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Abstract Facultative parthenogenesis (FP) has historically been regarded as rare in vertebrates, 
but in recent years incidences have been reported in a growing list of fish, reptile, and bird species. 
Despite the increasing interest in the phenomenon, the underlying mechanism and evolutionary 
implications have remained unclear. A common finding across many incidences of FP is either a 
high degree of homozygosity at microsatellite loci or low levels of heterozygosity detected in 
next-generation sequencing data. This has led to the proposal that second polar body fusion 
following the meiotic divisions restores diploidy and thereby mimics fertilization. Here, we show 
that FP occurring in the gonochoristic Aspidoscelis species A. marmoratus and A. arizonae results in 
genome-wide homozygosity, an observation inconsistent with polar body fusion as the underlying 
mechanism of restoration. Instead, a high-quality reference genome for A. marmoratus and anal-
ysis of whole-genome sequencing from multiple FP and control animals reveals that a post-meiotic 
mechanism gives rise to homozygous animals from haploid, unfertilized oocytes. Contrary to the 
widely held belief that females need to be isolated from males to undergo FP, females housed with 
conspecific and heterospecific males produced unfertilized eggs that underwent spontaneous devel-
opment. In addition, offspring arising from both fertilized eggs and parthenogenetic development 
were observed to arise from a single clutch. Strikingly, our data support a mechanism for facultative 
parthenogenesis that removes all heterozygosity in a single generation. Complete homozygosity 
exposes the genetic load and explains the high rate of congenital malformations and embryonic 
mortality associated with FP in many species. Conversely, for animals that develop normally, FP 
could potentially exert strong purifying selection as all lethal recessive alleles are purged in a single 
generation.
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Introduction
Incidences of facultative parthenogenesis (FP) have been reported to occur in diverse vertebrate 
clades including bony fish (Lampert et al., 2007), sharks (Chapman et al., 2007; Chapman et al., 
2008; Feldheim et al., 2010; Dudgeon et al., 2017), snakes (Dubach et al., 1997; Groot et al., 
2003; Booth and Schuett, 2011; Germano and Smith, 2010; Booth et al., 2012; Kinney et al., 
2013; Booth et al., 2014; Allen et al., 2018; Card et al., 2021), lizards (Lenk et al., 2005; Watts 
et al., 2006; Kratochvíl et al., 2020), crocodilians (Booth et al., 2023), and birds (Bartelmez and 
Riddle, 1924; Olsen and Marsden, 1954; Sarvella, 1973; Schut et al., 2008; Ramachandran and 
McDaniel, 2018; Parker et al., 2010). The phenomenon was originally mistaken for long-term sperm 
storage occurring in zoo environments where females were housed without current or recent access 
to conspecific males. The most parsimonious explanation was, therefore, that the animal had previ-
ously been in contact with a male and that stored sperm was responsible for delayed fertilization 
(Booth and Schuett, 2011; Holt and Lloyd, 2010; Sever and Hamlett, 2002). However, more recent 
studies involving microsatellite (MS) and/or amplified fragment length polymorphism (AFLP) analyses 
revealed no paternal contributions, as all alleles detected in the offspring were only found in the 
maternal ancestors (Groot et al., 2003; Booth and Schuett, 2011; Shibata et al., 2017; Ryder et al., 
2021; Levine et al., 2024). Females with no access to males producing solely male (ZW systems) or 
female (XY systems) offspring that only harbor maternal genetic markers are now considered hallmarks 
of facultative parthenogenesis. Nevertheless, clear examples of long-term sperm storage have also 
been documented in the recent literature (Levine et al., 2021), underscoring the need for molecular 
methods such as MS analysis or sequencing data to elucidate the underlying mechanisms. Originally 
thought to only occur in captivity, more recent reports indicate that FP occurs in natural populations 
as well (Booth et al., 2012; Fields et al., 2015). Serious concerns have been raised by conservation 
biologists, as species with dwindling population densities, including the endangered species Komodo 
dragon (Watts et al., 2006), small tooth sawfish (Fields et al., 2015), California condor (Ryder et al., 
2021), and American crocodile (Booth et al., 2023) are overrepresented among reports of FP.

While overrepresentation could be a consequence of an increased likelihood of detection in species 
that are the subject of intense research and conservation efforts, the observations raise the question 
if FP is an adaptive trait aiding in the colonization of new areas and mitigating the effects of popula-
tion bottlenecks or is simply a neutral trait (Fields et al., 2015). The adaptive trait hypothesis would 
of course require successful reproduction of FP animals either sexually or parthenogenetically, which 
to date has only been documented in a few cases (Kratochvíl et al., 2020; Straube et al., 2016). At 
the same time, the association of FP with increased homozygosity constitutes a concern for conserva-
tion biology, as an increase in FP within dwindling populations further accelerates the loss of genetic 
diversity, exposes deleterious alleles, and could compromise efforts to maintain the existing gene 
pool in selective breeding programs (Groot et al., 2003; Booth and Schuett, 2016). FP is also being 
studied as a desirable outcome in the commercial production of poultry. However, examination of tens 
of thousands of unfertilized eggs from several different avian species and strains has not resulted in 
economically sustainable hatching rates thus far. One of the highest hatch rates for unfertilized eggs 
is seen in the Beltsville small white turkey with a rate of 0.88% (Ramachandran and McDaniel, 2018; 
Olsen, 1975). A better understanding of the triggers and molecular mechanisms underlying FP and 
the fitness of the resulting offspring are, therefore, needed in a variety of contexts. These include: to 
understand a fundamental biological mechanism and its significance in vertebrate evolution, to aid in 
conservation efforts including captive breeding programs, and to possibly harness FP in an agricul-
tural context (Ryder et al., 2021).

The high level of homozygosity observed in animals produced by FP has been interpreted as 
evidence for polar body fusion following meiosis II, also known as automixis, leading to the restoration 
of diploidy in unfertilized eggs (Figure 1A; Chapman et al., 2007; Card et al., 2021; Booth et al., 
2023; Booth and Schuett, 2016; Reynolds et al., 2012). If automixis involves the fusion of one of 
the meiotic products from the first polar body (central automixis), homozygosity will be concentrated 
near the chromosome ends and heterozygosity will be preferentially retained near the centromeres 
as premeiotic recombination strongly favors homologs over sister chromatids and homologs segre-
gate during the first meiotic division. In contrast, a second polar body fusion (terminal automixis) 
would reunite sister chromatids, for which heterozygosity is preferentially seen near the chromosome 
termini (Figure 1B). In many cases, heterozygous and homozygous loci appeared to be inherited in FP 
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Figure 1. Overview. (A) Schematic of canonical meiosis. Only one pair of homologous chromosomes is shown using red and blue to distinguish 
homologs. (B) Schematic of main mechanisms by which a diploid oocyte may be produced in the context of facultative parthenogenesis. First 
polar body fusion, second polar body fusion, or post-meiotic duplication of chromosomes in the haploid gamete. (C) Photographs of Aspidoscelis 
arizonae with characteristic blue ventral coloration (top), A. gularis with light spots in dark fields that separate light stripes on dorsum (middle), and A. 
marmoratus with light and dark reticulated pattern on dorsum (bottom). (D) Microsatellite analysis for the three co-housed animals and two offspring 
(ID 8449 and 8450) produced in this enclosure. Alleles are color-coded as follows: A. arizonae male (blue), A. gularis male (green), and A. marmoratus 
female (red). Differences in shading highlight the two alleles at heterozygous loci. Both offspring are homozygous at all loci with most alleles matching 
only maternal alleles. For MS16, offspring alleles are not shaded because of this allele being shared between the mother and the A. gularis male. Single 
nucleotide differences in size are common binning artifacts and, therefore, are not scored as different alleles.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Microsatellite analysis of eight loci for the three female Aspidoscelis marmoratus within the enclosure and the two offspring 
hatched in January 2009.

