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Abstract— The use of autonomous underwater vehicles
(AUVs) to accomplish traditionally challenging and dangerous
tasks has proliferated thanks to advances in sensing, navi-
gation, manipulation, and on-board computing technologies.
Utilizing AUVs in underwater human-robot interaction (UHRI)
has witnessed comparatively smaller levels of growth due
to limitations in bi-directional communication and significant
technical hurdles to bridge the gap between analogies with
terrestrial interaction strategies and those that are possible in
the underwater domain. A necessary component to support
UHRI is establishing a system for safe robotic-diver approach
to establish face-to-face communication that considers non-
standard human body pose. In this work, we introduce a
stereo vision system for enhancing UHRI that utilizes three-
dimensional reconstruction from stereo image pairs and ma-
chine learning for localizing human joint estimates. We then
establish a convention for a coordinate system that encodes
the direction the human is facing with respect to the camera
coordinate frame. This allows automatic setpoint computation
that preserves human body scale and can be used as input
to an image-based visual servo control scheme. We show that
our setpoint computations tend to agree both quantitatively
and qualitatively with experimental setpoint baselines. The
methodology introduced shows promise for enhancing UHRI by
improving robotic perception of human orientation underwater.

I. INTRODUCTION

Problems associated with humans and robots interacting,

also referred to as human-robot interaction (HRI), is well-

studied in controlled terrestrial environments [1]. Innovations

in HRI have bolstered adoption of these technologies into

many areas of life, such as manufacturing [2], medicine

[3], long-term care of the elderly [4], military applications

[5], and the underwater domain [6]. This is due in part to

the benefit of allowing robots to take on the dirty, dull,

and dangerous tasks [7] that would otherwise place humans

in direct harm or assist in situations in which it is not

possible for the human to provide the level of persistent

attention required, as in the case of long-term care facilities.

The thought goes that off-loading these tasks to robots will

allow humans to interact with them from relative safety or

convenience, while also performing oversight [8].

Underwater human-robot interaction (UHRI) is much

more challenging, because the underwater domain presents a

formidable environment for robotic sensing. It lacks many of
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Fig. 1: Underwater human robot interaction is enhanced by the
robot’s ability to re-orient itself with respect to the diver, rather
than requiring the diver to re-orient with respect to the robot.

the benefits of the terrestrial domain such as high bandwidth

radio communication, e.g., wireless internet and Bluetooth,

consistent lighting conditions, and localization via global-

positioning satellites. Underwater robots must utilize alter-

native methods to perform the same tasks as their terrestrial

counterparts. Often, expensive sonar-based techniques are

used to perform navigation and localization [9]. Utilizing

visual sensors is also challenging, because differences in

salinity and particulates in the water can occlude and distort

imagery. Creative techniques must be employed to enhance

vision underwater when the conditions are especially de-

graded [10], [11], [12]. However, even with the challenges

of visual imagery, there are instances where utilizing camera

data is preferable to expensive and invasive acoustic systems.

For example, when acoustically susceptible marine life such

as dolphins or whales are present [13], in these instances,

utilizing visual sensing, which is less invasive, is both ethical

and beneficial to the preservation of the marine life.

Divers operate in a similarly sensory-deprived state. Scuba

masks occlude peripheral vision or at the very least can

reduce the diver’s ability to see or perceive dynamic robotic

gestures underwater; acoustic signals are degraded by inhala-

tion and exhalation through the breathing regulator, which

significantly reduces the diver’s ability to hear; and envi-

ronmental conditions such as strong currents, silting from

sediment in the water column, and frigid water temperatures

all contribute to generally high cognitive loads. Sensory-

deprived states for both robots and humans means that in

complex UHRI scenarios, where communication is critical

from both robot-to-human (R2H) and human-to-robot (H2R),

there is a high-probability of information loss. We argue that
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because of these conditions, the robot must have the ability to

autonomously establish face-to-face (F2F) communication.

