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Sensor Placement Optimization in Sewer Networks:
Machine Learning—Based Source Identification Approach

Aly K. Salem, S.M.ASCE"'; and Ahmed A. Abokifa?

Abstract: Wastewater surveillance has recently emerged as a valuable tool for environmental and public health monitoring. By analyzing the
constituents and biomarkers present in wastewater, stakeholders can gather critical information regarding contamination events and disease
outbreaks. However, little attention has been given to the crucial question of where to collect water quality samples or place water quality
sensors to maximize the usefulness of wastewater surveillance data. To address this gap, this study introduces a novel framework for sensor
placement (SP) optimization in sewer networks. The objective of the optimization is to maximize both the observability and reliability of
source identification (SI) under different scenarios. To achieve this objective, a machine learning—based SI model was integrated within the SP
optimization framework. The SI model features a multilayer perceptron neural network model that was trained to forecast concentrations at
various sensor locations, which were then propagated into a genetic algorithm that finds the optimal sensor network design that maximizes SI
performance. The capabilities of the SP framework were demonstrated in a case study featuring a real-life, midsize sewer network. The SP
framework was applied to multiple scenarios, including optimal design of a sensor network comprising one or more sensors, as well as
optimal extension of existing sensor networks. The results showed that a clear trade-off exists between the sensor network’s observability
and reliability, highlighting the importance of considering both metrics for SP optimization. Overall, this study offers a practical approach for
SP optimization to improve environmental and public health monitoring in a variety of contexts. DOI: 10.1061/JWRMDS5.WRENG-6430.

© 2024 American Society of Civil Engineers.

Introduction

Monitoring the constituents of sewer systems is crucial because
they affect the operations of wastewater treatment plants (WWTPs)
and the quality of the recipient water bodies (Diaz-Fierros et al.
2002). In addition, residential wastewater has recently been found
to reveal valuable epidemiological information, which has signifi-
cant implications for public health (Calle et al. 2021; Lin et al.
2021). In general, sewer systems are routinely monitored to iden-
tify contaminants or biomarkers (Nourinejad et al. 2021; Sambito
et al. 2020). The monitoring process has been supported by tech-
nological advancements in surveillance systems (e.g., real-time
sensors), enabling so-called smart sewers and cities (Bourgeois
et al. 2001; Edmondson et al. 2018; Tatiparthi et al. 2021). How-
ever, ubiquitous sewer system monitoring is still limited by the
significant costs associated with the installation and operation
of such sewer monitoring equipment (i.e., sensors) (Banik et al.
2015). Accordingly, finding the optimal location to place these
sensors is a vital challenge that needs to be tackled (Banik et al.
2017a). This problem is formally known as the sensor placement
(SP) optimization problem, which aims to find the optimal design
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for sensor networks to capture as much information as possible
from the system.

SP optimization has been widely studied in the context of drink-
ing water distribution networks (WDNs), which mainly aimed to
minimize the impacts of potential contamination events (i.e., early
warning systems). Several methodologies have been proposed,
with different types and combinations of objectives, as has been
summarized in multiple literature reviews (Adedoja et al. 2019;
Hart and Murray 2010; Rathi and Gupta 2014). In these method-
ologies, the objectives varied from minimizing the time to detec-
tion, minimizing the impact and/or the extent of contamination, or
maximizing the performance of the contamination source identifi-
cation. To solve the SP problem in WDNSs, numerous optimization
approaches have been proposed, including single-objective (Aral
et al. 2010; Preis and Ostfeld 2008a; Rathi and Gupta 2016), as
well as multiobjective (Afshar and Marifio 2012; Brentan et al.
2021; Mu et al. 2022; Preis and Ostfeld 2008b) approaches.

