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Abstract— Autonomous Underwater Vehicles (AUVs) conduct
missions underwater without the need for human intervention.
A docking station (DS) can extend mission times of an AUV
by providing a location for the AUV to recharge its batteries
and receive updated mission information. Various methods for
locating and tracking a DS exist, but most rely on expensive
acoustic sensors, or are vision-based, which is significantly
affected by water quality. In this paper, we present a vision-
based method that utilizes adaptive color LED markers and
dynamic color filtering to maximize landmark visibility in
varying water conditions. Both AUV and DS utilize cameras to
determine the water background color in order to calculate the
desired marker color. No communication between AUV and DS
is needed to determine marker color. Experiments conducted in
a pool and lake show our method performs 10 times better than
static color thresholding methods as background color varies.
DS detection is possible at a range of 5 meters in clear water
with minimal false positives.

I. INTRODUCTION

The capabilities of Autonomous Underwater Vehicles
(AUVs) are constantly improving to help humans work safely
underwater. AUVs can conduct infrastructure maintenance
and inspection [12], biological sample gathering [14], and
marine trash detection [15] completely autonomously, re-
moving a human from harms way. In more complex missions
where human perception and cognition is necessary, a human
and robot can communicate with each other underwater to
work towards solving a task [16].

A docking station (DS) can significantly extend mission
duration by providing charging and communications to an
AUV in the field. Two key steps of the AUV docking
process are the approach setup, and terminal homing phase
[19]. The approach setup is typically realized with acoustic
sensors on the AUV and transmitters on the DS, such as
USBL, due to their long detection range of over 1km. Using
this information, the AUV will make gross movements to
position itself in line with the DS entrance, then start its
approach. The final 15 meters of the approach is the terminal
homing phase, in which the vehicle must accurately detect
the relative position of the DS in order to enter the dock
at an acceptable trajectory. Acoustic sensors typically lack
the level of accuracy required for this maneuver, so many
AUVs use cameras to detect active light markers on a DS,
which can be used to compute the 3D position, or pose, of
the DS. Once docked, the AUV can commence charging and
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Fig. 1. The LoCO AUV (bottom) using adaptive color RGB markers to
locate a docking station (top).

communications, then finally signal the DS to release once
the AUV is ready to start its mission.

Submerged docking stations are suitable for large bodies
of water where AUVs are operating at or near the depth
of the DS. The REMUS, and similar torpedo-style AUVs,
use submerged funnel-shaped docking stations anchored to
the sea floor [6]. At depth, nearby water is relatively calm
during docking maneuvers. However, in smaller bodies of
water, an anchored, floating DS may be favorable. On the
surface of the water, a DS can charge an AUV with solar
panels and transmit data wirelessly. Additionally, installation
and maintenance of the DS and AUV can be performed above
the water, which is preferable to submerging and resurfacing
a structure from the bottom of the water body. Fig. 1 is an
example of a floating DS designed to capture the Low-Cost
Open (LoCO) AUV [20].

Locating a floating DS during the AUV’s approach setup
can be simplified as well. The AUV can surface, localize
itself using GPS, then receive a position and heading of
the DS using wireless communications. A final terminal
homing phase is still necessary, but near the surface of the
water visual conditions change rapidly depending on ambient
lighting and water conditions, which affects the contrast of
DS markers, and therefore the accuracy of DS detection
systems. Fig. 2 (right) is a common example of how quickly
water color varies.

This paper proposes a detection system for use with float-
ing docking stations and AUV that is resistant to background
color shifting. As the background color varies, both AUV and
DS detect the color change and decide on a marker color that
will have high contrast with the background. Two different
color mapping functions are proposed and evaluated. The
AUV detects the landmarks by color masking with the
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Fig. 2.

anticipated landmark color, then performs blob detection and
spatial filtering to calculate point correspondences to the
known landmark locations. Tests were conducted using the
prototype DS pictured in Fig. 2 and the LoCO AUV.