F2F communication reduces the probability of information

loss by ensuring that the robot and the human are within

a safe distance and in full view of each other. The diver

can see the robot’s movements and vice-versa. The diver

also has the best chance of hearing any acoustically commu-

nicated information. To achieve this F2F configuration, we

propose a stereo vision algorithm to autonomously compute

a desired feature setpoint, which can be used for visual

servo control schemes. This eliminates the need for human-

engineered features and equips the robot with the ability to

infer a desired F2F setpoint from nonstandard body poses

that preserves scale. Scale is important to ensure safe and

consistent approach distances for divers of different shapes.

To our knowledge, the problem of autonomously establishing

F2F communication underwater has not been considered

for general body poses or instances where the robot is

not already within a safe communication distance and can

perceive the human diver’s face.

Many techniques have been devised to establish both

R2H [14] and H2R communication (e.g., [15]). These sys-

tems are supported by complementary techniques to enable

visual robot control to place the robot within a safe distance

of the human [16]. This allows higher fidelity understanding

from both the robot’s and the human’s perspective, since

it is thought that the information exchange is best when

interpreted from the alignment between the human’s eyes and

the robot’s camera [16]. To ensure robust communication, au-

thors in [17] used a transformer-driven network for detecting

diver gaze based on facial mask keypoints. However, their

work does not handle general poses Fig. 2, or those in which

the facial keypoints are not visible.

We argue that a complementary problem to the works

of [16] and [17] is utilizing a two-dimensional pose estima-

tor, along with a stereo visual approach to establish three-

dimensional positions. By doing this, we can accommodate

non-standard human poses, such as those shown in Fig. 2.

This will ultimately enable more complex robotic control for

re-orientation; e.g., when the human is conducting complex

tasks and is unable to re-orient themselves with respect to

the robot, the robot can come to the human. It is from

this perspective that we define our primary contributions to

support UHRI, which can be summarized as follows:

• The aggregation of a diverse torso keypoint dataset and

results from training an off-the-shelf pose estimation

algorithm for two-dimensional human pose estimates

that accommodates non-standard body poses.

• The computation of an alignment vector and establish-

ment of a convention for assigning a coordinate frame

to a human’s facing direction.

• Scale preserving setpoint computations which preserve

different body shapes at different distances between the

robot and the human.

Fig. 2: Example non-standard diver poses that are typical during
scuba diving operations. Diver robot interaction scenarios must
accommodate these poses to be useful for underwater missions.

II. RELATED WORK

The work introduced in this paper exists within the bound-

ary between UHRI and computer vision for pose estimation.

Here we discuss some of the works that influence our

methodology.

Underwater human robot interaction. Various methods

have been proposed for robotic detection and individual

identification of human divers (e.g., [18], [19], [20]) with

features extracted from visual, or spatio-temporal signals.

Others have utilized sonar detection mechanisms to both

directly detect in frequency space the presence of a diver [21]

and reconstructed acoustic images [22], [23]. For explicit

communication between an AUV and divers, both robot-

to-human and human-to-robot methods have been proposed;

e.g., robots have used light [14], motion [6], [24], and other

cues to communicate intent and information to divers, and

fiducials [25], [26], [27], hand gestures [28], [29], [30], [31],

and complex user interface devices [32], [33] have all been

used by divers to control robots. However, it is conceivably

challenging and constraining for divers to use tags or UI

devices while underwater for certain tasks.

Human Pose Estimation. Pose estimation is the task

of determining a set of keypoints that define human joint

positions in an image. Various techniques exist, but most

rely on convolutional neural networks (CNNs) [34] to per-

form feature extraction and output heatmaps over candidate

locations [35], [36], [37].

The networks are trained to regress from heatmaps to

perform keypoint localization by selecting the location with

the highest probability as the most likely joint location.

Localizing joint locations accurately is a significant chal-

lenge underwater, which is exacerbated by inconsistent light-

ing conditions and the lack of saliency, or pronounced

features, within the typical diver silhouette. Chavez et al. uti-

lize a recurrent neural network (RNN) with long short-

term (LSTM) cells to learn the sequential joint orientations

affixed to the human diver, exploiting stereo vision and 17
inertial measurement units (IMUs) that communicate the

diver’s movements acoustically. We recognize that placing

additional burden on the diver’s already intense cognitive

load is problematic. Instead, we endeavor to construct F2F

re-orientation in such a way that the robot re-orients itself

with respect to the human based off of image observations

alone.

