
 | Food Microbiology | Research Article

Genomics and synthetic community experiments uncover the 

key metabolic roles of acetic acid bacteria in sourdough 

starter microbiomes
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ABSTRACT While research on the sourdough microbiome has primarily focused on 
lactic acid bacteria (LAB) and yeast, recent studies have found that acetic acid bacte­
ria (AAB) are also common members. However, the ecology, genomic diversity, and 
functional contributions of AAB in sourdough remain unknown. To address this gap, we 
sequenced 29 AAB genomes, including three that represent putatively novel species, 
from a collection of over 500 sourdough starters surveyed globally from community 
scientists. We found variations in metabolic traits related to carbohydrate utilization, 
nitrogen metabolism, and alcohol production, as well as in genes related to mobile 
elements and defense mechanisms. Sourdough AAB genomes did not cluster when 
compared to AAB isolated from other environments, although a subset of gene functions 
was enriched in sourdough isolates. The lack of a sourdough-specific genomic cluster 
may reflect the nomadic lifestyle of AAB. To assess the consequences of AAB on 
the emergent function of sourdough starter microbiomes, we constructed synthetic 
starter microbiomes, varying only the AAB strain included. All AAB strains increased 
the acidification of synthetic sourdough starters relative to yeast and LAB by 18.5% 
on average. Different strains of AAB had distinct effects on the profile of synthetic 
starter volatiles. Taken together, our results begin to define the ways in which AAB 
shape emergent properties of sourdough and suggest that differences in gene content 
resulting from intraspecies diversification can have community-wide consequences on 
emergent function.

IMPORTANCE This study is a comprehensive genomic and ecological survey of acetic 
acid bacteria (AAB) isolated from sourdough starters. By combining comparative 
genomics with manipulative experiments using synthetic microbiomes, we demonstrate 
that even strains with >97% average nucleotide identity can shift important microbiome 
functions, underscoring the importance of species and strain diversity in microbial 
systems. We also demonstrate the utility of sourdough starters as a model system to 
understand the consequences of genomic diversity at the strain and species level on 
multispecies communities. These results are also relevant to industrial and home-bakers 
as we uncover the importance of AAB in shaping properties of sourdough starters that 
have direct impacts on sensory notes and the quality of sourdough bread.

KEYWORDS acetic acid bacteria, sourdough starter, synthetic communities, compara­
tive genomics, strain diversity, microbiome

A cetic acid bacteria (AAB) are an important member of many fermented food 
microbiomes. They are part of the Alphaproteobacteria class, Rhodospirillales order, 

and Acetobacteraceae family, with over 100 species across 19 genera now described (1, 2). 
This group is well-recognized for the fermentation of vinegar [Acetobacter pasteurianus 
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(1)], kombucha [Komagataeibacter spp. (3–5)], lambic beer [Acetobacter lambici (6)], 
water kefir [Acetobacter sicerae (7)], and cocoa [A. pasteurianus commercially and 
Acetobacter ghanensis/senegalensis spontaneously (8)], among others. Broadly, AAB 
acidify lambic beer and vinegar, contribute to flavor, discourage germination in cocoa 
beans, and produce the cellulose component of a symbiotic culture of bacteria and 
yeast (i.e. SCOBY) in kombucha (7). AAB also release a variety of metabolic products that 
have been applied in food, cosmetics, medicine, and other industries (9). These products, 
including acetic acid (sour flavor and antimicrobial), DHA (dihydroxyacetone; a common 
sunscreen ingredient), and acetoin (butter-like flavor), result from oxidative fermentation 
of sugars and alcohols (2, 10). AAB are also found in insect guts, including fruit flies and 
bees (11), as well as in flowers and fruits (2), all of which are sugar-rich environments (12). 
Adaptation to these sugar-rich environments may have facilitated success in fermented 
foods and beverages (7).

Despite their well-recognized importance, there is a limited understanding of the 
ecology of AAB. One system where AAB are likely important but have largely been 
overlooked is sourdough starters, which we refer to as sourdough, for brevity. The bulk 
of sourdough microbiome research has focused on yeast and lactic acid bacteria (LAB). 
These two functional groups are sufficient to make a sourdough starter (13), although 
starter microbiomes are often more diverse, ranging from 3 to 10 total species, and 
include other microbes beyond LAB and yeast (14–17). The “back slopping” method 
involved in the maturation and maintenance of sourdough starters allows for low-abun­
dance species to become more dominant and for new species to colonize, but factors 
that allow additional groups to persist are unclear (18). For example, recent work has 
indicated that AAB are commonly found in sourdough (14, 19–21), but the importance 
and function of AAB within sourdough remain uncertain as well.

A few studies have begun to investigate the functional roles of AAB in sourdough, but 
genomic and metabolic characterizations of AAB have been limited to other environ­
ments including insect guts (11) and vinegar (22). Common garden experiments with 
wild sourdough starters suggest that AAB may affect dough rise and aroma (14), but 
there is limited controlled experimental validation. A strain of Acetobacter tropicalis is 
known to influence the resultant properties of Chinese steamed bread (23, 24). Li et 
al. (24) found that starters with AAB added had the lowest pH, highest viscosity and 
elasticity, and had a greater variety of flavor compounds than bread with yeast and 
LAB or yeast alone. Likewise, the addition of extracted exopolysaccharides (levans and 
fructans) from AAB to dough resulted in bread that was softer and had more volume, 
further indicating that the compounds released by AAB can impact emergent traits of 
sourdough (25). However, insights from the vast majority of ecologically and functionally 
diverse AAB remain limited.