II. RELATED WORKS
A. Color Underwater

Due to the properties of the medium, underwater imaging
can produce pictures that are not true to the subject’s actual
appearance above water [1]. This is due to a process known
as attenuation. There are two main contributors to attenua-
tion: scattering and absorption. The former occurs when light
encounters particles suspended in the medium which have
similar dimensions as the wavelength of the light, or have a
different index of refraction than the surrounding medium.
The latter occurs when light intersects with particles and
is absorbed, rather than reflected. Attenuation also varies
depending on the wavelength of light passing through the
medium. In water bodies, lower energy wavelengths such
as orange or red (600-700nm) are attenuated much quicker
than the rest of the visible spectrum, which causes objects
underwater to have a blue-green appearance.

As light is scattered and absorbed, the energy reaching
a camera varies depending on the path the light travelled.
An underwater imaging model proposed by [1] consists of
three main paths the light will follow. The first path is the
direct component F,, in which the light is not scattered in
the water. The second is the forward-scattered component
Eys, where the light is scattered between the object and
the camera. Finally, the back-scattered component Ejs is
the path in which the light is scattered between its source,
background, and the camera. The model in [1] describes
the total light energy reaching an imaging sensor as the
superposition of these three components and can be described
mathematically as

Er =E;+ Efs + Eps e

where Er is the total irradiance.

This model implies that as conditions that affect the E
and Eps components change, the total light reaching the
camera varies in intensity, which changes the appearance of
the target in the image. Water turbidity, cloud cover, time
of day, algae blooms, depth, and salinity are some of the
factors that affect total irridance. Fig. 2 (right) demonstrates

Left - Prototype DS without buoys and detached camera module. Middle - The LoCO AUV successfully docked with the DS in a water flume.
Right - A composition of two images taken five seconds apart. A cloud passes overhead, drastically changing water color in Lake Superior.

cloud cover drastically varying water color. The diver in these
pictures is operating at a depth of 10 meters in Lake Superior.

Underwater Image Enhancement (UIE) methods are being
developed to improve image quality and reconstruct the lost
appearance of objects in an image. Methods range from
deep-learning models, such as FUnIE-GAN [2], to physics
based approximation of spectrum attenuation [4] and color
restoration techniques [3]. While these methods produce
visually pleasing results in clear water conditions, ambient
lighting is not sufficient to illuminate targets when visibility
is reduced by environmental variables, or when light is
almost completely absent at night.

B. Detection

Detection of man-made objects underwater is typically
assisted by markers to increase visibility. Marker types can
be described as either passive or active. Passive markers are
those that only reflect light. A form of passive markers is
AprilTags [11] which can be used to localize a robot with
a single marker. The authors of [21] use AprilTags to track
the pose of a DS and create extra contrast on the tag using
headlights mounted on the AUV. Active markers are typically
preferred for underwater applications due to light scattering
and absorption of natural light. While the light emitted from
active markers is still attenuated by the water, the single
path of the light from emitter to camera is significantly less
affected than the path of natural light.

Existing methods for DS detection include classical image
processing techniques, such as image intensity thresholding
and blob detection [8] [9] [10] [13]. An image is first
converted from color to greyscale, then a Laplacian of
Gaussian or Difference of Gaussian blob detection algorithm
can be applied on the image to detect the active landmarks.
Sometimes intensity thresholding is applied first to eliminate
background noise. While these methods are satisfactory in
certain situations, they rely heavily on consistent lighting
and background color as the detector is looking for high
contrast between the markers and background. If the marker
and background color are the same, which is possible in
any of these works as the markers are either blue, purple,
green, or white, there will be little to no response from the
blob detector. Other marker detection methods include deep
learning models, such as [7]. The network presented in [7]
is robust to surface reflections, bright particle artifacts, and
changes in background color, but can still suffer if the DS
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marker color is too similar to the water color. Additionally,
this model must be trained on the marker configuration
specific to the DS, which requires substantial amounts of
underwater images in diverse lighting conditions.