In contrast, few studies were interested in SP optimization in
sewer networks. Banik et al. (2015) introduced a methodology that
utilizes the Non-dominated Sorting Genetic Algorithm (NSGA-II)
to find the optimal sensor design that maximizes the information
gain through entropy and minimizes the redundancy through total
correlation. Banik et al. (2017b) then compared the solution of
the previous study to a rank-based solution derived by the greedy
algorithm and concluded that the greedy approach is computation-
ally efficient but suboptimal. Later, Banik et al. (2017a) used the
greedy algorithm to solve different formulations of the objective
function (e.g., single and multiobjective formulations). Sambito
et al. (2020) utilized a probabilistic approach (i.e., Bayesian deci-
sion network) to optimize sensor placement to isolate illicit intru-
sions. A similar approach was adopted by Sambito and Freni
(2021) but with the consideration of organic reactive contaminants.
Recently, Guadagno et al. (2023) applied a particle backtracking
algorithm to optimize sensor placement based on impact coefficient
evaluations.
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One of the key uses of water quality data is source identification
(SI), which is the process of identifying the characteristics of the
sources that discharge certain species or constituents into the sewer
network, such as the locations and concentrations of these sources.
SI has significant implications in contamination detection and re-
sponse, as well as wastewater-based epidemiology (WBE). Despite
the importance of SI and its high reliance on water quality sensors,
none of the aforementioned studies attempted to implement it as
one of the critical criteria for SP optimization. Instead, SP optimi-
zation has typically been conducted based on various mathematical
indicators (e.g., entropy and total correlation). Therefore, sensor
designs produced by such indicators are not guaranteed to produce
optimal SI performance.

Motivated by the recent surge in WBE monitoring of sewer
systems in the wake of the COVID-19 pandemic, several WBE
studies explored the optimization of sample collection locations
in sewer networks with the aim of pinpointing hot spots of
COVID-19 outbreaks (Calle et al. 2021; Larson et al. 2020;
Nourinejad et al. 2021; Wang et al. 2020). Although these studies
attempted to include SI indicators in the optimization of monitor-
ing locations, they mainly aimed to maximize the observance of
the sewer network depending only on the geometric topology of
the sewer network without conducting hydraulic and/or species
transport simulations.

In this study, we developed an SP optimization framework that
couples an SI model developed by Salem and Abokifa (2023) with
genetic algorithm-based optimization. The SI model incorporates
hydraulic and water quality simulations of the sewer network under
various scenarios. To optimize the design of sensor networks, two
SI-based indicators were developed for SP optimization, namely,
the observability and reliability of the sensor network design.
The observability of the sensor design reflects its ability to detect
and identify the source characteristics of different injection and
intrusion events, while reliability represents the accuracy of the
identified source characteristics. Through this approach, we aim
to (1) find the optimal sensor placement design that achieves the
best SI performance under different design conditions, (2) analyze
the relationship between the sensor location and its observability
and reliability, and (3) investigate the trade-off between the sensor’s
observability and reliability.

Methodology

In this study, SP optimization is formulated as a nested optimization
problem, where the optimal sensor design is obtained through per-
forming two optimization processes, (1) a source identification (SI)
optimization process within (2) a sensor placement (SP) optimiza-
tion process. The SI aims to identify the injection characteristics
corresponding to concentration data observed by one or more sen-
sors (i.e., observation junctions). This process is conducted herein
using an SI model developed by Salem and Abokifa (2023). The SP
optimization process utilizes the results of the SI model to optimize
the sensor design by connecting several modules to the SI model.
The integration between the SI model and the various modules of
the SP model is depicted in Fig. 1. In this section, a detailed ex-
planation of the SP model is given, along with a brief explanation of
the previously developed SI model.

SP Model

The SP model consists of several interconnected modules, each of
which performs specific tasks. These modules are linked to the SI
model to form the SP framework. In the SP framework, the sensor
design alternatives are produced by the SP model, whereas the
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Fig. 1. Interaction between the SP model and the SI model in the
proposed SP framework.

source identification results are produced by the SI model. In this
subsection, the focus is on the SP modules and their interaction
with the SI model, whereas the following subsection focuses on
the SI model.

