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Abstract
The theory of products of randommatrices andLyapunov exponents have beenwidely studied
and applied in the fields of biology, dynamical systems, economics, engineering and statistical
physics.We consider the product of an i.i.d. sequence of 2×2 random non-invertiblematrices
with real entries. Given some mild moment assumptions we prove an explicit formula for
the Lyapunov exponent and prove a central limit theorem with an explicit formula for the
variance in terms of the entries of the matrices. We also give examples where exact values
for the Lyapunov exponent and variance are computed. An important example where non-
invertible matrices are essential is the random Hill’s equation, which has numerous physical
applications, including the astrophysical orbit problem.
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1 Introduction andMain Results

Let Y1, Y2, Y3, . . . be i.i.d. random matrices from the ring M2 (R) of 2 × 2 matrices with
real entries. Let Sn = Yn · · · Y2Y1 to be their matrix product and define the (top) Lyapunov
exponent to be

λ := lim
n→∞

E
[
log ‖Sn‖

]

n
, (1.1)

where ‖·‖ is any matrix norm. A theorem of Fursternberg–Kesten [18, Theorem 2] proves
the analog of the Law of Large Numbers for the product of random matrices by showing that

lim
n→∞

log ‖Sn‖
n

= λ a.s. (1.2)

as long as E log+ ‖Yi‖ < ∞ where log+ x := max {0, log x}. A useful formula that can be
used in obtaining exact values for λ for matrices Yi with some distribution μ on a group
G ⊂ SL (d,R) was found by Furstenberg [19]

λ =
∫

SL(d,R)

∫

Pd−1
log ‖Ax‖ dν (x) dμ (A) , (1.3)

where Pd−1 is the projective space, and ν is a maximal μ-invariant measure.
We also point to the classical works of [25, 38] (see also [7, 8, 10]) where conditions are

given on the distribution of
{
Y j
}
j≥1 so that the following central limit theorem holds

1√
n

(log ‖Sn‖ − nλ)
L→ N

(
0, σ 2) (1.4)

for some σ 2 ≥ 0 where the convergence holds in law.
There has been several works in obtaining explicit formulas for the Lyapunov exponent

given a random matrix distribution
{
Y j
}
j≥1 such as in the works of [6, 8, 11, 14, 15, 24, 27,

30, 32, 33]. But inmany cases, one cannot obtain explicit formulas for the Lyapunov exponent
given a particular random matrix ensemble, even for 2× 2 random matrices. In fact, finding
an exactμ-invariant measure ν in (1.4) is a difficult problem in itself [32]. In situations where
explicit expressions aren’t available, one can approximate the Lyapunov exponent such as in
the works of [23, 26, 29, 34, 35, 37, 39]. Explicit formulas for the variance σ 2 are also known
though less studied, see [9, 16, 36] for example. We point to the work of [9, Proposition 2.1]
where explicit formulas are given for the Lyapunov exponent and variance given a condition
on the distribution of the randommatrices. The condition given in [9, Proposition 2.1] is only
valid for special cases and does not hold for general random matrices.
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Most of the theory for products of random matrices require the matrices to come from
GL (d,R) and often require conditions on the subgroup generated by the support of the
distribution for the given random matrix model. An example is the well-known formula
for computing Lyapunov exponents by Furstenberg ((1.3), see also [8, Theorem II.4.1]). If
the matrices are non-invertible (also defined as singular), then other than (1.2), most of the
results of the existing literature are not applicable. This holds especially true for central limit
theoremswith explicit variance for the products of non-invertible matrices.We do point to the
works of [13, 17, 27] for some results for non-invertible matrices. The main goal of this paper
is to find explicit formulas for the Lyapunov exponent λ and prove a central limit theorem
with an explicit variance formula σ 2 in terms of the distribution of the matrix entries for the
products of general 2× 2 non-invertible matrices. Our work fills this gap in the literature by
finding explicit formulas, such as in (1.3) for invertible matrices, for both λ and σ 2.

