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Abstract—The use of autonomous underwater vehicles
(AUVs) to accomplish traditionally challenging and dangerous
tasks has proliferated thanks to advances in sensing, navi-
gation, manipulation, and on-board computing technologies.
Utilizing AUVs in underwater human-robot interaction (UHRI)
has witnessed comparatively smaller levels of growth due
to limitations in bi-directional communication and significant
technical hurdles to bridge the gap between analogies with
terrestrial interaction strategies and those that are possible in
the underwater domain. A necessary component to support
UHRI is establishing a system for safe robotic-diver approach
to establish face-to-face communication that considers non-
standard human body pose. In this work, we introduce a
stereo vision system for enhancing UHRI that utilizes three-
dimensional reconstruction from stereo image pairs and ma-
chine learning for localizing human joint estimates. We then
establish a convention for a coordinate system that encodes
the direction the human is facing with respect to the camera
coordinate frame. This allows automatic setpoint computation
that preserves human body scale and can be used as input
to an image-based visual servo control scheme. We show that
our setpoint computations tend to agree both quantitatively
and qualitatively with experimental setpoint baselines. The
methodology introduced shows promise for enhancing UHRI by
improving robotic perception of human orientation underwater.

I. INTRODUCTION

Problems associated with humans and robots interacting,
also referred to as human-robot interaction (HRI), is well-
studied in controlled terrestrial environments [1]. Innovations
in HRI have bolstered adoption of these technologies into
many areas of life, such as manufacturing [2], medicine
[3], long-term care of the elderly [4], military applications
[5], and the underwater domain [6]. This is due in part to
the benefit of allowing robots to take on the dirty, dull,
and dangerous tasks [7] that would otherwise place humans
in direct harm or assist in situations in which it is not
possible for the human to provide the level of persistent
attention required, as in the case of long-term care facilities.
The thought goes that off-loading these tasks to robots will
allow humans to interact with them from relative safety or
convenience, while also performing oversight [8].

Underwater human-robot interaction (UHRI) is much
more challenging, because the underwater domain presents a
formidable environment for robotic sensing. It lacks many of
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Fig. 1: Underwater human robot interaction is enhanced by the
robot’s ability to re-orient itself with respect to the diver, rather
than requiring the diver to re-orient with respect to the robot.

the benefits of the terrestrial domain such as high bandwidth
radio communication, e.g., wireless internet and Bluetooth,
consistent lighting conditions, and localization via global-
positioning satellites. Underwater robots must utilize alter-
native methods to perform the same tasks as their terrestrial
counterparts. Often, expensive sonar-based techniques are
used to perform navigation and localization [9]. Utilizing
visual sensors is also challenging, because differences in
salinity and particulates in the water can occlude and distort
imagery. Creative techniques must be employed to enhance
vision underwater when the conditions are especially de-
graded [10], [11], [12]. However, even with the challenges
of visual imagery, there are instances where utilizing camera
data is preferable to expensive and invasive acoustic systems.
For example, when acoustically susceptible marine life such
as dolphins or whales are present [13], in these instances,
utilizing visual sensing, which is less invasive, is both ethical
and beneficial to the preservation of the marine life.

Divers operate in a similarly sensory-deprived state. Scuba
masks occlude peripheral vision or at the very least can
reduce the diver’s ability to see or perceive dynamic robotic
gestures underwater; acoustic signals are degraded by inhala-
tion and exhalation through the breathing regulator, which
significantly reduces the diver’s ability to hear; and envi-
ronmental conditions such as strong currents, silting from
sediment in the water column, and frigid water temperatures
all contribute to generally high cognitive loads. Sensory-
deprived states for both robots and humans means that in
complex UHRI scenarios, where communication is critical
from both robot-to-human (R2H) and human-to-robot (H2R),
there is a high-probability of information loss. We argue that
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because of these conditions, the robot must have the ability to
autonomously establish face-to-face (F2F) communication.
F2F communication reduces the probability of information
loss by ensuring that the robot and the human are within
a safe distance and in full view of each other. The diver
can see the robot’s movements and vice-versa. The diver
also has the best chance of hearing any acoustically commu-
nicated information. To achieve this F2F configuration, we
propose a stereo vision algorithm to autonomously compute
a desired feature setpoint, which can be used for visual
servo control schemes. This eliminates the need for human-
engineered features and equips the robot with the ability to
infer a desired F2F setpoint from nonstandard body poses
that preserves scale. Scale is important to ensure safe and
consistent approach distances for divers of different shapes.
To our knowledge, the problem of autonomously establishing
F2F communication underwater has not been considered
for general body poses or instances where the robot is
not already within a safe communication distance and can
perceive the human diver’s face.