https://doi.org/10.7554/eLife.97035
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offspring (Groot et al., 2003; Allen et al., 2018; Card et al., 2021; Kratochvíl et al., 2020; Booth 
et al., 2023), but information as to the genomic location of these loci has been lacking. Central and 
terminal automixis are also distinguished by the extent of heterozygosity, with lower levels observed 
in next-generation sequencing data in snakes and crocodiles suggesting terminal automixis as the 
likely mechanism (Allen et al., 2018; Card et al., 2021; Booth et al., 2023).

While facultative parthenogenesis occurs in a wide range of vertebrate species, true obligate 
parthenogenesis is limited to a few taxa of squamate reptiles including the North American whip-
tail lizards of the genus Aspidoscelis (Avise, 2015). Historic hybridization events between distinct 
gonochoristic species in this clade has given rise to numerous hybrid individuals with the ability to 
reproduce clonally as all female lineages (Vanzolini, 1993; Reeder et al., 2002). In contrast to the 
increased homozygosity associated with FP, obligate parthenogenetic species are characterized by 
the long-term preservation of the high degree of heterozygosity that had its origin in the lineage-
founding cross-species hybridization events.

Our laboratory has a longstanding interest in the mechanism of obligate parthenogenesis in whiptail 
lizards (Lutes et al., 2010; Newton et al., 2016). In this context, we are maintaining and propagating 
individuals of several obligate parthenogenetic as well as gonochoristic species. MS analysis revealed 
over 20 incidences of FP in the marbled whiptail lizard, A. marmoratus and the Arizona striped whip-
tail, A. arizonae. (The taxonomy of the genus Aspidoscelis has undergone frequent revisions and the 
maternal ancestor of the obligate parthenogenetic species A. neomexicanus was formerly known as 
the subspecies A. tigris marmoratus and the male ancestor as the subspecies A. inornatus arizonae 
(Barley et al., 2022a). For the purpose of this manuscript we follow the taxonomic conclusions by 
Barley et al., 2021). Whiptail lizards have an XX/XY sex determination system (Cole et al., 1969) and 
all FP offspring are consequently female. The identification of multiple incidences of FP provided us 
with the opportunity to investigate the mechanism of FP in whiptail lizards through next-generation 
sequencing. The generation of a genome assembly, in addition to whole-genome sequencing, allowed 
us to distinguish between different mechanisms for restoring diploidy in FP animals. To address 
the question of whether FP is limited to animals in captivity, we examined reduced-representation 
sequencing (RAD-seq) data of 321 whiptail lizards from 15 gonochoristic species sampled in nature. In 
aggregate, a combination of MS analysis, next-generation sequencing, and cytological analysis allows 
us to report on both the evidence and mechanism of FP in whiptail lizards and suggest that a baseline 
incidence of FP may coexist alongside sexual reproduction in some species.

Results
Identification of FP in A. marmoratus
In the context of studying interspecific hybridization among gonochoristic species of whiptail lizards, 
three female A. marmoratus (ID 122, 4238, 4239) were housed with a male A. arizonae (ID 4272) and 
a male A. gularis (ID 302) for close to three years. During this period, seven hybrid offspring between 
A. marmoratus 122 and A. arizonae 4272 were produced and confirmed by MS analysis. These animals 
will be described in more detail in due course. Surprisingly, two female hatchlings emerged that 
resembled A. marmoratus rather than the expected products of hybridization with either A. arizonae 
or A. gularis. Genotyping revealed only a single allele for each of eight MS markers in the two offspring 
(ID 8449 and 8450, Figure 1D) and identified A. marmoratus (ID 122) as the mother (Figure 1—figure 
supplement 1). The mother and the male A. arizonae were each heterozygous at five of the eight 
markers and the A. gularis male at six. Further supporting a uniparental origin of 8449 and 8450, all 
alleles found in the offspring were also present in the mother (Figure 1D). For seven of the eight 
markers, neither male shared the allele found in the hatchling lizards, providing strong evidence that 
neither male fathered the offspring. For the remaining marker MS16, the A. marmoratus mother and 
the A. gularis male were homozygous for the same allele found in the two offspring, therefore, not 
allowing a conclusion to be based on this locus. It is important to note that for two of the markers 
(MS7 and MS15), the two offspring inherited different alleles from the mother, indicating that they 
are not genetically identical to each other, but have randomly inherited one of the maternal alleles at 
each locus.

Two additional eggs (ID 8394 and 9070) were recovered from the same enclosure and found 
to contain developing embryos. MS analysis also revealed A. marmoratus 122 as the mother and 

https://doi.org/10.7554/eLife.97035
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complete homozygosity at all loci. Given that all of these offspring are female, inherited only maternal 
alleles, and animal 122 had no history of being housed with a conspecific male during its lifetime, 
both interspecific hybridization and long-term sperm storage are all but ruled out and FP is strongly 
supported.

FP animals of A. marmoratus presented a unique opportunity to examine the underlying molecular 
mechanism. The observed homozygosity at all MS loci further promised to aid in the generation of a 
high-quality genome assembly, as homozygosity circumvents the challenge of collapsing haplotypes 
into a consensus sequence (Kajitani et al., 2014). To increase homozygosity, inbreeding for 15–20 
generations is common practice prior to whole-genome sequencing and genome assembly (Zhang 
et al., 2019; Fang et al., 2012). However, generation times of more than one year make this a costly 
and time-consuming strategy for many vertebrate species including A. marmoratus.

Genome sequencing and de novo assembly
The A. marmoratus genome is distributed over 23 chromosomes as previously demonstrated by meta-
phase spread analysis (Lowe and Wright, 1966). We used flow cytometry to compare nuclear DNA 
content of A. marmoratus erythrocytes from whole blood with cells from three species with well-
characterized genome sizes. The nuclear DNA content of A. marmoratus was close to that of Danio 
rerio (1.4 Gb) and we calculated a haploid genome size for A. marmoratus of 1.55 Gb (Figure 2—
figure supplement 1A).

