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Abstract—Buildings produce a significant share of greenhouse
gas (GHG) emissions, making homes and businesses a major
factor in climate change. To address this critical challenge, this
paper explores achieving net-zero emission through the carbon-
aware optimal scheduling of the multi-energy building integrated
energy systems (BIES). We integrate advanced technologies and
strategies, such as the carbon capture system (CCS), power-to-
gas (P2G), carbon tracking, and emission allowance trading, into
the traditional BIES scheduling problem. The proposed model
enables accurate accounting of carbon emissions associated with
building energy systems and facilitates the implementation of
low-carbon operations. Furthermore, to address the challenge of
accurately assessing uncertainty sets related to forecasting errors
of loads, generation, and carbon intensity, we develop a learning-
based robust optimization approach for BIES that is robust in
the presence of uncertainty and guarantees statistical feasibility.
The proposed approach comprises a shape learning stage and
a shape calibration stage to generate an optimal uncertainty
set that ensures favorable results from a statistical perspective.
Numerical studies conducted based on both synthetic and real-
world datasets have demonstrated that the approach yields up
to 8.2% cost reduction, compared with conventional methods, in
assisting buildings to robustly reach net-zero emissions.

Index Terms—Carbon emission; Building integrated energy
system; Robust Optimization; Chance-constrained Optimization;
Net-Zero Emission

NOMENCLATURE

Indices and Sets

t/T Index/set of time periods

Parameters

g CO3 emission factor of gas

Neap Electricity consumed for capturing per unit CO2
Necs CO; capture efficiency of CCS

nec COx, utilization efficiency of P2G

NpP2G P2G reaction efficiency

I, Carbon intensity of main grid at time ¢
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kes The cost of carbon storage
Péf’t“d Actual cooling load at time ¢
Pload Actual electrical load at time ¢
Pf Y PV generation at time ¢
P}llf’tad Actual thermal load at time ¢
quota Carbon emission quotas for the BIES
Variables
Epuy Purchased/sold carbon allowance in carbon mar-
ket
Egtgbsjt COg emitted into the atmosphere after introduc-
ing CCS at time ¢
Ef&cg COs, stored via CCS at time ¢
EF¥, COy consumption of P2G system at time ¢
Ecupt Carbon emission from CHP at time ¢
E¢Ss CO, captured via CCS at time ¢
EgB,t Carbon emission from GB at time ¢
Ereal Total real carbon emission during the whole time
period T'
FEyirtual Total virtual carbon emission from the main grid
during the whole time period T’
Feupy Natural gas consumption of CHP/GB at time ¢
Fgf:) 2G Natural gas produced via P2G process at time ¢
Fept Natural gas consumption of GB at time ¢
Pebft‘y Power purchased from the main grid at time ¢
PAC Refrigeration power of AC at time ¢
PCE)tC Refrigeration power of EC at time ¢
PAC Electricity consumption power of EC at time ¢
Pfts S Charged/discharged power of ESS at time ¢
Pf 2G Electricity consumption of P2G system at ¢
P;:‘tc Heat absorption power of AC at time ¢
PhdtH P Heat generation of CHP at time ¢
,f}tH P Power generation of CHP at time ¢
bss Electricity storage level at time time ¢

I. INTRODUCTION
A. Motivation and Challenges

Buildings contribute significantly to carbon neutralization
due to their significant energy consumption, carbon emissions,
and their potential to lead in the adoption of energy-efficient
technologies and renewable energy sources. For instance, nearly
a third of U.S. greenhouse gas emissions are attributable to 130
million homes and commercial buildings in America, which
use 40% of the nation’s energy and 75% of its electricity
[1]. To achieve the urgent climate goal, the existing design of
building integrated energy system (BIES) needs to evolve in a
climate-responsible manner to increasingly aggregate zero/low-
emission energy technologies and optimize energy efficiency,



while meeting the demand of heat, power, and cooling [2],
[3]. Existing research has shown that a climate-smart BIES
not only serves as the energy backbone of buildings but also
acts as an innovative platform for the integration of various
new technologies and strategies within the building environment
to cut carbon emissions. For instance, empirical findings in
[4] indicated that the implementation of technologies such as
photovoltaic (PV) and energy storage systems (ESSs) in BIES
could potentially decrease CO2 emissions by 20%.

Despite the potential benefits offered by BIES, its optimal
scheduling is not straightforward. The first research challenge
we are facing is: How to perform synergic carbon-aware coordi-
nation of on-site components and technologies while optimizing
off-site electricity usage from the utility grid, to achieve net-zero
emission? BIES comprises multiple on-site components, like
power-to-gas (P2G) and carbon capture systems (CCS), each
presenting a method to harness renewable energy and reduce
carbon footprints. The coordination between these diverse tech-
nologies and the smart use of off-site, low-carbon electricity is
essential. As the share of renewable energy in the grid increases,
the carbon intensity of electricity fluctuates, making it crucial
to schedule energy-intensive operations during times of lower
carbon intensity to minimize the carbon emission of buildings.

Another major challenge is: How do we handle uncertainties
inherited in BIES operations? While renewable sources such as
wind and solar generation do not create any carbon emissions,
their intermittent and stochastic nature poses severe challenges
to BIES operation and safety. Energy prediction has thus become
a key element to accurately forecast future operating conditions
using historical operation data and machine learning algorithms
[5]. However, all prediction models would inevitably inherit
errors. The sources of uncertainty for optimal BIES design stem
from load prediction, such as cooling/heating and electrical load,
as well as renewable energy production [6]. The presence of
the uncertainty factor may adversely affect the performance
of the model [7] and challenge the practical application of
deterministic methods [8]. These uncertainties should be sys-
tematically considered during the energy management decision-
making process involved in BIES to ensure its feasibility under
various operating scenarios [9].

B. Literature Review

1) Carbon capture in BIES

CCS has proven to be an effective solution for reducing
CO2 emissions by capturing carbon directly at the source. The
captured carbon can then be either stored long-term in suitable
sites or converted into commercially useful by-products [10].

In the building environment, post-combustion CCS, which
refers to the technology that separates CO4 from the flue gases
produced after the combustion of natural gas, is considered the
most feasible technique. Post-combustion CCS units can be inte-
grated into existing natural gas combustion systems and furnaces
through retrofitting, requiring minimal modifications to building
infrastructure. To date, there is an extensive body of literature on
the integration of carbon capture technologies within building
environments. For instance, the feasibility of installing CCS at
the building level has been discussed in [11] from the market
assessment perspective. The design of building integrated carbon
capture (BICC) for retrofitting existing mechanical systems

within buildings was discussed in detail in [12], highlighting the
significant role BICC can play in offsetting carbon emissions
from different types of buildings. The modeling of CCS to
deploy along with energy efficiency measures and demand
response to achieve zero-emission was discussed in [13]. A
comparative performance assessment was conducted in [14]
to evaluate the environmental and economic performance of
building-level CCS over their life cycle, showcasing the great
potential for building-level CCT in regions that depend on fossil
fuels to generate electricity.

