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Abstract—1In this paper, we propose an adaptive eye-to-
hand vision-based control methodology, which enables a closed-
loop grow-to-shape capability for variable length continuum
manipulators in 2D. Our method utilizes shape features of
the continuum robot, i.e. module curvature and length, which
are obtained from the image. Our adaptive control algorithm
servos the robot to converge and track the desired values of
these features in the image space without the need of a robot
model. As a result the robot starts from a minimum length
configuration and grows into a given desired shape, always
staying on the course of the desired shape. We believe that this
approach unlocks capabilities for variable length continuum
robots by leveraging their actuation redundancy and avoiding
obstacles while carrying out object manipulation or inspection
tasks in cluttered and constrained environments. We perform
experiments in simulations and on a real robot to assess the
performance of our visual servoing algorithm. Our experiments
demonstrate the controllers ability to accurately converge the
current features to their references, for a variety of desired
shapes in the image, while ensuring a smooth tracking response.
We also present some proof of concept results demonstrating
the effectiveness of this technique for controlling the robot in
constrained environments. Markedly, this is the first successful
demonstration for automatic grow-to-shape control using visual
feedback for variable length continuum manipulators.

I. INTRODUCTION

Continuum robots represent a paradigm shift in robotics
research as well as its applications. Unlike traditional rigid-
link robots that are composed of discrete joints, continuum
manipulators are characterized by continuous flexible struc-
tures that mimic biological systems such as elephant trunks
and octopus tentacles. This design approach allows them
to conform to a wider range of shapes and configurations
when compared to their rigid counterparts. Additionally, soft
continuum manipulators offer inherent safety benefits and
have reduced risks of injury or damage when interacting
with humans or delicate objects compared to traditional
rigid link manipulators. These advantages make continuum
manipulators the perfect choice for applications in medical
and assistive robotics [1]-[3], search and rescue operations
[4], and safety inspections in constrained spaces [5]. Use of
extensible robots in these applications can be advantageous
as they can grow around obstacles to reach targets from
various approach orientations. Accurate control of the entire
shape of the manipulator’s body is beneficial in such condi-
tions. Modeling inaccuracies [6], [7] pose a major challenge
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Fig. 1. Left: Shows the two module origami continuum arm at its minimum
length configuration and the desired shape reference in the image, shown by
the purple curve. Right: Shows the origami arm fully extended to match
the desired shape reference in the image space. The two segments of the
Piecewise Constant Curvature arcs estimating the shape of the robot are
shown in yellow and pink. Notice how the manipulator bends around an
obstacle to reach the target shape.

in precisely controlling continuum manipulators but vision-
based control techniques have been shown to be robust
to common modeling inaccuracies in continuum robots as
shown in our prior work [8] and in [9], [10].

In this work, we present an adaptive vision-based control
scheme that allows a variable length continuum manipulator
grow to a desired shape, from its fully shrunk state to
a goal configuration. While doing so, the robot closely
follows the desired shape curve in the image space with
minimal deviations, enabling to avoid obstacles while achiv-
ing the desired configuration. We believe that the ability
to automatically grow the continuum arm, using purely
visual features, while asserting control over its whole body
configuration is an important skill that will unlock the ability
to address challenges in object manipulation in cluttered and
constrained environments. Fig. 1 shows an origami inspired
continuum manipulator in its fully shrunk state and its
desired final shape depicted by the purple curve. The robot
grows along this desired shape and around an obstacle in the
environment to reach a target. The estimated shape of the
robot is represented by Piecewise Constant Curvature (PCC)
arcs (shown in yellow and pink) that parameterize the shape
of each module of the robot. Shape features of individual
segments of the PCC arc are extracted and used to define
an image space error vector between the current and desired
shape of the robot. The robot’s desired shape in the image is
represented by a time varying PCC arc that grows in length
until it achieves the final shape reference in the image. An
adaptive visual servoing algorithm is developed to track the
shape using the shape features. To the best of our knowledge,
this paper presents the first successful demonstration for



automatic grow-to-shape control using visual feedback for
variable length continuum manipulators.