Model Formulation

The main objective of the SP model is to maximize the value of
information (VOI) provided by a sensor design. The VOI represents
the sensor design’s ability to accurately identify the injection loca-
tions and concentrations of any species that is discharged into the
network. The objective function to be maximized (i.e., the VOI of
the sensor design) is determined through the calculation of two
metrics, namely, the observability and the reliability metrics. The
observability metric measures the sensor design’s ability to observe
the occurrence of an injection event and to estimate its source char-
acteristics through a source identification process. The observabil-
ity metric used in this paper is specifically tailored for sensor
placement optimization and is different from the observability met-
ric commonly used in control theory (Bartos and Kerkez 2021;
Taha et al. 2021). The reliability metric evaluates the sensor de-
sign’s reliability in identifying the correct source characteristics
for the injection events it observes. An injection event is observed
when all injection sources are located upstream of one or more sen-
sors. The objective function of the SP framework was formed to
maximize the weighted sum of these two metrics, which is repre-
sented mathematically as follows:

Maximize: S;,; = L5 X Spps + Lot X Syer (1)

where S,,, = total score of a sensor design; and S5, S,e15 Lops> and
I,.; = observability and reliability scores and their weights, respec-
tively. These weights are specified by the user to define the relative
importance of the two scores according to the sensor design criteria.
In Eq. (1), the observability metric is represented as a score where
higher scores are associated with sensor designs that lead to accu-
rate identification of injection characteristics, and vice versa. The
observability score of a sensor design is calculated by averaging the
inverses of the SI errors of all injection sources (N,) across all in-
jection events (N,) as shown in Eq. (2)

N, N,

100 S
Sops =D > o 2
% TN, x N, { SI;‘"} )

e=1 s=1
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According to Eq. (3), the SI*’” of an injection source (s) in an
injection event (e) is controlled by (1) the absolute relative con-
centration error (C¢”), and (2) the distance between the true
and the identified injection locations (D) divided by the average
distance between the true injection location and the sensors’ loca-
tions (D).

The value of C' is calculated using Eq. (4), where C and C are
the true and identified injection concentrations, respectively;
whereas D/D“" is calculated using Eq. (5), where Z, 7, and
Z,, are the true injection location, identified injection location,
and the mth sensor location, /; is the pipe length, and P,p is a pipe
on the shortest flow path from A to B

c-C
cor =—__~ 4
c (4)

D ZZ{EPzz li

avg = 1 M 1 7
D M Lam=1 ZiePsz lz

Pag ={ilFi=A < B} (5)

For cases where the injection source is not observable by any of
the sensors, the SI¢’" for this injection source is set to 2. A higher
observability score means a higher number of observed injection
sources or events and/or better estimated injection concentrations.
The reliability metric is also represented as a score in Eq. (1) and is
calculated as the ratio between the correctly identified injection
events to the total number of injection events detected by the sensor
design

N,
S
Sret = Z;)\/:Pl < (6)
Ze:l Ss

where S. = 1 when the injection sources characteristics of an event
(i.e., location and concentration) are correctly identified, and S, =
0 otherwise; S, = 1 when all sources are observed (i.e., injection
sources are located upstream of one or more sensors), and S; = 0
otherwise. A higher reliability score means a more unique signal a
sensor design is receiving, and hence a higher accuracy in identi-
fying the characteristics of the injection events. The score calcula-
tions are conducted in the fitness calculation module, which is
explained in detail subsequently.

SP Framework Inputs

The parameters governing the performance of the SP framework
have to be defined by the framework’s user. These parameters
are divided based on their role into two groups: (1) design param-
eters, and (2) optimization parameters. The design parameters
correspond to the data informing the decisions taken by the SP
framework, such as the total number of sensors, the number of
injection events, and the scores’ weights. The optimization param-
eters control the optimization modules within the SP framework
(e.g., SP and SI optimizations), such as the number of individuals
and generations. Other parameters are revealed subsequently in
conjunction with their implementation.

Hydraulic Simulation Module

The calculation of the through-pipe distance (Pas) and the hydraulic
connectivity status (S,) requires the determination of the flow paths
between every two junctions in the network. This is done in this
module by conducting a hydraulic simulation of the network so
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that the simulation results are then used to generate two matrices:
(1) the sensors’ connectivity matrix, and (2) the junctions’ distance
matrix. The sensors’ connectivity matrix is a binary matrix showing
the hydraulic connectivity status between the network junctions
and the potential sensors (PSs) representing the junctions at which
sensors can be placed. The junctions’ distance matrix is a square
matrix demonstrating the longitudinal through-pipe distance be-
tween every two junctions in the network. Three different cases
can exist during the calculation of the distance matrix: (1) junctions
are on the same flow path, in which the actual flow distance is as-
signed; (2) junctions are not on the same flow path, in which the
longest through-pipe distance in the network is assigned; and
(3) junctions are duplicated (both junctions are the same), in which
zero is assigned.