In practical applications, CCS for natural gas-fueled building
heating systems was first deployed and tested by FortisBC
Energy in a pilot program in Canada in 2017 [15]. The partici-
pants of this program included various commercial buildings,
including LUSH Cosmetics Headquarters, Baptist Housing,
Starlight Housing, Richmond Centre, and Richmond School
District [16]. Their latest small-scale CCS installation project
was at Southridge School in 2023 [17]. It was reported that
the carbon capture process could help commercial customers
reduce up to 5,400 kilograms of COq reduction per unit per
year while decreasing energy consumption by up to 10% [17].
Furthermore, commercial carbon capture products and services,
such as the solutions provided by CarbonQuest [18], have
been made readily available for various building types. For
example, it is reported that their larger-size Distributed Carbon
Capture products can be bundled together for CHP solutions
to capture over 100,000 tons of CO2 in campus settings,
including universities, hospitals, and multi-building complexes
[19]. Meanwhile, their Building Carbon Capture products can
be deployed in commercial buildings, such as offices and mixed-
use buildings, to capture 500 to 16,800 tons of CO2 per year
[19]. So far, their products have been reportedly deployed in 5
locations, with its first on-site carbon capture system installed in
a multifamily building located in Manhattan’s Lincoln Square
neighborhood in 2021 [20][21].

At the same time, countries around the world are increas-
ingly recognizing the significance of CCT in mitigating climate
change. For instance, in the United States, the 45Q Tax Credit
included in the Inflation Reduction Act (IRA) provides financial
incentives and facilitates the acceleration of the demonstra-
tion and deployment of CCT in commercial applications [22].
Similarly, the European Union’s Innovation Fund supports the
demonstration of innovative low-carbon technologies including
CCS [23]. In addition, the United Kingdom, Australia, and
China have also implemented specific policies and subsidies to
promote CCS [24]. These measures are crucial for expediting
the commercialization of CCS technologies, which are essential
for attaining global climate targets.

2) Low-carbon operation of BIES

Recent studies have significantly advanced the optimization
of BIES with carbon emissions taken into account by utilizing
a combination of different carbon-free technologies. In the
research literature, Li et al. [25] demonstrate the integration of
CCS and P2G technologies into conventional energy systems,
enhancing stability and addressing energy demand and renew-
able generation uncertainties. Xiao et al. [26] explore a multi-
energy CHP-based microgrid for smart cities, incorporating a
P2G facility to reduce CO2 emissions and considering the sale
and utilization of captured CO,. A hydrogen-based framework



that combines a refined P2G system and CCS is developed
in [27], offering a novel approach to energy system design. It
also highlights that to tackle the concern regarding the potential
lack of cost-effectiveness in CCS applications, building owners
can additionally engage in carbon trading mechanisms. These
mechanisms convert emission reductions into financial gains.
Some countries and regions have already implemented or are in
the process of integrating carbon trading into the building sector
[28]. Research Gaps: While these contributions mark significant
progress in tracking carbon flows within the building, they often
rely on fixed emission factors for grid electricity, overlooking
the variability in carbon intensity due to diverse energy sources.
It is evident that this status quo can no longer meet the
demands of the building sector, which is undergoing rapid and
comprehensive decarbonization. There is a compelling need for
more accurate carbon emission modeling and accounting to
determine the operational strategy of BIES, taking into account
the spatial and temporal dynamics of the grid’s carbon intensity.

3) Handling uncertainties in multi-energy systems

Various methods have been investigated in prior research
to handle uncertainties in BIES and energy hub operations.
Representative methods include chance-constrained optimiza-
tion, robust optimization, stochastic optimization, and lately,
distributionally robust optimization. For instance, Yan et al. [32]
develop a two-stage robust scheduling method for multi-energy
systems, enhancing flexibility against wind energy variability. To
account for the uncertainty from PV output, a distributional ro-
bust optimization (DRO) method based on Wasserstein distance
is developed in [33]. A distributional robust chance-constrained
(DRCC) method has been introduced in [34] to tackle uncertain-
ties from heating demand and outdoor temperature. Xiao et al.
[26] utilizes a scenario-based joint chance constraint approach
for handling uncertainties in loads and renewable sources like
wind and PV. These studies primarily employ stochastic or
robust optimization methods. Stochastic optimization requires
precise probability distributions of uncertainties, while robust
optimization might lead to overly conservative outcomes, po-
tentially diminishing solution quality. Although the data-driven
set based RO method presented by [31], the chance-constraints
method proposed by [30], and DRO-based IES optimization
proposed in [27] address the issue of over-conservativeness,
they lack statistical feasibility guarantees [35]. Research gaps:
Existing methods primarily employ samples to estimate the
characteristics of random variables, such as their distributions
and uncertainty sets. However, there are often discrepancies
between the estimated distributions and the true distributions of
these random variables, leading to inaccuracies in predictions,
which can result in the violation of constraints and suboptimal
solutions. To address this critical challenge, the concept of
statistical feasibility emerges as an effective solution to ensure
that the solutions obtained from an optimization problem with
chance constraints are feasible across different samples with a
certain level of confidence. Statistical feasibility allows decision-
makers to derive a solution that is robust from a statistical
perspective, thereby eliminating the need for assumptions about
sample distribution or resampling techniques often found in
the literature. To guarantee statistical feasibility, the uncertainty
sets need to be properly calibrated from data, so that we can
quantify the errors to be involved in the optimization process in

a probabilistic way.

C. Our Contributions

Motivated by the aforementioned research gaps, in this paper,
we develop a novel carbon-aware and learning-based robust
operation framework for a BIES comprising of a range of tech-
nologies, such as CCS, P2G, energy storage system, combined
heat and power, absorption chiller, and electric chiller. To take
carbon emissions into account accurately, we incorporate carbon
trading and time-varying carbon intensity of the regional grid,
along with zero-emission technologies, into the formulation
of the BIES scheduling problem formulation to enable well-
informed decision-making. Then, we incorporate the uncertain-
ties related to electricity, heating, cooling load forecast errors,
PV power generation, and carbon intensity into the scheduling
problem through chance-constrained optimization, which can be
converted into a corresponding robust optimization problem.
We propose a two-phase approach comprising shape learning
and shape calibration in order to acquire an optimal uncertainty
set that ensures favorable results with a statistical feasibility
guarantee. The proposed approach was tested based on syn-
thetic and real-world data. Simulation results indicate that the
proposed learning-based robust optimization approach yields an
average 8.2% reduction in cost and net-zero emission building,
compared with performance benchmarks, while ensuring stable
feasibility guarantees.

The contributions of this paper are summarized as follows:

1) We develop a carbon-aware formulation for optimal BIES
operation incorporating low-carbon technologies, carbon
accounting, and carbon trading. Our work pioneers the
integration of precise carbon emissions modeling into the
BIES formulation to facilitate the zero-carbon transition
of the building sector, distinguishing it from literature that
concentrates primarily on minimizing operational costs.

2) We develop a novel two-stage learning-based uncertainty
set construction algorithm that is capable of ensuring
statistical feasibility. Through theoretical analysis and ex-
perimental verification, we demonstrate that the proposed
algorithm guarantees that the solutions consistently adhere
to satisfy the building energy and carbon consumption
balance at a given confidence level.