Many techniques have been devised to establish both
R2H [14] and H2R communication (e.g., [15]). These sys-
tems are supported by complementary techniques to enable
visual robot control to place the robot within a safe distance
of the human [16]. This allows higher fidelity understanding
from both the robot’s and the human’s perspective, since
it is thought that the information exchange is best when
interpreted from the alignment between the human’s eyes and
the robot’s camera [16]. To ensure robust communication, au-
thors in [17] used a transformer-driven network for detecting
diver gaze based on facial mask keypoints. However, their
work does not handle general poses Fig. 2, or those in which
the facial keypoints are not visible.

We argue that a complementary problem to the works
of [16] and [17] is utilizing a two-dimensional pose estima-
tor, along with a stereo visual approach to establish three-
dimensional positions. By doing this, we can accommodate
non-standard human poses, such as those shown in Fig. 2.
This will ultimately enable more complex robotic control for
re-orientation; e.g., when the human is conducting complex
tasks and is unable to re-orient themselves with respect to
the robot, the robot can come to the human. It is from
this perspective that we define our primary contributions to
support UHRI, which can be summarized as follows:

o The aggregation of a diverse torso keypoint dataset and
results from training an off-the-shelf pose estimation
algorithm for two-dimensional human pose estimates
that accommodates non-standard body poses.

o The computation of an alignment vector and establish-
ment of a convention for assigning a coordinate frame
to a human’s facing direction.

o Scale preserving setpoint computations which preserve
different body shapes at different distances between the
robot and the human.

Fig. 2: Example non-standard diver poses that are typical during
scuba diving operations. Diver robot interaction scenarios must
accommodate these poses to be useful for underwater missions.

II. RELATED WORK

The work introduced in this paper exists within the bound-
ary between UHRI and computer vision for pose estimation.
Here we discuss some of the works that influence our
methodology.

Underwater human robot interaction. Various methods
have been proposed for robotic detection and individual
identification of human divers (e.g., [18], [19], [20]) with
features extracted from visual, or spatio-temporal signals.
Others have utilized sonar detection mechanisms to both
directly detect in frequency space the presence of a diver [21]
and reconstructed acoustic images [22], [23]. For explicit
communication between an AUV and divers, both robot-
to-human and human-to-robot methods have been proposed;
e.g., robots have used light [14], motion [6], [24], and other
cues to communicate intent and information to divers, and
fiducials [25], [26], [27], hand gestures [28], [29], [30], [31],
and complex user interface devices [32], [33] have all been
used by divers to control robots. However, it is conceivably
challenging and constraining for divers to use tags or Ul
devices while underwater for certain tasks.

Human Pose Estimation. Pose estimation is the task
of determining a set of keypoints that define human joint
positions in an image. Various techniques exist, but most
rely on convolutional neural networks (CNNs) [34] to per-
form feature extraction and output heatmaps over candidate
locations [35], [36], [37].

The networks are trained to regress from heatmaps to
perform keypoint localization by selecting the location with
the highest probability as the most likely joint location.