Genomic DNA of FP animal 8450 was used to generate short insert paired-end, mate-pair (5 Kb, 
8 Kb, 2–15 Kb, 40 Kb), and Chicago (Putnam et al., 2016) libraries for Illumina short-read sequencing. 
The paired-end and mate-pair reads were first assembled with Meraculous (Chapman et al., 2011) 
yielding an N50 of 1.6 Mb. The subsequent addition of Chicago reads and scaffolding with the HiRise 
pipeline by Dovetail Genomics produced an assembly of 1,639,530,780 bp distributed over 3826 scaf-
folds (Supplementary file 1) and raised the scaffold N50 to 32.22 Mb (Figure 2—figure supplement 
1B). With a BUSCO completeness score of 96% the A. marmoratus genome assembly is comparable 
to other recently released reptilian genome assemblies (Figure 2—figure supplement 1C). Over 98% 
of the assembled sequences are contained within 90 scaffolds of more than 1 Mb in length, making 
this assembly highly contiguous.

Phylogenetic analysis of shared BUSCO genes with several other reference genomes (Xenopus, 
zebrafish, medaka, platyfish, tegu, green anole, chicken, mouse, rat, dog, cow, human) confirmed 
that A. marmoratus is most closely related to the tegu Salvator merianae, another representative of 
the family Teiidae (Figure 2—figure supplement 2). As transposable elements are a driving force in 
genome evolution, we examined the repeat content for the A. marmoratus genome. All classes of 
repeat elements combined amounted to 40.27% of the A. marmoratus assembly, only slightly below 
that found in other lizards S. merianae and Anolis carolinensis (Figure 2—figure supplement 3A). 
Strikingly, unclassified repeats make up the largest class of repeat elements in the A. marmoratus 
genome, an observation that parallels findings in S. merianae. However, a comparison between the 
unclassified repeats found in A. marmoratus, S. merianae, and A. carolinensis revealed few similar-
ities with only around 10% of the unclassified repeats shared between A. marmoratus and S. meri-
anae, and no significant overlap between these two species and A. carolinensis (Figure 2—figure 
supplement 3B). While further characterization of the unclassified repeat elements is needed, it 
is apparent that an impressive expansion of novel repeat element classes has occurred within this 
clade.

To annotate the A. marmoratus genome, we assembled a total of 119,728 transcripts from 
RNA-seq data generated from blood and embryo using Trinity (Supplementary file 2). These tran-
scripts were subsequently used in the MAKER2 gene annotation pipeline, yielding 25,856 protein-
coding genes and 44,461 protein isoforms (Supplementary file 3). To assign a putative function, 
we used BLASTp to query the UniProtKB/Swiss-Prot database (UniProt Consortium, 2018) and 
found significant hits for 76% of the putative protein-coding genes. Our assembly and annota-
tion pipelines yielded 40 HOX genes and 2 EVX genes in four gene clusters (Figure 2—figure 
supplement 4). The HOX gene clusters are highly conserved among tetrapods and their complete 
presence and shared order within each cluster serve as a measure of assembly quality (Kuraku and 
Meyer, 2009).

https://doi.org/10.7554/eLife.97035
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Assessment of heterozygosity
The presence of only one allele for each of the examined MS markers already suggested widespread 
homozygosity in A. marmoratus produced by FP, consistent with similar observations in other verte-
brate species. The highly contiguous genome assembly now afforded us the opportunity to probe the 
mechanism of FP by searching for regions of heterozygosity and mapping their relative genomic loca-
tions. Towards this aim, we performed whole-genome sequencing for an additional nine animals: four 
of them produced by FP (ID 12512, 12513, 6993, 9177), two mothers (ID 122, 9721), and three unre-
lated control animals (ID 003, 001, S30700; Supplementary file 4). Each mother and the controls were 
heterozygous at several MS markers confirming their origin through sexual reproduction. Following 
alignment to the reference genome (Supplementary file 5), we defined heterozygous sites as those 
covered by an even number of reads with two alleles supported by the same number of reads. Sites 
covered by an odd number of reads were filtered out for this initial analysis. This stringent requirement 
was chosen to limit the search to apparent heterozygous sites with strong support, decreasing the 
chance of false positives.

For all ten individuals, the average sequencing coverage ranged between 15.91 and 20.08 
(Figure  2—figure supplement 5). For FP animals, the number of heterozygous sites in a 10  Kb 
sliding window approaches zero for all sites with mean coverage (Figure 2A). For positions with 
coverage greater than the average, an increase in apparent heterozygosity was observed, due 
to the collapse of repetitive sequences during the assembly process. Based on this observation, 
we limited further analysis to positions in the genome where the coverage is equal to the mean 
sequencing depth (as defined by rounding the mean sequencing coverage value to the next even 
integer). For example, for animal 003, the average sequencing coverage is 18.31 (Figure 2—figure 
supplement 5A) and we only considered sites with a coverage of 20 (Figure  2—figure supple-
ment 6A). This generated between 30,769 and 53,416 heterozygous sites for which two alleles were 
equally supported in the sexually produced mothers and control animals (Figure 2—figure supple-
ment 6A–E). Far fewer heterozygous sites (between 649 and 928) were observed in the FP animals 
(Figure 2—figure supplement 6F–J). Plotting the heterozygous sites according to their position 
in the reference genome illustrates not only their sparsity in the genomes of FP animals, but also 
reveals their random distribution (Figure 2B). If FP genomes were the product of automixis, regions 
of homozygosity would be interspersed with regions of heterozygosity. The extent of heterozygosity 
within the latter would be the same as that observed in the respective mother. The few apparently 
heterozygous sites identified in FP animals are, therefore, not supporting either form of automixis 
but are most likely the result of over-assembly of repetitive regions (ie. collapsing paralogous loci 
into a single representative sequence) and a combination of biological (ie. somatic mutations) and 
technical errors (ie. PCR and sequencing errors).

When examining each mother-daughter group, the average number of heterozygous sites per 
10 Kb window was greater in the sexually produced mothers across the entire assembly (Figure 2C). 
For most of the assembly, the average number of heterozygous sites remained close to zero for FP 
animals. The most notable exception was a region around genomic coordinate 1.0  Gb, but even 
there the extent of apparent heterozygosity remained below 50% of what is observed in this region 
for each of the mothers. Examination of the scaffold in question (Scaffold 45) revealed 167 genes 
annotated as homologous to vomeronasal 2 receptor 26 (Vmn2r26; Figure 2—figure supplement 7, 
Figure 2—figure supplement 8). Members of this subfamily of receptors are found on the microvilli 
of the vomeronasal organ, where they are responsible for pheromone detection and play a signifi-
cant role in social and environmental responses (Ryba and Tirindelli, 1997; Houck, 2009; Su et al., 
2009). Given that this genomic region harbors a large cluster of highly similar genes, the most parsi-
monious explanation for the elevated level of apparent heterozygosity is over-assembly. This conclu-
sion is further supported by the increase in apparent heterozygosity in this region for the mothers 
and control animals. In aggregate, our analysis strongly supports genome-wide homozygosity for FP 
animals, inconsistent with either central or terminal automixis. Instead, the results favor a post-meiotic 
mechanism that restores diploidy by replicating the haploid genome residing in the oocyte following 
completion of the two meiotic divisions and thereby establishing genome-wide homozygosity in the 
offspring.

https://doi.org/10.7554/eLife.97035
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Figure 2. Genome-wide homozygosity in animals produced by facultative parthenogenesis. (A) Effect of coverage 
on the apparent rate of heterozygosity based on evenly split read counts supporting two alleles. Analysis of 
whole-genome sequencing data for five sexually produced animals (ID 003, 001, 122, S30700, 9721) and five 
individuals produced by facultative parthenogenetic (FP) animals (ID 6993, 9177, 8450, 12512, 12513) were aligned 
to the reference genome. In FP animals, the number of heterozygous sites approaches zero for sites with mean 
coverage (x̄=18.37). (B) Scaffolds are ordered from largest to smallest on the x-axis. Red lines indicate borders 
between ordered scaffolds. Each black dot represents a heterozygous position in the genome defined by having 
a sequencing coverage equal to the average and equal support for only two alleles. The y-axis position of each 
data point is a random value between bounds of area shown to spread the data and better illustrate the density of 
heterozygous sites. (C) Average heterozygous sites, as defined in (B), per 10 Kb window for mothers (orange) and 
respective FP daughters (purple and pink).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Genome assembly of Aspidoscelis marmoratus.