In particular, we consider the products of random matrices of the form

Y j =
[
a j b j

c j d j

]
, j ≥ 1,

where Y j are non-invertible matrices in M2 (R) and
{(
a j , b j , c j , d j

)}
j≥1 are i.i.d. sequences

of random vectors. We will assume a j does not have an atom at zero. Since the Y j are non-
invertible then a jd j − b j c j = 0 for j ≥ 1 and it suffices to consider Y j of the form

Y j =
[
a j b j

c j
b j c j
a j

]

, j ≥ 1. (1.5)

As far as the authors know, the only paper to prove a CLT with an explicit variance for the
products of 2× 2 random non-invertible matrices is the special case in [31, Theorem 2.2]. In
particular, in [31] the authors prove a CLT with an exact formula for σ 2 for matrices of the
form

Y j =
[

1 x j
1
x j

1

]

, (1.6)

where
{
x j
}
j≥1 is an i.i.d. sequence of random variables atomless at zero. Unlike in the

invertible matrix case, there is an interesting and precise nondegeneracy condition that char-
acterizes the entries

{
x j
}
j≥1 that give σ 2 = 0. These matrices are related to the random

Hill’s equation studied in [1–4]. In [5], Adams–Bloch–Lagarias were the first to prove an
exact formula for the Lyapunov exponent. The Hill’s equation has appeared in the literature
with various applications such as in the modeling of lunar orbits [20] and various other astro-
physical orbit problems [1]. See [28] for various physical and engineering applications of
the Hill’s equation.

We are now ready to state ourmain theorem.Weprove an explicit formula for theLyapunov
exponent λ and a central limit theorem with an explicit formula for the variance σ 2 which
is given in terms of the entries

{(
a j , b j , c j

)}
j≥1 of Y j . We point out that no assumption is

given on the distribution of the entries
{(
a j , b j , c j

)}
j≥1 other than a mild moment condition

and that the entries are atomless at zero. Our results are the first to cover general 2 × 2
non-invertible matrices which includes the special case given in (1.6).

Theorem 1.1 Consider the random non-invertible matrices of the form

Y j =
[
a j b j

c j
b j c j
a j

]

, j ≥ 1,
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where
{(
a j , b j , c j

)}
j≥1 is an i.i.d. sequence of R\ {0} × R

2-valued random variables such
that

E
[
log+ (|a1| + |c1|)

]
< ∞ and E

[
log

(
1 + |b1|

|a1|
)]

< ∞. (1.7)

Then (1.2) holds and the Lyapunov exponent has the explicit expression

λ = E

[
log

∣
∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣

]
. (1.8)

Moreover, if we further assume that

E

[(
log

∣
∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣

)2
]

< ∞, (1.9)

then 1√
n

(log ‖Sn‖ − nλ)
L→ N

(
0, σ 2

)
and the variance has the explicit expression

σ 2 = E

[(
log

∣
∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣

)2
]

+ 2E

[
log

∣
∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣ log

∣
∣
∣
∣a2 + b3c2

a3

∣
∣
∣
∣

]
− 3λ2. (1.10)

The proof of Theorem 1.1 relies on an explicit product formula for Sn , which will be
given in Lemma 2.1. With this product formula we can then compute λ and use the theory of
m-dependent sequences of random variables to prove the CLT using a theorem of Diananda
[12, Theorem 2].

As demonstrated by the special case of the matrices related to the random Hill’s equation
given in (1.6), there are non-trivial distributions

{(
a j , b j , c j

)}
j≥1 where the related CLT is

degenerate with σ 2 = 0. In the case of the random Hill’s matrices, a precise non-degeneracy
condition was given in [31, Theorem 2.2] that completely characterizes the distribution of the
entries

{
x j
}
j≥1 that gives σ 2 = 0. Unfortunately, such a precise characterization result does

not seem tractable for general non-invertible matrices. We use a result of Janson [22] (see
also [21]) to give a non-degeneracy condition and prove some properties of the degenerate
case.

Proposition 1.2 Consider the setting of Theorem 1.1. We have that σ 2 = 0 if and only if
there exists a function ϕ : R3 → R such that for any n ∈ N,

n∑

j=1

(
log

[∣∣∣∣a j + b j+1c j
a j+1

∣∣∣∣

]
− λ

)
= ϕ (ξn+1) − ϕ (ξ1) , a.s.

where
{
ξ j
}
j≥1 = {(

a j , b j , c j
)}

j≥1. Moreover, if σ 2 = 0 and the distribution of
(
a j , b j , c j

)

has an atom at (a, b, c) , then

λ = log

∣∣∣∣a + bc

a

∣∣∣∣

and for all j ≥ 1,
(
a + b j c

a j

)2 (
a j + bc j

a

)2

=
(
a + bc

a

)4

, a.s.