In addition to their economic and cultural significance, AAB in sourdough also present 
an opportunity to study the ecological consequences of genomic and strain variation 
within microbiomes. While it is clear that intraspecies diversity exists across many 
microbiomes from comparative genomics and metagenomics studies (26–30), there are 
still surprisingly few studies that have experimentally manipulated strain diversity to 
understand impacts on microbiome composition and function. Past studies investigating 
the role of variation at the intraspecies level have found that strain-level differences 
are associated with microbial community composition and functional traits (31–33), and 
multiple strains can coexist in an environment due to multiple-niche polymorphism 
at a small scale (34, 35). As members of microbiomes across a wide range of environ­
ments from sourdough to insects, AAB may be generalists, but environmental selec­
tion pressures may have resulted in intraspecies diversification. It is also unclear how 
much strain diversity exists within AAB species in sourdough and other environments 
and how this diversity contributes to variation in emergent functions of microbiomes. 
Understanding the functional significance of species and strain diversity within AAB may 
help reveal novel approaches for managing the functions of fermentations and other 
AAB-dominated microbiomes.
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To shed light on the ecological and functional roles of AAB at multiple levels of 
genetic similarity in sourdough starter microbiomes, we isolated dominant AAB taxa 
from a diverse collection of 500 sourdough starters contributed by community scientists 
from around the world (14). This collection represents 21 strains across 11 species 
spanning two genera (Fig. 1A). We obtained high-quality draft genomes of all isolates 
and also obtained eight metagenome-assembled genomes (MAGs) to characterize 

FIG 1 Overview of study design and geographic diversity of AAB. (A) Conceptual overview of study data and experiments. Leveraging 16S amplicon data from 

500 sourdough starters, we isolated 21 AAB on selective media and obtained corresponding genomes. We obtained MAGs (N = 8) from metagenomes (sample 

N = 40) and also included 32 publicly available AAB genomes for a final genome set of 61 for our comparative genomics assessment. We also selected a subset 

of AAB isolates (N = 10) for synthetic sourdough experiments to measure the functional impact of AAB on starter microbiomes. (B) AAB were isolated from a 

set of 500 sourdough samples that were previously described using amplicon sequencing, collected from a global network of community scientists (14). Light 

blue-gray circles indicate the detection of AAB in 16S rRNA gene amplicon data, and bright blue circles denote the recovery of one or more AAB genomes 

from the sample. Orange circles denote the set of AAB genomes included from NCBI (National Center for Biotechnology Information), recovered from diverse 

environmental sources and geographic locations. Popout shows example AAB colonies on plate (s.b. 1 cm) and under the microscope at 100× (s.b. 10 µm).
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metabolic pathways and differences in gene content. We assessed if particular func­
tions were enriched in sourdough AAB genomes vs those from other environments 
broadly across all AAB and within species clusters. We also used our sourdough AAB 
isolate collection to experimentally determine the function of diverse AAB within 
the sourdough starter microbiome. Constructing synthetic starter communities with 
and without various AAB strains, we measured key emergent properties such as 
acidification and metabolite production. We expect that all AAB will lower the pH 
of starters due to well-characterized acetic acid production (22) and predict that pH 
will vary by strain based on corresponding variations in acetic acid production and 
growth requirements (10, 22). Past research has demonstrated that AAB abundance is 
strongly correlated with sourdough volatile compound variation (14), but the extent 
to which particular metabolites differ across AAB strains and species remains unclear. 
Our work experimentally determines the consequences of an overlooked but function­
ally important group of microbes in sourdough starters, the acetic acid bacteria, on 
emergent microbiome function.

RESULTS AND DISCUSSION

Acetic acid bacteria are phylogenetically diverse and abundant in sourdough 

starter microbiomes globally

To determine the ecological distribution and diversity of AAB in sourdough starters, 
we leveraged a sample collection of 500 sourdough starters collected from a global 
network of community scientists (14). First, we did a detailed investigation of AAB across 
all starters (N = 500) using a previously sequenced 16S rRNA amplicon data set (14). 
Then, we obtained AAB genomes from the same starter collection by sequencing isolates 
and reconstructing microbial genomes from metagenomes. Across the 500 sourdough 
starters, AAB were present in 29.4% of samples (at ≥1% relative abundance). The mean 
relative abundance of AAB was 23.3% of the overall bacterial community on average, 
with up to a maximum relative abundance of 79.5% in a single starter. We detected 26 
AAB ASVs (amplicon sequence variants) that span three genera (Acetobacter, Glucono­

bacter, and Komagataeibacter; Fig. S1; Table S1). In samples where AAB were present, 1.5 
AAB ASVs were detected on average.

We next investigated if AAB exhibited consistent patterns of co-occurrence with LAB, 
yeast, or other AAB, as this might help explain the variable distribution patterns of AAB 
across starters. We found that LAB including Schleiferilactobacillus harbinensis, Lentilacto­

bacillus kefiri, and Furfurilactobacillus rossiae (Table S2) were enriched (Mann-Whitney, 
FDR P < 0.001 for all) in samples with a high relative abundance of AAB (samples where 
AAB comprised at least 25% of the overall bacterial community). S. harbinensis and L. 

kefiri are common members of water kefir, an acidic beverage that is often populated 
by AAB, suggesting shared acid tolerance (36, 37). However, the most dominant LAB 
in sourdough (Levilactobacillus brevis, Lactiplantibacillus plantarum, Pediococcus parvulus, 
and Fructilactobacillus sanfranciscensis) are found similarly with and without AAB. Pichia 

mandshurica was the only yeast significantly associated with AAB-dominant samples. 
This species is associated with wine spoilage and produces acetic acid as well (38), 
likely explaining its success in AAB-dominant sourdough samples with higher acidity. 
Saccharomyces cerevisiae made up about 75% of the yeast in both AAB-dominant (76.8%) 
and non-AAB-dominant samples (75.8%), supporting that AAB can likely survive in 
most sourdough microbiomes. Within AAB, Komagataeibacter and A. pasteurianus were 
frequently detected in the same subset of samples (Spearman’s rho = 0.32, P < 0.001), 
indicating that multiple AAB can co-persist in starters (Table S3).

Leveraging our 16S amplicon data to guide culturing efforts, we isolated 21 AAB 
strains from 20 sourdough samples. The isolates we cultured span most of the geo­
graphic diversity of AAB from our sourdough starter collection (Fig. 1B). AAB were 
found in starters from 4 continents and 14 countries including the USA, Belgium, 
China, Thailand, New Zealand, Norway, and India. Reflecting our broader collection, 
AAB isolates lack representation from South America and Africa and are overrepresented 
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in North America, where we collected the most samples overall. We also added eight 
MAGs of AAB in sourdough from a set of 40 existing metagenomes (14; Table S4). 
These MAGs represent more dominant AAB, as the large portion of wheat genome reads 
impact sensitivity to detect low-abundance AAB. We use both cultured representatives 
and MAGs for analyses. We did not find any published AAB genomes isolated from 
sourdough starters based on our search of publicly available databases, so our AAB 
genomes likely represent a novel collection from sourdough starters. Notably, three 
of our recovered isolates likely represent putative novel AAB species based on <95% 
average nucleotide identity (ANI) match to described AAB species, distinct phylogenetic 
placement, and reported RED (relative evolutionary divergence) values from GTDB-Tk 
(39, 40; Table S4). We anticipate the number of novel AAB lineages to continue to 
increase as AAB are further studied in sourdough and other previously overlooked 
fermentation environments.

