 3 Comparison of training
accuracy with hyperparameters
and optimizers

Optimizer Learning Epochs Batch Split Validation Training
rate size ratio frequency accuracy

RMSProp 0.01 30 32 80/20 50 98.88%

Adam 0.01 30 32 80/20 50 98.59%

SGDM 0.01 30 32 80/20 50 99.30%

threshold value. The extracted information in the form of a
feature map and an input image is provided to humans.

The threshold value has to be selected such that the num-
ber of images sent to humans for decision-making is limited.
If the number of decisions made by humans is large, the cog-
nitive load on the human increases, and the advantages of
combining humanswith the computational algorithm are off-
set. After considering the threshold value as Pmax , the results
are bifurcated into two classes; predictions having probabil-
ity scores greater and smaller than the threshold level. The
predictionswith a probability score greater than the threshold
level are accepted as model predictions while the remaining
results are sent to the HG-XAI for subsequent actions. The
feature maps for remaining predictions are generated and
provided to the humans with captured images for generating
the decisions.

Analysis and discussions

The trained Efficient-Net-b0 model with SGDM optimizer
was used to demonstrate the effectiveness of the HG-XAI
approach using image datasets generated from end milling
experiments at 25, 45, and 60m/min surface speeds. Asmen-
tioned in Sect. 3.2, 400 images from the augmented dataset
with 100 images in each wear class was reserved as previ-
ously unseen test dataset under similar cutting conditions.
The feature characteristics of these images are similar to the
training dataset as these are generated from image augmen-
tation techniques. The images corresponding to machining
experiments at 45m/min and 60m/min surface speeds were
not used during the training or augmentation as these datasets
are planned for evaluating the practical implementation and
scalability of the HG-XAI approach. The number of images
was fewer in both these cases compared to the 25m/min
experiment, as the cutting tool wears out faster, or cutting
edges are chipped off due to higher surface speeds. It can
be seen that either no or very few results are recorded in the
Flank+BUE and Flank+Face categories. The results are con-
sistent with the process physics as BUE formation in the case
of higher cutting speed is short-lived and may not get cap-
tured during the experiments. Therefore, no cutting images
were recorded in the Flank+BUE category for 60m/min sur-
face speed experiments.

Evaluation of HG-XAI framework

All test images were input to the trained Efficient-Net-b0
model without integrating the HG-XAI approach and pre-
dicted classes were obtained. The trained Efficient-Net-b0
was considered a baseline model and results for predicted
classes are represented using confusion matrices shown in
Fig. 11. It can be seen that themodel performance is excellent
while classifying images within the Flank, Flank+BUE, and
Chipping wear for surface speed of 25m/min. However, 39
misclassificationswere observedwithin theFlank+Facewear
class. These results are consistentwith the outcomes obtained
during the model training and validation. The model could
predict the Flank wear class accurately for images acquired
from experiments even at surface speeds of 45 and 60m/min.
However, the performance substantially degraded within
the other three classes resulting in lower overall prediction
accuracy. The lower prediction abilities in these classes are
an indicator of the poor scalability of the Efficient-Net-b0
model.

Figure12 shows a few misclassification results obtained
by the Efficient-Net-b0 model for various tool wear classes.
It can be seen that the false classifications are due to the
presence of features representing multiple wear classes in
the same image. The trained model could not identify mul-
tiple features from images due to a lack of training. As
images within the Flank+BUE and Flank+Face categories
exhibit such characteristics commonly, the prediction accu-
racy within these two classes is quite poor. For instance,
features in Fig. 12a–c resemble a combination of Flank and
Flank+Face, with different feature level information. Simi-
larly, Fig. 12d, h contain features combining Flank+BUE and
Flank wear, Fig. 12e, i contain features of both Flank+Face
and Flank+BUE wear, Fig. 12f exhibit combined features of
Chipping and Flank+Face wear and, Fig. 12g contain Chip-
ping and Flank wear features. Further investigations revealed
that some of these images are categorized with lower proba-
bility values for the predicted class. Although the probability
value is less for the predicted class, CNNs will categorize the
image based on the highest value. The other wear classes are
not considered due to lower probabilities. It is challenging
to categorize such tool wear cases with features belonging to
multiple classes in an image using theEfficient-Net-b0model
due to limitations such as the non-availability of diverse train-
ing datasets. Alternatively, skilled humans can perceive the
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Fig. 11 Confusion matrices for test datasets obtained using Efficient-Net-b0 model (without integrating HG-XAI)