We organize the paper as follows. In Sect. 2, we prove the product formula for Sn and
give the proof for the explicit formula of the Lyapunov exponent in Eq. (1.8). In Sect. 3.1
we give the proof of the CLT with explicit variance. We prove Proposition 1.2 in Sect. 3.2.
Finally, we use Theorem 1.1 to give examples with exact values of λ and σ 2.
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2 Proof of Theorem 1.1: Explicit �

2.1 Product Formula

We first start by proving the following product formula.

Lemma 2.1 The product of the matrices of the form

Y j =
[
a j b j

c j
b j c j
a j

]

, j ≥ 1

can be expressed as

Sn = βn

[
an

b1
a1
an

cn
b1
a1
cn

]

(2.1)

where β1 = 1 and

βn =
n−1∏

j=1

(
a j + b j+1c j

a j+1

)
, n ≥ 1.

Proof The representation given in (2.1) is clear when n = 1 since

S1 = β1

[
a1

b1
a1
a1

c1
b1
a1
c1

]

=
[
a1 b1
c1

b1c1
a1

]
.

Suppose (2.1) holds for n, then we have that

Sn+1 = Yn+1Sn

= βn

[
an+1 bn+1

cn+1
bn+1cn+1
an+1

][
an

b1
a1
an

cn
b1
a1
cn

]

= βn

[
anan+1 + bn+1cn an+1

b1
a1
an + bn+1

b1
a1
cn

cn+1an + bn+1cn+1
an+1

cn cn+1
b1
a1
an + bn+1cn+1

an+1

b1
a1
cn

]

= βn

⎡

⎣
an+1

(
an + bn+1cn

an+1

)
an+1

b1
a1

(
an + bn+1cn

an+1

)

cn+1

(
an + bn+1cn

an+1

)
b1
a1
cn+1

(
an + bn+1cn

an+1

)

⎤

⎦

=
n∏

j=1

(
a j + b j+1c j

a j+1

)[
an+1

b1
a1
an+1

cn+1
b1
a1
cn+1

]

= βn+1

[
an+1

b1
a1
an+1

cn+1
b1
a1
cn+1

]

.

	


2.2 Proof of Exact � in Eq. (1.8)

Proof We first take the log of the norm of the product representation of Sn given in (2.1) of
Lemma 2.1 to get

log ‖Sn‖ =
n−1∑

j=1

log

∣∣∣∣a j + b j+1c j
a j+1

∣∣∣∣+ log

∥∥∥∥∥

[
an

b1
a1
an

cn
b1
a1
cn

]∥∥∥∥∥
. (2.2)
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Consider the degenerate case where there is a positive probability where a j + b j+1c j
a j+1

= 0.

Note that in this case we have log ‖Sn‖ = −∞ hence λ = E

[
log

∣
∣
∣a1 + b2c1

a2

∣
∣
∣
]

= −∞ as

needed.
Let ‖·‖ denote the Hilbert–Schmidt norm and compute

‖Y1‖ =
√

a21 + b21 + c21 + b21c
2
1

a21
=
√√
√
√a21

(

1 + c21
a21

)(

1 + b21
a21

)

.

Using the moment condition (1.7) with the property that log+ (xy) ≤ log+ (x) + log+ (y)
for any x, y > 0 we have

E
[
log+ ‖Y1‖

] = E

⎡

⎣log+
√√
√
√(a21 + c21

)
(

1 + b21
a21

)⎤

⎦

≤ E

⎡

⎣log+
√(

a21 + c21
)+ E

⎡

⎣log+
√√√√
(

1 + b21
a21

)⎤

⎦

⎤

⎦

≤ E
[
log+ (|a1| + |c1|)

]+ E

[
log

(
1 + |b1|

|a1|
)]

< ∞.

