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AbstractÐ In this paper, we propose an adaptive eye-to-
hand vision-based control methodology, which enables a closed-
loop grow-to-shape capability for variable length continuum
manipulators in 2D. Our method utilizes shape features of
the continuum robot, i.e. module curvature and length, which
are obtained from the image. Our adaptive control algorithm
servos the robot to converge and track the desired values of
these features in the image space without the need of a robot
model. As a result the robot starts from a minimum length
configuration and grows into a given desired shape, always
staying on the course of the desired shape. We believe that this
approach unlocks capabilities for variable length continuum
robots by leveraging their actuation redundancy and avoiding
obstacles while carrying out object manipulation or inspection
tasks in cluttered and constrained environments. We perform
experiments in simulations and on a real robot to assess the
performance of our visual servoing algorithm. Our experiments
demonstrate the controllers ability to accurately converge the
current features to their references, for a variety of desired
shapes in the image, while ensuring a smooth tracking response.
We also present some proof of concept results demonstrating
the effectiveness of this technique for controlling the robot in
constrained environments. Markedly, this is the first successful
demonstration for automatic grow-to-shape control using visual
feedback for variable length continuum manipulators.

I. INTRODUCTION

Continuum robots represent a paradigm shift in robotics

research as well as its applications. Unlike traditional rigid-

link robots that are composed of discrete joints, continuum

manipulators are characterized by continuous flexible struc-

tures that mimic biological systems such as elephant trunks

and octopus tentacles. This design approach allows them

to conform to a wider range of shapes and configurations

when compared to their rigid counterparts. Additionally, soft

continuum manipulators offer inherent safety benefits and

have reduced risks of injury or damage when interacting

with humans or delicate objects compared to traditional

rigid link manipulators. These advantages make continuum

manipulators the perfect choice for applications in medical

and assistive robotics [1]±[3], search and rescue operations

[4], and safety inspections in constrained spaces [5]. Use of

extensible robots in these applications can be advantageous

as they can grow around obstacles to reach targets from

various approach orientations. Accurate control of the entire

shape of the manipulator’s body is beneficial in such condi-

tions. Modeling inaccuracies [6], [7] pose a major challenge
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Fig. 1. Left: Shows the two module origami continuum arm at its minimum
length configuration and the desired shape reference in the image, shown by
the purple curve. Right: Shows the origami arm fully extended to match
the desired shape reference in the image space. The two segments of the
Piecewise Constant Curvature arcs estimating the shape of the robot are
shown in yellow and pink. Notice how the manipulator bends around an
obstacle to reach the target shape.

in precisely controlling continuum manipulators but vision-

based control techniques have been shown to be robust

to common modeling inaccuracies in continuum robots as

shown in our prior work [8] and in [9], [10].

In this work, we present an adaptive vision-based control

scheme that allows a variable length continuum manipulator

grow to a desired shape, from its fully shrunk state to

a goal configuration. While doing so, the robot closely

follows the desired shape curve in the image space with

minimal deviations, enabling to avoid obstacles while achiv-

ing the desired configuration. We believe that the ability

to automatically grow the continuum arm, using purely

visual features, while asserting control over its whole body

configuration is an important skill that will unlock the ability

to address challenges in object manipulation in cluttered and

constrained environments. Fig. 1 shows an origami inspired

continuum manipulator in its fully shrunk state and its

desired final shape depicted by the purple curve. The robot

grows along this desired shape and around an obstacle in the

environment to reach a target. The estimated shape of the

robot is represented by Piecewise Constant Curvature (PCC)

arcs (shown in yellow and pink) that parameterize the shape

of each module of the robot. Shape features of individual

segments of the PCC arc are extracted and used to define

an image space error vector between the current and desired

shape of the robot. The robot’s desired shape in the image is

represented by a time varying PCC arc that grows in length

until it achieves the final shape reference in the image. An

adaptive visual servoing algorithm is developed to track the

shape using the shape features. To the best of our knowledge,

this paper presents the first successful demonstration for



automatic grow-to-shape control using visual feedback for

variable length continuum manipulators.

The closest work in literature that controls the shape of

a variable length continuum manipulator is our prior work

[8]. This work focuses on controlling the whole body shape

of the robot from it’s current shape to a desired shape, but

it is unable to constrain the growing motion of the arm

along the desired shape curve. Another recent work proposed

in [11] uses a model-based image-based visual servoing

method to control a soft robot that grows via tip extension.