FIG 2 Genomic diversity and abundance of AAB in sourdough starter microbiomes. (A) Summary of the mean % relative abundance of AAB by species 

taxonomic assignments across 500 sourdough starters. Some ASVs could only be assigned to the nearest cluster of species (Fig. S1) due to the low resolution of 

ASVs. Bar colors indicate the source of genomes obtained (isolate, MAG, both, or no genome obtained from sourdough). (B) Summary of the mean % relative 

abundance of AAB across starter samples. AAB were detected in 29.4% of the 500 starter samples at ≥1%. Breaks in bars represent the relative abundance of 

each AAB ASV detected in a sample. Dark blue bars denote samples where isolated taxonomy matched the expected identity from 16S amplicon sequencing of 

the community, and orange denotes samples where a distinct AAB taxon was recovered. (C) Representative genome tree of Acetobacter species including three 

putatively novel species (in bold) and other genera including Gluconobacter and Komagataeibacter, which were also detected in sourdough starter microbiomes. 

The number of genomes obtained for this study is listed in parentheses (via culturing, metagenome assembly, and download from NCBI). Species with isolates 

from sourdough or MAGs recovered from sourdough are highlighted in yellow. Triangles represent species that were included in our synthetic sourdough 

experiments, and filled-in triangles are species that also were included in our assessment of intraspecies strain diversity.

Research Article mSystems

October 2024  Volume 9  Issue 10 10.1128/msystems.00537-24 5

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

sy
st

em
s 

o
n
 3

0
 D

ec
em

b
er

 2
0
2
4
 b

y
 1

2
8
.2

3
0
.1

3
6
.1

3
3
.

https://www.zotero.org/google-docs/?YijdzE
https://doi.org/10.1128/msystems.00537-24


The AAB genomes we obtained represent most of the known phylogenetic diversity 
of AAB in sourdough starters (Fig. 2). We sought to span the diversity of dominant AAB in 
sourdough in our targeted culturing efforts. Across the 500 starters, ASVs were assigned 
to 20 major species clusters as the highest possible resolution. Notably, genomes with 
as low as 90% ANI were assigned to the same ASV despite representing multiple 
species, highlighting the limited ability of short-read amplicon sequencing to resolve the 
genetic diversity of AAB. Through the sequencing and assembly of genomes from both 
isolates and metagenomes, we obtained representatives from 8 of the 10 most dominant 
clusters, as well as two representatives from less abundant clusters (Fig. 2A). The most 
abundant clusters in the 500 sourdough starters were Acetobacter malorum/cerevisiae 

and Acetobacter oryzoeni/oryzifermentans/pasteurianus at around 6.5% mean relative 
abundance. Our isolates reflect the dominant sourdough strains, including A. malorum, 
A. pasteurianus, Acetobacter orientalis, and Gluconobacter oxydans, among others (Fig. 2A; 
Fig. S2). Although we cultured most of the abundant groups, our efforts did not yield 
Komagataeibacter isolates.

There was high correspondence in the taxonomic identity of isolates obtained from 
our culturing efforts relative to expected AAB from amplicon sequencing (Fig. 2B), 
indicating that amplicon-informed targeted culturing is a tractable approach in this 
system and likely other fermented food systems where most members are readily 

FIG 3 Genomic and metabolic diversity across AAB. (A) Pangenome and ANI cluster of 61 AAB genomes. Each ring represents a genome, colored by ANI 

cluster (Table S5). The core genome across AAB is highlighted, along with a subset of genes functionally enriched in sourdough genomes (for a full set, see 

Table S8). (B) Genome features of the 61 genomes included in the pangenome are reported by isolate source (including fermented beverage, fruit, fruit fly, 

sourdough, and other), ANI cluster, genome statistics (including % completion and % contamination, Table S4), and metabolic traits that were variable across 

AAB genomes, including carbohydrate-active enzymes (CAZy) families, acetate pathways, nitrogen metabolism, SCFA i.e. short chain fatty acids, and alcohol 

production). Genomes are labeled by species. Where multiple genomes per species are included, Refseq ID/original name is given.
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culturable (41). The sourdough AAB genomes we obtained span much of the broader 
AAB diversity across environments as well (Fig. 2C), although a couple of clades are 
notable as they were not detected across our 500 starters. For example, the clade that 
includes species, such as Acetobacter aceti, Acetobacter nitrogenifigens, and Acetobacter 

sacchari, does not contain any members detected in ASVs or isolated from sourdough.

There is extensive variability in gene content and metabolic traits among 

sourdough AAB

To profile variation in gene content and metabolic traits of AAB genomes, we compiled 
a set of AAB genomes from sourdough and other environments. In addition to our 21 
isolate genomes and 8 MAGs, we included 40 high-quality AAB genomes from NCBI 
isolated from fermented beverages (beer, kombucha, and cider), fruit, fruit flies, and 

FIG 4 Diversity within AAB species. (A) Strain pangenomes with ANI heat map (Table S5) and corresponding genome trees (SpeciesTree) of nine strains each 

of A. malorum/A, A. orientalis, and G. oxydans/potus. Pangenomes and trees are annotated by the isolation source. (B) Percentage of genes in the accessory 

genome within a subset of functional categories (mobilome, defense mechanisms, carbohydrate metabolism, energy metabolism, and translation) across the 

three species highlighting strain diversity. (C) Boxplot highlights GH13 alpha-amylase (starch cleavage) which was found to be enriched in sourdough starter vs 

other environments in multiple strains of the same species.
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a range of other sources (mud, tree bark, and sewage) resulting in a collection of 61 
AAB genomes (Table S4; Fig. S3). The NCBI genomes included three species that we 
recovered from sourdough (A. malorum, A. orientalis, and G. oxydans) isolated from other 
sources and other species of AAB (Acetobacter fallax, Acetobacter lovaniensis, A. aceti, 
and Komagataeibacter xylinus). Across AAB, differences in ANI ranged from 70% (across 
genera), a noted ANI gap of 90%–95% observed in closely related species clusters, and 
96%–98% within species (Table S5). Across all genomes (N = 61), we detected 11,596 
unique gene clusters. Of these, 909 represented core gene clusters that were present 
in >95% of genomes (7.8%). The other 10,687 gene clusters were only detected in a 
subset of genomes and represent both species-specific clusters and other accessory 
genes that were variably detected (Fig. 3A; Table S6).