PySWMM

In this study, PyYSWMM, a Python interface of the Storm Water
Management Model (SWMM), is used to perform the hydraulic
simulations (McDonnell et al. 2020). To identify the flow paths, a
conservative tracer was introduced at each junction in the network.
Then the system elements containing this tracer (i.e., the pipes and
junctions the tracer passes through) are reported by PySWMM.
Then these results are processed to calculate the sensors’ connec-
tivity and junctions’ distance matrices. These matrices are used in
the score calculation module as explained subsequently.

Fitness Calculation Module

In this module, the S, (i.e., fitness) of a sensor design is calcu-
lated based on the results of the SI model and the matrices produced
in the hydraulic simulation module. The fitness calculation in-
volves the generation of multiple injection events, which the SI
model will attempt to identify for several sensor design alternatives.
Because the futuristic injection event is unknown, the injection
events matrix is generated randomly by applying the Latin hyper-
cube sampling method, considering a user-defined number of
events. The latter method was used due to its ability to produce
more diverse samples to represent the full domain of potential in-
jection events by a small subset of events (Huntington and Lyrintzis
1998). For each event, a user-defined number of injection locations
are selected from the potential injection junctions (IJs), along with
an injection concentration between user-defined lower and upper
bounds. An injection vector is then formed by merging N, injection
locations (Ly ) with N injection concentrations (Cy, ) as shown in
Eq. (7), and then all vectors are stacked to produce the injection
events matrix

[L]’CDLZ»CZ’ "'7LNJ.’CNX] (7)

To calculate the SI error, the true injection locations are com-
pared to the injection locations identified by the SI model. Relative
to the true injection locations, the identified injection locations can
be either perfectly matching or partially or not matching. According
to Eq. (6), the first case is the only applicable case in the §,,; cal-
culations. However, the two cases apply to the S, calculations.

For the case of two injection sources, if the true and identified
injection locations match, one set of two SI errors can be directly
calculated by Eq. (3), where D will equal zero for the two errors.
However, in case of partial or no matching between the true and
identified injection locations, multiple sets of SI errors will be pos-
sible. In other words, different combinations between the true and
identified injection sources should be considered. For example, if
Junctions 1 and 2 are the true injection locations and Junctions 3
and 4 are the identified injection locations, four SI errors should be
calculated. The first set is by considering Junction 1 to be identified
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as Junction 3, and Junction 2 to be identified as Junction 4; the
second is by considering Junction 1 to be identified as Junction
4, and Junction 2 to be identified as Junction 3. In this case, both
sets are calculated, and the set with the smallest sum of SI errors is
used. A similar approach can be used for more than two injection
sources. Once the S,,, and the S,,; are calculated, the weights are
applied and the S, of the sensor design is calculated by Eq. (1) and
sent back to the genetic algorithm (GA).

Optimization Module

The optimization module is the core of the SP model because it
utilizes the outputs of the SP modules and the ST model to maxi-
mize the objective function given in Eq. (1) by applying GA, which
is a heuristic optimization technique that follows the mechanisms
of natural selection to come up with a powerful population starting
with weak parents (Elbeltagi et al. 2005). GA was used as the opti-
mization technique due to its ability to handle complicated discon-
tinuous functions (Haupt and Haupt 2003) because it does not
require the derivatives of the objective function to be known. In
addition, GA has been extensively used by researchers interested
in sensor placement optimization (Banik et al. 2015) and water net-
work optimization in general (Pan and Kao 2009; Preis and Ostfeld
2008a; Xuesong et al. 2017).