This formulation only focuses on controlling the end effector

location of the robot using an eye-in-hand camera, but does

not control the full body shape. In this case, motion of the

robot end effector can change the shape of the robot, which

may cause unintentional environmental interactions.

Scope and Assumptions of This Paper:

In this work, we focus on a planar implementation of grow

to shape control for variable length continuum manipulators

with adaptive Image-Based Visual Servoing (IBVS) in the

eye-to-hand configuration. We use two modules of a novel

variable length origami inspired continuum manipulator [12]

to test the performance of our algorithm. The two modules

of the robot grow along their reference shapes in the image

one after the other, ie: only one module is allowed to grow

at a time. The out of plane bending motion of the origami

modules is constrained and we independently control four

tendons of the manipulator, two on each module. This gives

us four Degrees of Freedom (DoF) in two dimensions and

thus configuration redundancy for a given end effector pose

of the arm. The low level controllers of the origami arm

use a coarsely tuned proportional control. ArUco markers

are pasted at the base and the end effector of the robot to

estimate their respective poses in the image. However, we

do not use markers to specifically track shape features of the

robot, instead fit PCC arcs to the robot’s shape in the image.

Further, we assume that the individual modules of the robot

hold the PCC shape, which provides a close approximation

under no-load conditions.

II. BACKGROUND

This section discusses the origami inspired continuum

arm used in our experiments, recaps the relevant constant

curvature arc fitting models for shape approximation, and

discusses related work in vision-based control of continuum

robots.

A. Origami Continuum Arm

In this paper we use a modular origami-inspired cable-

driven continuum manipulator. Each module of the origami

continuum arm is capable of bending in 3-D and expanding

in length [13]. The minimum length of an individual module

is 80 mm and it can expand up to 200 mm in length. The

modules are light weight and constructed using PET sheets

that are folded in the Yoshimura crease pattern. Each module

is driven by three tendons that are controlled individually

by inexpensive actuators mounted at the base. This tendon

Fig. 2. Geometric method for fitting a constant curvature arc (shown in
yellow) given the points B and E when the tangent to the arc at B is
perpendicular to the x-axis (shown in red) of the image frame.

driven actuation method, having actuators at the robot base,

and not having proprioceptive sensing on the robots body

are some common properties within many continuum arm

designs, and the algorithms designed in this paper, being

model-free, can easily be applied to other continuum ma-

nipulators with minor changes. In this work, we control two

series connected origami modules as shown in Fig. 6.

B. Shape Modeling of Continuum Arms

Continuum arms similar to the one we use in this paper

are often modeled as constant curvature arcs. To model the

entire shape of a multiple section continuum arm, Piecewise

Constant Curvature (PCC) curves can be utilized. In this

work, we model the shape of each module of the continuum

arm as a constant curvature arc section of a PCC curve. The

features of each arc section, arc length and curvature, are

utilized as shape features in our image-based servo loop as

discussed in Section III-C. We will now recap a geometric

technique to fit constant curvature arcs to a module of the

origami continuum robot. Let us consider a simplified case

as shown in Fig. 2. The base of the arc at B(xb, yb) has

a tangent that is perpendicular to the x-axis of the image

frame. In this case, the center of the arc lies at C(xc, yc)
where xc = xb + R, yc = yb. R is the radius of the

curve as shown in Fig. 2. The straight line BE connecting

the base and end E(xe, ye) of the arc has a length l1 =
√

(xb − xe)2 + (yb − ye)2. Since the ∆BCE is isosceles,

the ⊥ CD divides BE into halves. The length l can be

computed by projecting E on BC. We arrive at eq. 1 using

∆BAE and ∆BCD. Eq. 2 is easily deduced from ∆BCE.

R = l21/2l (1)

θ = 2(π/2− arccos(l/l1)) (2)

For the case, when the tangent to the base of the arc is

not perpendicular to the x-axis of the image frame, a simple

rotation can be applied to compute the values of the radius

of the curve R and the central angle θ of the arc section.