III. METHODS
A. Docking station

Still in its early stages of design and assembly, the proto-
type DS pictured in Fig. 2 was used to conduct experiments.
This DS floats on the surface of the water and captures
an AUV as it enters the DS horizontally. Upon entry into
the DS, a proximity sensor will detect the presence of the
AUV, which engages a motor to vertically lift the capture
carriage, raising the AUV out of the water and settling it
into its locked position. Four common-anode RGB LEDs
are mounted coplanar to form a rectangle 89cm wide by
12.7cm tall. Upon detection of these landmarks, an AUV
can use this prior information to calculate the pose of the DS
relative to itself. A RGB camera is mounted in a waterproof
tube and attached to a submerged strut on the DS, facing
away from the entrance. This camera provides image data
for the landmark color calculation which constantly updates
the color of the landmarks.

B. Marker Color Choice

Consider a color C' in the Hue Saturation Value (HSV)
color space. The color C' can be represented by a set of
three values: hue H € [0, 360], saturation S € [0, 1], and
value V' € [0, 1], such that

C={H,5V} )

Fig. 3 is a visualization of the HSV color space, referred to
as the HSV hexcone model [5].

Let hue be an angular dimension in degrees, with red at
0°, blue at 120°, green at 240°, and returning to red at 360°.
Saturation is a measure of fullness or vibrance of the color
and is measured as the length of the radial vector from the
center of the cone outward. A lower saturation results in
a more “washed out” color. Value is a measured from the
base of the cone increasing in value vertically, with a lower
value resulting in a darker “shade” of color. If both value and
saturation are maximum, the resulting color can be called a
pure color. A pure color can be calculated from any HSV
color by letting S and V equal one.

Fig. 3. The hexcone model of the HSV color space. In this model, chroma
is the radial dimension when value is less than one, not saturation, but we
are mainly considering colors whose value is one.

A
4

ASp=1.25

Value =1

Fig. 4. A color C, its complement 5’, and pure complement 6’; in HSV
color space.

For any given color C' in the HSV color space, a comple-
ment C' exists such that

C = {|H - 180],8,V} 3)

Since hue is defined in the range [0, 360], the complementary
color C must have the highest separation in hue, or contrast
of hues, from C. However, complementary colors are not
always distinguishable from each other. Consider the three
colors in Fig. 4. Color C' is low in saturation (S = 0.25),
so its complement C is equally low in saturation, with
a saturation difference AS = 0.5. In order to maximize
separation of both hue and saturation in this color space,
a pure compliment is defined as

C, = {|H —180],1,1} )

It can be seen that AS’; =S+ 3'; > 1 will hold true for any
color C' and its pure compliment 6\},.

Additionally, we choose to introduce ternary C and pure
ternary ép colors of C, represented mathematically as

C = {(H —120) % 360,5,V} (5)
C, = {(H — 120) % 360,1,1} (6)

A ternary color can be plainly described as a color with
a hue offset of 240° clockwise from another color. A pure
ternary color has the same hue offset, but its saturation and
value must both be one. Figure 6 visualizes this relationship.

Relative to C, the Euclidean distance to C will be

AS = \/(cos(Ht)S,)2 + (S + sin(H,;)S)? (7

with H; = 360 — AH. Notice, AH = 240° for all values H
and H so H; = 120°. Simplifying (7) yields

AS = \[(=8/2)2 + (5 + §v3/2)2 @®)

Similarly, the Euclidean distance from C' to Op can be
expressed as

AS, = \/(—1/2)2 + (S +v3/2)2 9)

since S =1 for pure colors.