The closest work in literature that controls the shape of
a variable length continuum manipulator is our prior work
[8]. This work focuses on controlling the whole body shape
of the robot from it’s current shape to a desired shape, but
it is unable to constrain the growing motion of the arm
along the desired shape curve. Another recent work proposed
in [11] uses a model-based image-based visual servoing
method to control a soft robot that grows via tip extension.
This formulation only focuses on controlling the end effector
location of the robot using an eye-in-hand camera, but does
not control the full body shape. In this case, motion of the
robot end effector can change the shape of the robot, which
may cause unintentional environmental interactions.

Scope and Assumptions of This Paper:

In this work, we focus on a planar implementation of grow
to shape control for variable length continuum manipulators
with adaptive Image-Based Visual Servoing (IBVS) in the
eye-to-hand configuration. We use two modules of a novel
variable length origami inspired continuum manipulator [12]
to test the performance of our algorithm. The two modules
of the robot grow along their reference shapes in the image
one after the other, ie: only one module is allowed to grow
at a time. The out of plane bending motion of the origami
modules is constrained and we independently control four
tendons of the manipulator, two on each module. This gives
us four Degrees of Freedom (DoF) in two dimensions and
thus configuration redundancy for a given end effector pose
of the arm. The low level controllers of the origami arm
use a coarsely tuned proportional control. ArUco markers
are pasted at the base and the end effector of the robot to
estimate their respective poses in the image. However, we
do not use markers to specifically track shape features of the
robot, instead fit PCC arcs to the robot’s shape in the image.
Further, we assume that the individual modules of the robot
hold the PCC shape, which provides a close approximation
under no-load conditions.

II. BACKGROUND

This section discusses the origami inspired continuum
arm used in our experiments, recaps the relevant constant
curvature arc fitting models for shape approximation, and
discusses related work in vision-based control of continuum
robots.

A. Origami Continuum Arm

In this paper we use a modular origami-inspired cable-
driven continuum manipulator. Each module of the origami
continuum arm is capable of bending in 3-D and expanding
in length [13]. The minimum length of an individual module
is 80 mm and it can expand up to 200 mm in length. The
modules are light weight and constructed using PET sheets
that are folded in the Yoshimura crease pattern. Each module
is driven by three tendons that are controlled individually
by inexpensive actuators mounted at the base. This tendon

Fig. 2. Geometric method for fitting a constant curvature arc (shown in
yellow) given the points B and E when the tangent to the arc at B is
perpendicular to the x-axis (shown in red) of the image frame.

driven actuation method, having actuators at the robot base,
and not having proprioceptive sensing on the robots body
are some common properties within many continuum arm
designs, and the algorithms designed in this paper, being
model-free, can easily be applied to other continuum ma-
nipulators with minor changes. In this work, we control two
series connected origami modules as shown in Fig. 6.

B. Shape Modeling of Continuum Arms

Continuum arms similar to the one we use in this paper
are often modeled as constant curvature arcs. To model the
entire shape of a multiple section continuum arm, Piecewise
Constant Curvature (PCC) curves can be utilized. In this
work, we model the shape of each module of the continuum
arm as a constant curvature arc section of a PCC curve. The
features of each arc section, arc length and curvature, are
utilized as shape features in our image-based servo loop as
discussed in Section III-C. We will now recap a geometric
technique to fit constant curvature arcs to a module of the
origami continuum robot. Let us consider a simplified case
as shown in Fig. 2. The base of the arc at B(xy,y,) has
a tangent that is perpendicular to the x-axis of the image
frame. In this case, the center of the arc lies at C(z.,y.)
where z. = xp + R, y. = 1. R is the radius of the
curve as shown in Fig. 2. The straight line BE connecting
the base and end E(z.,y.) of the arc has a length I, =
\/(arb — )2+ (yp — ye)?. Since the ABCE is isosceles,
the L CD divides BE into halves. The length [ can be
computed by projecting E on BC. We arrive at eq. 1 using
ABAE and ABCD. Egq. 2 is easily deduced from ABCE.

R=12/2 (1)
0 = 2(m/2 — arccos(l/11)) (2)

For the case, when the tangent to the base of the arc is
not perpendicular to the x-axis of the image frame, a simple
rotation can be applied to compute the values of the radius
of the curve R and the central angle # of the arc section.