Figure supplement 2. Maximum likelihood tree for 13 vertebrate genomes, based on 1333 single-copy BUSCOs 
detected across all species analyzed.

Figure supplement 3. Identification of unclassified repeat elements in the A. marmoratus genome.

Figure supplement 4. Aspidoscelis marmoratus HOX gene clusters.

Figure supplement 5. Distribution of sequence coverage across the genome for each animal.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.97035
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Cryptic FP in A. arizonae
Following the identification of several A. marmoratus generated by FP, we genotyped individuals from 
two other gonochoristic species housed in our laboratory. While no cases of FP were identified among 
80 A. gularis produced eggs in captivity, we identified eight incidences of FP among 832 A. arizonae 
records between October 2007 and July 2018. During the same period, we recorded 15 incidences of 
FP among 286 A. marmoratus records (Supplementary file 6). Notably, in all cases, eggs undergoing 
FP development had been laid in enclosures where females were housed with conspecific males or 
males of a sister species known to mate with the heterospecific females. Isolation from mating part-
ners was thus not a significant factor in triggering FP. In one enclosure, three A. arizonae females (ID 
12850, 12851, 12852) were housed with a conspecific male (ID 12849; Figure 3A). MS analysis of 
four hatchlings that originated from a single clutch laid in this enclosure identified animal 12852 as 
the mother of all four animals. Unexpectedly, two of her offspring were homozygous at all eight loci 
examined, whereas the two others were heterozygous at all loci, identifying animal 12849 as their 
father (Figure 3B). Therefore, both fertilized and unfertilized eggs developed alongside each other 
within the same clutch.

Mixoploid erythrocytes and developmental defects
Microscopic examination of blood from a newly hatched FP lizard revealed a striking bimodality in the 
sizes of erythrocyte nuclei when compared to a sexually produced animals (Figure 4A, B). Nuclear 
size correlates well with DNA content measurements (Walker et al., 1991), suggesting the presence 
of mixoploidy in the FP animal. Whereas most cells closely resembled those observed in the blood 
from the sexually produced animal, approximately 10% of red blood cells from the FP animal harbored 
smaller nuclei, consistent with half the amount of DNA (Figure 4B). In addition, 1.27% contained two 
small nuclei, indicating that the final cytokinesis during erythrocyte differentiation had failed for some 
haploid progenitor cells. DNA content analysis by flow cytometry confirmed the presence of haploid 
cells (Figure 4C). In the blood of sexually produced animals, no haploid or bi-nucleated cells were 
observed. These observations raise the possibility that the embryonic development of FP animals is 
initiated with consecutive divisions of a haploid, unfertilized oocyte. At a later stage in development, 
diploid cells most likely arise via failed cytokinesis. From that point forward, both haploid and diploid 
cells coexist, and the embryo develops in a mixoploid state. Indicative of a more widespread phenom-
enon, mixoploidy was also observed in another FP A. marmoratus and in A. arizonae (Figure 4—
figure supplement 1). The observed fraction of haploid cells was closer to 1% in these instances.

Genome-wide loss of heterozygosity exposes functionally compromised alleles that were previously 
covered by intact alleles on the homologous chromosomes. Depending on the extent of this genetic 
load, one would expect a substantial fraction of oocytes to not develop at all or for defects to mani-
fest at various stages of embryonic and post-embryonic development. Indeed, of the 23 incidences 
of FP examined here, only 14 hatched, while the remaining lizards died in ovum (Supplementary file 
6). For these nine unhatched eggs, we isolated developed embryos shortly after the expected hatch 
date and confirmed FP origin by MS analysis. The clutches that produced the 23 confirmed cases of FP 
contained an additional 24 eggs. For these, development did not initiate or terminated at an earlier 
stage of development precluding MS analysis. Based on the uncertainty regarding how many of these 
eggs underwent partial FP development, the incidence of FP may be even higher than reported here.

The observation of various malformations in several of the FP embryos and hatchlings further 
supports that genome-wide homozygosity unmasks deleterious alleles. Notable developmental 
defects included craniofacial abnormalities such as misaligned jaws, agenesis of eyes, missing limbs, 
and failed abdominal closure (Figure 4—figure supplement 2). Only six out of 16 FP animals (37.5%) 

Figure supplement 6. Analysis of all positions in the genome at average coverage, for which reads support 
exactly two alleles.

Figure supplement 7. A 1Mb sliding window for Scaffold 45 showing the annotated vomeronasal 2 receptors 
homologs.

Figure supplement 8. Phylogenetic tree showing the evolutionary distance between mouse V2Rs (red branches) 
and Aspidoscelis marmoratus homologs (black branches).

Figure 2 continued

https://doi.org/10.7554/eLife.97035
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hatched with no discernable developmental defects (Figure 4—figure supplement 2 A-B). This is 
in stark contrast to sexually produced animals, where over 98% of hatchlings (n=687) showed no 
abnormalities. Additionally, most of the defects noted in sexually produced animals were less severe 
than in FP animals including bulges in tails or truncated digits. While we have not recorded instances 
of FP animals producing offspring via FP, as described for the whitespotted bamboo shark (Straube 
et al., 2016), FP A. marmoratus 8450 did produce two eggs while housed in isolation, but these failed 
to hatch. Analysis of the ovaries of FP animal 8450 as well as germinal vesicles of its FP sister 8449 

12849 12852

16213 16214 16215 16216

A

B

Figure 3. Facultative parthenogenesis is also found in Aspidoscelis arizonae. (A) Microsatellite analysis for the four co-housed adult animals (ID 
12849, 12850, 12851, 12852) and the four hatchlings (ID 16213, 16214, 16215, 16216) produced in this enclosure. Alleles are color-coded for each 
potential parent: 12849 male (blue), 12850 female (green), 12851 female (orange), 12852 female (red). Differences in shading highlight the two alleles 
at heterozygous loci. Offspring 16213 and 16214 are heterozygous at all loci, with most loci having one allele matching 12849 and one allele matching 
12852. Offspring 16215 and 16216 are homozygous at all loci, with most alleles matching only the 12852 female. Non-shaded offspring alleles indicate 
ambiguous inheritance as multiple adult animals share the same allele. Single nucleotide differences in size are common binning artifacts and, therefore, 
are not scored as different alleles. (B) Pedigree shows the relationship between the four offspring. The single clutch of four contains both sexually 
(yellow) and facultative parthenogenetically (blue) produced offspring.

https://doi.org/10.7554/eLife.97035
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revealed no differences in structure and anatomy compared to fertile sexually reproducing animals 
(Figure 4—figure supplement 3).