In the optimization module, GA randomly generates sensor de-
sign alternatives (i.e., individuals), which are sent along with the
injection events matrix to the SI model. Then the optimization mod-
ule receives the §,,, of each sensor design alternative from the fit-
ness calculation module. The previous process is repeated several
times (i.e., generations). In each generation, GA produces new de-
sign alternatives by applying three different operators: (1) selection,
(2) crossover, and (3) mutation. The best sensor designs from one
generation form a portion of the next generation, whereas the re-
maining portion is formed by applying crossover and mutation op-
erators. The crossover operator pairs the best sensor designs and the
mutation operator alters some of the genes of these sensor designs
to increase the diversity and to avoid being stuck in local mini-
mums. The PyGAD package introduced by Gad (2024) is used
to implement the GA. The genetic algorithm optimization param-
eters used in this study are listed in Table S1.

SI Model

As mentioned previously, the SI model is used to assess the ability
of a sensor design to be employed in identifying the characteristics
of futuristic injection events. In other words, the SI model evaluates
the accuracy of source identification based on the concentration
data observed by the sensors. A previous study proposed a machine
learning—based SI model that proved to be computationally effi-
cient and showed to be capable of identifying multiple simultane-
ous sources of reactive constituents (Salem and Abokifa 2023).
Hence, this SI model was implemented in this study.

The SI model proposed by Salem and Abokifa (2023) follows a
simulation-optimization approach to locate the injection source(s)
and their injection pattern based on the concentration of a certain
constituent observed by one or more sensors. The SI model com-
bines a surrogate model constructed by a multilayer perceptron
neural network (MLP-NN) with GA. The objective of the SI model
is to minimize the difference between the time-series concentration
of the simulated and observed injection event at the location of the
sensors

where C°?% and C*™ = concentration observed and simulated at the
sensor location; j = index of the sensor; J = total number of
sensors; ¢t = index of the time step; and 7 = total number of time
steps.

For a given sensor design, the SI model starts by simulating
each injection event and extracting the concentration at the loca-
tion of all sensors forming the sensor design. Then, for each in-
jection event, the SI model utilizes the previously extracted
concentration data to inversely find the characteristics of the in-
jection sources (e.g., location and concentration). The structure
of the MLP-NN model is listed in Table S2, and detailed informa-
tion about the SI model can be found in Salem and Abokifa
(2023).

Case Study

To test the performance of the developed SP framework, we applied
it to a real medium-sized combined sewer network located in the
United States (the exact location is confidential). The case study
network is a branched network with several loops extending from
east to west and covers an area of 308,350 m? [Fig. 2(a)]. The net-
work consists of 84 conduits connecting 80 junctions, collecting
wastewater from 59 residential sewer sheds. The dry weather flow
(DWF) pattern was considered to match the typical DWF pattern
developed by Butler et al. (2018) [Fig. 2(b)], resulting in a peak
discharge of 42.8 m?/h at the network outfall.

Injection Events Generation

As mentioned previously, the Latin hypercube sampling method is
used to generate the injection events matrix. In this case study, 150
random injection events were considered, wherein each event, a
reactive constituent (e.g., a contaminant) was assumed to be in-
jected at two simultaneous junctions out of the 53 drainage junc-
tions (i.e., receiving DWF). A uniform distribution was used to
allow each junction to have an equal selection frequency as the in-
jection location. Similarly, a uniformly distributed injection con-
centration was considered between 1 and 100 mg/L.

Sensor Placement Scenarios

Four sensor placement scenarios were tested to investigate the
performance of the SP framework under various design condi-
tions. In the first scenario (S1), the framework was applied to
find the optimal location to place one sensor considering two
different score weights. The aim was to gain insight into the sig-
nificance and contribution of the observability and reliability
scores, and the effect of the weights in determining the optimal
design. In Scenarios S2.1 and S2.2, the objective was to find the
optimal location to place two sensors, considering two constitu-
ents with different decay rates, assuming that no sensors already
exist in the network. In Scenario S3, it was considered that the
two sensors in Scenario S2.1 were already placed, and the objec-
tive was to find the optimal location to place an additional sensor
to enhance the sensor network performance. In the four scenarios,
a high decay rate of 25 day~! was used, except for S2.2, where a
low decay rate of 1.4day~! was used to represent the decay of
SARS-CoV-2 in sewer networks (Bivins et al. 2020). In addition,
only the junctions detecting (i.e., hydraulically connected to) at

I T (e9bs — esim)?/T) 2 least four drainage junctions were considered as PSs (i.e., valid
Minimize: nRMSE = Z — ! (8) locations to place sensors). PSs are depicted by diamonds in
(S, )T
Jj=1 =17t Fig. 3.
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Fig. 3. Location of the potential sensors (PSs).