III. THE FACE-TO-FACE REORIENTATION APPROACH

The F2F scale-preserving setpoint computation comprises

two components. First, a pose estimation component local-
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izes torso keypoints, and second, an alignment vector com-

putation establishes a convention for affixing a right-handed

coordinate system to the human, from which we compute

the transformation that anti-aligns the body frame coordinate

system with the camera frame. Perspective projection allows

us to recover the ideal setpoint, which is the configuration

in which the human is facing the camera.

While a future goal is to use a three-dimensional pose

estimation algorithm on monocular camera data, much of the

work in three-dimensional pose estimation first uses multi-

camera setups to triangulate pose keypoints to provide a

z-component to ground truth labeled data. Pose estimation

algorithms can then be trained to directly predict a three-

dimensional vector from a single monocular image, see [38],

[39], for example. In the underwater domain, instrumenting

an experimental setup with calibrated multi-view cameras is

a challenge and impractical for most setups. To that end,

we utilize calibrated stereo cameras affixed to a robot to

collect and aggregate images of human divers. We trained a

deep neural network on labeled image data to localize two-

dimensional human joints. During runtime, we utilize stereo

reconstruction based on pose alone. Dense stereo matching

is found to be ineffective for the underwater environment.

The typical diver silhouette almost entirely appears the

same to traditional block matching algorithms or even more

sophisticated post-processing techniques that fill in gaps

in the disparity map. From the scale-preserving setpoint

computation, we preserve different body shapes to ensure

that the robot can automatically predict the optimal alignment

or setpoint for the visual control scheme, without need for

human intervention or calibration before the beginning of

the mission. Instead, the robot can detect the setpoint using

our method and perform classic visual control schemes. A

detailed account of visual servo control schemes is beyond

the scope of the present work, but an extensive treatment can

be found in [40], [41], [42].

Stereo Diver Pose Dataset. We aggregated and labeled

6, 711 stereo image pairs from a closed-water environment

in which a stereo vision camera was used to collect images

of divers in diverse poses. The images collected are all of

size 640 × 480 pixels, and feature a single diver in a full

wet suit and dive gear. The hands and face are exposed,

except for parts of the face, which are partially obscured by

the breathing regulator and mask. The poses were labeled

according to the convention shown in Fig. 3. We argue that

the points that encompass the torso, the midpoint of the

eyes, and the base of the neck, are the primary keypoints

for robotic re-orientation. The torso keypoints do not change

relative to each other throughout normal diving operations,

whereas the limbs are often moving to stabilize the diver’s

position in the water. The midpoint of the eyes was also

utilized to accurately reflect the midpoint of the body itself.

Without this additional keypoint, the robot would come face-

to-face lower than expected with the diver, inhibiting the

most efficient communication. Example poses are shown in

Fig. 4.

Pose Estimation. With the aggregated dataset, we train

Fig. 3: Pose keypoint convention used by F2F along with a sample
labeled image. The pose estimator may provide more anatomical
keypoints, but F2F only requires these six.

Fig. 4: Sample raw images from the F2F pose dataset. The
dataset contains diverse poses to represent the broadest possible
set of orientations a diver can assume while conducting underwater
operations.

a deep neural network based on the DeepLabCut (DLC)

framework [43], [44] for torso keypoint estimation. Specif-

ically, we train a ResNet-50-based neural network using

95% of the dataset, or approximately 6, 375 images, for

500, 000 training iterations. We find the test error to be 12.75
pixels, and the train error at 11.14 pixels. We then use a

threshold p-cutoff of 0.05 to condition the (x,y) coordinates

for future analysis. While the error might seem high, our goal

is to quantify the extent to which we consider alignment

as face-to-face interaction. To that end, we do not need

nearly-optimal keypoint configurations, but localizations that

are good enough to recover sparse 3D reconstructions are

sufficient; we find that approximately 10 pixels of error

provides enough accuracy for our application.