Putative incidences of FP in wild populations of whiptail lizards
As FP has been associated with captivity in most species where it has been reported, we examined 
restriction site-associated DNA sequencing (RAD-seq) data for wild animals across 15 gonochoristic 
species (Figure 5). Because RAD-seq is a form of reduced-representation sequencing (Rivera-Colón 
and Catchen, 2022), we limited further analysis to the 321 individuals that had an average sequencing 

BA

C

Diploid
89.5%

Haploid
9.22%

Binucleated
1.27%

DNA content (Propodium Iodide)

2n

3n

9177

Figure 4. Detection of mixoploidy associated with facultative parthenogenesis. (A) Giemsa staining of erythrocytes 
from a sexually produced Aspidoscelis marmoratus (ID 14744). All cells are diploid (n=601). Scale bar corresponds 
to 10 µm. (B) Giemsa staining of erythrocytes from a newly hatched facultative parthenogenetic A. marmoratus 
(ID 9177). Diploid (n=844), smaller haploid (n=87), and binucleated (n=12) cells are evident. Scale bar corresponds 
to 10 µm. (C) DNA content from erythrocytes determined by propidium iodide staining and detection by flow 
cytometry. Samples are from a sexually produced A. marmoratus (2n, ID 5358), an obligate triploid parthenogen A. 
exanguis (3n, ID 4950), and facultative parthenogenesis (FP) A. marmoratus (ID 9177). Number of events scored by 
flow cytometry were 44,145 (2n), 44,043 (3n), and 44,060 (9177). The FP 9177 sample contained an additional peak 
to the left of the 2 n peak (90.04%), indicating the presence of haploid cells (9.62%).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Mixoploidy detected in both A. marmoratus and A. arizonae.

Figure supplement 2. Animals produced by facultative parthenogenesis.

Figure supplement 3. Ovaries of Aspidoscelis marmoratus facultative parthenogenesis (FP) animal 8450 and 
germinal vesicles of FP sister 8449 revealed no differences in structure and anatomy compared to fertile sexually 
reproducing animals.

https://doi.org/10.7554/eLife.97035
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coverage of at least 20. Computational data analysis revealed five animals (one A. angusticeps and four 
A. deppii) that had very low levels of heterozygosity at positions of average coverage (<0.05% hetero-
zygous positions). In contrast, the average level of heterozygosity was 0.261% across the dataset, 
with the highest heterozygosity value at 0.578%. Of the five low heterozygosity animals, A. deppii (ID 
LDOR30) showed the most striking level of homozygosity affecting all sites but one (Rosner’s Test for 
Outliers within A. deppii individuals, log-transformation, R=5.127, λ=3.928, p<0.001). This is consis-
tent with the pattern of homozygosity observed with the whole-genome sequencing from FP animals 
produced in the laboratory. Further fieldwork and analysis will be required to assess the level of FP in 
natural populations of gonochoristic Aspidoscelis species (and other factors that could influence the 
observed heterozygosity such as population size, levels of hybridization, and inbreeding). To assess 
whether all whiptail species can produce viable offspring through FP, larger and broader datasets 
will be required to compare the incidence of FP between species, especially because animals with 
developmental defects associated with FP would not have hatched or survived in the wild and would, 
therefore, not have shown up in the RAD-seq dataset.

Discussion
In this study, we report over 20 incidences of facultative parthenogenesis in marbled and Arizona 
striped whiptail lizards. By sequencing and assembling a highly contiguous A. marmoratus genome, 
we were able to refute automixis as the underlying mechanism in whiptail lizards. Instead, genome-
wide homozygosity raises a possibility of a post-meiotic mechanism involving the activation of 
embryonic development in unfertilized haploid oocytes. Even though FP whiptail lizards are largely 
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Figure 5. Heterozygosity estimates of whiptail lizards collected in nature. Percent heterozygosity estimates from 
reduced-representation sequencing (RAD-seq) for 321 whiptail lizards from 15 species. All individuals had an 
average coverage of at least 20. Each point is an individual, and percent heterozygosity was calculated only for 
sites where the coverage is equal to the average sequencing coverage. Five points with black borders indicate 
individuals (one angusticeps and four deppii) with low levels of heterozygosity. The heterozygosity of Aspidoscelis 
deppii ID LDOR30 (marked with arrow) is far less than that observed for individuals of the same species (Rosner’s 
Test for Outliers within deppii individuals, p<0.001), having only one called heterozygous position. Species (sample 
size): angusticeps (Booth et al., 2023), arizonae (Lenk et al., 2005), burti (Germano and Smith, 2010), costatus 
(Shibata et al., 2017), deppii (Ryba and Tirindelli, 1997), gularis (Olsen and Marsden, 1954), guttatus (Reeder 
et al., 2002), inornatus (Ryder et al., 2021), lineattissimus (Groot et al., 2003), marmoratus (Allen et al., 2018), 
occidentalis (Dudgeon et al., 2017), sackii (Groot et al., 2003), scalaris (Streisinger et al., 1981), sexlineatus 
(Germano and Smith, 2010), tigris (Card et al., 2021).

The online version of this article includes the following source data for figure 5:

Source data 1. Source data of Figure 5.

https://doi.org/10.7554/eLife.97035
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comprised of homozygous diploid cells, a fraction of haploid cells persists through development and 
is readily detectable in young adults. Such mixoploidy and genome-wide homozygosity come at a 
price. In eight confirmed and 24 suspected cases of FP, development ceased prior to hatching and 
most FP animals that hatched showed congenital defects. Nevertheless, FP was observed at a rate 
of 1% and 5% in A. arizonae and A. marmoratus, respectively, and this occurred in the presence of 
mating partners. Interestingly, these rates are similar to what has been reported for wild populations 
of two North American pitviper species (Booth et  al., 2012). Our findings indicate that FP is far 
more common in some vertebrate species than previously thought. The purifying selection associated 
with homozygosity may be an important force in generating additional resilience to counteract the 
effects of population bottlenecks and inbreeding depression. However, support for this hypothesis is 
predicated on the fitness and reproduction of FP offspring and, therefore, more long-term studies on 
seemingly healthy individuals of FP origin are needed.