Results and Discussion

Placement of a Single Sensor (Scenario S1)

In Scenario S1, the observability and reliability scores (S,,, and
S..1) were calculated for all PSs. Because this analysis aims to find
the optimal location of only one sensor, an enumeration approach
was adopted instead of an optimization approach so the two scores
can be compared for all potential sensors.

Equal Score Weights

At first, equal score weights were considered for the two scores
(I,ps:1,.; = 1:1), and the total score of each sensor (S,,,;) was cal-
culated according to Eq. (1). Both scores are shown in Fig. 4(a),
where the x-axis represents the junction’s ID, and the y-axis shows
the junction’s S, and S,,; scores. The junctions are sorted by their
total score so that the highest S,,, is to the left, and the junction rank
in terms of each individual score is displayed.
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Fig. 4(a) shows that sensors placed at the downstream junctions
tend to have high observability scores with relatively low reliability
scores, and vice versa. For instance, the three most downstream
junctions (17, 81, and 3) are the three top-ranked junctions for ob-
servability score, while their reliability rankings are in the lower
40th percentile. On the other hand, the three top-ranked junctions
for reliability score (Junctions 45, 69, and 52) are all located at the
upstream portion of the network and showed very low observability
scores (all in the lower 20th percentile). Nevertheless, some of the
upstream junctions still had very low reliability scores [Fig. 4(a)].
This is because they could not detect both injection sources in most
(or all) of the 150 injection events because they can only detect a
very small section of the network. These results highlight the sig-
nificant role played by the location of the sensor in the trade-off
between observability and reliability.

Moreover, when both scores were assigned equal weights, the
reliability score appeared to dominate the observability score in the

J. Water Resour. Plann. Manage.
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Fig. 4. Scenario S1 results considering (a) equal weights; and (b) unequal weights. The junctions are sorted based on the total score, highest to the left.
The inset shows the optimal sensor design projected on the network layout.

determination of the optimal sensor location. Fig. 4(a) shows that
the top five junctions in terms of the total score had an average
reliability score of 0.74 and an observability score of 0.36.
Moreover, the top three junctions in terms of the reliability score
(Junctions 45, 69, and 52) were ranked second, third, and fifth in
terms of the total score, while the top three junctions in terms of the
observability score (Junctions 17, 81, and 3) were ranked fourth,
seventh, and ninth in terms of the total score.

As can be seen from Fig. 4(a), Junction 79 was the optimal lo-
cation to place the sensor, which, according to the inset, is a central
junction. Placing the sensor at Junction 79 allowed for achieving a
good balance between observability and reliability. Furthermore,
this balance can be noted by the junction’s rank in terms of indi-
vidual scores because it was ranked 10th and 13th in terms of the
observability and reliability scores, respectively [Fig. 4(a)]. How-
ever, this balance was accomplished at the expense of not observing
a considerably large section of the network (the section down-
stream of Junction 79). For that reason, observing the whole net-
work is typically prioritized if only one sensor is to be placed
(e.g., at the WWTP). Thus, a more practical design can be retrieved
by assigning a higher weight for the observability score, which is
explored in the following scenario.

Unequal Score Weights

To test the effect of score weights and to employ practicality in
the sensor network design, the observability score was prioritized
over the reliability score by assigning /,,,:/,.; = 2:1. As shown in
Fig. 4(b), four of the five highest junctions in terms of the observ-
ability score appeared in the highest five junctions in terms of the
total score, which means the observability score dominates the
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reliability score when assigned a greater weight. Furthermore,
Junction 17 appeared as the optimal sensor location instead of
Junction 79, which dropped to the third rank in terms of the total
score. These changes highlight the relative significance of the score
weights in determining the optimal sensor design. Junction 17
achieved a higher total score than Junction 81 (i.e., the outfall) be-
cause it lies closer to the other junctions as shown in the inset, and
is thus receiving a clearer signal, allowing it to achieve a higher
reliability score.