We detected notable variation in AAB metabolism within and between species (Fig. 
3B; Table S7) and source environment (Table S8). For example, genes for cellulose 
production were detected in several fermented beverage genomes within A. aceti and 
A. nitrogenifigens. In contrast, cellulose production was detected in only one sourdough 
genome, A. orientalis (Fig. 3B; Table S7). In kombucha, cellulose production is a favored 
trait of A. nitrogenifigens to form the pellicle used to inoculate future batches (42, 43). In 
contrast, cellulose production may be a disfavored trait in sourdough due to interference 
with structural properties. Arabinan utilization genes were detected in four out of five 
A. oryzifermentans isolated from sourdough. Arabinan is a plant polysaccharide, and the 
ability to break it down likely has functional consequences within the sourdough starter 
microbiome, which is fed by wheat flour. For all gene and pathway data presented in Fig. 
3B, including acetate, nitrogen, short-chain fatty acid, and alcohol metabolism, see Table 
S7.

Intraspecies variation may favor the persistence of AAB with key traits related 

to resource utilization in the sourdough environment

To determine if any genes were enriched in sourdough relative to other environments 
at the strain and species cluster levels (where % ANI amongst members ranged from 
90% to 99%), we next focused our analyses on a subset of three species for which 
we had both sourdough and non-sourdough genome representatives: A. malorum/
malorum A, A. orientalis, and G. oxydans/potus. We note that both A. malorum A and 
G. potus were recently reclassified as distinct species from A. malorum and G. oxydans, 
respectively. We first performed pangenomic analyses on nine genomes within each 
of the three species clusters. The total gene clusters ranged from 3,998 (A. orientalis) 
to 6,207 (A. malorum/malorum A; Fig. 4A; Table S6; Fig. S4). On average, species core 
genomes comprised ~40% of gene clusters, whereas the other 60% of gene clusters were 
accessory.

There was no clustering of overall genome content by either isolation source or 
geographic location within these species (Fig. 3A). This could be because many of the 
AAB in sourdough starter microbiomes are successful generalists adapted to a wide 
range of environments rather than one specific niche. They may have a nomadic lifestyle 
similar to some species of LAB such as L. plantarum (44, 45) and the AAB species A. 

senegalensis (46). Alternatively, the inclusion of more AAB genomes from sourdough and 
other environments may reveal signatures of adaptation that are environment specific. 
Despite an overall lack of clustering by geography or isolation source, we found potential 
gene functions that were enriched in sourdough across multiple strains. GH13 alpha-
amylase, involved in starch cleavage, was enriched in sourdough with the presence of 
45% of strains relative to 28% of strains not isolated from sourdough (Kruskal-Wallis 
FDR-corrected P < 0.01; Fig. 4C; Table S9). Starch is a major component of wheat, so 
this could confer a competitive advantage to AAB in sourdough vs other environments 
(47, 48). Although limited by the availability of high-quality AAB genomes from other 
environments, our analyses start to shed light on the metabolic traits that may favor the 
persistence of AAB in the sourdough environment.
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While gene clusters of unknown function were much more frequent in accessory 
genomes, functionally annotated accessory genes largely fell into categories that may 
have relevance to success in sourdough. On average, 61.0% of genes were annota­
ted with a known function (COG database) in accessory vs 87.3% in core (Table S6). 
Although expected, this underscores the difficulty in determining the functional or 
ecological significance of gene content variation. Mobilome genes, related to transpo­
sons and prophages, made up the largest percentage of accessory genes (Fig. 4B; 
Fig. S5; Table S10). A. pasteurianus has been known to have a high level of genetic 
variability particularly linked to the mobilome, with 9% of genes encoding transposases 
(49). Twenty-two carbohydrate-active enzymes (CAZy) that may be relevant to success 
in sourdough were found in plasmids and carried by prophages in the genomes we 
recovered from sourdough, including the GH13 alpha-amylase significantly associated 
with sourdough genomes (Fig. S6). Notably, an average of 24% of genes related to 
carbohydrate utilization were detected in accessory genomes across the three species 

FIG 5 Sourdough starter acidification is determined by differences in genus, species, and strain-level variation in AAB. (A) Experimental design of synthetic 

communities. Ten isolates of AAB were selected as treatment groups and added to a background starter community of yeast (S. cerevisiae) and LAB (L. brevis). We 

also included a yeast + LAB only control and cereal-based fermentation medium (CBFM) blank where no microbes were added. All isolates were added in 5 µL at 

a total density of 20,000 colony-forming units (CFUs). (B) The total abundance of each member of SynCom129 measured via CFUs and plotted with log10 (top); 

acidification measured via pH from the liquid CBFM and reported at the end of 4 days of incubation and transfers (N = 5 replicate synthetic communities; dots 

represent individual observations and box plots summarize the distribution). (C) Plots of the relationships between AAB CFU count and emergent microbiome 

pH (top) and ANI vs pH distance (bottom) from SynCom129.
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clusters, underscoring the variability in microbial traits related to nutrient acquisition. 
Accessory carbohydrate utilization genes included 5-carboxyvanillate decarboxylase 
LigW, involved in lignin degradation, and alpha-galactosidase. The high intraspecies 
variation in resource utilization genes may impact the establishment success and 
persistence of the AAB strain within the sourdough microbiome.

