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Abstract

Several classical adaptive optimization algorithms, such as line search and trust region methods, have
been recently extended to stochastic settings where function values, gradients, and Hessians in some
cases, are estimated via stochastic oracles. Unlike the majority of stochastic methods, these methods do
not use a pre-specified sequence of step size parameters, but adapt the step size parameter according to
the estimated progress of the algorithm and use it to dictate the accuracy required from the stochastic
approximations. The requirements on stochastic approximations are, thus, also adaptive and the oracle
costs can vary from iteration to iteration. The step size parameters in these methods can increase
and decrease based on the perceived progress, but unlike the deterministic case they are not bounded
away from zero due to possible oracle failures, and bounds on the step size parameter have not been
previously derived. This creates obstacles in the total complexity analysis of such methods, because the
oracle costs are typically decreasing in the step size parameter, and could be arbitrarily large as the
step size parameter goes to 0. Thus, until now only the total iteration complexity of these methods has
been analyzed. In this paper, we derive a lower bound on the step size parameter that holds with high
probability for a large class of adaptive stochastic methods. We then use this lower bound to derive
a framework for analyzing the expected and high probability total oracle complexity of any method in
this class. Finally, we apply this framework to analyze the total sample complexity of two particular
algorithms, STORM | ] and SASS | ], in the expected risk minimization problem.

1 Introduction

The widespread use of stochastic optimization algorithms for problems arising in machine learning and
signal processing has made the stochastic gradient method and its variants become overwhelmingly popular
despite their theoretical and practical shortcomings. Adaptive stochastic optimization algorithms, on the
other hand, borrow from decades of advances in deterministic optimization research, and offer new paths
forward for stochastic optimization to be more effective and even more applicable. Adaptive algorithms can
avoid many of the practical deficiencies of contemporary methods (such as the tremendous costs of tuning the
step sizes of an algorithm for each individual application) while possessing strong convergence and worst-case
complexity guarantees in surprisingly diverse settings.

Adaptive optimization algorithms have a long and successful history in deterministic optimization and include
line search, trust region methods, cubic regularized Newton methods, etc. All these methods have a common
iterative framework, where at each iteration a candidate step is computed by the algorithm based on a local
model of the objective function and a step size parameter that controls the length of this candidate step. The
candidate step is then evaluated in terms of the decrease it achieves in the objective function, with respect
to the decrease that it was expected to achieve based on the model. Whenever the decrease is sufficient,
the step is accepted and the step size parameter may be increased to allow the next iteration to be more
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aggressive. If the decrease is not sufficient (or not achieved at all) then the step is rejected and a new step
is computed using a smaller step size parameter. The model itself remains unchanged if it is known that a
sufficiently small step will always succeed, as is true, for example with first- and second-order Taylor models
of smooth functions. The analysis of such methods relies on the key property that the step size parameter
is bounded away from zero and that once it is small enough the step is always accepted and the objective
function gets reduced.

When stochastic oracles are used to approximate the objective function and its derivatives, the models no
longer have the same property as the Taylor models; steps that decrease the model might not decrease the
function, no matter how small the step size is. Thus all stochastic variants of these methods recompute
the model at each iteration. The requirement on the stochastic model is then that it achieves a Taylor-like
approximation with sufficiently high probability. This also means that steps may get rejected even if the
step size parameter is small, simply because the stochastic oracles fail to deliver desired accuracy. Despite
this difficulty, one can develop and analyze stochastic variants of adaptive optimization methods.

Recently developed stochastic variants of line search (which we will call step search, since unlike the deter-
ministic version the search direction has to change on each iteration, thus the algorithm is not searching

along a line) include | , , , ]. Stochastic trust region methods have been analyzed in
[ , , |, and an adaptive cubic regularized method based on random models has been
analyzed in | ]. For all these methods, bounds on iteration complexity have been derived, either in ex-

pectation or in high probability, under the assumption that stochastic oracles involved in approximating the
objective function deliver sufficiently high accuracy with sufficiently high probability. While this probability
is usually fixed, the accuracy requirement of the oracles is adaptive and depends on the step size parameter.
Specifically, the smaller that parameter is, the more accurate the oracles need to be, in order to maintain
the Taylor-like behavior of the model used by the algorithm. In most applications, having more accurate
stochastic oracles implies a higher per-iteration cost. Furthermore, unlike the deterministic case, the step
sizes in the stochastic case are not bounded away from zero due to possible oracle failures, and bounds on
the step size parameter have not been previously derived. This creates significant difficulty in the analysis
of the total oracle complexity of such methods because the oracle costs could be arbitrarily large as the step
size parameter goes to zero.

In this paper, we derive a lower bound on the step size parameter for a general class of stochastic adaptive
methods that encompasses all the algorithms in the preceding paragraph. This enables us to derive a bound
on the total oracle complexity for any algorithm within this class and specific stochastic oracles arising, for
example, from expected risk minimization. Our key contributions are as follows:

e Provide a high probability lower bound on the step size parameter for a wide class of stochastic adaptive
methods using a coupling argument between the stochastic process generated by the algorithm and a
one-sided random walk.

e Derive a framework for analyzing expected and high probability total oracle complexity bounds for
this general class of stochastic adaptive methods.

e Apply these bounds to STORM | ] and SASS | ] to derive their total sample complexity
for expected risk minimization, and show they essentially match the complexity lower bound of first-
order algorithms for stochastic non-convex optimization [ ].

We consider a continuous optimization problem of the form

min ¢(z), (1)
where ¢ is possibly non-convex, (twice-)continuously differentiable with Lipschitz continuous derivatives.
Neither function values ¢(z), nor gradients V¢ (z) are assumed to be directly computable. Instead, given
any z € R™, it is assumed that stochastic approximations of ¢(z), V¢(z), and possibly VZ¢(x) can be
computed, and these approximations may possess different levels of accuracy and reliability depending on
the particular setting of interest.



Many adaptive stochastic algorithms have been developed recently | , , , , ,

, , , ] that use these stochastic approximations to compute an e-optimal point
Ze, which means ¢(z.) —inf, ¢(x) < € if ¢ is convex or | Vo(z.)|| < € if ¢ is non-convex. In the next section,
we will introduce the general framework that encompasses these methods and discuss particular examples
in more detail. In Section 2.4, we discuss the stochastic process generated by the algorithmic framework,
including the stochastic step size parameter. In Section 3, we derive a lower bound on the step size parameter
which holds in high probability. In Section 4, we use this lower bound to derive abstract expected and high
probability total oracle complexity for any algorithm in this framework. In Section 5, we particularize these
bounds to the specific examples of first-order STORM | ] and SASS | ] algorithms to bound
their total sample complexity when applied to expected risk minimization. We conclude with some remarks
in Section 6.