3) We conduct extensive simulation studies using both syn-
thetic and real-world datasets, showcasing the performance
of the proposed approach, compared with existing perfor-
mance benchmarks. The findings indicate that our approach
demonstrates improved control over the violation rate and
yields lower costs.

Table I provides a detailed comparison between this work and
existing research efforts. It is worth noting that uncertainties
persist without consideration of carbon-related factors in the
building environment, and the proposed two-phase approach can
work with other forms of uncertainties. However, we are in-
corporating carbon accounting and modeling in this manuscript
to underscore the urgency and significance of transitioning
towards more sustainable and environmentally friendly building
practices. Through the “carbon-aware” lens, we aim to provide
insights that can inform and drive effective strategies for achiev-
ing carbon reductions in the built environment.



Table I: Comparison between this study and existing approaches

Ref. Carbon- Grid Emission Uncertainty Modeling Distribution Violation Rate Statistical Feasibility
Aware Factor Assumption-Free Guarantee Guarantee
[29] X X Stochastic X X X
[30] X X Chance constraint X X X
[31] v X Robust optimization v v X
[25] v X Stochastic X X X
[26] v Constant Chance constraint X X X
[27] v Constant DRO v v X
Our work v Real-time Learning-based robust v v v

The remainder of this paper is organized as follows. Section
II presents the model of the carbon capture system as well as the
model of BIES. Section III illustrates the solution methodology
to deal with the uncertainty. The numerical studies are carried
out in Section IV, and finally, the conclusions are drawn in
Section V.

II. MODEL FORMULATION

This section outlines the carbon-related and other compo-
nents of the BIES, crucial for achieving carbon neutrality.
Components include Combined Heat and Power (CHP), Energy
Storage System (ESS), Absorption Chiller (AC), Gas Boiler
(GB), Electric Chiller (EC), and purchased electricity from the
grid. Figure 1 illustrates the system structure and energy flow.
The BIES aims to minimize costs, including energy purchases
and carbon credits, through optimal operation, balancing cost-
effectiveness with low carbon emissions.

PV Atmosphere ESS
Electricity % """"""""""" Elctricity
grid | Storage load
P2G «— CCS —T
. l t ‘—| : Heating
Gas grid CHP — ; " load
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Figure 1: The brief structure of BIES and energy flow

A. Model of Carbon Cycle System (CCS)
To mitigate the carbon emissions of the system, it is essential

to quantify these emissions accurately. This subsection intro-
duces the carbon cycle system, which includes the processes
of COs production, capture, and utilization. Following this,
we present a model for carbon accounting that provides a
comprehensive framework for understanding and reducing the
carbon footprint of the BIES.

Carbon production: In BIES, the CO5 produced consists of
two parts: the direct emission and the indirect emission. The
direct carbon emission comes from the consumption of natural
gas, and we have

Ecupt =90q4Fcup,, 9]
Egpt =04FGB+t, 2
where Ecpp, and Egp, are the amount of carbon emission
from CHP and GB, respectively. J, represents the CO5 emission

factor of natural gas. Fogp,; and Figp,; denote gas consumption
of CHP and GB.

The indirect carbon emission comes from the power pur-
chased from the main grid, and we have

T
Evirtual = Zt:l Clt * Pbuy,ta (3)
where Py, + is the purchased power from the main grid. CI;
is the carbon intensity of the main grid at time ¢. Calculating
C1; involves analyzing the mix of energy sources in the grid and
their respective emission factors. Specifically, C'I; is determined
as follows [36]:
k k
Ol = Dkce el Xk:Mt 7 @)
D kee My
where £ as the set of energy sources. M[ represents the
amount of electricity produced by source k at time t. The
carbon emissions associated with electricity generation vary
across different energy sources. Each source k has an associated
carbon emission factor, e fk, indicating the emissions per unit
of electricity generated by this source.

Carbon intensity reflects the weighted average of carbon
emissions per unit of electricity generated, considering the
contribution of each energy source. Adopting dynamic carbon
intensity modeling allows for more accurate environmental
assessments than using a fixed emission factor, facilitating the
pursuit of net-zero emissions in buildings. Real-time CI data,
provided by grid operators [37] or third-party services like
Electricity Map [38] and WattTime [39], enhances the precision
of carbon emission calculations, supporting informed decision-
making in energy management.

Carbon capture and utilization: The CO, emission cap-
tured and utilized at time ¢ can be indicated in (5). Part of the
captured COy can be used as raw material for P2G process,
another portion can be stored, and the rest will be emitted into
the atmosphere, which can be formulated in

E¢és: =ncos(Ecupi + Ecpt), ©)
FPPC = npag PR, (6)
Eg??%,t = nccPft2G7 @)
EgC’S,t = Eéags,t - Eg%%,t - Eg‘tgls,ta (8

where E¢/¢g , represents the CO, captured via CCS at time .
Fg]? 2C s the natural gas produced via P2G process at time t.
E¢cs, and Egté”&t represent the COy is stored and emitted
into the atmosphere, respectively. P(f 2G denotes the power
consumption during the process of P2G.

In addition, the electricity consumption of CCS process at

time ¢ is indicated in
ccs
Pe,t = 7]capEga§SVt, )

PC5S is the power consumption during the process of

where P

CSS.



The overall direct carbon emission is determined by the
difference between the emission resulting from natural gas
consumption and the amount of CO4 that is stored and utilized,
which is illustrated by

T T
Ereal = g i Ecups + E tilEGB,t

T
— > (BEE + Eécsy) - (10)

The total carbon emission is the sum of direct real and indirect
virtual carbon emissions, which is calculated by

Etotal = Ereal + Evirtual~ (1 1)

According to the carbon emission model, there are several
strategies for the system to reduce its total carbon emissions.
First, the system owner can directly decrease actual carbon
emissions through the implementation of CCS technologies.
Second, integrating zero-emission energy sources such as PV
can substitute for energy purchases, thereby reducing reliance
on non-renewable sources. Third, the system can minimize
indirect carbon emissions from energy purchasing by shifting
load consumption to periods when carbon intensity is lower.

B. Model of Building Integrated Energy System (BIES)

The other part of the model of building integrated energy
system is shown in

Q% = Q™Y + PIP?, (12)
Pl < PIPS < PRSD, (13)
Qnay < QP <Qrsy, (14)
PhC,tHP =ncaprntonpt, (15)
PSP = noupeFonpy, (16)
PP =nepFopa, (17)
P =nacPAC, (18)
PEC = npcPEF. (19)

where ()55, represents the electricity storage level of the ESS
at time t. P, is charging and discharging power of ESS at
time ¢ (positive when charging and negative when discharging).
PthH P and PgtH P denote heat and power generation of CHP at
time ¢. P’ ['" and PG'" are heat and power generation of CHP
at time ¢, respectively. P2 and Pftc represent the refrigeration
power of AC and EC, respectively. P;ﬁtc denotes heat absorption
power at time t. Pftc is electricity consumption power of EC
at time ¢. We utilize subscripts e, h, and c to denote the load
associated with electricity, heating, and cooling, respectively.
Eq. (12) - Eq. (14) limits the operation of the energy storage
system. Eq. (15) - Eq. (19) are the operation models of heat
production and refrigeration equipment.