C. Vision-based Control

Traditional Image-based Visual Servoing (IBVS) schemes
[14], [15] utilize visual features that are observed either on
the robot (eye-to-hand applications) or in the robot’s envi-
ronment (eye-in-hand applications) to control the pose of the
manipulator’s end effector. These techniques require knowl-
edge of the robot Jacobian, camera calibration parameters, as
well as sensor information such as joint encoder readings. In
contrast to traditional IBVS, adaptive visual servoing meth-
ods require minimal knowledge of system parameters. They
estimate system parameters online by utilizing a short series
of excitation signals for system identification [16]-[18].
Since these methods are robust to modeling inaccuracies,
they have also been applied to control the end effector pose of
soft and continuum robots [10], [19], [20]. In [11] a model-
based eye-in-hand IBVS approach is designed to control the
tip extension of a continuum robot with pneumatic segments.
Although this work allows to steer the robot around obstacles
in the environment, and grow towards a target in the image,
there is no explicit control over the shape of the robot’s body.
In this work, we present an eye-to-hand application of visual
servoing, where an external camera observes and controls the
shape of the robot. Adaptive IBVS formulations have been
known to be useful when controlling systems with unknown
or uncertain system models. In [21] an adaptive IBVS
controller is used to servo a variable length continuum robot
in a constrained environment. Constraints in the environment
are used as passive contacts that apply bending forces on
different regions of the continuum manipulator to conform
it to the shape of the external environment but there is
no explicit control over the shape of the robot. In contrast
to controlling only the end effector pose of the robot in
the image, we control the entire shape of the continuum
manipulator in the image.

In [22] an adaptive visual servoing scheme is used to
control the shape of a soft robotic manipulator. However,
this work is formulated for in-extensible soft robots. Most
recently, our work on whole body shape control of contin-
uum robots [8] utilizes an adaptive scheme with an initial
exploration phase to control a variable length continuum ma-
nipulator from one shape to another in the image. However,
this work does not constrain the transient response of the
system to grow along the desired shape curve in the image.
In this work, we present an adaptive vision-based shape
control algorithm that grows the variable length continuum
manipulator along a desired shape curve in the image. To
the best of our knowledge, these results on automatic shape
growing of variable length continuum robots using visual
feedback are the first of their kind in the literature.

III. GROW TO SHAPE ADAPTIVE VISUAL SERVOING

In this paper, we grow a modular origami inspired variable
length continuum manipulator [13] from its minimum length
state to a desired shape while asserting control over the
entire configuration of the robot in the image. Our work
enables the robot to expand in length, one module at a time,
in constrained or cluttered spaces without much deviation

between its whole body shape and the desired shape curve
in the image. In the rest of this paper, the term active module
refers to the module of the robot that is growing to shape.
We believe this work develops important shape-control tech-
niques, for variable length continuum manipulators, that are
required for carrying out object manipulation and navigation
actions in cluttered and constrained environments.

This section discusses our approach to estimate the current
shape of the active module in the image, shape feature
extraction, formulation of the shape tracking problem in
image space, and how we generate a dense set of valid
intermediate growing shape references in the image without
requiring snapshots of the robot at the reference shapes.

A. Shape Estimation & Representation

In order to accurately control the shape of the robot in
the image, we first need to estimate the active module’s
current shape in the image. We use Constant Curvature
arcs as our parametric shape representation of the active
module of our two module origami arm. It is well known that
constant curvature arcs provide an accurate representation of
continuum robot segments under no-load conditions [23]. To
estimate the current shape of the active module, we need to
know its base pose and tip position in the image as shown
in Section II-B. As mentioned earlier, we assume that the
base and end effector pose of the robot can be tracked in
the image. However, the tip pose for the first module is
unknown. This unknown tip pose is computed in the image
by estimating the offset distance between the tip and the
robot’s end effector by manually selecting the tip in the
image while the robot is in its initial (fully shrunk) state.
Since this offset distance remains constant while the first
module is growing, we only need to estimate it once. The tip
position can be computed in real time using the values of the
estimated offset distance and end effector pose. With the base
pose and tip position of the active module its current shape
in the image can be estimated, by fitting a constant curvature
arc using the geometric methods recapped in Section II-B.