2 Algorithm framework and oracles

We now introduce and discuss an algorithmic framework for adaptive stochastic optimization in Algorithm 1.
The framework is assumed to have access to stochastic oracles, that for any given point x can generate random
quantities f(x,&) =~ ¢(x) (via zeroth-order oracle), g(x,&) ~ V¢(x) (first-order oracle) and, possibly,
H(z, &) ~ V2¢(x) (second-order oracle). At each iteration, given zj, a stochastic local model my (zy + s) :
R™ — R of ¢(xk + s) is constructed using g(z,&1) and possibly H(z,&2). Using this model, a step si(ay) is
computed so that m(zx+ sk (a)) is a sufficient improvement over myg (), where «y, is the step size parameter,
which directly or indirectly controls the step length. The iterate z; and the trial point xZ‘ =z + sx(ak)
are evaluated using the zeroth-order oracle f(zy,&ox), f(xf, EJ .)- If these estimates suggest that sufficient
improvement is attained, then the step is deemed successful, xz is accepted as the next iterate, and the
parameter ay is increased up to a multiplicative factor; otherwise, the step is deemed wunsuccessful, the
iterate does not change, and «y, is decreased by a multiplicative factor. Unlike in the deterministic case, new
calls to all oracles are made at each iteration even when the iterate does not change.

0. Initialization
Choose 8 € (0,1), v € (0,1), @max € (0,00), o € R™, and oy € (0, aumax]. Set k + 0.
1. Determine model and compute step
Construct a stochastic model my, of ¢ at zy using f(zx,&o.x), 9(@k,&1,k), and (optionally)
H(zy, &) from probabilistic zeroth-, first-, and (optionally) second-order oracles. Compute sy (o)
such that the model reduction my(z) — mg(zk + sk(ax)) > 0 is sufficiently large.
2. Check for sufficient reduction
Set :z:; + x) + si(ax) and compute f(x;, fa:k) as a stochastic approximation of gb(xz) using a
probabilistic zeroth-order oracle. Check if f(zy,&ox) — f(2], 53:1@) is sufficiently large (e.g., relative to
the model reduction my,(xx) — mk(z;)) using a condition parameterized by 6.
3. Successful iteration
If sufficient reduction has been attained (along with other potential requirements), then set
T < 2 and a1 min{y ok, dmax }-
4. Unsuccessful iteration
Otherwise, set xpy1 < 2 and agy1 < yag.
5. Next iteration

Set k < k+ 1 and go to Step 1.
Algorithm 1: Algorithmic Framework for Adaptive Stochastic Optimization

We now discuss how various methods fit into the general framework. For each method we give the form of
my(zk + s), in terms of g, = g(zk, &1 k) and Hy = H(xg, &2k, k(o) and the sufficient reduction criterion
in terms of f,g = f(zk, &o,x) and f,j = f(acg,fa',k).



2.1 Step search method

In the case of the step search (SS) methods in | , , ] the particulars are as follows. Quan-
tities f2 f,j and gi are random outputs of the stochastic oracles and Hy is some positive definite matrix
(e.g., the identity).

. mk(xk + S) = ¢(l‘k) + g,{s + ﬁSTHkS
[ ] sk(ak) = 7Otka_19k

e Sufficient reduction: fp — f,j > —Oglsp(ag) —r

Here 0 € (0,1), and r is a small positive number that compensates for the noise in the function estimates.
We will discuss the choice of r after we introduce conditions on the oracle outputs f(x,&p) and g(z,&).

e SS.0. Given a point z, the oracle computes a (random) function estimate f(z,&p) such that
Pe, (19(2) = f(2,&0)| < €5 +1) =1 = do(1),
for some €5 > 0 and any t > 0.

e SS.1. Given a point x and the current step size parameter «, the oracle computes a (random) gradient
estimate g(x,&;) such that

Pe, (llg(x, &) = V()| < max{ey, min{r, ka}|lg(z, &1)[}) = 1 -6

for some nonnegative constants ¢4, x, 7 and ;.

In | ], € = 0 and do(t) = 0, which means that the zeroth-order oracle is exact, and r = 0. In | 1,
er > 0 and do(¢t) = 0, which means that the zeroth-order oracle has a bounded error with probability
one, and r = 2¢;. In | ], € > 0 and do(t) = e ™, for some A > 0, which means the error can

take any probability if less than e, and the tail of the error decays exponentially beyond e;. In | 1,
r > 2 sup, Eg, [|o(z) — f(z,&0)l]-

In | ],eg=0andd < 3. In| ) ], €, > 0 and 0, is sufficiently small with a more complicated
upper bound. In | , |, @max is finite, thus 7 is Kmax. In | |, @max is infinity, and 7 is simply
assumed to be some constant intrinsic to the oracle.

2.2 Trust region method

Stochastic trust region (TR) methods that fall into the framework of Algorithm 1 have been developed and
analyzed in | , , ]. In the case of TR algorithms, f2, f;", gk, and (possibly) H, are
random outputs of the stochastic oracles, and

o my(zy +8) = d(xx) +gf s+ %STHkS

e sp(ax) = argmin,, IIslI<a my(xy + 5)

f}?‘f}j‘ﬁ' 9

mp(xk)—mi(zr+se(ak)) =

Sufficient reduction:

Additional requirement for a successful iteration: ||gi| > f2ay, for some 65 > 0.

The requirements for the oracles are as follows. In the case of first-order analysis in |
], the following first-order oracle is assumed to be available.



e TR1.1. Given a point x and the current trust-region radius «, the oracle computes a gradient estimate
g(x, &) such that
Pe, (lg(x, €1) = Vo(2)||< €9 + Fegar) 2 1 = b1

Here, K¢y and 01 are nonnegative constants.
In the second-order analysis, the following first- and second-order oracles are used:

e TR2.1. Given a point x and the current trust-region radius «, the oracle computes a gradient estimate
g(z, &) such that
Pe, (llg(z. &) — Vo(2)|[< € + hega®) 21— 6.