C. Vision-based Control

Traditional Image-based Visual Servoing (IBVS) schemes

[14], [15] utilize visual features that are observed either on

the robot (eye-to-hand applications) or in the robot’s envi-

ronment (eye-in-hand applications) to control the pose of the

manipulator’s end effector. These techniques require knowl-

edge of the robot Jacobian, camera calibration parameters, as

well as sensor information such as joint encoder readings. In

contrast to traditional IBVS, adaptive visual servoing meth-

ods require minimal knowledge of system parameters. They

estimate system parameters online by utilizing a short series

of excitation signals for system identification [16]±[18].

Since these methods are robust to modeling inaccuracies,

they have also been applied to control the end effector pose of

soft and continuum robots [10], [19], [20]. In [11] a model-

based eye-in-hand IBVS approach is designed to control the

tip extension of a continuum robot with pneumatic segments.

Although this work allows to steer the robot around obstacles

in the environment, and grow towards a target in the image,

there is no explicit control over the shape of the robot’s body.

In this work, we present an eye-to-hand application of visual

servoing, where an external camera observes and controls the

shape of the robot. Adaptive IBVS formulations have been

known to be useful when controlling systems with unknown

or uncertain system models. In [21] an adaptive IBVS

controller is used to servo a variable length continuum robot

in a constrained environment. Constraints in the environment

are used as passive contacts that apply bending forces on

different regions of the continuum manipulator to conform

it to the shape of the external environment but there is

no explicit control over the shape of the robot. In contrast

to controlling only the end effector pose of the robot in

the image, we control the entire shape of the continuum

manipulator in the image.

In [22] an adaptive visual servoing scheme is used to

control the shape of a soft robotic manipulator. However,

this work is formulated for in-extensible soft robots. Most

recently, our work on whole body shape control of contin-

uum robots [8] utilizes an adaptive scheme with an initial

exploration phase to control a variable length continuum ma-

nipulator from one shape to another in the image. However,

this work does not constrain the transient response of the

system to grow along the desired shape curve in the image.

In this work, we present an adaptive vision-based shape

control algorithm that grows the variable length continuum

manipulator along a desired shape curve in the image. To

the best of our knowledge, these results on automatic shape

growing of variable length continuum robots using visual

feedback are the first of their kind in the literature.

III. GROW TO SHAPE ADAPTIVE VISUAL SERVOING

In this paper, we grow a modular origami inspired variable

length continuum manipulator [13] from its minimum length

state to a desired shape while asserting control over the

entire configuration of the robot in the image. Our work

enables the robot to expand in length, one module at a time,

in constrained or cluttered spaces without much deviation

between its whole body shape and the desired shape curve

in the image. In the rest of this paper, the term active module

refers to the module of the robot that is growing to shape.

We believe this work develops important shape-control tech-

niques, for variable length continuum manipulators, that are

required for carrying out object manipulation and navigation

actions in cluttered and constrained environments.

This section discusses our approach to estimate the current

shape of the active module in the image, shape feature

extraction, formulation of the shape tracking problem in

image space, and how we generate a dense set of valid

intermediate growing shape references in the image without

requiring snapshots of the robot at the reference shapes.

A. Shape Estimation & Representation

In order to accurately control the shape of the robot in

the image, we first need to estimate the active module’s

current shape in the image. We use Constant Curvature

arcs as our parametric shape representation of the active

module of our two module origami arm. It is well known that

constant curvature arcs provide an accurate representation of

continuum robot segments under no-load conditions [23]. To

estimate the current shape of the active module, we need to

know its base pose and tip position in the image as shown

in Section II-B. As mentioned earlier, we assume that the

base and end effector pose of the robot can be tracked in

the image. However, the tip pose for the first module is

unknown. This unknown tip pose is computed in the image

by estimating the offset distance between the tip and the

robot’s end effector by manually selecting the tip in the

image while the robot is in its initial (fully shrunk) state.

Since this offset distance remains constant while the first

module is growing, we only need to estimate it once. The tip

position can be computed in real time using the values of the

estimated offset distance and end effector pose. With the base

pose and tip position of the active module its current shape

in the image can be estimated, by fitting a constant curvature

arc using the geometric methods recapped in Section II-B.

B. Shape Feature Extraction

In our vision-based control implementation we use con-

stant curvature arc parameters, arc length denoted by s and

curvature denoted by κ, as our shape features to servo the

robot shape in the image. These are determined by using

geometric equations of arcs: s = Rθ and κ = 1/R, where

R is the radius of curvature and θ is the center angle of the

arc. The extracted shape features of the active module are

arranged as follows in our image feature vector

fi = [si, κi]

where the subscript i ∈ I and denotes the module number

of the active module.