B. Shape Feature Extraction

In our vision-based control implementation we use con-
stant curvature arc parameters, arc length denoted by s and
curvature denoted by x, as our shape features to servo the
robot shape in the image. These are determined by using
geometric equations of arcs: s = Rf and k = 1/R, where
R is the radius of curvature and 6 is the center angle of the
arc. The extracted shape features of the active module are
arranged as follows in our image feature vector

f; = [si, k4]

where the subscript ¢ € I and denotes the module number
of the active module.

C. Image-Based Visual Servoing

The image space error e;, in eq. (3), is the difference
between the current and desired shapes of the active module
in the image. It is formulated as the difference between the



current shape features f; and the desired shape features f;".
The current shape features consist of arc parameters of the
active module as explained above while the desired shape
features consist of the arc parameters for the growing shape
reference.

The image space error is utilized in the image-based control
loop [24] as shown in eq (4) to ensure that the current shape
features track the desires shape features of the growing curve
in the image.

vi= -\ e + JH; (4)

The combined Jacobian J, is a product of the robot Jacobian
Jy, that relates actuator velocities to arc parameter velocities
in cartesian space, and an image Jacobian J; that relates
the cartesian space velocities of the arc parameters to image
feature velocities. The combined Jacobian is first initialized
with an initial guess and then updated online using the
modified projection algorithm as described in section III-D.

D. Jacobian Adaptation & Reset

The initial value of the combined Jacobian jj is updated
at each iteration of the control loop by observing the system
behavior for each set of velocity inputs to the actuators of
the active module. An update term A.J (n) is computed by
projecting and scaling the difference between the measured
change in image features and the expected change in image
features (based on the previous estimate of the combined
Jacobian and the input velocities to the actuators) as shown
in eq (5). Here, 7 is a scaling factor and is in the range [0, 1]
and ;o > 0 is a weighting factor. It is crucial to appropriately
select values of p and 7 to ensure smooth actuator inputs to
the system.

(fi(n +1) = IS (m)vi(n))vi(n)”

AT (n) =n
( PEATAOIE

)

The update to each element JA(JZ of the combined Jacobian
matrix is performed, at each iteration of the control loop, as
shown in eq (6). This method is commonly known as the
modified projection algorithm [20].

JEn+1)=AJ(n) + Jf(n) (6)

To ensure a smooth transition between the active modules,
we implement a Jacobian reset functionality. At the time in-
stance where the active module switches to the next module,
the estimated combined Jacobian is reset to its initial guess.
This reset functionality ensures that the estimated combined
Jacobian does not over-fit to the physical properties of either
module as the properties for each module may vary due to
wear and tear.

E. Reference Selection & Growing Reference Shapes

Image-based visual servo schemes compute an error be-
tween the current features and the reference features for
the system to converge to its desired pose in the image.
Conventionally, the current features are obtained from the
current image of the manipulator that is acquired from

an external camera looking at the robot while the desired
features are obtained from a snapshot of the robot at its
reference pose. In practical settings, it is not always possible
to obtain an image of the robot in its desired configuration.
This is an inherent limitation of image-based visual servoing
formulations. Our approach for shape reference feature
generation does not require any snapshots of the robot in its
desired configuration. Instead, we generate reference shape
features in the current image of the robot by selecting a
reference end effector pose for the robot in the image. This
is done by clicking a point in the current image to select
the reference position and by dragging the mouse pointer
to select the reference orientation. Next, a shape reference
for the selected end effector pose is generated in the image
by using an inverse kinematics (IK) solver (AMoRPH) [25],
[26] that utilizes an analytical geometry approach [27]. This
generated shape is the desired shape of the robot in the
image. Reference shape features s and « are computed as
shown in Section III-B. Growing references are provided to
the image-based visual servo loop by initializing the central
angle of the PCC arc to a minimum value 6 = 6,,,;,,. At each
iteration of the control loop, 6 is increased at a fixed rate until
the reference arc achieves its final length in the image. The
rate of increase of 6 determines how rapidly the reference and
thus the robot grows in the image. Note that certain curves
in the workspace might not be tractable due to the robot’s
constraints i.e. maximum length and bending angle. In order
to ensure the generated shapes are tractable, the hardware
constraints need to be integrated to the AMoRPH solver.

In addition to generating kinematically feasible references,
the IK solver discussed in [25] is also capable of generating
collision free references. Grow to shape capability can be
utilized for various applications such as reaching a target
object in a cluttered environment and visual inspection in
confined spaces. In such cases, our control algorithm would
rely on a separate method, such as [25], to generate collision
free reference shapes.