C. Chance Constraints

The modeling of the power balance for electricity, heating,
and cooling, as well as the carbon consumption balance, is as
follows:

1) The electricity load balance constraint can be written as

b
Pr (PST + PEY + PI =PI + Py,

+PEC + PPC + PEES) > 1— eVt e T, (20)

where, L is the purchased electricity at time t; P/} is the

PV generation at time ¢; P'%*? is the load of electricity at time

t. Eq. (20) describes the chance-constraint of power balance.
2) The heating load balance constraint can be written as

Pr(PC/Y + PEP > P+ Py ) 2 1—e Vi e T, (D)
where P/°0? is the heating load at time ¢. Eq. (21) describes

the chance-constraint of thermal power balance.
3) The cooling load balance constraint is given by

Pr (PEF + PAC > Plyr®y > 1—eVte T, (22
where P/ is the cooling load at time t. Eq. (22) describes

the chance-constraint of cold power balance.
4) The carbon consumption balance constraint is given by

Pr (Em,rtual + Ereal - Ebuy < Qquota) > 1- €, (23)

where Ej,,, is the carbon allowance purchased from the carbon
market, Qquotq is the original carbon quota the BIES held in
time period 7T'. The building owner can sell the surplus carbon
allowance to the market to make profits. Equation (23) describes
the chance constraint of carbon allowance balance, which is
identified as the key constraint to achieving net-zero emission.

D. Objective Function

In order to explore the economic and environmental benefits
of BIES operation, the total cost includes four terms, namely
energy purchased cost (EPC), carbon storage cost (CSC), and
carbon trading cost (CTC).

Cost = Cgpc + Cesc + Core.- (24)

Energy Purchased Cost (EPC): This cost incorporates the
expenses for buying electricity and natural gas, represented by:

C _ T Pbuy
EPC — =1 DPe,t - e,t

T
+ thl Pgast - (Fompy + Fapy — F)79). (25)
Carbon Storage Cost (CSC): Costs associated with storing
captured CO4 are calculated as:

T
Cesc = Zt—l

where k., is the cost of carbon storage.

Carbon Trading Cost (CTC): This reflects the expenses or
revenues from buying or selling carbon allowances in the carbon
market:

Kes - Egﬁcs}t (26)

Ccocrc = pco, - Evuy, 27)
where pco, is the carbon price, and Ey,, denotes the net carbon
allowances traded.

To achieve net-zero emissions, it is assumed that building
owners can purchase carbon allowances to offset their emissions
or sell surplus allowances to make profits. The adoption of
carbon capture and storage technologies, supported by a car-
bon market, offers a pathway to economically viable emission
reductions. This approach enables BIES operators to balance
emissions with carbon trading, optimizing both economic and
environmental outcomes.

The chance-constrained (CC) form of the BIES operation

problem is as follows:
(CC) min Cgpc + Cesc + Corc

s.t.  Constraints (1) — (23) (28)



Eq. (20) - Eq. (23) are chance constraints. The target of
the problem is to identify a feasible solution for (28) with
a specified level of statistical confidence while minimizing
the objective value as much as possible. In traditional CCP,
knowing the distributions of the random variables is essential.
With this knowledge, the non-convex CCs can be equivalently
transformed into a tractable form. Detailed explanations of the
transformations are provided in Appendix B.

III. METHODOLOGY

In this section, we begin by revisiting the formulation of
chance-constrained programming (CCP) and present the funda-
mental procedural framework of our algorithm. Subsequently,
we present the methodologies that have been developed in our
research.

A. Proposed Framework

The common form of a CCP typically takes the following
structure:

min f(z); s.t. P(g(z;€) € A) >1—¢ (29)
where x is the decision variable, £ is a random variable that can
be observed via a finite amount of data, A is the feasible region,

and ¢ is the tolerance level. Prior to delving into the specifics,
the concept of statistical feasibility is introduced.

Definition 1 (Statistical Feasibility [35]). For a CC like (29),
an algorithm is considered to be statistically feasible if the
resulting solution, denoted as x*, is feasible for the chance
constraint with a confidence level of 1 —¢ for any given dataset
De.

Pp, (Pe (9(2™58) € A) 21 —€)21-6 (30)

The inner constraint in (30) represents the conventional CC.
Additionally, the outer constraint in (30) ensures that for all
resulting solutions corresponding to different sample sets D,
the inner chance constraint can be satisfied with a probability
greater than or equal to 1 — 4.

The original chance constraints are intractable, necessitating
the use of an approximation. To tackle this challenging problem,
we transform the model as outlined in (29) into a robust opti-
mization (RO) problem. This transformation also facilitates the
direct use of data [40]. RO addresses uncertainty by representing
it through a deterministic set, referred to as an uncertainty set.
The RO formulation ensures that the safety condition holds for
any value of £ within the uncertainty set. This helps to simplify
the problem and make it more tractable. The RO form of (29)
is as follows:

g(z;) e A, VEelU 31
where U € () represents an uncertainty set. It is evident that
for any x that is feasible for (31), if £ € U then g(z;§) € A.
Therefore, by selecting an uncertainty set I/ such that P(¢ €
U) > 1 — ¢, any feasible solution z for (31) must satisfy
P(g(z;6) e A) > P(EelU) > 1~

The motivation behind this transformation is rooted in the
fact that the RO form only necessitates an uncertainty set that
approximately encompasses the potential values of £. As a
result, there is no need to make assumptions about a specific
distribution for £. This characteristic empowers the construction

of uncertainty sets learning from sample data, making the
approach free from distributional assumptions.

Various advanced forecasting algorithms can be applied to
predict day-ahead load and PV generation [41]. Besides, novel
approaches for forecasting carbon intensity have also emerged
[42]. Nonetheless, these prediction models inevitably entail
some level of prediction error. These uncertainties in the pre-
diction process can have substantial consequences on energy
system planning and operation. To account for these uncer-
tainties, expressions for uncertainties associated with loads, PV
generation, and carbon intensity are as follows:

PrY =P + PIY, (32)
Pl = P 4 P, (33)
PR = Py 4 B, (34)
Pl = Py 4 Pl (35)
L=T +1, (36)
where FZ,Y , Pleof d,ﬁtzd,?l:f 4 T, are predicted value of day-

ahead PV generation, electricity load, heating load, cooling load,
and carbon intensity, respectively. The random terms are denoted
by pep A Pelf’tad, P,i?f‘ﬂ Pé?tad, I, and the probability distributions
of random terms are not known.

Therefore, the constraints in (20) - (23) can be explicitly

expressed in terms of random variables in the following form:

cHp |, PV buy ~ pload ESS EC P2G
Pe,t +Pe,t +Pe,t ZPe,t +Pe,t +Pe,t +Pe,t

+PEFS + T, V& €U VEET, (37)
—load
Pfgg{P+PffifBZPh,t +P;L4,tc+£2,ta v52,15 EZ/{Q,tthET7
(38)
—load
PEC + PAC > P  + &4, Ve €Usy VEET, (39)

T _
Zt:l(It + 54,15) * Pbuy,t + Ereal - Ebuy S Qquotm v54 € Z/l4a
(40)

where Sl,t = [pel,(;fad) PgtV]T’ h= [1) _1]T’€2,t = ﬁ)}ll?tada §3,t =
Pclft“d, &14 = Ii. &4 is the vector form of £44,Vt € T. The
learning-based robust optimization (LRO) problem is as follows:

(LRO) min Cgpc + Cesc + Coere

s.t.  Constraints (1) — (19), (37) — (40).
B. Learning-based Robust Optimization (LRO)

Suppose the data set is D = {&,...,&,}, & € R™, the
question then revolves around how to construct the uncertainty
set. The process is considered as learning the shape of the
uncertainty set by utilizing historical data. The fundamental
approach aims to shrink or reduce the size of the uncertainty set
U = U(D), which covers at least 1 — € of the true distribution
P with a confidence level of 1 — 4, i.e.