Placement of Multiple Sensors (Scenario S2)

High Decay Rate (Scenario S2.1)

Increasing the number of sensors to two in Scenario S2 gave the SP
framework higher flexibility in finding an optimal sensor design
that balances observability and reliability scores. This can be seen
in Fig. 5, which demonstrates the best 10 sensor designs produced
by the GA in Scenario S2.1.

In Fig. 5, the x-axis represents the junctions’ ID of the sensors’
locations sorted by the total score, and the y-axis shows the observ-
ability and reliability scores of the sensor designs. There appears to
be no significant variability in the observability and reliability
scores between the best 10 sensor designs in Scenario S2.1. More-
over, unlike Scenario S1 where a clear trade-off existed between the
reliability and observability scores of the sensor designs, the 10
designs in Scenario S2.1 had both high observability and reliability
scores. This can be attributed to the fact that the sensor designs
in Scenario S2.1 typically featured one sensor placed at the down-
stream portion of the network and another sensor at a central or
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Fig. 5. Best 10 sensor designs in Scenario S2.1. The designs are sorted based on the total score, highest to the left. The inset shows the optimal sensor

design projected on the network layout.

upstream portion of the network. For instance, in the optimal sensor
design (Junctions 17 and 38), the SP framework achieved a high
observability score by placing a sensor in the downstream portion
(i.e., Junction 17) while also achieving a high reliability score by
placing the other sensor at a central junction (i.e., Junction 38). The
same observation can be made for most of the top designs, except
for the fourth best design, which featured one junction in a central
location (Junction 5) in addition to one junction in the upstream
portion (Junction 1), resulting in higher reliability with lower ob-
servability scores compared to the other designs. More importantly,
a synergistic effect was noticed in the top 10 sensor designs, where
the observability and reliability scores of the two-sensor design
were higher than the individual scores of each of the two sensors
calculated in Scenario S1.

By comparing Scenario S1 to Scenario S2.1, it can be concluded
that Scenario S1’s results cannot be used to simply derive the op-
timal design of Scenario S2.1. For instance, the junctions forming
the best design in Scenario S2.1 (17 and 38) were ranked 4th and
11th in Scenario S1 in terms of the total score [Fig. 4(a)]. Moreover,
Junctions 13 and 51 were the most frequently featured in the top 10
designs in Scenario S2.1 (Fig. 5) despite individually ranking sixth
and seventh in terms of the observability and reliability scores in
Scenario S1 [Fig. 4(a)].

Low Decay Rate (Scenario S2.2)

The 10 best sensor designs produced by the SP optimization model
in Scenario S2.2 (Fig. 6) featured a trade-off between the observ-
ability and reliability scores with relatively lower observability
scores than Scenario S2.1. Fig. 6 also shows that, unlike Scenario

S2.1, the observability score no longer dominates the best sensor
designs; in fact, the reliability score dominates the best two sensor
designs because they were ranked 10th and 5th in terms of reliabil-
ity compared to 12th and 38th in terms of observability. More im-
portantly, the sensors of the optimal sensor design (1 and 79) were
placed at the middle of the network compared to one sensor in the
upstream and downstream portion of the network in Scenario S2.1.

The differences in sensor placement results are primarily attrib-
uted to the reduction in the decay rate from 25 day~! to 1.4 day~!.
As previously stated by Salem and Abokifa (2023), reducing the
decay rate elevates the complexity of the SI problem by diminish-
ing signal uniqueness. In instances of low-decay-rate constituents,
signals from injections at specific junctions become less distinct
from those at upstream and downstream junctions. Accordingly,
the SI model struggled to accurately identify the injection locations
and concentrations in Scenario S2.2, resulting in lower observabil-
ity scores. Furthermore, accurately identifying injection character-
istics becomes even more challenging for far downstream sensors,
making them less advantageous from the SP model’s perspective.