Here, K¢y and §; are nonnegative constants.

e TR2.2. Given a point z and the current trust-region radius «, the oracle computes a Hessian estimate
H(z,&) such that
P, ([ H(z,82) = Vo(@)[[< €n + Kena) = 1 = b

Here, ke, and o are nonnegative constants.

en, and €, are assumed to equal 0 in | , ] but are allowed to be positive in | ]

In terms of the zeroth-order oracles, the three works make different assumptions. Specifically, in [ 1,
as in [ ], the zeroth-order oracle is assumed to be exact. In | ] the zeroth-order oracle is the same
as in | ]. For the first-order analysis in [ |, however, the zeroth-order oracle is as follows.

e TR1.0. Given a point x and the current trust-region radius o, the oracle computes a function estimate
f(x,&) such that
]Pﬁo (‘f(xa€0) - (b(x)l < Iiefaz) > 1-— 60’

where k. and J§p are some nonnegative constants.
For the second-order analysis in | |, the zeroth-order oracle requirements are tighter.

e TR2.0. Given a point x and the current trust-region radius «, the oracle computes a function estimate
f(z, &) such that

Pfo (|f(1',§0) - ¢($)| S /iefla?)) Z 1-— 60
and ,
]Efo Hf(x7§0) - ¢($)|] < Hef2053

where k. f1, Kef2 and §p are some nonnegative constants.

In | , |,r=0.In]| ], 7> 25 + 2log 4.

2.3 Cubicly regularized Newton method

The cubicly regularized (CR) Newton method in | ] also fits the framework of Algorithm 1 with

o my(zi +5) = ¢(xp) + gL s+ 55T Hys + ﬁ”s”zj’

o si(ay) = argming my (g + )

0 +
J >0

k—Jk
my(z) —mp(zr+se(ar)) =

e Sufficient reduction:

The zeroth-order oracle is assumed to be exact, that is fo = ¢(z) and f;” = ¢(zy + si(ax)). The following
first- and second-order oracles are used.



e CR.1. Given a point = and the current parameter «, the oracle computes a gradient estimate g(z,&7)
such that

Pe, (lg(z,&1) — V()< Kega®) > 1 =6y,

where k.4 and d; are nonnegative constants.

° CIR,.Z (}i\/ell a [)()i]l( :]C, arld tlle current paIaHleteI Oé, tlle OIaCle C()Ill[)llles a HeSSian eSliIIIa (1 ’52)
SuCh thal te 11
152 (”‘l;} (.’L’,ég) ; QS(.’L')H< Kjeha) > —627

where K.j, and do are nononegative constants.

Remark The actual conditions on the oracles in | ] are different from what we present above and are
as follows:

Pe, ex (l9(2.61) = Vo (@)1 kg 5] and [[(H (2, &) — V20(@)s|1< wen [sI7) = 1=, (2)

for some Keg , Ken, and 6. Here, s is the trial step obtained from minimizing the cubicly regularized model.

By taking d; = o = % and a« = O(1/0) (where o is the penalty parameter used in the cubic regularization
and the constant in the big-O can be chosen according to Lemma 5.1 of | ]), these oracles imply (2) by
Lemma 5.1 of | ]

It is apparent that all of the algorithms that we discussed above rely on oracles whose accuracy requirements
change adaptively with «. It is also clear that for many settings, the higher the accuracy requirement is,
the higher the oracle complexity is. For example, if a stochastic oracle is delivered via sample averaging,
then more samples are needed to provide a higher accuracy. Therefore, to bound the total oracle complexity
of the algorithm, we need to bound the accuracy requirement over the iterations, or equivalently provide a
lower bound for the parameter a.

2.4 Notions of the stochastic process

When applied to problem (1), Algorithm 1 generates a stochastic process (with respect to the randomness
underlying the stochastic oracles). Specifically, let (Xj)k>0 be the random iterates with realizations xy, let
(Gk)k>0 be the gradient estimates with realizations g, and let (Ag)r>0 be the step size parameter values with
realizations ay. The prior works that analyze different algorithms of the framework 1 define this stochastic
process rigorously, with appropriate filtrations. Here for brevity, we will omit those details, as we do not use
them in the analysis. We now define a stopping time for the process.

Definition 1 (Stopping time). For e > 0, let T. be the first time such that a specified optimality condition
is satisfied. For all the settings considered in this paper, T. = min{k : [|[Vo(x)| < e} if ¢ is non-convez,
and T, = min{k : ¢(x) —inf, ¢(x) < e} if ¢ is strongly convex. We will refer to T as the stopping time of
the algorithm.

The following property is crucial in the analysis of algorithms in the framework of Algorithm 1.

Assumption 1 (Properties of the stochastic process generated by the adaptive stochastic algorithm). The
random sequence of parameters Ay generated by the algorithm satisfies the following:

(Z) For all k; Ak € {fYAk—hmin{amax7771~’4k—l}}; and

(i) There exist constants & > 0, and p > %, such that for all iterations k < T, if A < & then

P(Apr =7 " Ak | Fi) > p.

Here, Fi, denotes the filtration generated by the algorithm up to iteration k.



The algorithms in [CS17, PS20, BCS19, BCMS19, GRVZ18, JSX21a, CB522] all satisfy Assumption 1, under
appropriate lower bounds on the oracle probabilities dg, d1 (and d2). In the next section, under Assumption
1, we derive a high probability lower bound on a4 as a function of the number of iterations n, &, p, and ~.

Throughout the remainder of this paper, we will use ¢ to denote 1 — p.

3 High probability lower bound for the step size parameter

The following theorem provides a high probability lower bound for ay.

Theorem 1. Suppose Assumption 1 holds for Algorithm 1. For any positive integer n, any w > 0, with
probability at least 1 —n=* — cn~ 149 we have

cither T. <n or min aj > ayy(1T)08120m = Gyp~ (@) 108120 1/7
1<k<n

— 2P -
wherec-W and g =1—p.
The proof of this theorem involves two steps. First, in Section 3.1, we show that for n < T, the sequence of
step size parameters Ay, generated by the algorithm can be coupled with a random walk on the non-negative
integers. This reduces the problem to that of bounding the maximum value of a one-sided random walk in
the first n steps. We then derive a high probability upper bound on this maximum value in Section 3.2.

Before moving to its proof, we illustrate the theorem using some plots and comment on some implications
of the theorem.