Pp(P(E €UD) >1—¢) >1-04. 42)
To reduce the conservativeness of the solution, two principles
are employed in the construction of the uncertainty set: 1)
minimizing the set size as much as possible, and 2) ensuring that
P(& € U(D)) is not only greater than 1— ¢, but also approaches
1 — 6 closely.

Following the aforementioned principles, a two-phase strategy
is adopted to construct the uncertainty set /. The data D
is partitioned into two groups, denoted as D; and D, with

(41)



sizes ny and ny respectively. Let Dy = {&1,.., 5;1} and
Dy ={€, .., 5,212}. The two phases can be outlined as follows:

Phase 1: Shape learning. To approximate the shape of the
uncertainty set, we utilize D; and employ an ellipsoidal uncer-
tainty set, which is widely used in classical robust optimization
to determine the shape of samples due to its tractability [43].
It is characterized by {& | (§ — p) =7 (€ — p) < s}, where
s is a positive constant. 4 and ¥ are the sample mean and
covariance matrix of D1, respectively. It enables us to determine
the position of the smallest uncertainty set while providing a
tractable approximation.

Phase 2: Shape calibration. To calibrate the size of the
uncertainty set, we leverage D- and determine the appropriate
value of s. The objective is to ensure that it satisfies (42) and
that Pp(P(€ € U(D)) ~ 1 —¢) is close to 1 — 4.

We first define a dimension-collapsing map h(-)
as follows:

:R™ — R

h(€) = (€ - p)"S7' (€ - p). (43)
Using the transformation map h(&), each sample vector £ can
be mapped to a scalar value. We apply this transformation to
all €7 € D, and subsequently sort the resulting values h(£€7) in
ascending order to get a new list denoted as {$x,1 < k < na}.
In other words, the values in the list satisfy the inequality §; <
Sk+1. The desired value of s corresponds to the ranking k£* of
the sorted list {§;,1 < k < mns}. The index k* is chosen such
that:

k* :min{ Zk o n2 (1 —e) (E)nrk >1 —5}. (44)

Note that here we employ an ellipsoidal uncertainty set; how-
ever, it is also applicable to use a polyhedral uncertainty set as
it is typical in the classical RO approach [43]. The procedure
for utilizing the polyhedron uncertainty set remains the same.
The process for constructing the uncertainty set is demonstrated
in Algorithm 1 in detail. We have the following statistical
guarantee of the constructed uncertainty set.
Theorem 1 (Statistical guarantee for LRO). For the two
datasets, D1 {&1,....€,.} and D, (¢, &) If
ny > logd/log(1l — €), the obtained solution & of (29) using
the construct uncertainty set U satisfies the statistical feasibility
guarantee.

More details of this proof can be found in [35]. Note that
the sample requirement depends solely on § and € and is
independent of the dimension of the random variable.

By transferring the CCs to their counterpart approximation
using the classic RO form, these constraints can be subsequently
converted into a tractable form once the uncertainty set has been
constructed, as follows:

Theorem 2. The constraints in (37) - (40) can be equivalently
transformed into the following constraints:

§ load
PgtHP+Pet +Pb1y>P0a +P£tSS+P£tC+PeI,Dt2G

+POCS 46, VEET, (45)
PCHP | pGB > plh"‘tld + P+ oy, WEET, (46)
R?+P“>Pmﬂww,W€ﬁ @7
ZT:1 It % Poyyt + Ereat — Ebuy + ¢4 < Qquota; (43)

where @14, ¢2¢, P34, and ¢4 satisfy

dro=nh"p + /514 HE}»/tzth ’ “49)
2,6 = M2 S2.t ;/tz (50)

0 + e [
ba. = pso + /551 || =57 (5)
b= Py + i [B P o2

Py, denotes the vector form of P, ;. The details of the proof
are provided in Appendix B. Note that then the problem is a
second-order cone program (SOCP) problem which is convex
and can be solved by standard solvers such as CPLEX and
Gurobi. By utilizing the shape parameters of the constructed
uncertainty set, we can then reformulate the new problem (41)
as an equivalent deterministic problem that is more tractable.

Algorithm 1 Learning-based Uncertainty Set Construction

—load lo load load

Input Pet7P Pet 7Petad Phtvp}lLotad7PLt 7PZDad
It, It, 6 €
Output: The uncertainty set U1,¢(§1,t), Uzt (E2,¢), Us e (€3,¢), Ua(€y)
1: Compute the set of electricity load, heating load, cooling load, and
carbon intensity prediction errors D1 ¢, D2+, D3 ¢, D4 according to
Eq. (32) - (35), respectively;
2: Divide D, into two groups Dit and Dit, with sizes n1 and na,
respectively;

: Estimate the sample mean p1+ and covariance matrix 1+ on D},t;

4: Construct the dimension-collapsing map h(-) according to (43) and
calculate the transformed value ¢(£, ;) for all £1,+ € D3 4

5: Sort all sort the resulting values (& ;) in ascending order to obtain
the new list {8x,1 < k < mo} and compute the index k™ using
Eq. (44) for Uy ¢;

6: Set s1,; according to the obtained value corresponding to index
k™ and get the uncertainty set for sample D1 U1,:(§,,) =
{&1,6[t(&1 1) < sk

7: Construct the uncertainty set for Us ¢ (§2,:), Us ¢ (€3,¢) , and Us(€,)
following the same process outlined in Steps 2 - 6.

[95]

C. Reconstructed  Learning-based  Robust
(ReLRO)

Optimization

Despite constructing the uncertainty set in subsection III-B,
the resulting solutions to the problem can still exhibit conserva-
tiveness. This is because the construction of I/ is independent of
the obtained solution Z. Although P(g(%;&) € A) > P(€ € U),
the actual confidence level of Pp(P(€ € U(D)) > 1 —¢)
remains excessively conservative. In this section, our objective
is to further mitigate the conservation present in the solutions.

The key idea in this approach is to incorporate the knowledge
relevant to the optimization problem when constructing the
uncertainty set. We can still use a two-phase approach to solve
this problem. In Phase 1, the method described in Section III B
is utilized to identify the uncertainty set, and a solution & for
(29) is obtained. The resulting uncertainty set takes the form
{&lg(@0; &) € A}. In Phase 2, the size of the reshaped set is
adjusted, resulting in {¢|g(7o; &) € A}, where A represents the
size-tuned uncertainty set.