Synthetic common garden experiments reveal distinct species and strain 

level effects of acetic acid bacteria on overall microbiome function

To understand the consequences of acetic acid bacteria on the assembly and emer­
gent function of sourdough starter microbiomes, we constructed replicate synthetic 
sourdough starter communities, varying only the AAB strain across treatments (Fig. 
5A). We proxy microbiome function by pH and volatile organic compounds (VOCs) 
and also measure the abundance of community members. We selected 10 AAB strains 
that represented the breadth of phylogenetic diversity observed and included intraspe­
cies diversity within the A. malorum cluster. We qualitatively observed morphological 
differences in size and color across the 10 strains (Fig. S7). For example, Acetobacter 

sp. nov. 517 and G. potus colonies were smaller, whereas A. malorum and A. malorum 

A were the largest. This could be due to differences in starting concentrations, nutri­
tional requirements, or growth rates. Most colonies were white to pink in color, but A. 

fabarum had yellow colonies (Fig. S7). A. orientalis was observed to produce a biofilm, 
likely bacterial cellulose, or another exopolysaccharide. Cellulose is produced by many 
AAB including those isolated from kombucha (50, 51), but amorphous colonies due 
to cellulose production were not commonly observed in the AAB strains isolated from 
sourdough.

For our synthetic experiments, we selected a LAB (L. brevis) and yeast (S. cerevisiae) 
as the base community, isolated from wild starter S_129 (resulting in “SynCom129”) 
varying only the AAB strain added. We also included a media-only blank {all synthetic 
communities were grown in cereal-based fermentation medium [CBFM; (14)], a liquid-
based cereal fermentation media} and a YL-only control with only yeast and LAB 
present. This design resulted in 12 distinct treatments. For the number of replicates 
run for each assay (i.e., pH, VOC production), see Table S11. After incubating for 48 
hours, transfer to fresh media, and incubation for another 48 hours (4 days total), we 
measured the resultant community structure and emergent functions across treatments. 
We assessed the persistence of all starting members and emergent functions of the 
resultant starter including acidification (pH) and VOC profiles. We selected a second 
background community of L. brevis and S. cerevisiae (SynCom361) isolated from a second 
wild sourdough (S_361) to confirm the trends we observed with pH and persistence 
analyses.

In both synthetic communities, all 10 AAB strains persisted across replicates. 
SynCom129 was isolated from a starter without AAB, suggesting that AAB are likely able 
to establish and persist in a range of starters. While yeast and LAB colony-forming units 
(CFUs) counts stayed fairly consistent, AAB CFU counts varied greatly by strain, indicating 
the potential differential success of strains in the synthetic communities. Higher AAB 
CFU counts were significantly correlated with lower pH (Spearman’s rho = −0.83, P = 
0.002), while LAB and yeast CFU counts were not correlated (Fig. 5C; Table S14). The pH 
was also correlated with AAB ANI (P = 0.055; Fig. 5C; Table S14). These results suggest 
that AAB density and differences in genome content may play a role in modulating 
starter acidification. The yeast and LAB persisted in every condition in SynCom129, but 
in SynCom361, the yeast sometimes failed to persist. This could be due to a mismatch of 
nutritional requirements but also may reflect inhibition by the AAB. We observed yeast 
dropout in one condition where yeast appeared glued in EPS (exopolysaccharides) from 
A. orientalis (Fig. S8).

All AAB treatments acidified the starter environment, and the extent was strain-spe­
cific (Fig. S9). In SynCom129, in comparison to the YL-only control, AAB overall decreased 
the pH of the sourdough microbiome by 18.5% in a 4-day period. The starting pH on 
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day 0 of CBFM was around 6.26. By day 2, communities had begun to acidify the starter 
environment. The average pH of communities with AAB was 4.20 (N = 30, SD = 0.30), and 
the average pH for YL-only was 5.64 (N = 3, SD = 0.03). On day 4, all communities with 
AAB had significantly lower pH from YL-only and CBFM blank (P < 0.0001; Fig. 5B; Table 
S14). The average pH of communities with AAB on day 4 was 3.94 (N = 50, SD = 0.23), 
while the average for YL-only was 4.84 (N = 5, SD = 0.05). Significant acidification was also 
observed in SynCom361 on day 4 between AAB and non-AAB communities (P < 0.0001) 
despite yeast dropout in some replicates (Fig. S9). This is consistent with studies from 
other fermented foods that have shown that AAB lower the pH of their environment 
(6, 7). The release of acetic acid and a corresponding decrease in pH may inhibit the 
growth of other species and aid in AAB persistence (52). While pH was lowered in all 
AAB treatments, there were significant differences between species, including between 
strains of closely related species. A. oryzifermentans (average 4.36, SD = 0.02) and G. potus 

(average 3.56, SD = 0.02) were significantly different from all other AAB strains. The two 
A. malorum A strains did not significantly differ from each other, while the strain of A. 

malorum differed from only A. malorum A 490. This finding underscores the importance 
of species and strain-level diversification on emergent function.

Sourdough VOCs significantly differed by starter community members. We analyzed 
the VOCs from seven different communities frozen on day 4, including six AAB treat­
ments and a yeast-LAB-only control (Table S12). VOCs in the YL community significantly 
differed from all AAB communities (P = 0.008; Table S14), and the AAB communities 
formed three clusters (A4 alone, A2/A6/A7, and A8/A10; Fig. 6A) with distinct VOC 
profiles (P = 0.01; Fig. 6B; Table S14). Clusters were not associated with phylogeny. 
Notably, despite 97.2% similarity in ANI, A. malorum A 507 and A. malorum A 490 were 
in different clusters. A variety of compounds differed between the clusters (Table S13; 
Fig. 6B). Stearic acid (P = 0.02; AAB-associated clusters) and palmitic acid (P = 0.02; 
higher in the no-AAB controls and cluster A4) have both been previously detected in 
ferments including Tarhana [a Turkish wheat and yogurt-based fermented food (53)]. We 
also detected compounds previously linked to flavor formation in sourdough including 
decanal, which is associated with vinegar and a sweet, citrusy flavor (54), and L-arabitol, 

FIG 6 Sourdough VOCs are associated with microbial community type. (A) Dendrogram of VOC hierarchical clustering resulting in four sample clusters. (B) 

Superimposed NMDS plots of liquid sourdough communities and VOCs by community. The four main clusters have been colored. VOCs have been labeled when 

significantly different between clusters.
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which is associated with sweet flavor (55). Both were more abundant in samples with 
AAB, although not significantly (Table S13). Our results suggest that strain-level variation 
in AAB members can impact the sensory properties of the resulting community.