Illustration of Theorem 1. Figure 1a illustrates the high probability bound provided by Theorem 1. The
solid curves depict the lower bounds given by the theorem for & = 1,w = 1, p = 0.8, and for varying values
of <. In comparison, the dotted lines correspond to one-sided random walks Z; that start at @ = 1. At
each step, Zj1 = 72, with probability 1 — p, and Zj41 = min{1,v~1Z;} with probability p. The proof of
Theorem 1 shown later implies that there is a coupling between the sequence of parameters A generated
by the algorithm and Zj, such that Ay > Zj, in other words, the sequence of parameters A generated by
the algorithm stochastically dominates Z.

Random Walk compared against Lower Bound Minimum of Random Walk compared against Lower Bound

10° 4 10° 4

107" 4 107" 4

Step Sizes
Step Sizes

=== random walk, y=0.7 === min of random walk, v=0.7
.| T lower bound, v=0.7 N lower bound, v=0.7
107% 4 ==~ random walk, v=0.8 1074 ==~ min of random walk, v=0.8

—— lower bound, v=0.8 —— lower bound, v=0.8
=== random walk, y=0.9 === min of random walk, v=0.9 \
—— lower bound, v=0.9 ——— lower bound, v=0.9

0 200 400 600 800 1000 0 200 400 600 800 1000
n n

(a) Comparing the random walk trajectory with the (b) Comparing the minimum value attained so far by
theoretical lower bound for various values of ~. the random walk curves in Figure 1a with the theo-
retical lower bounds (the same as in Figure 1a).

Figure 1: Ilustration of Theorem 1.

Remarks on Theorem 1.



1. For fixed n,~, and @, the lower bound is a function of p. It increases as p increases. Specifically, the
exponent of n changes with p, and the exponent goes to 0 as p goes to 1. Hence as p goes to 1, this
lower bound simplifies to @-y, which matches the lower bound in the deterministic case.

2. When p is close to 1 (i.e. when the stochastic oracles are highly reliable), this lower bound decreases
slowly as a function of n, since the exponent of n is close to 0. Alternatively, when the stochastic oracles
are not highly reliable, increasing the value of « allows the algorithm to maintain a slow decrease of
the step size.

3. Enlarging ~ as p decreases makes intuitive sense for the algorithm. When p is large, an unsuccessful
step is more likely to be caused by the step size being too large rather than the failure of the oracles
to deliver the desired accuracy. On the other hand, when p is small, unsuccessful iterations are likely
to occur even when the step size parameter is already small. Thus in the latter case, larger v values
help avoid an erroneous rapid decrease of the step size parameter.

1

4. If we choose v = (i) " then the minimum step size is lower bounded by ayn~? with high probability.
This coincides with the typical choice of the step size decay schemes for the stochastic gradient method
applied to non-convex functions.

The theorem implies that we can even bound « by a constant times & with high probability, provided we
set v as a function of n.

Corollary 1. Let Assumption 1 hold for Algorithm 1, then for any positive integer n, any w > 0, and any
B<g.if

log(283)

1 /1) TFten
> I
oL (L)
then with probability at least 1 —n~ — en~(1H9) | where ¢ = %,we have

either T. <mn or min «y > fa.
1<k<n

Proof. This follows from Theorem 1 by substituting in the specified value of ~. O

In the remainder of this section, we prove Theorem 1 in two steps.

3.1 Step 1: reduction to random walk

We will use a coupling argument to obtain the reduction to a random walk.

Let {Ar}72, denote the random sequence of parameter values (whose realization is {ay}52 ), for Algorithm
1. Let us assume, WLOG, that Ay = 7/, for some integer j < 0. (Recall here that 0 < v < 1.) Then we
observe that Aj = yY*@&, where {}_/k}zozo is a random sequence of integers, with Yy = j < 0, which increases
by one on every unsuccessful step, and decreases by one on every successful step. Moreover, by Assumption
(1), whenever k < T. and Y} > 0, the probability that it decreases by one is at least p. Define Y}, as follows:

Y1 —1 w.op.p

if k>1T.. (3)
Yio1+1 wp. 1—p

V=Y, ifk<T., m:{

In other words, Y} follows the algorithm until 7T, and then behaves like a random walk with downward drift
p after T.. We now couple {Y3}72, with a random walk {Z;}72, which stochastically dominates Yj.

Consider the following one-sided random walk {Z}}72 ), defined on the non-negative integers.
Zr+1, wp. 1—p,
Zp =0, Zr1 =2 —1, wp. pif Z > 1, (4)
0, w.p. p, if Z = 0.



Lemma 1. There exists a coupling between Zj, and Yy, where Zy, stochastically dominates Yy,.

Proof of Lemma 1. Initially, Zy = 0 and Yy < 0. For each k, we show how to update Zj to Zy41 according
to how Y} changes to Y;4+1. We consider two cases depending on whether k < T, or k > 1T..

Case 1: k< T.. If Y, < —1, we update Zy41 from Zj according to Equation (4), independently of how
Y. changes to Yiiq1. If Y > 0, then we first check if Y increased or decreased. Let p’ be the probability
that Yz4+1 = Y% — 1 on this sample path. Since Yy > 0, we know by Assumption 1 that p’ > p. Now, if
Yi+1 =Y + 1, then we set Z;1 = Zi + 1. On the other hand, if Y11 = Y, — 1, then we set Zy41 = Z; + 1
with probability 1 — 1%, and Zyy1 = max{Zy — 1,0} with probability 5. Note that these probabilities are
well-defined because p’ > p.

Case 2: k>T.. If Ypyo1 = Y + 1, then set Zxi1 = Zx + 1. Otherwise, if Yy11 = Yy — 1, then set
Zk+1 = maX{Zk - 170}

Observe that under this coupling, Zj, > Y} on every sample path. Moreover, {Z;} and {Y}} have the correct
marginal distributions. For Y}, this is easy to see, since it evolves according to its true distribution and we
are constructing Zj, from it. For Zj, on any step with & > T,, Zx41 evolves from Zj correctly according to
Equation (4) by construction. On a step with k < T, there are two cases: 1) ¥ < —1, and 2) Y3 > 0. In
the first case, the update from Zj, to Z;41 clearly follows Equation (4). This is also true in the second case,
since there the probability that Zj increases is (1 — p’) 4+ p'(1 — 5) =1-p.

To summarize, we have exhibited a coupling between {Z;} and {Y}}, under which Z; > Y} on any sample
path.

O

3.2 Step 2: upper-bounding the maximum value of the random walk

We now derive a high probability upper bound on the maximum value reached by the random walk.

Definition 2. Let N(¢,n) be the random variable that denotes the number of times Zy, = { in the first n
steps of the random walk.