To maximize marker visibility in varying color back-
grounds, we need not only a high contrast in hue, but also a
high contrast in saturation and value. In other words, for any
background color in the 3D HSV color space, the marker
color should be the one which is the furthest in Euclidean
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Fig. 6. A color C, its ternary C, and pure ternary ép in HSV color space.

distance from the background color. However, active markers
on the DS should emit with the highest intensity possible
to extend viewing distance, so HSV marker colors must lie
in the 2D HSV color space with value 1. Therefore, the
theoretical ideal marker color choice in the HSV color space
is the pure complement of the background color.

Another consideration must be taken into account — when
the markers are emitting light underwater, the entire range of
saturation and value is not reachable due to the attenuation
of light and superposition described in Eq. 1. Therefore, the
actual observed color separation between a color and its pure
complement may not always be at least one. Moreover, colors
not in the background may be present on the DS itself, such
as orange buoys, which can lead to false positives. As such,
two different marker color mappings are evaluated: a pure
complementary and pure ternary mapping.

C. Vision Pipeline

In this section, we describe the algorithm used to deter-
mine DS marker color and detect markers. A flow chart of
the vision pipeline for the AUV and DS can be seen in Fig.
5. The pipeline is identical for both AUV and DS, except
for landmark detection, which only runs on the AUV. Each
respective pipeline runs in real time on a Raspberry Pi 4 and
an NVIDIA Jetson TX2.

The AUV and DS initially read in an image from their
camera to process. In order to determine the marker color
that has the highest visibility in the current environment, the
background color should be extracted from the image. The

camera on the DS is collinear with the AUV camera, allow-
ing both cameras to capture images of the same background.
However, the AUV’s view is obstructed by the DS, so any
foreground objects in the camera’s view should be removed.

The image is first smoothed with a Gaussian blurring
process to reduce noise and smooth filter responses further in
the pipeline. The image is then converted from RGB to single
channel greyscale and the pixels are binned into five equally
spaced intervals from O to 255. The output of this step is a
greyscale image with up to five different shades of intensities.
The interval with the most number of pixels is assumed to
contain only the background. A mask is created from this bin
and applied to the original image. The resulting output image
now contains the original color of the background with the
foreground objects removed. The images containing the DS
have a fairly uniform background color which increases the
efficacy of this background extraction method.

The average background color C}, is calculated in the HSV
colorspace using the masked image. Two different marker
color mapping functions are tested: pure complementary Cpp,
and pure ternary C’;,b mapping.

Once the marker color is determined for the frame, it is
added to a two second rolling average. This reduces noise
caused by the camera bobbing on the surface of the water.

The pipeline now diverges between the DS and AUV. The
DS changes the color of the markers to the latest rolling
average marker color. The color is converted back to RGB
to interface with the common anode RGB LEDs and a fixed
color correction offset is added to each RGB channel.

According to the underwater imaging model in Eq. 1, the
marker color sensed by the AUV will not be the color emitted
from the DS marker, but a combination of the scattered
components and the marker emitted light. Let C oy v k- be
the color of the DS marker sensed by the AUV’s camera,
Chig the average background color from the background
masked imaged, and C,, the actual marker color, with all
colors in the RGB color space. An approximation of the
marker color light received can be expressed in the RGB
color space as
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Cavvmer ={R, G, B}, given

R = max(Rokg, (Rokg + Rinkr)/2)
G = max(Gokg, (Gokg + Gmir)/2)
B = maxz(Biig, (Bokg + Bmir)/2)

Since we can consider the RGB color space additive,
each channel must have at least as much intensity as the
background color, since the emitting marker cannot remove
intensity. We also consider the forward scattering of the
emitter negligible. For example, an emitter that is turned off
(actual emitted RGB color {0,0,0}) in an underwater image
will similar to the background color of the water.

If the calculated marker intensity for a given channel is
larger than the background color, an approximation for the
color is calculated as the average between the background
channel and calculated marker channel. In actuality, this
value will increase as the AUV moves closer to the marker,
and decrease as the robot moves further away, until it reaches
a minimum of the background channel. Though inexact, this
approximation is suitable for our needs.