IV. SIMULATION

We test the grow to shape performance of our algorithm
on a numerical simulation of two modules of the continuum
arm. In this section, we present the simulation setup and
discuss the results obtained.

A. Simulation Setup

A numerical simulation is developed using Python3 using
the constant curvature model and virtual joints as described
in [27]. The continuum modules in the simulation are devel-
oped to be similar to the origami arm discussed in [13]. A
simulation camera is spawned using the pinhole projection
model and a visualization of the camera image is created
using OpenCV. A ROS package is implemented to integrate
all the components of the simulation. We provide the package
as open source here [28]. The robot kinematics implemented
in the simulation are generalized and capable of spawning
multiple modules connected in series. In our work we focus
on controlling two modules of the robot in the image.



Initial Shape Final Shape

Fig. 3.  Simulation experiment showing a two module variable length
continuum arm expanding to the final reference shape curve shown in green.
Module 1 of the continuum robot is shown in orange and module 2 is shown
in purple.

Module 1

Module 2

The motion of the modules is constrained to a plane and
we control 2 degrees of freedom(DoF) in each module.
Altogether, our simulation setup has 4 DoF in a plane and
is a redundant system. In Fig. 3, the images obtained from
the simulation camera are visualized. The different colored
segments (orange and purple) denote the different modules of
the continuum arm that are connected in series and suspended
from a horizontal base shown in white.

B. Simulation Results: Grow to Shape

The proposed adaptive visual servoing algorithm is tested
on various growing shape references in the image using
our numerical simulation. Snapshots for a trial where the
robot automatically expands to an ”S-shape” reference on
the right side of its workspace are provided in Fig. 3. The
first row of the figure demonstrates module 1 (shown in
orange) expanding to its reference shape (shown in blue). In
the second row, module 2 (shown in purple) expands from
its minimum length to the desired shape (shown in blue).
The feature convergence plots for module 1 and module 2
is shown in Fig. 4 and Fig. 5 respectively. A small-steady
state tracking error is observed for both the features for
both modules. However, all the features converge to their
respective reference values with minimal overshoot.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We use two series connected modules of the origami
arm [12], [13] to test the performance of our proposed
grow-to-shape algorithm. Each module is controlled using
3 actuators that are connected to flexible tendons. In our
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Fig. 4. Shape feature convergence plot for module 1 for the simulation
experiment demonstrated in Fig. 3.

work, we couple two of the tendons in each module in
software thereby individually controlling two tendons in each
module of the manipulator. This constrains the motion of
the manipulator to a plane. An image of our experimental
setup is shown in Fig. 6. The manipulator is mounted, facing
downward, to a horizontal bar. An Intel Realsense d435i
camera is used in an eye-to-hand setting to obtain real-time
high resolution (1280 X 720 pixels) RGB images of the
manipulator. Two ArUco markers are pasted at the base and
end effector of the robot to obtain their respective poses in
the image. The manipulator is powered using a bench top
power supply set to 6V. At the beginning of each experiment,
both modules of the robot are set to their minimum length.
A static transform between the tip of the first module and the
robot’s end effector is estimated by selecting the tip position
of the first module in the image. The combined Jacobian is
initialized with an intuitive guess of the system parameters
and is adapted online to the specific system parameters
for the active module and camera parameters. The control
frequency for our experiments is set to 10Hz. The rest of
this section presents the experiments conducted to test the
performance of our algorithm and discusses their outcomes.

B. Grow to Shape Validation

We experimentally demonstrate the capability of our al-
gorithm to grow the continuum manipulator along desired
reference shapes in the image. Experiments are conducted
for 8 randomly selected reference poses of the end effector in
different parts of the robot’s workspace. Shape references for
each of the selected poses are generated using the methods
discussed in Section III-E. For each of these experiments,
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Fig. 5. Shape feature convergence plot for module 2 for the simulation
experiment demonstrated in Fig. 3.
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Fig. 6. Experimental setup showing the two module origami continuum
manipulator.

the final shape of the robot along with the reference shape
is shown in Fig. 7. In all the experiments, the final shape
of the robot closely mimics the provided reference shape in
the image. Evidence of this can be seen in Fig. 8 that shows
the steady-state shape feature errors recorded for each of the
modules in these experiments. The shape feature plots for the
experiment demonstrated in Fig. 7f are shown in Fig. 9 and
Fig. 10. They demonstrate our controller’s ability to closely
track the growing shape reference for the active module and
converge to the final shape with minimal steady state error
in the image.