Localizing joint locations accurately is a significant chal-
lenge underwater, which is exacerbated by inconsistent light-
ing conditions and the lack of saliency, or pronounced
features, within the typical diver silhouette. Chavez et al. uti-
lize a recurrent neural network (RNN) with long short-
term (LSTM) cells to learn the sequential joint orientations
affixed to the human diver, exploiting stereo vision and 17
inertial measurement units (IMUs) that communicate the
diver’s movements acoustically. We recognize that placing
additional burden on the diver’s already intense cognitive
load is problematic. Instead, we endeavor to construct F2F
re-orientation in such a way that the robot re-orients itself
with respect to the human based off of image observations
alone.

III. THE FACE-TO-FACE REORIENTATION APPROACH

The F2F scale-preserving setpoint computation comprises
two components. First, a pose estimation component local-
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izes torso keypoints, and second, an alignment vector com-
putation establishes a convention for affixing a right-handed
coordinate system to the human, from which we compute
the transformation that anti-aligns the body frame coordinate
system with the camera frame. Perspective projection allows
us to recover the ideal setpoint, which is the configuration
in which the human is facing the camera.

While a future goal is to use a three-dimensional pose
estimation algorithm on monocular camera data, much of the
work in three-dimensional pose estimation first uses multi-
camera setups to triangulate pose keypoints to provide a
z-component to ground truth labeled data. Pose estimation
algorithms can then be trained to directly predict a three-
dimensional vector from a single monocular image, see [38],
[39], for example. In the underwater domain, instrumenting
an experimental setup with calibrated multi-view cameras is
a challenge and impractical for most setups. To that end,
we utilize calibrated stereo cameras affixed to a robot to
collect and aggregate images of human divers. We trained a
deep neural network on labeled image data to localize two-
dimensional human joints. During runtime, we utilize stereo
reconstruction based on pose alone. Dense stereo matching
is found to be ineffective for the underwater environment.
The typical diver silhouette almost entirely appears the
same to traditional block matching algorithms or even more
sophisticated post-processing techniques that fill in gaps
in the disparity map. From the scale-preserving setpoint
computation, we preserve different body shapes to ensure
that the robot can automatically predict the optimal alignment
or setpoint for the visual control scheme, without need for
human intervention or calibration before the beginning of
the mission. Instead, the robot can detect the setpoint using
our method and perform classic visual control schemes. A
detailed account of visual servo control schemes is beyond
the scope of the present work, but an extensive treatment can
be found in [40], [41], [42].

Stereo Diver Pose Dataset. We aggregated and labeled
6,711 stereo image pairs from a closed-water environment
in which a stereo vision camera was used to collect images
of divers in diverse poses. The images collected are all of
size 640 x 480 pixels, and feature a single diver in a full
wet suit and dive gear. The hands and face are exposed,
except for parts of the face, which are partially obscured by
the breathing regulator and mask. The poses were labeled
according to the convention shown in Fig. 3. We argue that
the points that encompass the torso, the midpoint of the
eyes, and the base of the neck, are the primary keypoints
for robotic re-orientation. The torso keypoints do not change
relative to each other throughout normal diving operations,
whereas the limbs are often moving to stabilize the diver’s
position in the water. The midpoint of the eyes was also
utilized to accurately reflect the midpoint of the body itself.
Without this additional keypoint, the robot would come face-
to-face lower than expected with the diver, inhibiting the
most efficient communication. Example poses are shown in
Fig. 4.

Pose Estimation. With the aggregated dataset, we train
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Fig. 3: Pose keypoint convention used by F2F along with a sample
labeled image. The pose estimator may provide more anatomical
keypoints, but F2F only requires these six.
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Fig. 4: Sample raw images from the F2F pose dataset. The
dataset contains diverse poses to represent the broadest possible
set of orientations a diver can assume while conducting underwater
operations.

a deep neural network based on the DeepLabCut (DLC)
framework [43], [44] for torso keypoint estimation. Specif-
ically, we train a ResNet-50-based neural network using
95% of the dataset, or approximately 6,375 images, for
500, 000 training iterations. We find the test error to be 12.75
pixels, and the train error at 11.14 pixels. We then use a
threshold p-cutoff of 0.05 to condition the (x,y) coordinates
for future analysis. While the error might seem high, our goal
is to quantify the extent to which we consider alignment
as face-to-face interaction. To that end, we do not need
nearly-optimal keypoint configurations, but localizations that
are good enough to recover sparse 3D reconstructions are
sufficient; we find that approximately 10 pixels of error
provides enough accuracy for our application.