Conclusions

Our study represents a genomic and ecological characterization of AAB isolated from 
sourdough starters and demonstrates the utility of synthetic consortia to determine 
the functional consequences of specific microbiome members. Our genomic analyses 
begin to uncover the diversity in AAB genome content and suggest that sourdough 
AAB may be enriched in specific gene functions that facilitate success in the sourdough 
environment. These analyses also suggest that community-wide emergent functions can 
be affected by differences in gene content resulting from intraspecies diversification. 
Our comparative genomic analyses were limited, however, by the number of high-qual­
ity and publicly available AAB genomes from other environments. Increasing genomic 
representation from this group of economically and culturally significant bacteria will 
continue to yield new insights on their metabolic diversity and the ways in which 
they may be adapted to diverse sugar-rich environments. Likewise, obtaining closed 
genomes using approaches such as long-read and hybrid sequencing will facilitate a 
more resolved understanding of the location of key regions and genes of interest and the 
opportunity to study population-scale dynamics.

Our synthetic experiments demonstrate that phylogenetically and metabolically 
diverse AAB can persist in common sourdough microbiomes. We also determine the 
impact of AAB species and strain-level diversity on emergent sourdough functions 
including acidification  and volatile profiles.  Notably, we found that intraspecies 
variation in A. malorum  resulted in significantly  different  community VOC profiles  of 
synthetic starters. These findings  have direct relevance to industrial and home-bakers 
considering flavor  profiles  and other features of sourdough bread. A clear next step 
is to extend these results and assess how AAB may impact functional consequences 
in baked sourdough bread. Similarly, our synthetic experiments were performed 
using an S. cerevisae  and L. brevis  background community. Although this pairing 
represents one of the most dominant sourdough LAB and yeast combinations, it 
will  be important to determine if AAB have similar functional consequences in 
other common sourdough types such as F. sanfranciscensis  and Kazachstania humilis. 
An exciting avenue for future research is using tools such as interaction screens, 
RNA-seq, and metabolomics to shed light on what molecular-level mechanisms 
underlie the observed community-wide functional shifts.

MATERIALS AND METHODS

16S rRNA amplicon analysis of AAB in sourdough

For our amplicon-based analyses of the distribution of AAB across 500 starters and 
their associations with LAB and yeasts, we used previously sequenced 16S and ITS rRNA 
gene sequence data from reference (14). In brief, DNA was extracted from 2 mL starter 
subsamples with the Qiagen PowerSoil DNA extraction kit and sequenced with Illumina 
MiSeq at the University of Colorado Next-Generation Sequencing Facility. Sequences 
were processed with the DADA2 pipeline, resulting in taxonomic assignments and ASV 
tables of relative abundances. We calculated the mean relative abundance of AAB in 
starter samples and also assessed co-occurrence of AAB with other starter members. 
First, we used Spearman’s correlations to test if any AAB ASVs significantly co-occurred 
with any LAB, yeast, or other AAB ASVs. We only included ASVs that had at least a 
mean relative abundance of 0.1% (Table S3). We also tested whether particular LAB or 
yeast tended to be enriched in AAB dominant samples using Mann-Whitney tests (Table 
S2) with FDR-adjusted P-values. We defined AAB dominant as samples where the AAB 
comprised at least 25% of the overall bacterial community.
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Isolation and sequencing of acetic acid bacteria strains

We leveraged the previously sequenced 16S rRNA gene amplicon data of 500 sourdough 
starters described above (14) to selectively target starter samples that had a high relative 
abundance of AAB and to capture a broad range of phylogenetically diverse AAB in our 
culturing efforts. We obtained isolates of 21 acetic acid bacteria, most of which were 
abundant in samples based on the amplicon data and were isolated from frozen (−80°C) 
sourdough starter samples. Subsamples were plated onto selective GYCA medium (per 
liter, 30 g glucose, 5 g yeast extract, 3 g peptone, and 15 g agar) with 10 g CaCO3 

supplemented with 25 mL natamycin (21.6 mg/L), and subsamples that had amplicon 
hits to Gluconobacter were plated onto Carr medium supplemented with natamycin 
(21.6 mg/L) (56). To construct synthetic starter communities, we also obtained isolates 
of L. brevis (LAB) which was plated onto Lactobacilli MRS agar (Criterion) with natamycin 
(21.6 mg/L) and of S. cerevisiae which was plated on yeast potato dextrose medium with 
chloramphenicol (50 mg/L). Distinct morphologies were cultured from each sample, and 
we used Sanger sequencing to determine general taxonomic identity with the 16S rRNA 
primer sets 27F/1492R for bacteria and ITS1F/ITS4R for yeast. Isolate cultures were stored 
in 15% glycerol at −80°C.

To sequence isolate genomes, DNA was extracted from grown colonies using 
ZymoBIOMICS DNA extraction kits, with bead bashing for cell lysis (Seqcenter, PA). 
Following extraction, sample libraries were prepped with the Illumina DNA prep kit 
with 10 bp dual indices (IDT) and sequenced on an Illumina NovaSeq 6,000 resulting 
in 151 bp, paired-end reads. We targeted 200 Mbp per sample (e.g., isolate). After 
sequencing reads were demultiplexed and adapters were trimmed using bcl-convert 
v4.1.5, we obtained an average of 5,676,503.62 paired-end reads per sample (ranging 
from 3,703,604 to 10,182,868) and an average % bp >Q30 of 91.096%.

To assemble high-quality draft genomes from raw reads for each isolate in KBase 
(57), reads were trimmed to remove low-quality bases at both ends with BBTools v38.22 
(58), and low-complexity reads were filtered out with PRINSEQ (59). Read quality was 
assessed with FastQC v0.11.0 prior to assembly with SPAdes v3.15.3. For a few genomes 
(N = 6), the metaSPAdes assembly algorithm (60) resulted in a higher-quality assembly. 
All genomes obtained were high quality, with ≥93.53% complete and <3.23% contami­
nated, and the median number of contigs was 29. After assessing the genome quality of 
isolates with CheckM v1.0.18 (61), genomes were taxonomically classified with GTDB-Tk 
v1.7.0 (39, 40). We also used GTDB-Tk to assess the taxonomic novelty of isolates based 
on reported ANI and RED values (39, 40). Genomes that did not fall within 95% ANI of 
existing reference genomes are considered putatively novel species. We also placed all 
genomes phylogenetically using KBase SpeciesTree v2.2.0 (57), which constructs species 
trees from a set of 49 universal core genes defined by COG gene families to determine 
relatedness. Assemblies were annotated with Prokka v1.14.5 (62) and re-annotated 
in anvi’o [(63); see comparative genomics section below] with anvi-run-hmms and 
anvi-run-ncbi-cogs (64).