Once Cayvmkr 1S calculated, this color is converted back
into the HSV color space to specify the bounds for color
masking. Color masking allows pixels in a range of hue,
saturation, and value to pass through the pipeline, while
blocking all other pixels that do not fall into these ranges.
For the color Cayymkr, the mask range C,,.sk can be
represented in the HSV color space by

(10)

Cmask =

{[(HAUmGr + 60)%360], Smaslm Vmask} with
S7nask = [SAUmGr =+ 01765] s.t. 0 < Smask <1
Vinask = [VAUmG’r + 01765] 5.0 < Vipask <1

(1)

Even though these are quite wide intervals, the filtered
images contain relatively little noise. Since the color thresh-
olding is allowing pure complementary and ternary colors of
the background through, the portions of the image that re-
main are mainly markers, reflections of markers, and portions
of the DS. Interval ranges were obtained experimentally.

The original image is masked with the inverse of the
background mask to extract only foreground objects, then
is color masked with the intervals described above. Next,
a Laplacian of Gaussian (LoG) blob detection process is
applied to extract round shapes from the image. Blobs are
filtered by minimum area and are discarded if they are below
the threshold. Finally, a spatial filter is applied to the blobs
by using prior knowledge of the DS landmark locations. Any
three blobs that form a right triangle with leg ratios similar
to that of the rectangle side ratio formed by the DS markers
are passed through. Any blobs that do not fit this criteria
are discarded. Once four blobs that fit this criteria are found,
point correspondence between the DS markers and the blobs
is made by matching the top left, top right, bottom left, and
bottom right most markers with the respective DS marker.
The pose of the DS can now be calculated by solving the
PnP problem with a modern solver [22].

IV. EXPERIMENTS

Tests with the LoCO AUV and prototype DS were con-
ducted off the shore of a lake and in a pool. The ternary color
mapping function was tested in both environments, while
the complementary mapping was only tested in the pool.
Lake experiments were conducted by holding the AUV and
DS predetermined distances apart from each other without
obscuring visibility and allowing each system to float natu-
rally in the water. Water depth ranged from approximately
0.75 to 1.25 meters. The DS and AUV were positioned 1, 3,
and 5 meters apart and ran their marker color pipelines for
approximately two minutes per distance interval. Data was
recorded at each distance four times, with the robot facing
north, east, south, and west to account for lighting variances.
Water visibility was poor, which resulted in no DS features
visible past approximately two meters. The pool experiment
was conducted in a similar manner, but two tests, one for
each color mapping function, were run per distance. The 1m
complementary test distance drifted between 1 and 3m as the
swimmer floated in the pool. The auto exposure on the DS
camera over corrected the image in the pool, but even so, the
filtering range is robust enough to still detect the landmarks.
Lighting in the pool was uniform enough to waive the need
to rotate the experimental setup.

V. RESULTS

A qualitative summary of results can be seen in Fig. 7.
Each entry in this table consists of the raw AUV camera
image, the calculated marker and background colors by both
AUV and DS, and the final masked and filtered landmark
image (refer to Fig. 8 for details). Landmark detection is
achievable even in low visibility lake conditions, as can
be seen in columns I and II in Fig. 7. Both DS and
AUV independently agree on nearly the same marker color,
which results in relatively little signal noise in the color
masked image. Even with noise, the blob detection and
spatial filtering methods correctly identify the true visible
landmarks. The complementary filtering in columns IV and
V show more false positives than ternary filtering. These false
positives are from components on the DS itself, such as the
orange buoys, metal struts, and 3D printed components.