Hence by a direct application of [18, Theorem 2] we have that λ = limn→∞ log‖Sn‖
n < ∞

almost surely.
We are left to compute the Lyapunov exponent λ explicitly. First we show some finite

moment conditions. Note that for all n ≥ 1,

E

[

log

∥∥∥∥∥

[
an

b1
a1
an

cn
b1
a1
cn

]∥∥∥∥∥

]

= E

[

log

√

a2n + b21
a21

a2n + c2n + b21
a21

c2n

]

= E

⎡

⎣log

√√√√(a2n + c2n
)
(

1 + b21
a21

)⎤

⎦

≤ E
[
log+ (|an | + |cn |)

]+ E

[
log

(
1 + |b1|

|a1|
)]

< ∞,

where we used (1.7). Moreover, we have that for all j ≥ 1, −∞ ≤ E log
[∣∣∣a j + b j+1c j

a j+1

∣∣∣
]

<

∞ since

E

[
log

[∣∣∣∣a j + b j+1c j
a j+1

∣∣∣∣

]]
≤ E

[

log

[
(∣∣a j

∣∣+ ∣∣c j
∣∣)
(

1 +
∣∣b j+1

∣∣
∣∣a j+1

∣∣

)]]

≤ E
[
log+ [(∣∣a j

∣∣+ ∣∣c j
∣∣)]]+ E

[

log

[(

1 +
∣∣b j+1

∣∣
∣∣a j+1

∣∣

)]]

< ∞.
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Taking the expected value of (2.2) and using the finite moment conditions shown above
we have that

λ = lim
n→∞

1

n

⎛

⎝E

⎡

⎣
n−1∑

j=1

log

[∣∣
∣∣a j + b j+1c j

a j+1

∣
∣
∣∣

]
⎤

⎦+ E

[

log

[∥∥
∥
∥
∥

[
an

b1
a1
an

cn
b1
a1
cn

]∥∥
∥
∥
∥

]]⎞

⎠

= lim
n→∞

1

n

⎛

⎝
n−1∑

j=1

E

[
log

[∣∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣

]]
+ E

[

log

[∥∥
∥
∥
∥

[
a2

b1
a1
a2

c2
b1
a1
c2

]∥∥
∥
∥
∥

]]⎞

⎠

= E

[
log

∣
∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣

]
,

as needed. 	


3 Proof of Theorem 1.1: The Explicit CLT and Non-degeneracy
Condition

3.1 Proof of the CLT and Eq. (1.10)

Proof First note that by the condition (1.7) combined with the L2-moment condition in (1.9)
we have that

|λ| =
∣∣∣∣E
[
log

∣∣∣∣a1 + b2c1
a2

∣∣∣∣

]∣∣∣∣ ≤
√√√√
E

[(
log

∣∣∣∣a1 + b2c1
a2

∣∣∣∣

)2
]

< ∞.

By (2.2) we can write

log ‖Sn‖ − nλ =
n−1∑

j=1

⎛

⎜⎜⎜⎜
⎝
log

[∣∣∣∣a j + b j+1c j
a j+1

∣∣∣∣

]
− λ

︸ ︷︷ ︸
A j

⎞

⎟⎟⎟⎟
⎠

+ log

[∥∥∥∥∥

[
an

b1
a1
an

cn
b1
a1
cn

]∥∥∥∥∥

]

︸ ︷︷ ︸
Bn

− λ. (3.1)

Our goal will be to apply [12, Theorem 2] to the sequence
{
A j
}
j≥1 to obtain an explicit CLT.

First, it is clear that
{
A j
}
j≥1 is a 1-dependent sequence of randomvariables. One-dependence

means that
{
A1, . . . , A j

}
is independent of {Ak, Ak+1, . . . } whenever k − j > 1. Define C j

by Ci− j = E
[
Ai A j

]
for all i, j ∈ Z. We then have that E

[
A j
] = 0,

C0 = E

[
A2
j

]
= E

[(
log

∣∣∣∣a1 + b2c1
a2

∣∣∣∣

)2
]

− λ2,

and

C1 = C−1 = E [A2A1] = E

[
log

∣∣∣∣a1 + b2c1
a2

∣∣∣∣ log
∣∣∣∣a2 + b3c2

a3

∣∣∣∣

]
− λ2.

By 1-dependence it is clear that Ci = 0 for all |i | > 1.
Applying Diananda’s CLT for stationary m-dependent sequences from [12, Theorem 2]

we have
1√
n
A j

L→ N
(
0, σ 2) ,

123
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where

σ 2 =
1∑

j=−1

C j = E

[(
log

∣
∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣

)2
]

+ 2E

[
log

∣
∣
∣
∣a1 + b2c1

a2

∣
∣
∣
∣ log

∣
∣
∣
∣a2 + b3c2

a3

∣
∣
∣
∣

]
− 3λ2.