The start of embryonic development is tightly coupled to fertilization in many vertebrates as the 
sperm entering the oocyte triggers a signaling cascade that is essential for the completion of female 
meiosis and initiation of cell division following karyogamy (Sagata, 1996). This process has been 
mimicked in the laboratory by piercing frog oocytes with a needle to trigger the signal to complete 
meiosis and initiate replication and division in the haploid oocyte (Le Peuch et al., 1985; Wolf, 1974). 
In zebrafish, homozygous embryos are routinely generated by fertilization of oocytes with UV-irradi-
ated sperm, a treatment that destroys the paternal DNA (Streisinger et al., 1981). An oocyte treated 
in this manner will replicate the intact maternal genome in the absence of karyogamy. If the haploid 
oocyte is then subjected to heat shock treatment, cytokinesis is prevented resulting in a pseudodip-
loid oocyte that undergoes a second round of DNA replication followed by mitosis. Thus an entirely 
homozygous diploid embryo starts to develop (Kroeger et al., 2014). In contrast to human interven-
tion forcing two consecutive rounds of DNA replication to occur without intervening mitosis at the 
start of embryonic development, our data indicate that one or multiple rounds of DNA replication 
and mitosis take place in some haploid oocytes of whiptail lizards prior to a skipped mitosis yielding a 
homozygous diploid cell followed by mixoploid development. Initiation of development in a haploid 
state may be conserved in avian species as unfertilized turkey eggs can yield embryos that contain 
40% of haploid cells at blastoderm followed by a reduction to 1.3% within the blood of hatched birds 
(Cassar et al., 1998). Depending on the tissue and ploidy distribution, the presence of haploid cells 
may contribute to abnormal development of specific tissues reported here and elsewhere (Ito et al., 
1991; Tanaka et al., 2004). Successful embryonic development from haploid cells that restore the 
diploid state by duplication has also been observed in a stick insect species (Pijnacker, 1969). In 
whiptail lizards, we have not been able to examine post-meiotic oocytes as locating the post-meiotic 
nucleus within a large yolked egg is inherently difficult. The difficulty is compounded by the unpredict-
ability of which eggs will undergo FP development and the need to sacrifice animals to remove eggs.

In addition to mixoploidy, genome-wide homozygosity constitutes another obstacle to normal 
development as each recessive deleterious allele is exposed in either the hemizygous state (haploid 
cells) or homozygous state (diploid cells). Indeed, arrested development and abnormal phenotypes 
are observed in FP whiptails, as well as in FP animals across many other species (Booth et al., 2023; 
Booth and Schuett, 2016; Adams et al., 2023; Olsen, 1973). It is important to note though that 
some whiptails of FP origin developed normally, much like their sexually produced counterparts. At 
the population level, FP leads to a precipitous reduction in genetic diversity as only one set of alleles is 
inherited in the next generation. While FP could be an adaptive trait to bridge population bottlenecks 
when mate encounters are infrequent, small populations already rely heavily on inbreeding and FP 
further reduces the size of the gene pool (Watts et al., 2006; Ryder et al., 2021).

While FP can be considered the most extreme example of inbreeding, it is also the most powerful 
example of genetic purging as it eliminates most deleterious alleles in a single generation. FP in whip-
tail lizards and other species could, therefore, be considered a reproductive strategy, akin to mixed-
mating systems in plants (Goodwillie et al., 2005). The ability to produce offspring via two different 
strategies provides a level of reproductive assurance in plants (Busch and Delph, 2012). Indeed, 
we see parallels to this in our own data in which female whiptails have produced offspring via both 
sexual reproduction and FP on separate occasions or simultaneously within a single clutch. Within 
plant species with mixed-mating, there are differences between the rates of selfing and outbreeding 
between populations, and hypotheses as to why these differences occur include limited pollinator 

https://doi.org/10.7554/eLife.97035
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visitation and resource availability (Whitehead et al., 2018). To assess whether the co-occurrence of 
sexual and FP reproduction in vertebrates can indeed be considered a reproductive strategy rather 
than biological noise will require further studies to assess the reproductive competence and fecundity 
of offspring produced by either mode of reproduction. To gain a better understanding of the origin 
and outcomes of FP in whiptail lizards, it will also be important to identify the triggers. It has been 
proposed that lack of or limited mate encounters triggers FP, but our data in combination with many 
other reports (Booth et al., 2012; Booth et al., 2014; Kratochvíl et al., 2020; Ryder et al., 2021; 
Booth et al., 2011; Feldheim et al., 2023; Larose et al., 2023) rejects the idea that this is the key 
trigger. Recent work identifying key cell cycle genes inducing FP in two species of Drosophila (Sper-
ling et al., 2023) and selection resulting in higher incidences of parthenogenesis in birds (Parker 
et al., 2010; Olsen, 1975; Olsen et al., 1968) suggest a genetic basis for the initiation of FP.

Our study adds two species of whiptail lizards to a growing list of vertebrates capable of FP and 
establishes that it occurs alongside sexual reproduction in the presence of males. Using whole-
genome sequencing, we demonstrate that post-meiotic genome duplication is the underlying mecha-
nism. One must now consider the possibility that FP is an adaptive trait and that low rates of successful 
FP could contribute significantly to genome purification. Sexually mature FP offspring will have a low 
genetic load and only pass on neutral or mildly deleterious alleles to the next generation. However, a 
role for FP as an adaptive trait hinges on further studies demonstrating the ability of parthenogens to 
reproduce themselves either through further FP or sexually. If successive reproduction occurs, FP may 
reduce the frequency of deleterious alleles within a population, as well as provide reproductive assur-
ance when males are scarce. Additional whole-genome sequencing data for species with documented 
FP will be needed for a better understanding of the genetic basis, propensity, and evolutionary signif-
icance of FP.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Biological sample 
(Aspidoscelis spp.)

Erythrocytes, tail clippings, 
liver isolation This paper, wild populations See Ethics Statement

Chemical compound, drug Giemsa stain Sigma GS500 0.40%

Chemical compound, drug Schiff’s reagent Fisher Scientific #SS32-500

Commercial assay or kit Roche gDNA Isolation Kit Roche #11814770001

Commercial assay or kit KAPA HTP kit KAPA KK8234

Commercial assay or kit
Nextera Mate-Pair Library 
Prep Kit Illumina FC-132–1001

Commercial assay or kit
TruSeq RNA Library Prep Kit 
v2 Illumina RS-122–2001

Sequence-based reagent Oligos for MS analysis This paper See Supplementary file 7

Software, algorithm Meraculous 2.0
https://jgi.doe.gov/data-and-tools/​
software-tools/meraculous/ RRID:SCR_010700

Software, algorithm BUSCO 3.0.1 https://busco.ezlab.org/ RRID:SCR_015008

Software, algorithm RAxML 8.2.11
https://cme.h-its.org/exelixis/web/​
software/raxml/ RRID:SCR_006086

Software, algorithm RepeatModeler 1.0.11
https://www.repeatmasker.org/​
RepeatModeler/ RRID:SCR_015027

Software, algorithm RepeatMasker 4.0.9 https://www.repeatmasker.org/ RRID:SCR_012954

Software, algorithm BLAST 2.6.0 & 2.9.0+
https://blast.ncbi.nlm.nih.gov/Blast.​
cgi RRID:SCR_004870