wear state more effectively by observing a cutting tool or
an image due to inherent cognition, intuition, prior experi-
ence of variability, and adaptability to change based on the
understanding of physics.

The trained Efficient-Net-b0 model was integrated with
HG-XAI subsequently, and the same test datasets were input
for obtaining predicted classes. The threshold value for the
Pmax was set as 0.85 by conducting trial experiments at
different values in the range of 0.75−0.95. After consider-
ing the threshold value of 0.85, the predicted classes were
obtained by combining Efficient-Net-b0 model outputs and
human decisions. The predictions with a probability score
higher than 0.85 were accepted as the final predicted class.
The remaining results with a probability score less than 0.85
were input to theHG-XAI. The featuremaps for these predic-
tions were generated and provided to the humans along with
captured images for the final prediction. The results from
the Efficient-Net-b0 model and humans were combined and
compared with the ground truths or actual classes to derive
confusion matrices for all three surface speeds as presented
in Fig. 13.

The comparison of results in Fig. 11 with Fig. 13 shows
that the implementation of HG-XAI significantly improved
the overall prediction accuracy of the model. The overall
prediction accuracy (combining all three surface speeds)
improved from 88.16% (with baseline Efficient-Net-b0)
to 93.08% after integrating the HG-XAI approach in the
decision-making. Based on these results, it can be concluded
that better prediction abilities can be achieved by combin-
ing humans and CNN models in the decision-making. The
prediction accuracy for images corresponding to 25m/min
surface speed (representing conditions identical to the model

training) improved from 90.25% (with baseline Efficient-
Net-b0) to 93.5% after integrating the HG-XAI approach.
However, the improvements in the case of 45 and 60m/min
surface speed were substantial, from 67.85% and 75% to
85.71% and 95% respectively after integrating the HG-
XAI approach. The improved classification accuracy of
the Flank+Face category with HG-XAI approach can be
attributed primarily to the following factors: In certain
images, the overlapping characteristics of Flank+Face and
Flank led to a situation where the correct class (Flank+Face)
was assigned a lower probability score, while the incorrect
classification (Flank) received a marginally higher score.
These images, along with feature map information, were
provided to the machine operator for decision-making. The
conditions corresponding to 45 and 60m/min were chosen
to assess the practical implementation and scalability of the
approach. The improved prediction accuracy indicates the
robust prediction abilities of the HG-XAI compared to the
baseline Efficient-Net-b0 model.

Discussions and subsequent work

The Efficient-Net-b0 model predictions with the integration
of the HG-XAI were further analyzed to validate the robust-
ness of the proposed approach in tool wear state monitoring
during endmilling of IN718. Figure14 shows sample images
with threshold level Pmax less than 0.85 and sent to humans
for decision-making along with feature maps. It can be seen
that the images classified with probability values less than
0.85 contain features corresponding tomultiple wear classes.
The comparison of captured images and feature maps clearly
shows that the Efficient-Net-b0model cannot extract features
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Fig. 12 Misclassified images showing multiple tool wear features

Fig. 13 Confusion matrices for test datasets obtained using Efficient-Net-b0 model (integrating HG-XAI)

Fig. 14 Images with Pmax less
than 0.85 input to the HG-XAI

easily discernible to humans. Therefore, human involvement
in decision-making resulted in better prediction abilities.
However, performance improvement with human involve-
ment was less than the expected level, which warranted
further investigations.