By the moment condition (1.7) , (1.9) and Cauchy–Schwarz we have that σ 2 < ∞. A
standard application of Markov’s inequality gives that 1√

n
Bn → 0 in probability. Then, by

Slutsky’s theorem, we have

1√
n

(log ‖Sn‖ − nλ)
L→ N

(
0, σ 2) ,

as desired. 	


3.2 Proof of Proposition 1.2

Proof Suppose σ 2 = 0 in (1.10). We then apply a theorem of Janson [22, Theorem 8.1] to
obtain a characterization of the degenerate case.We follow the notation from [22]. Let {ξi }i≥1
be the i.i.d. sequence of random variables given by {(ai , bi , ci )}i≥1 in S0 = R\ {0} × R

2 as
in the setting of Theorem 1.1. Let Xi := Ai as in (3.1). Recall that Xi is a two-block factor
of ξi since Xi = h (ξi , ξi+1) where h : S2

0 → R is given by

h ((ai , bi , ci ) , (ai+1, bi+1, ci+1)) = log

[∣∣∣∣ai + bi+1ci
ai+1

∣∣∣∣

]
− λ.

Let f : R → R be the identity with S = R, � = 1 in the notation of [22] . The U-statistic
Un in [22, Eq. (3.1)] is the usual sum

Sn =
n∑

i=1

X j .

By [22, Theorem8.1(vi)]wehave thatσ 2 = 0 if and only if there exists a functionϕ : S0 → R

such that
n∑

j=1

X j = ϕ (ξn+1) − ϕ (ξ1)

for all n ≥ 1 so that

n∑

j=1

(
log

[∣∣∣∣a j + b j+1c j
a j+1

∣∣∣∣

]
− λ

)
= ϕ

(
a j+1, b j+1, c j+1

)− ϕ (a1, b1, c1) (3.2)

for all n ≥ 1.
Atomic Case:
Now suppose ξ j has an atom, that is, there exists a (a, b, c) ∈ S0 so that

P
((
a j , b j , c j

) = (a, b, c)
)

> 0. Using n = 1 in (3.2), there exists a function ϕ :
(R\ {0})3 → R such that

log

[∣∣∣∣a1 + b2c1
a2

∣∣∣∣

]
− λ = ϕ ((a2, b2, c2)) − ϕ ((a1, b1, c1)) , a.s.

123
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By independence we know P ((a1, b1, c1) = (a, b, c) , (a2, b2, c2) = (a, b, c)) > 0 and

P ((a1, b1, c1) = (a, b, c) , (a2, b2, c2) = (a, b, c))

= P ((a1, b1, c1) = (a, b, c) , (a2, b2, c2) = (a, b, c))P

(
λ = log

∣
∣
∣
∣a + bc

a

∣
∣
∣
∣

)

so that P
(
λ = log

∣
∣a + bc

a

∣
∣) = 1. Hence

λ = log

∣
∣
∣
∣a + bc

a

∣
∣
∣
∣ .

Now let n = 2 in (3.2), so that by rewriting we have
∣∣
∣
∣

(
a1 + b2c1

a2

)(
a2 + b3c2

a3

)∣∣
∣
∣ = e2λ+ϕ((a3,b3,c3))−ϕ((a1,b1,c1)), a.s.

Define α = P
((
a j , b j , c j

) = (a, b, c)
)

> 0 and use independence with the equation above
to obtain

α2 = P ((a1, b1, c1) = (a, b, c) , (a3, b3, c3) = (a, b, c))

= P ((a1, b1, c1) = (a, b, c) , (a3, b3, c3) = (a, b, c) ,
∣∣∣∣

(
a1 + b2c1

a2

)(
a2 + b3c2

a3

)∣∣∣∣ = e2λ+ϕ((a3,b3,c3))−ϕ((a1,b1,c1))
)

= P ((a1, b1, c1) = (a, b, c) , (a3, b3, c3) = (a, b, c))

× P

(∣∣∣∣

(
a + b2c

a2

)(
a2 + bc2

a

)∣∣∣∣ =
∣∣∣∣a + bc

a

∣∣∣∣

2
)

= α2
P

(∣∣∣∣

(
a + b2c

a2

)(
a2 + bc2

a

)∣∣∣∣ =
∣∣∣∣a + bc

a

∣∣∣∣

2
)

so that ∣∣∣∣

(
a + b2c

a2

)(
a2 + bc2

a

)∣∣∣∣ =
∣∣∣∣a + bc

a

∣∣∣∣

2

, a.s.

or (
a + b2c

a2

)2 (
a2 + bc2

a

)2

=
(
a + bc

a

)4

, a.s.