C. Image-Based Visual Servoing

The image space error ei, in eq. (3), is the difference

between the current and desired shapes of the active module

in the image. It is formulated as the difference between the



current shape features fi and the desired shape features f
∗

i
.

The current shape features consist of arc parameters of the

active module as explained above while the desired shape

features consist of the arc parameters for the growing shape

reference.

ei = fi − f
∗

i
(3)

The image space error is utilized in the image-based control

loop [24] as shown in eq (4) to ensure that the current shape

features track the desires shape features of the growing curve

in the image.

vi = −λĴ+
c
ei + Ĵ+

c
ḟ
∗

i
(4)

The combined Jacobian Ĵc is a product of the robot Jacobian

Jr, that relates actuator velocities to arc parameter velocities

in cartesian space, and an image Jacobian Ji that relates

the cartesian space velocities of the arc parameters to image

feature velocities. The combined Jacobian is first initialized

with an initial guess and then updated online using the

modified projection algorithm as described in section III-D.

D. Jacobian Adaptation & Reset

The initial value of the combined Jacobian Ĵ+
c

is updated

at each iteration of the control loop by observing the system

behavior for each set of velocity inputs to the actuators of

the active module. An update term ∆Ĵ+
c
(n) is computed by

projecting and scaling the difference between the measured

change in image features and the expected change in image

features (based on the previous estimate of the combined

Jacobian and the input velocities to the actuators) as shown

in eq (5). Here, η is a scaling factor and is in the range [0, 1]
and µ > 0 is a weighting factor. It is crucial to appropriately

select values of µ and η to ensure smooth actuator inputs to

the system.

∆Ĵ+
c
(n) = η

(ḟi(n+ 1)− Ĵ+
c
(n)vi(n))vi(n)

T

µ+ ∥vi(n)∥2
(5)

The update to each element Ĵ+
cj

of the combined Jacobian

matrix is performed, at each iteration of the control loop, as

shown in eq (6). This method is commonly known as the

modified projection algorithm [20].

Ĵ+
cj
(n+ 1) = ∆Ĵ+

cj
(n) + Ĵ+

cj
(n) (6)

To ensure a smooth transition between the active modules,

we implement a Jacobian reset functionality. At the time in-

stance where the active module switches to the next module,

the estimated combined Jacobian is reset to its initial guess.

This reset functionality ensures that the estimated combined

Jacobian does not over-fit to the physical properties of either

module as the properties for each module may vary due to

wear and tear.

E. Reference Selection & Growing Reference Shapes

Image-based visual servo schemes compute an error be-

tween the current features and the reference features for

the system to converge to its desired pose in the image.

Conventionally, the current features are obtained from the

current image of the manipulator that is acquired from

an external camera looking at the robot while the desired

features are obtained from a snapshot of the robot at its

reference pose. In practical settings, it is not always possible

to obtain an image of the robot in its desired configuration.

This is an inherent limitation of image-based visual servoing

formulations. Our approach for shape reference feature

generation does not require any snapshots of the robot in its

desired configuration. Instead, we generate reference shape

features in the current image of the robot by selecting a

reference end effector pose for the robot in the image. This

is done by clicking a point in the current image to select

the reference position and by dragging the mouse pointer

to select the reference orientation. Next, a shape reference

for the selected end effector pose is generated in the image

by using an inverse kinematics (IK) solver (AMoRPH) [25],

[26] that utilizes an analytical geometry approach [27]. This

generated shape is the desired shape of the robot in the

image. Reference shape features s and κ are computed as

shown in Section III-B. Growing references are provided to

the image-based visual servo loop by initializing the central

angle of the PCC arc to a minimum value θ = θmin. At each

iteration of the control loop, θ is increased at a fixed rate until

the reference arc achieves its final length in the image. The

rate of increase of θ determines how rapidly the reference and

thus the robot grows in the image. Note that certain curves

in the workspace might not be tractable due to the robot’s

constraints i.e. maximum length and bending angle. In order

to ensure the generated shapes are tractable, the hardware

constraints need to be integrated to the AMoRPH solver.