In particular, we concentrate on analyzing the carbon balance
condition (40), while similar analysis can be conducted for the
other constraints. For an uncertainty set /{4 and its correspond-
ing solution {Pbu%t,EAbuy,Emal}, the following condition is



satisfied:
Pe (6 cUy) <

T
]PE (Z(It + 54,15) * Pbuy,t + Ereal - Ebuy < Qquota) (53)
t=1
Therefore, the following uncertainty set can be considered as a
viable solution:
T
u4 = {£| Z(It + 54,15) * Pbuy,t + Ereal - Ebuy < Qquota +«
t=1
(54

Once again, we partition the dataset of carbon intensity
forecast error Dy into D} and D2, with respective sizes n; and
no. The dataset Di is used to estimate {Pbuy,tyEbuy7Ereal}a
while Di is used to estimate «. In this section, we present the
construction process for U}, while noting that the construction
of Ui ;,Us,, and Uz, can be accomplished using the same
procedure. The two-phase approach is outlined as follows:

Phase 1: Shape learning. Run algorithm 1 based on D} to
get the initial solution {Pbuw, Ebuy, Ereal}.

Phase 2: Shape calibration. The calibration for « follows a
similar approach as that in LRO. To achieve this, we introduce
a customized dimension-collapsing map Agecon(-) : R™ — R,

which is designed as follows:

T
hRecon (5) = Z(It + 54,15) * Pbuy,t + Ereal - Ebuy - Qquota

t=1

(55

Following a similar approach as in LRO, we employ the
transformation hpgecon(€) to map each sample vector &, in
D; to a scalar value, which is then sorted in ascending order.
The desired value corresponds to the ranking £*, where k* is
computed using (44).

The process for constructing the uncertainty set is detailed
in Algorithm 2. And the performance improvement guarantee
indicates that by reconstructing the uncertainty set, despite
the slightly increased computational cost, we can enhance the
performance of the original LRO.

Algorithm 2 Uncertainty Set Reconstruction

Input: Fiy,

I ty I ty 6, €

Output: The reconstructed uncertainty set Ui ¢(&; ), Uze(E2,6),

Us 1 (&s.6)'s Us(€4)'

Compute the set of electricity load, heating load, cooling load, and

carbon intensity prediction errors D1 ¢, D2+, D3 ¢, D4 according to

(32) - (35), respectively;

: Divide Dy into two groups D} and D3, with sizes n1 and na,
respectively;

: Call Algorithm 1 to compute the approximate
{Pouy,t, Evuy, Erear} with respect to D}

: Construct the dimension-collapsing map hrecon(-) according to
Eq.(55) and calculate the transformed value hpgecon(€,) for all
€ac Di;

: Sort all sort the resulting values hrecon ({ 4) in ascending order to
obtain the new list {8x,1 < k < no} and compute the index k*
using (44) for Uy;

: Set « according to the obtained value corresponding to index k*
and get the uncertainty set for sample D4 such that Uy (€,)’
{€alt(€s) < a} 5

: Construct the uncertainty set for Ui,:(§1,4), U24(€2,¢), and
Us,+(€3,+) following the same process outlined in Steps 2 - 6.

—load load
Pe,t 7Pe,t

—load

load
Pc,t 7Pc,t

—load

7Ph,t )

load

PV
Pe,t ’ h,it >

1:

solutions

}

Table II: Relevant parameters for BIES

Parameters Values Parameters Values
kes ($/kg) 0.08 NCHP,e 0.35
lele] 1.06 NCHP,h 0.45
e,a 0.3 NGB,k 0.95
0g,a 1.08 nAc 1.2
npP2G 0.55 NEC 4
Qess,mam (kWh) 300 Qquota (kg) 8000
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Figure 2: Load profile of the BIES for a day

10

IV. NUMERICAL STUDIES
A. Data Description and Experimental Settings

In this section, we conduct comprehensive numerical studies
to demonstrate the accuracy of our carbon model, validate the
performance of our proposed learning-based robust algorithms,
and analyze the sensitivity of key parameters. The parameters
required for the components in the BIES are listed in Table 1,
which are set based on the research papers [2] and [27]. The
time horizon of the delivery day is divided into 24 hours. For
each setting, we repeat the experiments 300 times. All of the
following simulations were implemented using Matlab R2022b
software on a desktop computer with an Intel ® 19 2.4GHz
CPU and 32GB RAM. The optimization problem is solved using
CPLEX 12.8.

The electricity price data is sourced from [44], ensuring that
our simulations are based on realistic market conditions. The
building load and PV generation data are modified based on
the End-Use Load Profiles for the U.S. Building Stock [45],
a widely recognized dataset in building energy research. In
Figure 2, the purple line represents the PV generation, while
the blue, red, and yellow lines depict the electricity, heating, and
cooling load profiles for a single day, respectively. The historical
source mix data is obtained from California Independent System
Operator [37]. Figure 3 illustrates the carbon intensity profile
during a single day, reflecting the variations in carbon emissions
throughout the day.

By utilizing realistic data and settings, we aim to ensure the
validity and practicality of our simulations, enabling meaningful
insights into the performance and sensitivity of the proposed
learning-based robust algorithms.

B. Benchmarks and Evaluation Metrics

Our proposed methods as outlined in Sections III and IV
are designated as LRO and ReLRO. In order to evaluate the
performance of our approaches, we compare them with other
common methods in decision-making under uncertainty:

1) Chance-constrained Optimization (CC): The conventional
chance-constrained methods [46], as commonly employed in
various fields, typically operate under the assumption of a
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Figure 3: Carbon intensity for a day

specific distribution family for the random variable. In this study,
we make the supposition that the prediction error conforms to
a Gaussian distribution.

2) Scenario Generation (SG): The scenario generation
method, introduced in [47], replaces the chance constraint with
a set of sampled constraints. It is important to note that SG
relies on an adequate number of samples, and the running time
of SG increases linearly with the size of the sample.

3) Distributionally Robust Chance-Constrained (DRCC): Our
proposed methods are compared with distributionally robust
chance-constrained methods outlined in [48]. In this method,
the probability distribution of the data is not fully required,
but rather it is known to belong to a predetermined class of
distributions.

4) The Optimal Baseline (OPT): The optimal baseline method
considered in this study is deterministic optimization with
perfect predictions, denoted as OPT. In this approach, all
predictions and input parameters are assumed to be completely
accurate, allowing for an optimal solution to be determined
without considering any uncertainty or variability.

For synthetic scenarios, we adopt the definition proposed in
[35]. We denote € as the estimated expected violation probability
of the obtained solution. More specifically, € is calculated as
Ep [Pyio |, where EDH represents the empirical expectation.
Here, Py, rtefers to the probability P(g(Z(D);§) ¢ \A).
Additionally, the statistic violation rate 5 is PD (Pyio > €). For
approaches not reliant on data, the chance constraint is always
fulfilled, yielding 6 = 0. The experiment is conducted on
300 different sample sets. We generate the samples randomly
from a multivariate Gaussian distribution with a positive-definite
covariance matrix, which is widely adopted to model the load
prediction error in literature [49] [SO]. Note that in the real-
world data experiments, we do not assume the distribution
and use the real prediction error. Since there are many chance
constraints, we only focus on the carbon balance violation rate.