The individual misclassification results for each surface
speed and tool wear class were also analyzed to investigate
reasons for the inability of the HG-XAI approach to predict
correctly for these cases. For example, 26 Flank+Face wear

class images at 25m/min surface speed (refer Fig. 11) were
misclassified as Flank wear. Similarly, the images within the
Flank+Face and Flank+BUE classes were wrongly classified
as Flank wear. All these images were categorized with the
predicted class probability of more than 0.85 threshold value
and not filtered by the HG-XAI for decision-making by the
humans. Figure15a–e show some of these images and fea-
ture maps having a prediction probability of more than 0.85
but are misclassified by the Efficient-Net-b0 model. It can be
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Fig. 15 Misclassified images
with high probability score

seen that these images contain multiple features in an image
representing Flank, Face, BUE, and a combination thereof in
varied proportions. The feature map shows that the Efficient-
Net-b0 model identified the most dominant feature based on
training and predicted the class having higher probability.
As seen in Fig. 15, non-dominating features were identified
with lower prediction probabilities and were not referred to
humans by the HG-XAI. Also, tool wear is a progressive
phenomenon with continuous BUE formation and detach-
ment from the edge, resulting in the wearing of the rake face.
The classification approach needs to capture continuously
varying wear regions of Flank, Face, and BUE in an image
depending on the surface speed and other conditions during
the machining of IN718.

The prediction abilities of HG-XAI could have been better
if the images with the characteristics described above were
transferred to humans for decisions. Humans can effectively
categorize such images as the history of wear progression
is remembered as patterns rather than a single image at a
time being used by CNN models. The presence of multi-
ple features with varying information levels in an image is
another reason for Efficient-Net-b0 assigning higher weights
to the dominant feature (refer to feature maps in Fig. 15).
The classification scheme presented in this work is based
on a dominating feature only. Developing a ranking-based
algorithm for deciding the classes or transferring decisions
to humans can be a subsequent work. The images for scal-
ability experiments were captured offline by removing the
cutting tool from the machine spindle. The subsequent stud-
ies focus on integrating the image acquisition setup with the
CNC milling machine for image-based online monitoring of
tool wear states. The FCBPSS framework (Zhang et al. 2018)
is presented in the literature as an alternative to the XAI for
understanding theworking and predictions of a deep learning
model. The subsequent work can develop the FCBPSS-based
model to identify the tool wear state and compare the perfor-
mance with the HG-XAI approach.

Conclusions

Thepaper introduced aHuman-guided classification approach
(HG-XAI) based on the Efficient-Net-b0model to categorize
tool wear states during the end milling of IN718. The pro-
posed model considers augmenting human intelligence with
the Efficient-Net-b0 model to achieve better classification
accuracy. The results of the proposed approach are com-
pared with the standalone Efficient-Net-b0 model that does
not consider human guidance while deciding the prediction
class. The major conclusions from the study are summarized
as follows;

• HG-XAI approach presented in this paper can effec-
tively classify the tool wear state as Flank, Flank+BUE,
Flank+Face, and Chipping during end milling of IN718
with aprediction accuracyof 93.08%.The accuracyof the
proposed approach is substantiated by predicting wear
classes for previously unseen test datasets. The good
agreement between the predicted and actual class sub-
stantiates the utility of the proposed approach.

• The comparison of theHG-XAI approach and standalone
Efficient-Net-b0 model without human guidance was
also carried out to assess scalability by considering image
datasets having surface speeds significantly different than
model training conditions. The studies showed improve-
ment in the prediction accuracy from 67.85% and 75% to
85.71% and 95% for representative conditions of 45 and
60m/min surface speeds. The detailed analysis of mis-
classified cases shows that the HG-XAI can be improved
further by effectively segregating images with multiple
wear states and transferring them for human judgment.

• The study performed iterative experiments to generate an
image-based dataset depicting the evolution of the wear
state from the initial to the failure stage of the tool during
the milling of IN718 using a trochoidal toolpath. The
datasets have been created for different surface speeds
varying in the range of 25–60m/min.
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