Inclusion of additional genomes from sourdough metagenomes and NCBI

To complement the AAB genomes that we obtained by culturing from sourdough starter 
samples, we also assembled genomes from 40 shotgun metagenomic samples, a subset 
of the 500-starter collection (14), deposited in NCBI under Bioproject PRJNA589612. After 
quality filtering with BBDuk (65) and filtering reads that aligned to the bread wheat 
genome (IWGSC CS RefSeq v2.1) using bowtie2 (66), we used metaSPAdes v. 3.15.5 (60) 
to assemble contigs. Next, contigs were placed into genome bins with both VAMB (67) 
and Metabat v. 2.15 (68), and then DasTool v. 1.1.5 (69) was used to select the best bins 
for each sample. CheckM v. 1.2.2 (61) was used to score the bins. Next, bins from all 
samples were collected together, and dRep v. 3.4 (70) was used to make a dereplicated 
set with the highest-quality representatives at 95% ANI cutoff to represent species-level 
genomes (parameters that deviated from defaults included: completeness, contamina­
tion, and coverage, which were respectively set to 50.0, 10.0, and 0.3). GTDB-tk v. 2.1.1 
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(39) was used to taxonomically classify the full set of dereplicated bins. We then filtered 
the bins based on taxonomy to only include AAB bins (N = 10 out of 30). We also built 
a genome tree of isolates and MAGs to identify any redundancy between genomes and 
MAGs. Where overlap was detected, the isolate was selected for downstream analysis, 
and the MAG was excluded. This resulted in a final set of eight MAGs.

To contextualize our AAB sourdough genomes within the broader context of AAB 
genomic diversity and to assess if any gene content was enriched in sourdough 
environments, we also obtained publicly available AAB genomes from NCBI to include in 
our analyses. We found no publicly available genomes from Acetobacter, Gluconobacter, 
or Komagataeibacter isolated from sourdough on the JGI GOLD genomes database. For 
an analysis of strain diversity, we added genomes from NCBI to a set of genomes we 
obtained from sourdough from A. malorum (recently split with A. malorum A, ~90% ANI), 

A. orientalis, and G. oxydans (recently split with G. potus, ~94% ANI) to compile a set 
of nine genomes within each species (19 genomes total from NCBI with at least 89% 
completion and less than 6.88% contamination). These three species were chosen based 
on the availability of multiple genomes from a variety of sources, as most AAB species 
have only one to a few genomes sequenced, and A. malorum genomes were targeted 
as part of the most common cluster of AAB genomes from sourdough. We were limited 
to nine genomes per species cluster by the poor quality of publicly available genomes 
as well, even after setting a reasonable cutoff for percent completion and contamina­
tion. We sought to include a representative set of genomes from across the tree of 
Acetobacter. We constructed a genome tree of all species of Acetobacter listed on NCBI 
Taxonomy using SpeciesTree - v2.2.0 with a reference genome from each species (Fig. 
2C) and downloaded 12 additional Acetobacter genomes from across the tree that we 
did not recover from sourdough, along with one species from an additional genus, 
K. xylinus, as an outgroup. We targeted genomes that were at least 90% complete 
with <5% contamination and only included genomes that had available source and 
location information. When source data did not include latitude and longitude, the 
center point of the country or city was chosen using latlong.net.

To assess how well the genomes we recovered in this study represent the known 
diversity of AAB in sourdough, we leveraged our 16S rRNA gene sequencing of 
500 sourdough starters. First, we assigned ASV taxonomy using a phylogeny-guided 
approach. We extracted full or partial 16S rRNA gene sequences from isolate, MAG, and 
NCBI genomes using ContEst16S (71) and aligned the sequences along with our partial 
16S ASV amplicon sequences (resulting in a total of 197 AAB sequences included in the 
phylogeny) using the SINA aligner (72). After gap trimming (gap threshold = 0.2), we 
constructed a phylogenetic tree using RAxML-HPC2 on XSEDE (Fig. S1). ASV taxonomic 
assignments were then made to the nearest genome representative. When an ASV was 
close to genomes from multiple species due to limited phylogenetic resolution, we 
assigned a cluster identity (such as the A. malorum—cerevisiae cluster). We note that 
this phylogeny is based on short-read data and is a useful way to improve taxonomic 
assignments but is not intended to accurately represent phylogenetic relationships.

Comparative genomic analyses

In total, we included 61 AAB genomes in our cross-environment comparative analysis (21 
isolates, 8 MAGs, and 32 from NCBI). All 61 genomes were annotated with DRAM (73) to 
additionally profile a suite of microbial traits related to categories including short-chain 
fatty acid and alcohol conversions, nitrogen metabolism, and CAZy. We display a subset 
of these functions that are differential across AAB that were annotated and distilled 
using DRAM (73; Fig. 3B; Table S7). Detailed annotation files from DRAM are available 
on Figshare DOI 10.6084 under 10.6084 /m9.figshare.25403599. We also constructed a 
pangenome of all 61 genomes in anvi’o (minbit 0.5, mcl-inflation 6, and min-occurrence 
2) (74, 75) and computed ANI using pyANI (76). We annotated genomes by source 
(sourdough or other) and tested for functional enrichment by source and species 
using the command “anvi-compute-functional-enrichment-in-pan” (77), a tool that finds 
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functions that are enriched in the specified group and relative to genomes outside the 
group. We used the same approach to build the three species-level pangenomes for 
A. malorum/malorum A, A. orientalis, and G. oxydans/potus with corresponding ANI and 
functional enrichment analyses, using mcl-inflation 10 and no min occurrence. We also 
identified viruses and plasmids within the genomes recovered from sourdough using 
geNomad and ran DRAMv on viral regions and DRAM on plasmids to annotate genes in 
those regions (Fig. S6; Table S10).