By definition of N(¢,n), we have N(¢,n) > 0 if and only if state ¢ is visited in the first n steps of the random
walk. The next proposition upper bounds the probability that N(¢,n) > 0.

Proposition 1. Let ¢ =1—p. We have

~ 1—(a/p) (a\", _ 2VP1 .
PN > 0)< (0= e+ DI (3] + i e’

Proof. First, observe that P(N(¢,n) > 0) remains unchanged if we change the state space from {0,1,2,...}
to {0,1,2,...,¢} and modify the walk to hold in state ¢ with probability ¢ (instead of moving from ¢ to £+ 1
with that probability). This defines a Markov chain on {0,1,2,...,¢}, and let P be its transition matrix.
Noting that F is the probability that the Markov chain is in state £ at time m, we see that

P(N(6,n) >0) < > Pl (5)
m=4£

The matrix P is explicitly diagonalized in [1, Section XVI.3]. By (3.16) in that section,

m

Z [Sin ZTTJ [sin Z_ﬂ [2, /Pq cos 777
1 —2,/pqcos ZT’”I

1

=1 9

= e (3) - ()

T



The absolute value of the sum appearing in (6) can of course be bounded above by

ZZ: VP, 2vpa)™
—1-2p7 1—2\/1971

and this readily yields

1—(a/p) (q\' 2p ¢\ "
e (0w 7
“ 71— g/t <p> i \p) VP ™)
Summing (7) over m = ¢,...,n and using (5), we obtain the bound on P(N(¢,n) > 0) claimed in the
proposition. O

Remark The bound for Proposition 1 is essentially tight, as the decay of P(N(¢,n) > 0) is not faster than
geometric; ¢¢ is a lower bound.

With the above proposition at hand, Theorem 1 is proved by choosing an appropriate level ¢, for which
P(N(¢,n) = 0) is high.

Proof of Theorem 1. Let ¢ =1 — p. By Proposition 1, we have:

3 1-(a/p) (q)" 2,/Pq ¢
P(N(4,n)>0) < (n £+1)1—(q/p)”1 (p) + (1_2\/]71)2(2@ .

In other words,

P(N(é,n):o)zl—(n—f—&—l)l—(l]/p)(q)e (Qf ~(29)"

1L—(q/p)t \p 1 —2/pq)?
q ‘ Q\F ¢
S (p> G —2yme 0

Let a > 0 be a parameter to be set later, and take £ = [alog(n)]. Then, the above inequality implies:

alog(n)
P(N({,n)=0)>1—n (;) -7 __ 2P _(2g)* 108

1—2,/pq)?
_ 1 ploales(®) __ 2VP4_alog(1/(2q))
(1-2ypq)?
Let a = W Then, alog(?) > alog(%) =1+w,so0
- 2v/Pq -
P(N(l,n) =0)>1—n"% — — Y _p~(+w),
(W6 =0 T2,
In other words, with probability at least 1 — n™% — en~ (%) with ¢ = = 2\‘?)2, the random walk will

remain below ¢ = [(1 +w) log; /24 n—‘ in the first n steps. By construction of the coupling, with the above

probability, we know the o parameter in the algorithm either remains above yl¢gnlq = 7[(1“’) log1/24 7|
throughout the first n steps, or the algorithm has reached its stopping time in n steps.

O
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4 Expected and high probability total oracle complexity

We now use the tools derived in the previous section to obtain abstract expected and high probability upper
bounds on the total oracle complexity of Algorithm 1. In Section 5, we will derive concrete bounds for the
total oracle complexity of two specific algorithms (STORM and SASS), and the specific oracles arising in
expected risk minimization.

The cost of an oracle call may depend on the step size parameter o and the probability parameter 1 — 4, thus
we denote the cost by oc(a,1 — §). We will use oc(a) in the paper to simplify the notation because for all
algorithms in the class, § can be treated as a constant. Moreover, the cost of an oracle call is a non-increasing
function of « for all algorithms developed so far that fit into the framework.

Assumption 2. oc(a) is nonincreasing in a.

Definition 3 (Total Oracle Complexity). For a positive integer n, let TOC(n) be the random variable which
denotes the total oracle complexity of running the algorithm for n iterations. In other words,

TOC(n) = > oc(A).
k=1

4.1 Abstract expected total oracle complexity

We now proceed to bound TOC(min{T¢,n}) in expectation, where n is an arbitrary positive integer.

Theorem 2. Let Assumption 1 and Assumption 2 hold in Algorithm 1. For any positive integer n, we have

. o o\, 2/m ] ]
E[TOC(min{T.,n})] <n Zzzlmln {1,n (p) + W(gq)f -oc(@y!) + noc(a).

Proof. First, observe that if the aj parameters are all above some value a* in the first n steps, then by
Assumption 2, TOC(n) < n - oc(a*). Therefore, for any integer £ > 0, we have

P(TOC(min{T.,n}) > n-oc(ay’)) <P(N({+1,n) > 0). (8)
By Proposition 1,

41

This implies

41
P(TOC(min{T.,n}) > n - oc(ay’)) < min {1, n <Z) + (1_22%(2@”1} .

By the definition of expectation,
E[TOC(min{T,,n})]
n-oc(ay™)
= > i -P(TOC(min{T.,n}) = 1)
i=0

< > P(TOC(min{T,,n}) € (n-oc(ay’),n - oc(ay"*")]) - noc(ar*')

3
|

P (TOC(min{Te,n}) € [0,noc(@)]) - noc(@)

[

< s P (TOC(min{T.,n}) > noc(ay")) - noc(ay"™) + noc(a)
=0

~
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ol q £+l 2\/pq 1 n )
S gmm{l,n(]) +W(2q) ’TLOC(a"y )+TLOC(a),

4.2 Abstract high probability total oracle complexity

We now proceed to bound TOC(T;) in high probability, using Theorem 1.

Theorem 3. Let Assumption 1 and Assumption 2 hold in Algorithm 1. For any w > 0 and positive integer
n, with probability at least 1 —P(T. > n) —n~% — cn~(1Fw),

TOC(T:) < n-oc(a*(n)),

where a*(n) = ayn~H@)og20 1/ and ¢ is as defined in Theorem 1.
log(28)
) (I+w)logn

If v is chosen to be at least max {;, (i

5 } for some B < %, then a*(n) > pa, thus

TOC(T:) < n-oc(Ba).