Fig. 7.
to different shape references in the image. Desired shape references are
depicted with purple curves, and the final shape achieved by module 1 and
module 2 is shown by the yellow and pink curves respectively.

Eight different experiments validating grow-to-shape performance

Summary of Results: Shape Feature Convergence
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Fig. 8. Box plot showing the mean and standard deviation of shape feature
errors recorded for each module at steady-state.

C. Controller Performance Comparison

The response of the image-based controller is compared
for varying speeds of the growing reference curve in the
image. We use the experiment shown in Fig.7f as our baseline
of comparison. The controller parameters, for the baseline
trial, are tuned such that the overshoot in shape feature
errors is always below 7%. The shape feature plots shown
in Fig.11 are for 2 trials of the same experiment where
the growing speed of the reference is varied. For each
experiment, the shape features converge to their reference
values with minimal steady state error. Since the speed of
the growing reference is increased, we observe a slightly
higher overshoot (within 10%) for these trials. These results
demonstrate our controllers ability to track shape references
with faster growing speeds in the image.

D. Proof of Concept: Obstacle Avoidance

In Fig. 12, we demonstrate proof of concept experiments
to show that our controller can be applied to cluttered
or constrained environments. Note, we do not explicitly
implement obstacle avoidance as shown in [25]. Instead, we
visually select reference shapes that are free of collisions.
Our controller ensures the growing references are tracked
closely to avoid collisions (as seen in the supplementary
video) in the environment while still ensuring convergence
to the final shape with a smooth transient response.
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Fig. 9. Feature convergence plot for shape features (s1, 1) of module 1
for the experiment shown in Fig. 7d.

E. Limitation

Our proposed grow-to-shape formulation is currently lim-
ited to 2-D. An approach to extending the capabilities of
this algorithm to control the shape of the robot in 3-D is to
use information from depth sensors to fit Piecewise Constant
Curvature curves. Indeed, there will be challenges of noisy
depth data that will need to be handled. Extending these
capabilities to 3-D would enable us to use this work to
address practical problems in various domains such as object
manipulation, inspection, and assistive robotics.

VI. CONCLUSION & FUTURE WORK

In this paper, we develop an adaptive vision-based shape
controller that allows us to utilize the configuration redun-
dancies of a novel variable length continuum robot while
ensuring that the robot tracks desired shape curves in the
image space as it expands from its minimum length to the
desired shape. We first obtain a parametric representation of
the manipulator’s shape in the image by fitting piecewise
constant curvature arcs. The arc features of each piecewise
segment are used as image features for visual servoing.
Notably, we do not use markers or fiducials on the entire
robot’s body to compute our image features. We only use
markers to track the base and end effector pose of the robot
in the image and this information is not used in the control
loop. An adaptive visual servoing controller that does not
require any initial excitation velocities is applied to control
each module of the manipulator such that it tracks a growing
reference shape in the image. Further, our controller does not
use any information from the robot’s sensors, we only utilize
information about the robot’s morphology in the image.
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Fig. 10. Feature convergence plot for shape features (s2, k2) of module

2 for the experiment shown in Fig. 7d.

Experiments are performed on a numerical simulation as well
as a two module origami arm hardware. The experimental
results demonstrate that the manipulator is able to accurately
track the growing shape references in the image using our
approach.

This work is inspired from reaching motions observed
in nature. Such motions enable complex environmental in-
teractions such as object manipulation and inspection in
unstructured settings. The use of vision-based control to
close the shape control loop is advantageous to incorporate
task relevant information in the control cycle. Our work is
fundamental to ensuring safe operation of variable length
robots in cluttered and constrained environments. It unlocks
an important shape-based control skill for reaching areas or
objects of interest with a variable length continuum arm in
such environments. Further investigation in robust techniques
for estimating the whole body configuration of the continuum
arm in the image without relying on static transforms would
enhance the ability of our system to react to unexpected
disturbances to the inactive module. Additionally, expanding
this work to control the robot in 3-D is of interest to us.
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