Construction of synthetic starter communities

For synthetic sourdough starter experiments, we used a CBFM that approximates the 
dough environment, as described in reference (14). Briefly, to make the media, whole 
wheat and all-purpose flour (Bob’s Red Mill) were mixed with water in a 1:1:9 ratio, 
centrifuged (3,000 rpm) to pellet flour particles, and then filtered through a 0.20 µm 
filter to remove microbial cells from the filtrate. To measure the effects of AAB on starter 
microbiome composition and function, we constructed two LAB and yeast communities: 
SynCom129, LAB L. brevis strain 129 plus yeast S. cerevisiae strain 129, and Syncom361, 
L. brevis strain 361 1A plus S. cerevisiae strain 361. These two species are dominant in 
sourdough starters and are frequently found together in the same starter (14). Addition­
ally, this LAB/yeast pairing is commonly found in starters with AAB (the case for strains 
361) and also in starters without AAB (the case for strains 129). We then selected a subset 
of 10 AAB isolates corresponding to 10 treatment groups that spanned the breadth of 
phylogenetic diversity we obtained: two genera (Acetobacter and Gluconobacter), eight 
species (G. potus, A. malorum, A. sp. 517, A. orientalis, A. senegalensis, A fabarum, A. 

ghanensis, and A. oryzifermentans), and three strains within A. malorum/malorum A. We 
also included a “no AAB” treatment control group (only LAB/yeast) and a blank with just 
CBFM.

In 96-well plates, approximately 5 µL of 4,000 CFUs/μL were inoculated into 180 µL 
of CBFM and 5 µL PBS resulting in a total volume of 200 µL (10 µL PBS was added for 
no AAB control, and 20 µL PBS was added for blank). For each condition (10 AAB strains 
+ 1 no AAB + 1 CBFM blank), we constructed eight replicate communities, resulting 
in 96 synthetic communities in total for each SynCom. Communities were incubated 
aerobically at room temperature on the bench, and 10 µL of the resultant culture was 
transferred 48 h after initial inoculation into 190 µL of fresh CBFM. At this point, wells 
were tested for presence/absence, and pH was collected. After the cultures grew for 
another 48 h (4 days in total), we harvested the experiment: three wells from each 
condition of the SynCom129 plate (180 µL/ well) were immediately frozen at −80°C for 
metabolite analyses, and 100 µL from one well of each condition was subsampled to 
determine total abundance of each member (AAB, LAB, and yeast) by serial dilution and 
plating on selective media at 10−4 and 10−5 to count CFUs. Additionally, pH was assessed 
in situ from the remaining unfrozen communities in SynCom129 and the corresponding 
communities in SynCom361, and one well of each condition was streaked for presence/
absence (see below).

Assessment of metabolites and acidification

All statistical tests were executed in the R environment (version 2023.06.0 + 421, R Core 
Team). To measure the overall acidification of sourdough starter communities, the pH 
of each synthetic sourdough community (N = 216, excluding those that were sampled 
for metabolomics to avoid contamination) was taken with a pHenomenal pH meter 
(VWR) with an MI-410 Combination microprobe (Microelectrodes, Inc.) at the conclusion 
of the experiment. For our AAB synthetic community experiments, we used analyses of 
variance to determine the effects of AAB on community pH, with AAB strain identity as 
the independent variable. We included a no AAB control (i.e., L. brevis and S. cerevisiae 

only) that we refer to as the “background community” and also a CBFM-only blank. We 
then used Tukey’s post hoc significance testing to assess the significance of pairwise 
differences (Fig. 5B). To assess if pH was correlated with the density of AAB, LAB, or yeast, 
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we used Spearman’s correlations (Fig. 5C). To determine if either the observed pH values 
or CFU counts were correlated with AAB phylogenetic distance, we used mantel tests 
(method = spearman) to correlate the pairwise distances (pH distance metric used was 
euclidean), with 9,999 permutations (Fig. 5C).

To prepare samples for GC/MS analysis, 180 µL aliquots were harvested from the 
final communities excluding the control and immediately frozen at −80°C. Samples 
were shipped to Creative Proteomics (Shirley, NY), and upon arrival were thawed on 
ice, and 0.1 mL of each of the 21 samples was transferred to a tube with 0.3 mL 
80% methanol solution and 5 µL ribitol (5 mg/mL). The tubes were vortexed for 60 
seconds and ground for 180 seconds at 60 Hz, sonicated for 30 minutes at 4°C, and 
centrifuged at 12,000 rpm and 4°C for 10 minutes (Eppendorf ). Two hundred microliter 
of supernatant was transferred into a new tube, dried under nitrogen, and then added 
to 35 ul O-Methylhydroxylame solution (Merck), vortexed for 30 seconds, and incubated 
at 37°C for 90 minutes. The extractives were derived with 35 µL BSTFA, reacted at 70°C 
for 60 minutes, and kept at room temperature for 30 minutes until analysis. Samples 
were analyzed on a DB-5 column (60 m × 0.25 mm × 0.25 µm, Agilent). The detector and 
injector temperatures were 280°C. The oven temperature was held at 70°C for 5 minutes 
then raised to 200°C at a rate of 10°C per minute, then raised to 280°C at 5°C per minute 
and held for 10 minutes. Helium was used for column carrier gas at a constant flow rate 
of 1 mL/min, and split (20:1) injection mode was used. The temperature of the ion source 
was 230°C, the electron impact mass spectra were recorded at 70 eV ionization energy, 
and the GC-MS (gas chromatography–mass spectrometry) analysis was carried out in 
30–550 mass range scanning mode (Thermo Scientific ISQ 7000).

To analyze the variation of VOCs across the samples sent for GC/MS analysis, 
any duplicated compound reads were removed, only keeping the highest similarity 
matches of each compound. Compounds related to plastic components/degradation, 
human metabolites, or low-similarity compounds were also removed as background or 
contamination. Then, distance matrices were calculated and ordinated of the VOCs and 
samples (Fig. 6B). Four outlier samples were removed prior to downstream analyses 
(YL_C, A2_C, A6_B, and A7_C). To assess the impact of AAB treatment on overall 
community VOC profiles, we ran PERMANOVA models with treatment (AAB strain) and 
AAB presence (vs yeast-LAB only) as predictors. We identified four clusters of samples 
using hierarchical clustering (method Ward D2) and plotted the resulting dendrogram 
(Fig. 6A). We used Kruskal-Wallis tests (with FDR corrections for multiple comparisons) to 
assess if any VOCs were significantly enriched by AAB presence, treatment, or cluster.
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