C. Performance Analysis for Synthetic Data

1) Sensitivity Analysis for Sample Size: To assess the influence
of sample size, we conduct 300 trials for each of the five
different approaches, varying the sample sizes. Figures 4 and
5 illustrate how the total cost and violation rate of different
approaches change with the sample size. It is noted that the
performance trend varies significantly among the different meth-
ods analyzed. Specifically, the total cost and violation rate of
the CC and DRCC approaches do not change substantially with
increasing sample size. This can be attributed to the fact that
these methods primarily rely on parametric estimation of the
sample distribution. Table III indicates that for the CC approach,
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Figure 5: Real violation rate under different sample size

the observed violation rate exceeds the prescribed requirement,
with a statistic violation rate of approximately 0.5. For the SG
method, the total cost increases with the rising sample size,
while the violation rate decreases.

For our proposed ReLRO approach, Table III demonstrates
that the statistic violation rate is approximately 0.05. With an
increasing sample size, our ReLRO method effectively leverages
the flexibility reserve provided by the chance constraints, pro-
viding a less conservative solution that satisfies the prescribed
conditions while also exhibiting an increasing violation rate.

Table IV presents the running time of the various approaches
analyzed. For the SG approach, it is evident that the running
time increases proportionally with larger sample sizes, which
can make the computation time quite extensive for large sample
sizes. However, the running time of the other algorithms shows
minimal fluctuations with changing sample sizes, suggesting
that the sample size does not noticeably impact the computation
time for these methods. The running time of the ReLRO
approach is slightly higher than the LRO because ReLRO can
be regarded as solving the LRO twice. Despite the marginally
increased runtime, ReLRO improves the performance of the so-
lution, rendering the associated computational cost worthwhile.

2) Sensitivity Analysis for Violation Level Control: Figures
6 and 7 depict the performance of various approaches under
different stability requirements 1 — €. First, we observe that for
CC, the curve lies slightly above the stability requirement, which
indicates that the CC approach does not guarantee compliance
with the chance constraints in all cases. In contrast, the SG
approach consistently generates feasible solutions while offering
improved economic performance as 1 —e decreases. But the total
cost is the highest when € is greater than 0.1, which means
that it is more conservative than other methods. However, the
violation rate curve of our proposed ReLRO method consistently
remains lower than the allowed risk. These findings emphasize
the strength of our proposed ReLRO approach in terms of
effectively leveraging flexibility reserves and providing solutions
that are both cost-efficient and compliant with the given chance



Table III: Statistic violation rate under different sample size

Sample CC SG DRCC LRO ReLRO
200 0.51 0 0 0 0.046667
300 0.446667 0 0 0 0.023333
400 0.503333 0 0 0 0.03
500 0.486667 0 0 0 0.033333
600 0.486667 0 0 0 0.056667
700 0.49 0 0 0 0.046667
800 0.48 0 0 0 0.053333
900 0.493333 0 0 0 0.046667
1000 0.486667 0 0 0 0.063333

Table IV: Runing time under different sample size (s)

Sample CcC SG DRCC LRO ReLRO
200 1.136196  11.97335 1.173524  0.570546  2.705187
300 1.150944  13.76358 1.177605 0.588166  1.939536
400 1.142088 20.03871  1.433913  0.590878  1.768694
500 1.37538  26.45544 1.315433 0.584426  2.168233
600 1.15595  35.35467 1.164011 0.704867  2.232307
700 1.168317 40.99384 1.394985  0.58639 2.330702
800 1.678593  51.29287 1.158964  0.642918  1.993813
900 1.298453  57.48193  1.646797  0.69297 1.682798
1000 1.165364 67.98769 1.404033  0.643389  2.035873

constraints, even under more stringent stability requirements.

D. Performance Analysis for Real Data

In this subsection, we evaluate the performance of our al-
gorithm using real prediction data. To accomplish this, we
construct neural networks dedicated to forecasting the day-ahead
load, PV generation, and carbon intensity. In order to make
predictions, we utilize the data from the previous day. The
training set is employed for both training the prediction model
and constructing the uncertainty set, while the test set is utilized
to calibrate the uncertainty set and evaluate the performance.
And the result in this subsection is the average value in of 120
test days.

1) The performance of in real data. In our evaluation, we
quantify the average savings in the total cost by comparing it to
the optimal benchmark OPT. This comparison is expressed as
a percentage, donated as the regret percentage (REP). The REP
represents the gap between the achieved cost and the optimal
cost, thereby indicating the relative cost-effectiveness of the
evaluated methods.

Figure 8 illustrates the average REP and violation rate.
Notably, the ReLRO method achieves the lowest REP (12.67%),
outperforming other methods by at least 8.2% while keeping
the violation rate beneath the predetermined threshold of 0.2.
The findings from the real data experiment align with those
observed in the synthetic dataset. The CC method exhibits a
higher average REP (20.81%) than ReLRO and its violation
rate surpasses the predefined threshold. It arises from the CC
method’s assumption of a Gaussian distribution in the data,
which proves inadequate when the prediction errors deviate from
this distribution. Despite the SG method achieving a zero viola-
tion rate, its REP is the highest, indicating an overconservative
approach in the real dataset.

2) The impacts of different carbon emission accounting
models: In this part, we evaluate three distinct scenarios, each
employing a different model for carbon emission accounting.
These models are designated as M1, M2, and M3 for ease of
reference.
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e MI: The emission factor is set at zero, indicating that
we do not consider the carbon emission by the electricity
purchased from the grid. It is widely employed in the
literature [31] [51].

e« M2: It is assumed that all electricity generation is coal-
based, which is the same as the assumptions made in [27]
and [26]. The emission intensity is set to 0.993 kg/kWh
based on the report of [38].

« M3: This is the proposed real-time carbon intensity model.
It calculates grid emissions on an hourly basis, offering a
more accurate method for carbon accounting.

Figure 9 and 10 represent the average carbon emissions and
costs under different carbon accounting models, respectively.
With the grid emission factor at zero, as in M1, the model
overlooks grid emissions, leading to a lower estimation of
overall carbon emissions. This underestimation is critical as
grid-sourced electricity is a major contributor to total emissions.
In the M2 scenario, where the emission factor is 0.993 kg/kWh,
assuming all electricity is coal-fired, there is a tendency to
overestimate emissions. This overestimation occurs because
the actual grid mix includes renewable energy sources. In
contrast, our M3 model, which integrates real-time carbon
intensity, provides a more nuanced and accurate depiction of
the carbon system within BIES. This approach enhances the
effectiveness of decision-making processes by offering a more
realistic view of carbon emissions. Additionally, we believe that
a key advantage of an accurate carbon accounting model is
its potential to enable buildings to lower emissions through
strategic load shifting, such as adjusting cooling or heating
schedules and optimizing ESS operations. If the emission factor
remains constant, buildings cannot achieve emission reductions
by utilizing electricity during periods of low carbon intensity.