Examples from the pose estimator evaluated on the test

dataset are shown in Fig. 5 below. Generally, DLC performs

adequately localizing the joints. However, there are times

where even variations in labeling likely contribute to issues

in localization. For example, if the joint is occluded, it is

possible the DLC network will be unable to predict location.

Alignment Coordinate System Convention. A key con-

tribution of this work is the computation of the alignment

vector. The alignment vector extends perpendicularly to the

plane defined by the torso of the diver. This serves as the

anchor vector, which allows us to define a coordinate system

that is attached to the diver. To construct this vector, we use
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Fig. 5: DeepLabCut evaluation on the F2F test dataset. Cross
markers indicate ground truth labels, and dots indicate DeepLabCut
estimations with confidences p > pcutoff = 0.05.

a set of joint location keypoints from our pose estimation

network. Let k⃗b define the bridge of the nose, k⃗n define the

base of the neck, k⃗rs define the right shoulder, k⃗rh define

the right hip, k⃗lh define the left hip, and k⃗ls define the left

shoulder.

After performing stereo image rectification and triangu-

lating based on joint localizations from both the left and

right image pairs, the vectors k⃗i ∈ K, where i corresponds

to a specific joint, are defined in three-dimensional camera

coordinates as (cxi,
cyi,

czi). Let s⃗i denote the corresponding

projection of the point k⃗i onto the image plane of the robot’s

camera. The projection s⃗i = (ui, vi) is a point defined in the

image plane, where ui ∈ [0, N ] and vi ∈ [0,M ], and N,M

are the image width and height, respectively. To compute the

alignment vector, we define the following steps.

1) We compute the center of the predicted keypoints as

k⃗o = ⟨k⃗⟩
k⃗∈K

, where ⟨·⟩ defines the vector average

computation. The resultant vector k⃗o is located approx-

imately center of mass and is skewed toward the upper

part of the torso.

2) We define several difference vector quantities that exist

on the torso plane as

k⃗lsh = k⃗ls − k⃗lh k⃗nlh = k⃗n − k⃗lh (1)

k⃗nrh = k⃗n − k⃗rh k⃗rsh = k⃗rs − k⃗rh. (2)

These quantities are needed to establish the relation-

ships between joint locations, effectively defining the

torso plane and conditioning the proceeding analysis

with respect to the torso plane.

3) We compute the alignment direction (or the diver’s

facing direction) by taking the average direction of

the cross product between the difference vectors of the

torso and neck joints. This defines a direction perpen-

dicular to the plane defined by the torso keypoints

k⃗l× = k⃗lsh × k⃗nlh (3)

k⃗r× = k⃗nrh × k⃗rsh. (4)

To compute the average direction and define a unit

vector, we first take the average, and then we divide

by the vector L2-norm

cẑB ≡
⟨k⃗r× , k⃗l×⟩

∥⟨k⃗r× , k⃗l×⟩∥2
. (5)

The alignment vector given by (5) points in a direction

perpendicular to the plane defined by the torso key-

points. We now affix a right-handed coordinate system

to k⃗o, with cẑB aligned along the direction given in

(5). We choose cŷB to be the vector that points along

the direction of the midpoint between hip joints. This

is given by computing the midpoint of the line segment

connecting the hip joints

k⃗midpt = ⟨k⃗lh, k⃗rh⟩. (6)

4) From this we compute the unit vector that points from

the center of mass vector k⃗o to k⃗midpt. This unit vector

is defined to be cŷB

cŷB =
k⃗midpt − k⃗o

∥k⃗midpt − k⃗o∥2
. (7)

5) Finally, the cx̂B is computed through a cross product
cx̂B = cŷB ×

cẑB . Together these constitute the body

frame cFB = [cx̂B ,
cŷB ,

cẑB , k⃗o] of the human diver,

affixed to the midpoint of the extracted pose keypoints,

with the cẑB aligned in the direction perpendicular to

the plane defined by the torso keypoints. It is from this

that we can then compute the ideal pose configuration

by anti-aligning the body frame with the camera frame

unit vectors.