Proof. Let TOC,(n) be the total oracle complexity of the first n iterations with the corresponding sequence
of parameters oy induced by the one-sided random walk (that is, the sequence defined by oy = ay?*, where
Zy is defined in Section 3.1). In other words,

n

TOCn,(n) =) oc(ay™).

k=1
With probability 1 — P(T. > n), we have T, < n, which implies
TOC(T.) < TOCw(T:) < TOCy(n).

Here, the first inequality is by Lemma 1 and Assumption 2, and the second inequality is by 7. < n.

The same arguments used in the proof of Theorem 1 show that with probability at least 1 —n =% —cn~(1+<)
we have minj <<, @y?* > a*(n). Thus, with at least this probability, TOCw(n) < n - oc(a*(n)).

Putting these together with a union bound, the result follows.

The second part of the theorem follows from substituting in the specific choice of . O

5 Applying to STORM and SASS

In this section, we demonstrate how the generic oracle complexity bounds in the previous section can be
applied to concrete combinations of oracles and algorithms. We will consider the specific setting of expected
risk minimization and two algorithms, first-order STORM and SASS, which are described earlier in the
paper and fully analyzed in | ] and [ |, respectively. For each case, we will state the bounds
on oc(w) as a function of «, and use those bounds in conjunction with the known bounds on 7, (that have
been derived in previous papers), to obtain a bound on the total oracle complexity for each algorithm.

The results we obtain are the first ones that bound the total oracle complexity of STORM and SASS, and we
show that both algorithms are essentially near optimal in terms of total gradient sample complexity. When
deriving these results, for simplicity of presentation, we omit most of the constants involved in the specific
bounds on T, and specific conditions on various algorithmic constants. For all such details, we refer the
reader to | ] and | ]. We will include short comments regarding these constants, but otherwise
replace them with a O(-) notation.

12



Problem Setting: Expected risk minimization (ERM) can be written as

min ¢(z) = Egupll(x,d)].

rER™
Here, x represents the vector of model parameters, d is a data sample following distribution D, and #(x, d)
is the loss when the model parameterized by «x is evaluated on data point d. This problem is central in
supervised machine learning and other settings such as simulation optimization | ]. For this problem,
it is common to assume the function ¢ is L-smooth and is bounded from below, and gradients of functions
V.l(x,d) can be computed for any d ~ D, so we will consider this setting in this section.

In this setting, the zeroth- and first-order oracles are usually computed as follows:

f(z,8) |S|szd 9(x,S) |S|vad 9)

des des

where S is the “minibatch” - that is a set of i.i.d samples from D. Generally, |S| can be chosen to depend
on x.

In what follows we will refer to the total number of times an algorithm computes ¢(z, d) for a specific x and
d as its total function value sample complexity and the number of times the algorithm computes V/(z, d) as
its total gradient sample complexity. The total (oracle or sample) complexity of the algorithm is defined as
the sum of these two quantities.

5.1 Total sample complexity of first-order STORM

We first consider the first-order stochastic trust region method (STORM) as introduced and analyzed in
[ ]. The algorithm uses zeroth- and first-order oracles defined in TR1.0 and TR1.1 in Section 2.
Trust region algorithms are usually applied to nonconvex functions and the stopping time of STORM is
defined as T. = min{k : ||V¢(ay)|| < e}. In Section 3.3 of | ], it is shown that Assumption 1 is
satisfied with a = %, where ¢ is a moderate constant that depends on k.4, L and some constant chosen by
the algorithm.

In [ |, the oracle costs of STORM in the ERM setting are briefly discussed under the following
assumptions on {(z,d).

e Function value: It is assumed that there is some o > 0 such that for all , Varg.p [{(z,d)] < o7.

e Gradient: It is assumed that Equp[V,l(z,d)] = V¢(z), and that there is some o4 > 0 such that for
all x,
Eip |Val(z,d) — Vé(@)|* < o2 (10)

The cost of each oracle call is the number of samples in the associated minibatch S. By applying Chebyshev’s
inequality it is easy to bound the oracle costs of TR1.0 and TR1.1.

o2

2 A
5onefa

e Cost of TR1.0 with parameter a: ocg(r) =

0_2

e Cost of TR1.1 with parameter a:: ocy(a) = m

Below we substitute the specific oracle costs into Theorem 2 to obtain the expected total sample complexity
for the first-order STORM algorithm. Specifically, we will bound the total sample complexity of STORM
E[TOC(min{7%,n})] by deriving bounds on the the expectation of the total function value sample complexity
TOC, and the total gradient sample complexity TOC;, where

TOCy(n Zoco Ap),  TOCi(n Zocl Ayp) and TOC(n) = TOCy(n) 4+ TOC, (n).
k=1

13



Theorem 4 (Expected Total Sample Complexity Bound of First-Order STORM). Let p=1— 8y — §; and
g =1—p. For the first-order STORM algorithm, for any iteration budget n € Z", and v > (2q)%, we have

o4 o?
E[TOC(min{T:,n})] < O | nlog, 4 (n) 5‘{ 4108q/p7+€ n2gyp | | .

log ¢

If v > (%) s for some constant ¢ > 1 (so that n'°%/»7 < ¢), the above simplifies to be

g

E[TOC(min{7:,n})] < nlog(n) - O (‘;{ + 3) : (11)

c2

Proof. By Theorem 2, the total expected cost of the zeroth-order oracle over n iterations is bounded above
by:

n 14
E[TOCo(min{T.,n})] <n Zmin {1,n ( > +— i Q\ﬁ) (2q)e} -ocg(ay’) + noco(a)

(=1

1—2,/ 2

=:A =:B

q ¢ 2n./pq
< anm 1,n -oco(ay?) Z 2¢)" - oco(ary “) +noco(a).
p

2 2
For the zeroth-order oracle, ocy(a) = ——o— = (9(%) We use this to calculate upper bounds for A and B.

2 4
60mefa

First, we consider A. Note that min{1, n(%)e} =1, if and only if £ <log, ,,(n). Therefore,

10g§(n) ¢
A< Y oc(@y)+n > (q) oco(ay")
=1 £>logp (n) p
logp (n)
q o2 ) q 14 o2
> o) ¥ (1) o[
~4~A4L ~4~A4L
=1 oy £>logp (n) p ay
logp (n)
0.2 q 1 L 1
f q
co(F)[ X e ¥ (4
(=1 £>logp (n)

0_2 1 logp (n) logp (n) 1

f q q q

2 (1oge(n) - [ — e -
54) (qu(n) <v4> +n<m4> L= 55

B=Y (20 0@ <3 (29) -0 (ag‘w) <0 ng) (1_21(,;> —0 <‘;{> .