	


4 Examples: Exact Results

We use the results in Theorem 1.1 to compute the exact Lyapunov exponent λ and variance
σ 2 for the central limit theorem for the products of the following random matrices.

Example 4.1 (Binary) Let Y j =
[
x j

1
x j

1 1
x2j

]

where x j are independent and identically dis-

tributed random variables taking values a, b �= 0,−1 and
(
ab2 + 1

) (
a2b + 1

) �= 0 with
P
(
x j = a

) = p = 1 − P
(
x j = b

)
. Then the Lyapunov exponent is given by

λ = p2 log

∣∣∣∣a + 1

a2

∣∣∣∣+ p (1 − p) log

(∣∣∣∣a + 1

b2

∣∣∣∣

∣∣∣∣b + 1

a2

∣∣∣∣

)
+ (1 − p)2 log

∣∣∣∣b + 1

b2

∣∣∣∣
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and the variance is

σ 2 = p2 (1 + (2 − 3p) p)

(
log

∣
∣
∣
∣a + 1

a2

∣
∣
∣
∣

)2

− 2 (1 − p) p2 log

∣
∣
∣
∣a + 1

a2

∣
∣
∣
∣

(
(3p − 1) log

(∣∣
∣
∣a + 1

b2

∣
∣
∣
∣

∣
∣
∣
∣b + 1

a2

∣
∣
∣
∣

)

+3 (1 − p) p log

(∣∣∣
∣b + 1

b2

∣
∣∣
∣

))

+ (1 − p) (1 + 3 (p − 1) p) p

(
log

(∣∣
∣
∣a + 1

b2

∣
∣
∣
∣

∣
∣
∣
∣b + 1

a2

∣
∣
∣
∣

))2

+ 2 (1 − p)2 (3p − 2) p log

(∣∣
∣
∣a + 1

b2

∣
∣
∣
∣

∣
∣
∣
∣b + 1

a2

∣
∣
∣
∣

)
log

∣
∣
∣
∣b + 1

b2

∣
∣
∣
∣

− (1 − p)2 (3p − 4) p

(
log

∣
∣
∣
∣b + 1

b2

∣
∣
∣
∣

)2

.

In the next few examples we consider the non-invertible matrix

Y j =
[
x j x j
y j y j

]
,

which allow for a simplified computation of exact values. In particular, using Theorem 1.1
we have that

λ = E
[
(log |x1 + y1|)

]
.

Note that by independence we have

E

[
log

∣∣∣∣a1 + b2c1
a2

∣∣∣∣ log
∣∣∣∣a2 + b3c2

a3

∣∣∣∣

]
= E

[
log |x1 + y1| log |x2 + y2|

] = λ2

which allows for the simplification of the variance formula

σ 2 = E
[
(log |x1 + y1|)2

]− λ2.

Example 4.2 (Uniform) Let Y j =
[
x j x j
y j y j

]
where x j , yi are all independent and identically

distributed over the interval [−a, b] where −a ≤ 0 < b. Then the Lyapunov exponent and
variance is given by

λ =

⎧
⎪⎨

⎪⎩

2 log 2 − 3
2 + log b, a = 0, b > 0

2 log 2 − 3
2 + log a, −a < 0, b = 0

log (2b) − 3
2 , −a < 0 < b, a = b

and

σ 2 =

⎧
⎪⎨

⎪⎩

5
4 − 2 (log 2)2 , a = 0, b > 0
5
4 − 2 (log 2)2 , −a < 0, b = 0
5
4 , −a < 0 < b, a = b.

Example 4.3 (Exponential) Let Y j =
[
x j x j
y j y j

]
where x j , yi are all independent and identi-

cally distributed as exponential random variables with parameter θ > 0. Then

λ = 1 − γ − log θ and σ 2 = π2

6
− 1,
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where γ ≈ .57721 is the Euler–Mascheroni constant.

Example 4.4 (Cauchy) Let Y j =
[
x j x j
y j y j

]
where x j , yi are all independent and identically

distributed as a standard Cauchy distribution. Then

λ = log 2 and σ 2 = π2

4
.
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