Examples from the pose estimator evaluated on the test
dataset are shown in Fig. 5 below. Generally, DLC performs
adequately localizing the joints. However, there are times
where even variations in labeling likely contribute to issues
in localization. For example, if the joint is occluded, it is
possible the DLC network will be unable to predict location.

Alignment Coordinate System Convention. A key con-
tribution of this work is the computation of the alignment
vector. The alignment vector extends perpendicularly to the
plane defined by the torso of the diver. This serves as the
anchor vector, which allows us to define a coordinate system
that is attached to the diver. To construct this vector, we use
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Fig. 5: DeepLabCut evaluation on the F2F test dataset. Cross
markers indicate ground truth labels, and dots indicate DeepLabCut
estimations with confidences p > peuworr = 0.05.

a set of joint location keypoints from our pose estimation
network. Let Eb define the bridge of the nose, En define the
base of the neck, Ers define the right shoulder, Erh define
the right hip, Elh define the left hip, and Els define the left
shoulder.

After performing stereo image rectification and triangu-
lating based on joint localizations from both the left and
right image pairs, the vectors k; € K, where i corresponds
to a specific joint, are defined in three-dimensional camera
coordinates as (°z;, “y;, “z;). Let §; denote the corresponding
projection of the point El onto the image plane of the robot’s
camera. The projection 3; = (u;, v;) is a point defined in the
image plane, where u; € [0, N] and v; € [0, M], and N, M
are the image width and height, respectively. To compute the
alignment vector, we define the following steps.

1) We compute the center of the predicted keypoints as
ko = (k)jcx> Where (-) defines the vector average
computation. The resultant vector ko is located approx-
imately center of mass and is skewed toward the upper
part of the torso.

2) We define several difference vector quantities that exist
on the torso plane as

klsh = kls - k]h

knrh = kn — Frh krsh = krs - krh- (2)
These quantities are needed to establish the relation-
ships between joint locations, effectively defining the
torso plane and conditioning the proceeding analysis
with respect to the torso plane.

3) We compute the alignment direction (or the diver’s
facing direction) by taking the average direction of
the cross product between the difference vectors of the
torso and neck joints. This defines a direction perpen-
dicular to the plane defined by the torso keypoints

Elx = Figh X Ko 3)
Erx = ]anh X Ersh~ (4)

— - —

Ko = Fn — kin (D

To compute the average direction and define a unit
vector, we first take the average, and then we divide
by the vector L2-norm

—

Erx 3 kl><>
(e, K ) 2

—~

C?:’B =

(&)

The alignment vector given by (5) points in a direction
perpendicular to the plane defined by the torso key-
points. We now affix a right-handed coordinate system
to Eo, with °Zp aligned along the direction given in
(5). We choose “yp to be the vector that points along
the direction of the midpoint between hip joints. This
is given by computing the midpoint of the line segment
connecting the hip joints

Emidpl = (i, Enn)- (6)

4) From this we compute the unit vector that points from
the center of mass vector k, to kpigp. This unit vector
is defined to be “yp

kmidpt - ko

Hkmidpt - koH2

5) Finally, the “¢p is computed through a cross product
°zp = “yp x °zZp. Together these constitute the body
frame *Fp = [‘@p, °YB, ‘B, EO] of the human diver,
affixed to the midpoint of the extracted pose keypoints,
with the “Zp aligned in the direction perpendicular to
the plane defined by the torso keypoints. It is from this
that we can then compute the ideal pose configuration
by anti-aligning the body frame with the camera frame
unit vectors.

)

“Up =

The preceding analysis computes the body frame °Fp
with respect to the camera frame. To compute the pose
setpoint for a visual control scheme, we need to compute
the transformation that anti-aligns the camera frame and the
body frame. That is, there exists some transformation T that
yields an ideal configuration of the body frame “F5

°Fp =TFp. (8)

This transformation is not known a priori.