Besides, Figures 9 and 10 demonstrate that our methods
effectively handle uncertainty and consistently outperform other
methods under different carbon accounting models. In models
M1 and M2, carbon emissions are accounted for using a fixed
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accounting model

constant, thereby eliminating uncertainties related to carbon
intensity. Across the various models, the SG method and the
DRCC method tend to yield more conservative results, a finding
that corroborates previous observations. In M3, our method
stands out for its superior performance in handling different
carbon accounting scenarios to reduce carbon emissions by at
least 13.8%. But in M1, our model only achieves 1.4%. Because
the total carbon emission is overestimated thus diminishing the
impacts of uncertainties.

3) The impacts of different carbon prices: Figure 11 depicts
the impact of different carbon pricing on emissions reduction
through various methods. With perfect prediction, comparing
a carbon price increase from $0.05/kg to $0.10/kg results in
a 22.36% decrease in average emissions. Yet, elevating the
price to $0.20/kg only reduces emissions by 1.90%, indicating
diminishing returns at higher price levels due to limits in
the system’s adaptability. These findings reveal a significant
relationship between increasing carbon prices and decreased
carbon emissions, emphasizing the effectiveness of appropriate
carbon pricing strategies in reducing carbon footprint.

4) The effectiveness of CCS: In this subsection, we assess
the effectiveness of CSS technology. It should be noted that
implementing CCS technology as a standalone solution for
emission reduction may not be economically feasible. The
integration of a carbon market could provide an incentive for
companies to adopt CCS technology by converting emission
reductions into economic advantages. Figure 12 illustrates the
direct emissions, indirect emissions, and carbon captured by
the CSS under varying carbon price scenarios. In the optimal
scenario where the carbon price is $0.10/kg, the CCS system
reduces total carbon emissions by 29.35%. However, at a lower
carbon price of $0.05/kg, the reduction in carbon emissions
drops to 9.01%. This underscores that the carbon price is a
crucial determinant of CCS utilization.

11

6000+ 9 M
@ — A m2
£ 5000 H =
% = H
=} 4 f |
O 4000 b ]
5, 3000 I s )
g [ [
2 2000 f e
< RV H
1000 1 o
Opn!mal Sb Ccc DRCC LRO ReLRO
Different.Approaches
Figure 10: Average cost under different grid emission accounting model

15000 - 523 Carbon...Price...=...0.05...(S/kg)
[Z1 Carbon...Price...=...0.1...($/kg)

[ Carbon...Price...=...0.2...(S/kg)|

12500 1

10000 4

i i

Optimal DRCC Ll‘{O ReLRO
Different.Approaches

Average...Carbon...Emission...(kg)
5 2
g 8

=
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V. CONCLUSION

Decarbonizing the building sector is crucial for achieving
climate neutrality. In this paper, we have devised a carbon-
conscious optimization strategy to enable the efficient operation
of diverse components and processes within building integrated
energy systems, such as combined heat and power, energy
storage, carbon capture, and the import of electricity from
the primary grid. The proposed model aims to minimize the
overall energy expenses while simultaneously curbing carbon
emissions toward net-zero. Furthermore, to address the un-
certainties inherent in the BIES, we have developed a robust
learning-based optimization framework that provides statistical
feasibility guarantees. The approach effectively handles the
uncertainties and ensures reliable and robust operation by de-
signing the appropriate uncertainty set. The proposed approach
has been validated through numerical studies conducted using
both synthetic and real data. Using synthetic data, our approach
demonstrates improved control over the violation rate and leads
to lower costs. Meanwhile, when applied to real-world data,
the proposed approach achieves a significant reduction in regret
percentage of over 8% for BIES control, compared to other
methods in the literature. The algorithms in this work use an
ellipsoidal uncertainty set to learn the shape of uncertainties. Fu-
ture research could investigate the application of deep learning
techniques to learning a more complex shape of the uncertainty
set, thereby enhancing the precision.

VI. APPENDIX
A. Details about the Prediction Models

In the numerical studies, we construct distinct neural net-
works to predict day-ahead load, photovoltaic power generation,
and carbon intensity, respectively. We employ the widely used
multi-layer perceptron (MLP) [52] models for predictions. Con-
sidering the example of electricity load prediction, the model
utilizes demand data from the preceding 24 hours as input to
forecast the subsequent day’s demand. Additional parameters
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Figure 12: Direct emission, indirect emission and carbon reduction by
CSS under different carbon prices

Table V: Relevant parameters for prediction models

Parameters Values
Hidden layer size 256
# of hidden layers 2

Batch size 16

Optimizer Adam

Activation ReLU

Learning rate 0.001

are detailed in Table V. We partition the dataset into two
segments: 55% for training the prediction model and construct-
ing uncertainty sets, and 45% for testing and calibrating the
uncertainty set.

B. Reformulation for Traditional CCs

For the traditional CCP, it is necessary to know the distribu-
tion of the random variable. Here, we use constraint (20) as an
example. If £&1 ¢ follows Gaussian distribution, the intractable
CC can be transformed into a deterministic convex problem, as
outlined in [46].

Consider &, , ~ N (g4, %1,), and ' denotes the inverse
cumulative distribution function of the standard normal distri-
bution. It follows that
b— hTHLt

VhT2 h)’

Prob (h'¢,, <b) = (56)

where
b=P.}" + PESS + PEC 1+ PI2G — (PCHT + PL, + Pl
(57)
Thus,
Prob(hTﬁltgb) >1—e<=
b—h'p, > o HEW H2 (58)

Therefore, the equivalent constraints are:

PCHP +p£:/ n Pbuy > Pleo;zd I PeEtSS 4 PE,tC + PP2G
(59

+PECS 4Ty, + 97! Hzl/zhH

By following this procedure, deterministic formulations for
the remaining chance constraints can be derived. Note that
when the random variable has an additive relationship with
the decision variables, it results in linear constraints. When
the random variable has a multiplicative relationship with the
decision variables, it results in second-order cone constraints.
Both types of constraints can be solved efficiently using standard
solvers.
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C. Proof for Theorem 2

By utilizing the shape parameters of the constructed uncer-
tainty set, the problem (41) can be reformulated as a more
tractable equivalent one. As an example, consider constraint (37)
and the constructed ellipsoidal uncertainty set as follows:

Uy = {51,1& : (51,15 - V’l,t)T 21_% (wl,t - Hl,t) < Sl,t} )
(60)

Average...Carbon...Emission...(kgwvhere pt, ,, 31 ; represent the sample mean and covariance

matrix of &, ,, respectively, and s1 is a positive scalar value
determined using Algorithm 1. The RO form is:

PCHP +?§z/ 4 Pbuy > Pload PESS P(ft
+PSCS+hTEy,, V& EULLVLET. 61)

Note that the random variable has an additive relationship with
the decision variables. Thus, the following substitution can be
made:

PPQG

PCHP _i_piz/ +Pbuy > Pleogd PESS +P +PP2G
+ P + 41y, VEET (62)
where ¢; ; satisfies:
1,4 = max hTﬁLt
St (€ = p) "B (€ ) Sse (63)

Slater’s condition ensures that strong duality holds, thus we
have:

¢1,+ =maxmin —hTﬁljt
A €&,

A((&r —
st. A>0 (64)
Due to the positive definiteness of the covariance matrix >; ;,
the quadratic programming problem can be solved directly.
Consequently, we can also derive explicit representations for
¢l,t’ ¢27ts ¢3,t9 and ¢4’ respeCtively'
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