Using these bounds on A and B in the expression for E[TOCy(min{T,,n})], we obtain the bound on the
o2 4log
total function value sample complexity as O (E—f nloge (n)n &5 W).

14



2 21
A similar calculation using the cost of the first-order oracle yields the bound O % nlogs (n)n %37 for
q

E[TOC; (min{T¢,n})]. Since TOC(min{7T,,n}) = TOCo(min{T,n}) + TOC;(min{7.,n}) by definition, the
result follows.

O

Let us discuss the implications of Theorem 4. In | ], a lower bound on the total gradient sample
complexity for stochastic optimization of non-convex, smooth functions is derived and shown to be, in the
worst case, C (E%)7 for some positive constant C'. This complexity lower bound holds even when exact function

values ¢(x) are also available. We note that the definition of complexity in [ ] is the smallest number
of sample gradient evaluations required to return a point z with E[||Vé(z)||] < €, which is different from
TOC(T.) which we are aiming to bound here. We believe that the lower bound in | | applies to our

definition as well, but this is a subject of a separate study.

In | |, it is shown that E[T.] < % for some C; sufficiently large that depends on d1, 0o, Keg, L and
some algorithmic constants. Thus, if n = % in inequality (11) of Theorem 4 , as long as + is sufficiently large,

2 2
we obtain E[TOC(min{T.,n})] <O ((Z% + Z%) log(%)) . In particular, the total gradient sample complexity

2
is O (% log (%)), which essentially matches the complexity lower bound as described in | ] up to a
logarithmic factor. The total function value sample complexity is worse than that of the gradient if o*]% is

large. However, if 0]20 < (’)(0352), the total sample complexity bound of STORM matches the lower bound
up to a logarithmic factor.

We note now that choosing n = % in Theorem 4 does not in fact guarantee that T, < n, since for STORM,
only a bound on E[T:] has been derived. However, this statement can be made true in probability, thanks
to Theorem 3, by simply applying Markov inequality for n = Cs % (where Cy > 1).

Theorem 5 (High Probability Total Sample Complexity Bound of First-Order STORM). For the first-order
STORM algorithm applied to expected risk minimization, let n be chosen such that n > Cy % (for some C

log(26)
sufficiently large so that % > E[T.], and any Co > 1), and 7 be chosen so that v > max {%7 (i) (1+w)logn}

(for some B < %, and any w > 0). Then, with probability at least 1 — C% —0(n™v),

2 2
oy o 19
TOUT) <O\ 5+ 1) (12)
Proof. The theorem is a simple application of Theorem 3 to the specific setting. O

Remark

1. Compared to the expected total sample complexity bound, this high probability bound is smaller by a
log factor.

2. In | ], a first-order trust region algorithm similar to STORM with the same first-order oracle
(i.e. TR1.1 with ¢, = 0), but with an exact zeroth-order oracle (i.e. TR1.0 with k. = d9 = 0) is
analyzed. In this case, it is shown that P(T. > n) < exp(—Cin) (for some constant C; depends on dy),
for any n > % (with some sufficiently large C3). Using a similar application of Theorem 3, we can
show that as long as -y is sufﬁcientl}; large, the total gradient sample complexity of that trust region
algorithm is bounded above by O(%) with probability at least 1 — exp(—Cin) — O(n~*) (which is a
significant improvement over the probability in Theorem 5).

3. Another first-order trust region algorithm, with weaker oracle assumptions than those in [ ]
is introduced and analyzed in | ]. This algorithm relies on the first-order oracle as described in
TR1.1 and the zeroth-order oracle as described in SS.0. For this algorithm, it is shown that P(T. > n) <

15



2exp(—C1n) +exp(—Cs) (Cy being any positive constant), where n = Cg% for some sufficiently large
C3 and some positive C; that depends on §y and d;. Thus, again, using Theorem 3 we can show that
as long as +y is sufficiently large, the total sample complexity of the first-order trust region algorithm in

[ ] is bounded above by O( £+ 2% ) with probability at least 1—2 exp(—Cin)—exp(—C3)—O(n™%).

5.2 Total sample complexity of SASS
We now consider the SASS algorithm!, analyzed in [ , ] and described in Section 2.1. By
Proposition 1, 2 and 4 of | ], Assumption 1 is satisfied, with @ as given in the propositions.

In the empirical risk minimization setting, the following assumptions on ¢(z,d) are made in | ]

e Function value: It is assumed that |¢(x,d) — ¢(x)| is a subexponential random variable and that there
is some o > 0 such that for all z, Vargwp [¢(z,d)] < o2
For example, if ¢(z,d) is uniformly bounded, then [¢(z,d) — ¢(z)| is subexponential.

e Gradient: It is assumed that Egup[V.l(z,d)] = V¢(x), and that for some M., M, > 0 and for all z,
Eanp |Val(w, d) = Vo(@)|* < Me+ M, |Vo()]*. (13)

This assumption is fairly general and is studied in the literature | ]

For non-convex functions, the stopping time is defined as T, = min{k : ||[Vé(zy)| < e}, same as in the case of
STORM. For strongly convex functions, the stopping time is defined as T, = min{k : ¢(zy) —inf, ¢(z) < €}.
To achieve the desired accuracy, oracles SS.0 and SS.1 have to be sufliciently accurate in the sense that €y
and €, have to be sufficiently small with respect to €. In the case of expected risk minimization, the oracles
can be implemented for any €¢ and €, by choosing an appropriate mini-batch size. Thus, here we will first

fix ¢ and then discuss the oracles that deliver sufficient accuracy for such ¢, for the theory in | ] to
apply.
Oracle Costs per Iteration. In | ], it is shown that given the desired convergence tolerance e,

sufficiently accurate oracles SS.0 and SS.1 can be implemented for any step size parameter « as follows:

e Zeroth-order oracle: Proposition 5 of | ] shows that a sufficiently accurate zeroth-order oracle
can be obtained by using a minibatch of size

O(c?/e*), for the non-convex case
OCO( )_ ( ]2”/ 2)3 ) (14)
O(o%/e”), for the strongly convex case.
Note that the cost of the zeroth-order oracle is independent of «.
e First-order oracle: Proposition 6 of | ] implies that a sufficiently accurate first-order oracle can
be obtained by using a minibatch of size
O % % , for the non-convex case,
oci(a) = M o (15)
O+ min{real? | for the strongly convex case.