A quantitative comparison of adaptive and static color
thresholding functions can be seen in Fig. 9. A key contribu-
tion of this work is to minimize the amount of noise allowed
through a color filter in order to improve landmark detection
and pose estimation. Therefore, we decide to perform our
evaluation by comparing the total percentage of pixels passed
through adaptive and static color filtering methods. Although
it is not possible to tell which pixels are noise and which
are true landmarks, minimizing the number of pixels that
could possibly be landmarks is desirable to reduce the
computational complexity of additional filtering, such as
spatial filtering. The best performing filter will be the most
selective and permit the fewest pixels through.

As shown in Fig. 9, the ternary filter performs the best
over all experimental setups. Image noise is over 10 times
lower compared to static filters not tuned to the experimental
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[1IV] [V]

Fig. 7. A sample of landmark detections from lake and pool environments. Lake data is from a distance of 1m. By column — [I]: Top 4 Lake N, Bottom
2 Lake E [II]: Top 2 Lake W, Bottom 4 Lake S [III]: Top 3 Pool 1m Ternary, Bottom 3 Pool 3m Ternary [IV]: Top 3 Pool 5m Ternary, Bottom 3 Pool
Sm Complement [V]: Top 3 Pool 3m Complement, Bottom 3 Pool 1m* Complement. See Fig. 8 for details. Zoom in on the PDF for the better viewing.

*Intended distance is 1m, actual is between 1 and 3m.

AUV calculated:
1. Background color

DS calculated:
2. HSV pure background
color

3. Marker color

Fig. 8. A side-by-side view of the raw camera image from the AUV on the
left, and the masked and filtered marker image on the right. Green circles
are detections that pass blob and spatial filtering, red circles pass only blob
filtering. The top color swatch represents the background color, pure HSV
background color, and marker color calculated by the AUV. The bottom
swatch represents the same values calculated independently by the DS.

environment. Almost zero noise is allowed through the
ternary filter in experiments with complementary color DS
markers, suggesting that pixels filtered through in ternary
experiments are likely the DS markers. This is confirmed
in the qualitative images. Static color filters perform well
in their tuned environment, but are orders of magnitudes
worse outside of the specific environment. As suggested by
the qualitative results, the complementary filter picks up DS
features other than markers, which allows large amounts
of noise through even when DS markers display ternary
colors. Overall, the ternary filter maintains highly selective
filtering across all environments while successfully detecting
DS landmarks. Additional figures and data can be found in
the accompanying video.

VI. CONCLUSION

This work shows that adaptive color thresholding with
ternary colors is a robust method to detect a floating DS

Comparison of Adaptive vs. Static Color Filtering in Varying Water Conditions

—— Adaptive Ternary Threshold
—— Static Lake Ternary Threshold
—— Sstatic Pool Ternary Threshold

H —— Adaptive Complement Threshold

g B 70
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wio b 2]
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HIT - °
e
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1 o u
NE TER LI =<l ras - H
Lake S 1m (T) Lake N 1m (T) Pool 1m (T) Pool 1m (C) Pool 3m (T) Pool 3m (C) Pool 5m (T) Pool 5m (C)
Experiment Group, With Ternary (T) or Complementary (C) Marker Color
Fig. 9. A box plot graph comparing static color thresholding with two

cutoffs, one optimized for pool images and the other for lake, and adaptive
ternary color thresholding. n > 500 images per lake experiment and n >
1500 images per pool experiment. The Y axis is log scale of the total
percentage of the image passed through the filter, while the x axis is grouped
into eight experimental runs.

in visually dynamic aquatic environments. Water color can
rapidly change due to a variety of environmental factors,
causing previously contrasting landmarks to blend in with the
background. Our proposed method of dynamically changing
landmark color based on background water color is shown
to perform over 10 times better than a static color filter
landmark detector. Two adaptive color mapping functions
were tested on the LoCO AUV and a prototype DS in two
visually contrasting environments. Our pool and lake ex-
periments show, qualitatively and quantitatively, that ternary
color mapping provides the best noise rejection and detection
of landmarks in visually varying marine environments.
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