The preceding analysis computes the body frame cFB

with respect to the camera frame. To compute the pose

setpoint for a visual control scheme, we need to compute

the transformation that anti-aligns the camera frame and the

body frame. That is, there exists some transformation T̃ that

yields an ideal configuration of the body frame cF∗
B

cF∗
B = T̃cFB . (8)

This transformation is not known a priori.

For a camera that has z-axis along the optical axis, a

right-facing x-axis, and a down-facing y-axis, the following

constraints hold

cẑ∗B ·
cẑ = −1 cx̂∗

B ·
cx̂ = −1 cŷ∗B ·

cŷ = 1. (9)

From these equations, we compute the rotation matrix

required to align the body frame with respect to the camera

frame to be in an F2F orientation as

cF∗
B = T̃cFB . (10)

The transformation that aligns the axes can be computed

using the Kabsch algorithm [45] which minimizes a root-

mean-square error function to find the optimal rotation matrix

that aligns a set of vectors. The keen observer will note

that this alignment does not quite yield the configuration

desired. In fact, it aligns the coordinate systems such that

the human would be facing away from the robot’s camera.

To anti-align the coordinate systems, we define T̃← Ry(π)T̃.

This produces the desired rotation.

Together, along with a translation constraint, which defines

how close the keypoints should appear to the camera frame,
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Fig. 6: Two divers of different body shapes have different setpoints
at the same scale, in this case 2 m from the camera. The crosses
in the right-hand figure are the baseline setpoints from the diver
in the left-hand image. The points have been shifted to center on
the mean of the keypoints in the right-hand image. F2F produces
scale aware setpoints, such that the robot can utilize visual servo
techniques to ensure safe approach from non-standard body poses.

1 m 2 m 3 m

Fig. 7: Setpoints used as baselines for comparing projections from
reconstruction and alignment. Note that setpoint baselines (colored
dots) have been shifted to the center of the image to accommodate
for differences in image capture that occurred due to strong ocean
currents that made station keeping challenging for the divers.

or the robot, these can be used to compute the components

of the transformation matrix. Finally, perspective projection

using the camera intrinsics yields the appearance of the

points in the image plane by s⃗∗ = KT̃k⃗. The vector of points

s⃗∗ is the scale-preserved setpoint.

The benefits of this approach are two-fold. By computing a

body-fixed frame, we can compute the setpoint for a visual-

servo control scheme that is scale-aware. This means that

different diver body shapes will appear as different sizes

depending on the scale heuristic. For example, the divers

shown in Fig. 6 are at the same distance from the camera,

but the ideal setpoint is very different.

As a result, the control scheme would indicate that the

robot should move closer to achieve the same level of error

between the setpoint and the observed pose. Of course, this

could potentially place the diver in harms way if the robot

malfunctions.

IV. EXPERIMENTAL RESULTS

Experiments were conducted using data collected from

divers in both closed-water (i.e., pool) settings and in the

ocean waters off the coast of Barbados, West Indies. For

this work, we focus on measuring the error between base-

line setpoints and constructed setpoints using our alignment

vector convention.

To collect setpoint baselines, a diver for whom we had

existing pose data was asked to station keep above an exper-

imental trackline. The trackline was measured to 1, 2, and

3 m distances. The camera operator asked the diver to spend

approximately 15 seconds station keeping during acquisition

of stereo image data. The camera operator then signaled the

diver to move forward. This process was repeated until the

diver had been recorded at all three distances. The setpoint

baseline was computed by using a simple by-hand label

technique that mimicked what a field operator or end-user

would do during calibration of a visual servo system. This

hand measurement is shown at the three distances in Fig. 7.