For a camera that has z-axis along the optical axis, a
right-facing x-axis, and a down-facing y-axis, the following
constraints hold

cgr s =_1

‘Tp-‘c=-1 Cgp-‘g=1. (9

From these equations, we compute the rotation matrix
required to align the body frame with respect to the camera
frame to be in an F2F orientation as

°Fj =T Fg. (10)

The transformation that aligns the axes can be computed
using the Kabsch algorithm [45] which minimizes a root-
mean-square error function to find the optimal rotation matrix
that aligns a set of vectors. The keen observer will note
that this alignment does not quite yield the configuration
desired. In fact, it aligns the coordinate systems such that
the human would be facing away from the robot’s camera.
To anti-align the coordinate systems, we define T ¢ R, (7)T.
This produces the desired rotation.

Together, along with a translation constraint, which defines
how close the keypoints should appear to the camera frame,
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Fig. 6: Two divers of different body shapes have different setpoints
at the same scale, in this case 2 m from the camera. The crosses
in the right-hand figure are the baseline setpoints from the diver
in the left-hand image. The points have been shifted to center on
the mean of the keypoints in the right-hand image. F2F produces
scale aware setpoints, such that the robot can utilize visual servo
techniques to ensure safe approach from non-standard body poses.

1m 2 m 3m

Fig. 7: Setpoints used as baselines for comparing projections from
reconstruction and alignment. Note that setpoint baselines (colored
dots) have been shifted to the center of the image to accommodate
for differences in image capture that occurred due to strong ocean
currents that made station keeping challenging for the divers.

or the robot, these can be used to compute the components
of the transformation matrix. Finally, perspective projection
using the camera intrinsics yields the appearance of the
points in the image plane by §* = KTFk. The vector of points
§* is the scale-preserved setpoint.

The benefits of this approach are two-fold. By computing a
body-fixed frame, we can compute the setpoint for a visual-
servo control scheme that is scale-aware. This means that
different diver body shapes will appear as different sizes
depending on the scale heuristic. For example, the divers
shown in Fig. 6 are at the same distance from the camera,
but the ideal setpoint is very different.

As a result, the control scheme would indicate that the
robot should move closer to achieve the same level of error
between the setpoint and the observed pose. Of course, this
could potentially place the diver in harms way if the robot
malfunctions.

IV. EXPERIMENTAL RESULTS

Experiments were conducted using data collected from
divers in both closed-water (i.e., pool) settings and in the
ocean waters off the coast of Barbados, West Indies. For

this work, we focus on measuring the error between base-
line setpoints and constructed setpoints using our alignment
vector convention.

To collect setpoint baselines, a diver for whom we had
existing pose data was asked to station keep above an exper-
imental trackline. The trackline was measured to 1, 2, and
3 m distances. The camera operator asked the diver to spend
approximately 15 seconds station keeping during acquisition
of stereo image data. The camera operator then signaled the
diver to move forward. This process was repeated until the
diver had been recorded at all three distances. The setpoint
baseline was computed by using a simple by-hand label
technique that mimicked what a field operator or end-user
would do during calibration of a visual servo system. This
hand measurement is shown at the three distances in Fig. 7.

We then performed experiments using the setpoints ex-
tracted from the three distances and comparing the euclidean
error and standard deviation of the error between six canon-
ical pose positions. These results are summarized in the
table below. Note that 50 frames of data at each canonical
pose were used during the error computation. A reasonable
expectation might be on the order of the error of the pose
estimation network. In this case, approximately 60 pixels of
error across all projected keypoints is reasonable. Clearly
we do not observe that low of error, except in exceptional
cases. There are a couple of reasons for this. The pose
estimation network runs inference on both the left- and
right-hand image pairs, and any fluctuations caused from
camera motion or inconsistent lighting conditions can cause
significant errors during triangulation. To that end, notice
that we have also shown not only the average error in the
figures of Fig. 8 but also the minimum error observed during
the frame acquisition. Some poses appear exceptionally good
qualitatively and tend to agree with the baselines. There is
a trend that indicates reconstruction and projection is better
at distances that exceed 1 m. This is likely caused by better
pose estimations. Most of the dataset on which we trained
DLC was collected at distances of approximately 2—3 m from
the diver. As a result, predictions from the pose network are
better and more consistent at these distances, likely causing
reductions in reconstruction errors throughout the frames
used for analysis.