The cost of the first-order oracle is indeed non-increasing in «, so Assumption 2 is satisfied. For
simplicity of the presentation and essentially without loss of generality, we will assume 7 > ka.

Substituting these bounds into Theorem 2, we obtain the following expected total sample complexity.

I This algorithm was also referred to as ALOE in | ]. Its name has been changed to SASS since | ].
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Theorem 6 (Expected Total Sample Complexity of SASS). For the SASS algorithm applied to expected risk
minimization, for any iteration budget n € Z", and any v > (Zq)%, we have

e Non-convex case:

c4

2 1
E[TOC(min{T;,n})] < O (Uf “n+ ]:éc ‘n+M,-n <nlog§ <72) 1ng(n))> )

e Strongly conver case:

2

E[TOC(min{T;,n})] < O (Z; -n+ % n+My-n (n a(w) logp(n)>> .

log ¢
ogn 1 i
Moreover, if v > (%) 2o for some constant ¢ > 1 (so that n osz (57) < c¢), the above simplifies to

E[TOC(min{7T,,n})] < O (n <§ ZZC » (n))) . (16)

e Non-convex case:

e Strongly convex case:

E[TOC(min{TE,n})}<O<n <Z§ J‘f , (n)>>. (17)

Proof. Since the cost of each call to the zeroth-order oracle (14) is independent of «, the total function value
sample complexity over n iterations is simply obtained by multiplying (14) by n.

The cost of the first-order oracle (15) consists of two parts, ocy(a) = ocy (@) + ocy 2(w). The first part,
ocy 1(a), is (9(1;120) Since this is independent of «, the total contribution of this part to the total gradient

sample complexity over n iterations is nocy j(a), which is bounded by (9( Len).

The second part of the cost of the first-order oracle is ocy 2(a) := O( By Theorem 2, the total

expected cost over n iterations from this part is bounded above by:

n £
n Zmin {1,n (Z) + (1_22%(2(])4} . ocl,z(a%) + nocm(@)
=1

n ¢ n
2n./pq
<n E min{l,n( ) } ocy 2(@ry ) 17712 E E -ocqy @y )—&—nocl,g(d).
(=1 VP

(=1

mln{r na}z )

=:A =:B

Note that the expression above only involves ocy o(cr) for a < @. Therefore, by our earlier assumption that
T > k@&, we have ocy o(a) = O(RIZM(;Z) = O(%) (since k is a constant). We now use this to calculate upper

bounds for A and B. Using similar arguments as the proof of Theorem 4, we have

M ogp % Mv
A=0 (_2” logg(n)n1 gE(” )> and B =0 <_2) :
(6% q «

Together with the previous arguments, the result follows. O
In | ], the iteration bound on T is shown to be % +logy /., ¢ in the non-convex case, and C5 log % +

logy ., 20 in the strongly convex case (for some C; and Cy sufficiently large) in high probability. Thus, we
can select n appropriately and derive the high probability bound on the total sample complexity of SASS
using Theorem 3.
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Theorem 7 (High Probability Total Sample Complexity of SASS). For the SASS algorithm applied to

expected risk minimization, let n > % +logy /, 2 in the non-conver case, and n > Cs 1og% +logy/, B in
the strongly convex case.

For any w > 0, with probability at least 1 — 2exp (—Csn) — O(n~%) (for some C3 > 0), we have

e Non-convex case:

1 o oF M, M,
TOC(TE) S O <<€2 —+ logl/’y a) . <€4 —+ 572 + m . (18)
e Strongly conver case:
1 a0 U'J2c M, 1 2(1+w) loga, (7)
log(26) N
If v € | max %, (i (eyiosn , ((%0) - ] , where B is any constant smaller than %, and c is any constant

in (0,1), the above simplifies to

e Non-convex case:

1 (o} M. M,
TOC(T:) <O <52 . (54 + = + 7 )) . (20)
e Strongly convex case:
1 (o7 M., M,
< — .| L )
TOC(T.) <O <log 5 (52 + . + 7 >> (21)

Proof. The bounds (18) and (19) follow by using (14) and (15) in Theorem 3, and Theorem 3.8 of | ]

The bounds (20) and (21) follow from (18) and (19), respectively, by using the fact that - lies in the
appropriate range and log, ., 0 < en with c € (0,1).

In the non-convex case, we have E%—Hoglm 2 — O(%) and W = O(%) when + lies in the specified

&0

range. It is worth noting that ¢ € (0,1) implies there is some n = O(%) that satisfies n > % + logy ., 2.
The result for the strongly convex case follows similarly.

O
Remark

1. We consider some of the implications of Theorem 7 below. Similar implications hold for the expected
total sample complexity.

2
e In the non-convex case, from (20), the total function value sample complexity is O (%) and

the total gradient sample complexity is O (& + 2. In particular, the total gradient sample

complexity matches that of SGD, and it essentially matches the complexity lower bound as de-
scribed in [ | (for a different definition of complexity). Specifically, if o7 = 0 (i.e., function
values are exact), the lower bound in | | applies and the total sample complexity of SASS
matches it.

o If M. = 0 (sometimes referred to as the interpolation case), then the total gradient sample

complexity reduces to O (]ZIQ” ) Hence, the total gradient sample complexity matches that of SGD

under interpolation [ ) -
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2
e In the strongly convex case, the total function value sample complexity is (’)(Z—é log 1) and the
total gradient sample complexity is O((Agc + M,)log %) In particular, the total gradient sample

complexity matches that of SGD up to a logarithmic term.

6 Conclusion

We analyzed the behavior of the step size parameter in Algorithm 1, an adaptive stochastic optimization
framework that encompasses a wide class of algorithms analyzed in recent literature. We derived a high
probability lower bound for this parameter, and as a result, developed a simple strategy for controlling this
lower bound.

For many settings, having a fixed lower bound on the step size parameter implies an upper bound on
the cost of the oracles that compute the gradient and function estimates. We developed a framework to
analyze the expected and high probability total oracle complexity for this general class of algorithms, and
illustrated the use of it by deriving total sample complexity bounds for two specific algorithms - the first-
order stochastic trust region (STORM) algorithm | ] and a stochastic step search (SASS) algorithm
[ ] in the expected risk minimization setting. We showed that the sample complexity of both these
algorithms essentially matches the complexity lower bound of first-order algorithms for stochastic non-convex
optimization | |, which was not known before.
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