Software, algorithm BWA 0.7.15 https://bio-bwa.sourceforge.net/ RRID:SCR_010910

https://doi.org/10.7554/eLife.97035
https://jgi.doe.gov/data-and-tools/software-tools/meraculous/
https://jgi.doe.gov/data-and-tools/software-tools/meraculous/
https://identifiers.org/RRID/RRID:SCR_010700
https://busco.ezlab.org/
https://identifiers.org/RRID/RRID:SCR_015008
https://cme.h-its.org/exelixis/web/software/raxml/
https://cme.h-its.org/exelixis/web/software/raxml/
https://identifiers.org/RRID/RRID:SCR_006086
https://www.repeatmasker.org/RepeatModeler/
https://www.repeatmasker.org/RepeatModeler/
https://identifiers.org/RRID/RRID:SCR_015027
https://www.repeatmasker.org/
https://identifiers.org/RRID/RRID:SCR_012954
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://identifiers.org/RRID/RRID:SCR_004870
https://bio-bwa.sourceforge.net/
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Software, algorithm Picard 1.119
https://broadinstitute.github.io/​
picard/ RRID:SCR_006525

Software, algorithm GATK 3.5
https://gatk.broadinstitute.org/hc/​
en-us RRID:SCR_001876

Software, algorithm seqtk 1.2-r94

https://github.com/lh3/seqtk
Li, 2016 

1.2-r94

Software, algorithm pysam 0.12.0.1

https://github.com/pysam-​
developers/pysam
pysam-developers, 2017 

0.12.0.1

Software, algorithm pysamstats 0.24.3

https://github.com/alimanfoo/​
pysamstats
Miles, 2015 

0.24.3

Software, algorithm Trinity

https://github.com/trinityrnaseq/​
trinityrnaseq
trinityrnaseq, 2015 

2.0.6

Software, algorithm seqclean
https://sourceforge.net/projects/​
seqclean

Software, algorithm MAKER2 2.31.8
https://www.yandell-lab.org/software/​
maker.html RRID:SCR_005309

Software, algorithm Interproscan 5.13–52.0
https://interproscan-docs.​
readthedocs.io/en/latest/ RRID:SCR_005829

Software, algorithm Exonerate 2.4.0

https://www.ebi.ac.uk/about/​
vertebrate-genomics/software/​
exonerate RRID:SCR_016088

Software, algorithm Geneious 10.1.3 https://www.geneious.com/ RRID:SCR_010519

Software, algorithm Stacks 2.62
https://catchenlab.life.illinois.edu/​
stacks/ RRID:SCR_003184

Software, algorithm Micromanager 1.4 https://micro-manager.org/ RRID:SCR_000415

Software, algorithm Flowjo treestar https://www.flowjo.com/ RRID:SCR_008520

 Continued

Microsatellite analysis
DNA was extracted from tail samples for microsatellite genotyping as described in Lutes et al., 2011. 
PCR products were analyzed by capillary electrophoresis on a 3730 DNA Analyzer and data was 
analyzed using GeneMapper (v. 4.0). Primer information can be found in Supplementary file 7.

Genome size estimation
The genome size of A. marmoratus was estimated by fluorescence-activated cell sorting (FACs), in 
which a standard curve correlating fluorescence intensity of DNA-bound propidium iodide with known 
genome sizes was generated using cells from fruit flies, zebrafish, and mouse, and then comparing 
fluorescent intensity with that of erythrocytes from A. marmoratus. Samples were stained using the 
Sigma PI staining preparation and analyzed on the Influx cytometer. PI fluorescence was collected 
using the PI Texas red detector with linear amplification and data analysis was performed in FlowJo 
and Microsoft Excel.

DNA isolation, sequencing, and genome assembly for A. marmoratus
All genome sequencing libraries generated for the purpose of the A. marmoratus genome assembly 
were derived from the FP animal 8450. The liver tissue was first dissociated in a 10  mL Dounce 
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homogenizer using the tight-fitting pestle and then processed using the Roche gDNA Isolation Kit 
(#11814770001, MilliporeSigma, St. Louis, MO, USA).

A short insert, high-coverage library was generated using the KAPA HTP kit (KK8234), with 1 µg 
of gDNA. The resulting library was size selected for fragments between 500–850 bp on a Pippin Prep 
(Sage Science). Two 40 Kb mate-pair libraries were generated by Lucigen from 1 µg of gDNA using 
the CviQl and BfaI restriction enzymes, respectively. Each library was sequenced on the Illumina MiSeq 
using the MiSeq Reagent Kit v2 (500 cycles). An additional three mate-pair libraries were generated, 
spanning distances of 5 Kb, 8 Kb, and 2–15 Kb, using the Illumina Nextera Mate-Pair Library Prep 
Kit and 1 µg of gDNA for each. Size selection used the Gel-Plus protocol with Pippin for the 5 and 
8  Kb libraries, and the Gel-Free protocol for the 2–15  Kb library. All three libraries were pooled 
and sequenced on three separate RapidSeq flow cells on an Illumina HiSeq 2500. Chicago libraries 
were prepared at Dovetail Genomics LLC, Santa Cruz, CA, USA from liver tissue to generate read 
pairs spanning distances up to 140 Kb and sequenced on an Illumina HiSeq 2500. The combined 
sequencing data was initially assembled at Dovetail Genomics using Meraculous and their in-house 
HiRise genome assembly algorithms to generate the A. marmoratus reference genome (AspMar1.0).

Assessing assembly completeness
In order to assess the completeness of the A. marmoratus reference genome, we used BUSCO (v. 
3.0.1) (Simão et  al., 2015) with the vertebrate_od9 dataset containing 2586 genes, with default 
parameters apart from changing the BLAST cutoff from 1e-3 to a more stringent value of 1e-6. We 
used BUSCO numbers generated in Gao et al., 2017 for Shinisaurus crocodilurus and Alligator missis-
sippiensis in Figure 2—figure supplement 1.

To perform a phylogenetic analysis, 1333 shared ‘complete’ single-copy orthologs were identi-
fied in the genomes of green anole (Anolis carolinensis, anoCar2), cow (Bos taurus, ARS-UCD1.2), 
dog (Canis lupus familiaris, CanFam3.1), zebrafish (Danio rerio, danRer10), chicken (Gallus gallus, 
galGal5), human (Homo sapiens, GRCh38.p13), mouse (Mus musculus, GRCm38.p6), medaka (Oryzias 
latipes, oryLat2), rat (Rattus norvegicus, Rnor_6.0), Argentine black and white tegu (Salvator meri-
anae, HLtupMer3), western clawed frog (Xenopus tropicalis, Xenopus_tropicalis_v9.1), platyfish 
(Xiphophorus maculatus, X_maculatus-5.0-male). For each amino acid sequence, a multiple sequence 
alignment was performed with MAFFT (v. 7.305) (Katoh and Standley, 2013). The alignments were 
concatenated into a supermatrix of 1,112,277 amino acids. Phylogenetic tree topology was estimated 
using the Maximum Likelihood inference method using the pthreads version of RAxML (v. 8.2.11) and 
the PROTOGAMMAAUTO model for sequence evolution with 100 bootstrap replicates (Stamatakis, 
2014).

Repeat identification
We quantified and annotated the repetitive DNA content within the A. marmoratus genome assembly 
by using the RepeatMasker pipeline on A. marmoratus scaffolds greater than or equal to 10 Kb in 
length. We first generated a de novo list of A. marmoratus repetitive elements using RepeatMod-
eler (v. 1.0.11) (Smit and Hubley, 2008). We then used these as input into RepeatMasker (v. 4.0.9) 
(Smit et al., 2008) using the NCBI/RMBLAST (v. 2.6.0+) search engine. Unclassified repeat element 
consensus sequences from the RepeatModeler output for each of the three lizards (A. marmoratus, S. 
merianae, and A. carolinensis) were compared to each other by identifying reciprocal best hits using 
BLAST (v. 2.9.0+).