The results summarized in Table I demonstrate that we
achieve reasonable projection errors for most poses. The
visual results for the 1 m poses are shown in Figure 8 for
the six canonical pose states.

V. FUTURE WORK

Scale-preservation and automatic setpoint computation al-
lows a robot to autonomously detect the desired keypoint
configuration, without need for prior calibration. This means
in a complex mission, the robot has the ability to re-orient it-
self with respect to the diver to establish F2F communication.
However, the work described has shortcomings. First, totally
occluded joints pose a problem for reconstruction, because
lateral views appear at the same distance. To subvert this,
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Pose 1m 2m 3 m Error across distances
Prone (surface) 175.39 £+ 62.67 227.19 + 8.3 322.61 + 0.0 241.73 4+ 23.66
Prone (bottom) 181.43 +£64.31 192.04 £ 0.0 157.98 + 6.51 177.15 £ 23.6
Upright (away) 367.4 + 125.43 61.9 +£0.98 88.81 £0.0 173.99 £ 52.7
Upright (facing) 166.84 + 0.0 383.12 + 157.83 92.67 + 31.70 214.21 +63.17

Inverted (facing)
Inverted (away)

176.71 £ 43.63
366.11 + 36.35

101.43 £12.77
172.28 £43.43

224.08 £ 71.63
131.31 £ 58.75

167.41 £ 42.68
223.23 £46.18

238.98 + 55.40

189.66 £ 37.22

170.22 £ 33.38

Error across poses

TABLE I: Summary of projection errors between setpoint baselines at 1, 2, and 3 m distances and projections from scale-preserving
computations, averaged over 50 projection estimates for image resolution 640 x 480. Errors are reported as mean-tstandard deviation in
pixel units. Each error is the sum over all keypoints (x6) of the Euclidean distance between the ground truth and the predicted keypoint
location. A standard deviation of zero indicates observation of a single alignment over 50 projection estimates.

Prone (surface)

Upright (away)

Prone (bottom)

Inverted (facing)

Upright (facing)

Inverted (away)

Fig. 8: The projections we achieve through the alignment system are reasonable, given the challenges of reconstruction. The cross markers
indicate the 1 m setpoint baseline computed from sea trial data. The large dots indicate projections from the alignment system. A standard
deviation of zero indicates instances in which the system was unable to triangulate except for a single instance during the frame acquisition.

anthropometric data ratios (ADRs), which describe ratios be-
tween human limbs, can be used to regularize depth estimates
so that totally lateral views do not appear to have joints at
the same distance. Another issue with the present approach
is that the algorithm does not account for instances where
the diver’s body is positioned behind an obstacle relative
to the camera’s origin. Future work will include context-
aware approach strategies that utilize the entirety of the scene
for understanding the diver’s behavior and selecting the best
place to approach from, particularly with regard to complex
mission tasks. We will conduct control experiments using the
F2F system in pool environments, where evaluation of the
control can be better constrained. The ocean environment is
susceptible to external perturbations from currents making it
challenging to evaluate the efficacy of the F2F system.

VI. CONCLUSION

We have demonstrated that our methodology enables au-
tomatic setpoint computation from human diver pose obser-
vations, which could permit more complex UHRI scenarios
where the robot must infer automatically the best orientation
of target features to navigate within a safe distance of the
human diver. We have shown that our method works well for
1, 2, and 3 m baselines, except in cases of poses in which
a joint is totally occluded and the triangulation is unable to
resolve the depth at which the occluded joint appears.
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