Existing Sensor Network Expansion (Scenario S3)

In Scenario S3, two sensors were considered to exist at Junctions 17
and 38, which is the optimal sensor design achieved in Scenario
S2.1, and the objective was to find the optimal location to place
a third sensor. The best 10 sensor designs identified in Scenario
S3 are shown in Fig. 7. Similar to Scenario S2.1, Fig. 7 shows that
the trade-off between the observability and reliability scores is
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Fig. 6. Best 10 sensor designs in Scenario S2.2. The designs are sorted based on the total score, highest to the left. The inset shows the optimal sensor

design projected on the network layout.
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highest to the left. The inset shows the optimal sensor design projected on the network layout.

reduced compared to Scenario S1. More importantly, Fig. 7 shows
that the 10 best sensor designs were all located at the upstream por-
tion of the network, highlighting a potential improvement in the
reliability score. For example, placing the third sensor at Junction
51 increased the reliability score by 16%, compared to only 1.8%
in the observability score. Taken together, Scenario S3’s results
showed that adding more sensors to the network would generally
result in better reliability with no significant enhancement to ob-
servability. This can be attributed to the fact that the sensor placed
at the network downstream already provides high observability.
However, the reliability of that sensor is restively low because it
does not receive a clear signal from the network’s junction. Hence,
adding more sensors at the upstream portion of the network en-
hanced the signal, and accordingly the sensors’ reliability.

Conclusions

In this study, we introduced an optimization framework for placing
water quality sensors in sewer networks to enhance source identi-
fication performance. The goal of the presented framework was to
find the optimal sensor design that yields the best SI performance,
and accordingly helps in identifying the injection characteristics of
futuristic injection events. To achieve this objective, we incorpo-
rated a previously developed machine learning—based SI model
within the SP optimization. The optimization process was carried
out by a genetic algorithm to maximize the value of the information
provided by the sensor design, represented by two performance
indicators, observability and reliability. The effectiveness of our
proposed SP framework was examined by applying it to a real-
life sewer network considering different decay rates and design
conditions.

The SP framework results revealed a trade-off between the ob-
servability and reliability of the sensor network. This highlights the
importance of incorporating both metrics within the objective func-
tion because it is crucial to have sensors that can accurately observe
the occurrence of injection events in the sewer system and also pro-
vide reliable estimates of the injection event characteristics. More-
over, the results showed that the observability and reliability of the
sensors depend on their location within the network. In general,
downstream sensors displayed high observability scores and low
reliability scores because they observed a larger portion of the net-
work. However, because they receive a diluted signal from the far
junctions, they are less accurate in estimating the injection charac-
teristics. On the other hand, upstream sensors showed high reliabil-
ity scores and low observability scores because they received a
concentrated signal from a limited number of junctions, allowing
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for a more accurate estimation of the injection characteristics.
Furthermore, the weight of each score seemed to play an important
role in determining the optimal sensor location.

Nevertheless, the results showed that the trade-off was less pro-
nounced when more than one sensor was considered in the SP
framework compared to the case where only one sensor was placed.
For the case of high decay rate, the optimal design featured sensors
placed in both the upstream and downstream sections of the net-
work, thus simultaneously providing high observability and reli-
ability. More importantly, as the number of sensors increases,
the SP framework favored the placement of additional sensors at
the upstream portion of the network to increase the reliability
of the sensor network. In contrast, the increased complexity of
the SI problem caused by the diminishing signal uniqueness asso-
ciated with low decay rates pushed the SP framework to place the
sensors in the middle of the network. In general, the proposed SP
framework can be applied to a wide range of applications to min-
imize the risk of pollution and to protect public health. This
includes optimizing the placement of water quality sensors to re-
veal the source characteristics of the species not intended to exist in
the sewer systems (i.e., early warning systems) in addition to its
application in choosing water sampling locations for epidemiologi-
cal purposes (i.e., sampling location).

Although integrating the machine learning—based SI model in
the proposed sensor placement model enhances computational ef-
ficiency, it also introduces certain limitations. These limitations
arise from the SI model training on the simulations performed by
SWMM, which only accounts for first-order decay and single-
species water quality dynamics. Future studies are encouraged
to apply more advanced water quality models to overcome these
limitations. Furthermore, exploring alternative optimization tech-
niques, such as Bayesian optimization, is also recommended to ex-
pand the applicability of the proposed framework to more complex
networks.
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