Whole-genome sequencing, reference genome alignment, and 
heterozygosity determination
Genomic DNA isolated from either liver or tail was prepared for sequencing using the KAPA HTP 
Library Preparation Kit (KK8234). Stock adapters were used from the Nextflex kit and barcodes were 
from BioScientific. All libraries were sequenced on the Illumina HiSeq 2500 platform. Whole-genome 
sequencing data was aligned to the A. marmoratus reference genome with BWA (v. 0.7.15) (Li and 
Durbin, 2010) and marked for duplicates with Picard (RRID:SCR_006525; v. 1.119; https://broadinsti-
tute.github.io/picard/). Because samples were sequenced over multiple lanes, the alignment files were 
merged subsequently, and another round of duplication marking was performed. The alignment files 
were realigned around small insertions and deletions with GATK (v. 3.5) (DePristo et al., 2011). Data 
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corresponding to lizard ID 122’s bam file was down-sampled to 33% of its original size using seqtk (v. 
1.2-r94) to match the expected average genome coverage of the other samples, as this animal was 
sequenced on one flow cell without multiplexing and, therefore, having much more sequenced reads.

The per position nucleotide profiles for each alignment were then generated using a combination 
of pysam (RRID:SCR_021017, v. 0.12.0.1) (https://github.com/pysam-developers/pysam) and pysam-
stats (Miles, 2015. v. 0.24.3) (https://github.com/alimanfoo/pysamstats) to determine the heterozy-
gosity at any genomic position.

Transcriptome assembly and genome annotation
Two poly-A selected stranded RNA-sequencing libraries were generated with the TruSeq RNA 
Library Prep Kit v2 (RS-122–2001) and sequenced on an Illumina HiSeq 2500 for the purpose of an A. 
marmoratus transcriptome assembly. The first library was derived from a blood sample taken from a 
male animal, and the second library was derived from an embryo incubated at 28 °C and harvested 
47–51 days post-egg deposition.

Trinity (v. 2.0.6) (Grabherr et al., 2011) was then used to generate an initial transcriptome assembly. 
The original reads were aligned to this transcriptome assembly using the Trinity companion script ​
align_​and_​estimate_​abundance.​pl. Transcript isoforms with no read support were then filtered out 
and the remaining assembly was run through seqclean (https://sourceforge.net/projects/seqclean/). 
Evidence-based annotations for the transcriptome assembly were generated using the MAKER2 pipe-
line (v. 2.31.8) (Holt and Yandell, 2011). For MAKER2, the entire UniProtKB/Swiss-Prot database of 
proteins (UniProt Consortium, 2018) was used and the Repbase data base was used to mask repeats 
within the MAKER2 framework (Bao et al., 2015). Assigning putative functions to the gene models 
was performed using BLAST (v. 2.6.0) and Interproscan (v. 5.13–52.0) (Jones et al., 2014).

Copy number estimation for the Vomeronasal 2 receptor 26 (Vmn2r26) genes was based on aligning 
the mouse ortholog (http://www.orthodb.org), to the A. marmoratus reference assembly using Exon-
erate (v. 2.4.0) (Slater and Birney, 2005) with a maximum intron size set to 20 Kb. Genes annotated 
as Vmn2r26 in the MAKER2 annotations were concatenated and aligned using Geneious (v. 10.1.3) 
(Geneious Prime, 2017) with default settings. The FastTree plugin (v. 1.0) was used to generate the 
phylogenetic tree from the alignment with default parameters.

RAD-sequencing analysis
Double digest RAD-sequencing data was derived primarily from previous studies (Barley et al., 2021; 
Barley et al., 2022b; Barley et al., 2019; Barley et al., 2022a). Fastq files were processed with Stacks 
(v. 2.62) using process_radtags and then samples from the same species were passed separately using ​
denovo_​map.​pl. The script executes all the components of the standard Stacks pipeline. The gstacks 
program of ​denovo_​map.​pl calls variants for each position in each locus and assigns it either homozy-
gous, heterozygous, or unknown. Output files were used to calculate the average coverage for each 
sample. Samples that have at least a coverage of 20 were considered for subsequent analysis. For 
each passing sample, the heterozygosity was calculated for sites at average coverage by adding up all 
heterozygous positions and dividing it by the total.

Giemsa staining of erythrocytes
Whole blood was collected aseptically from tails using acid citrate dextrose as an anticoagulant. All 
samples were prepared immediately after collection. A 5 µL aliquot of the diluted blood sample was 
used to prepare a blood smear on a 25 × 75 × 1 mm microscope slide. Once dry, the slide was placed 
in 95% ethanol for 5 min. Giemsa stain (0.4%; Sigma, GS500) was applied liberally to cover the slide 
every 4 min for a total incubation time of 16 min. The prepared slides were imaged on an Axioplan2 
imaging microscope equipped with a plan-apochromat 100 x /1.40 Oil objective and an Axiocam HRc 
(color) camera (Zeiss). Micromanager (v. 1.4) software was used to acquire the images. The acquired 
images were then scored visually for the number of haploid, diploid, and binucleated erythrocytes.

Feulgen staining of erythrocytes
Whole blood was collected aseptically from tails using acid citrate dextrose as an anticoagulant. All 
samples were prepared immediately after collection. A 5 µL aliquot of the diluted blood sample was 
used to prepare a blood smear on a 25 × 75 × 1 mm microscope slide. Blood smears were treated 
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with 10% neutral buffered formalin for 5 min at RT, then rinsed twice in distilled water. The slides were 
immersed in 5 M HCl for 30 min at RT, and then rinsed 2 times in distilled water. Slides were then 
immersed in Schiff’s reagent (Fisher Scientific #SS32-500) at RT for 15–30 min until nuclei were stained. 
The slides were transferred directly to bisulfite water that was prepared by dissolving 2.5 g of potas-
sium metabisulfite in 500 mL of water and adjusting the pH to 4.0 by the addition of concentrated HCl. 
The bisulfite wash was repeated three times with 10–15 sec of agitation. The slide was then washed 
under running tap water for 2 min and dehydrated by incubating in 70% EtOH for 5 min and then 95% 
EtOH for 5 min. The preparations were cleared in xylene before mounting.

Flow cytometry of erythrocytes
Blood collected from animals was treated as previously described for flow cytometry with modifications: 
ethanol fixation was performed after RNase treatment and propidium iodide staining was performed 
overnight, followed by sonication to disrupt aggregate cells (Lutes et al., 2011). A minimum number 
of 50,000 events were collected for each sample. Flowjo (treestar) was used for data analysis.

Imaging of ovaries and germinal vesicle
Germinal vesicle isolation and acquisition of image stacks by confocal microscopy were performed as 
described (Lutes et al., 2010). Ovary images were acquired with a Leica M205FA dissection micro-
scope with a planar 0.63 X objective using Micromanager (v. 1.4) software.
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