We then performed experiments using the setpoints ex-

tracted from the three distances and comparing the euclidean

error and standard deviation of the error between six canon-

ical pose positions. These results are summarized in the

table below. Note that 50 frames of data at each canonical

pose were used during the error computation. A reasonable

expectation might be on the order of the error of the pose

estimation network. In this case, approximately 60 pixels of

error across all projected keypoints is reasonable. Clearly

we do not observe that low of error, except in exceptional

cases. There are a couple of reasons for this. The pose

estimation network runs inference on both the left- and

right-hand image pairs, and any fluctuations caused from

camera motion or inconsistent lighting conditions can cause

significant errors during triangulation. To that end, notice

that we have also shown not only the average error in the

figures of Fig. 8 but also the minimum error observed during

the frame acquisition. Some poses appear exceptionally good

qualitatively and tend to agree with the baselines. There is

a trend that indicates reconstruction and projection is better

at distances that exceed 1 m. This is likely caused by better

pose estimations. Most of the dataset on which we trained

DLC was collected at distances of approximately 2–3 m from

the diver. As a result, predictions from the pose network are

better and more consistent at these distances, likely causing

reductions in reconstruction errors throughout the frames

used for analysis.

The results summarized in Table I demonstrate that we

achieve reasonable projection errors for most poses. The

visual results for the 1 m poses are shown in Figure 8 for

the six canonical pose states.

V. FUTURE WORK

Scale-preservation and automatic setpoint computation al-

lows a robot to autonomously detect the desired keypoint

configuration, without need for prior calibration. This means

in a complex mission, the robot has the ability to re-orient it-

self with respect to the diver to establish F2F communication.

However, the work described has shortcomings. First, totally

occluded joints pose a problem for reconstruction, because

lateral views appear at the same distance. To subvert this,
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Pose 1 m 2 m 3 m Error across distances

Prone (surface) 175.39± 62.67 227.19± 8.3 322.61± 0.0 241.73± 23.66

Prone (bottom) 181.43± 64.31 192.04± 0.0 157.98± 6.51 177.15± 23.6

Upright (away) 367.4± 125.43 61.9± 0.98 88.81± 0.0 173.99± 52.7

Upright (facing) 166.84± 0.0 383.12± 157.83 92.67± 31.70 214.21± 63.17

Inverted (facing) 176.71± 43.63 101.43± 12.77 224.08± 71.63 167.41± 42.68

Inverted (away) 366.11± 36.35 172.28± 43.43 131.31± 58.75 223.23± 46.18

Error across poses 238.98± 55.40 189.66± 37.22 170.22± 33.38

TABLE I: Summary of projection errors between setpoint baselines at 1, 2, and 3 m distances and projections from scale-preserving
computations, averaged over 50 projection estimates for image resolution 640× 480. Errors are reported as mean±standard deviation in
pixel units. Each error is the sum over all keypoints (×6) of the Euclidean distance between the ground truth and the predicted keypoint
location. A standard deviation of zero indicates observation of a single alignment over 50 projection estimates.

Prone (surface) Prone (bottom) Upright (facing)

Upright (away) Inverted (facing) Inverted (away)

Fig. 8: The projections we achieve through the alignment system are reasonable, given the challenges of reconstruction. The cross markers
indicate the 1 m setpoint baseline computed from sea trial data. The large dots indicate projections from the alignment system. A standard
deviation of zero indicates instances in which the system was unable to triangulate except for a single instance during the frame acquisition.

anthropometric data ratios (ADRs), which describe ratios be-

tween human limbs, can be used to regularize depth estimates

so that totally lateral views do not appear to have joints at

the same distance. Another issue with the present approach

is that the algorithm does not account for instances where

the diver’s body is positioned behind an obstacle relative

to the camera’s origin. Future work will include context-

aware approach strategies that utilize the entirety of the scene

for understanding the diver’s behavior and selecting the best

place to approach from, particularly with regard to complex

mission tasks. We will conduct control experiments using the

F2F system in pool environments, where evaluation of the

control can be better constrained. The ocean environment is

susceptible to external perturbations from currents making it

challenging to evaluate the efficacy of the F2F system.

VI. CONCLUSION

We have demonstrated that our methodology enables au-

tomatic setpoint computation from human diver pose obser-

vations, which could permit more complex UHRI scenarios

where the robot must infer automatically the best orientation

of target features to navigate within a safe distance of the

human diver. We have shown that our method works well for

1, 2, and 3 m baselines, except in cases of poses in which

a joint is totally occluded and the triangulation is unable to

resolve the depth at which the occluded joint appears.
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