In addition to generating kinematically feasible references,

the IK solver discussed in [25] is also capable of generating

collision free references. Grow to shape capability can be

utilized for various applications such as reaching a target

object in a cluttered environment and visual inspection in

confined spaces. In such cases, our control algorithm would

rely on a separate method, such as [25], to generate collision

free reference shapes.

IV. SIMULATION

We test the grow to shape performance of our algorithm

on a numerical simulation of two modules of the continuum

arm. In this section, we present the simulation setup and

discuss the results obtained.

A. Simulation Setup

A numerical simulation is developed using Python3 using

the constant curvature model and virtual joints as described

in [27]. The continuum modules in the simulation are devel-

oped to be similar to the origami arm discussed in [13]. A

simulation camera is spawned using the pinhole projection

model and a visualization of the camera image is created

using OpenCV. A ROS package is implemented to integrate

all the components of the simulation. We provide the package

as open source here [28]. The robot kinematics implemented

in the simulation are generalized and capable of spawning

multiple modules connected in series. In our work we focus

on controlling two modules of the robot in the image.



Fig. 3. Simulation experiment showing a two module variable length
continuum arm expanding to the final reference shape curve shown in green.
Module 1 of the continuum robot is shown in orange and module 2 is shown
in purple.

The motion of the modules is constrained to a plane and

we control 2 degrees of freedom(DoF) in each module.

Altogether, our simulation setup has 4 DoF in a plane and

is a redundant system. In Fig. 3, the images obtained from

the simulation camera are visualized. The different colored

segments (orange and purple) denote the different modules of

the continuum arm that are connected in series and suspended

from a horizontal base shown in white.

B. Simulation Results: Grow to Shape

The proposed adaptive visual servoing algorithm is tested

on various growing shape references in the image using

our numerical simulation. Snapshots for a trial where the

robot automatically expands to an ºS-shapeº reference on

the right side of its workspace are provided in Fig. 3. The

first row of the figure demonstrates module 1 (shown in

orange) expanding to its reference shape (shown in blue). In

the second row, module 2 (shown in purple) expands from

its minimum length to the desired shape (shown in blue).

The feature convergence plots for module 1 and module 2

is shown in Fig. 4 and Fig. 5 respectively. A small-steady

state tracking error is observed for both the features for

both modules. However, all the features converge to their

respective reference values with minimal overshoot.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We use two series connected modules of the origami

arm [12], [13] to test the performance of our proposed

grow-to-shape algorithm. Each module is controlled using

3 actuators that are connected to flexible tendons. In our

Fig. 4. Shape feature convergence plot for module 1 for the simulation
experiment demonstrated in Fig. 3.

work, we couple two of the tendons in each module in

software thereby individually controlling two tendons in each

module of the manipulator. This constrains the motion of

the manipulator to a plane. An image of our experimental

setup is shown in Fig. 6. The manipulator is mounted, facing

downward, to a horizontal bar. An Intel Realsense d435i

camera is used in an eye-to-hand setting to obtain real-time

high resolution (1280 X 720 pixels) RGB images of the

manipulator. Two ArUco markers are pasted at the base and

end effector of the robot to obtain their respective poses in

the image. The manipulator is powered using a bench top

power supply set to 6V. At the beginning of each experiment,

both modules of the robot are set to their minimum length.

A static transform between the tip of the first module and the

robot’s end effector is estimated by selecting the tip position

of the first module in the image. The combined Jacobian is

initialized with an intuitive guess of the system parameters

and is adapted online to the specific system parameters

for the active module and camera parameters. The control

frequency for our experiments is set to 10Hz. The rest of

this section presents the experiments conducted to test the

performance of our algorithm and discusses their outcomes.

B. Grow to Shape Validation

We experimentally demonstrate the capability of our al-

gorithm to grow the continuum manipulator along desired

reference shapes in the image. Experiments are conducted

for 8 randomly selected reference poses of the end effector in

different parts of the robot’s workspace. Shape references for

each of the selected poses are generated using the methods

discussed in Section III-E. For each of these experiments,



Fig. 5. Shape feature convergence plot for module 2 for the simulation
experiment demonstrated in Fig. 3.

Fig. 6. Experimental setup showing the two module origami continuum
manipulator.

the final shape of the robot along with the reference shape

is shown in Fig. 7. In all the experiments, the final shape

of the robot closely mimics the provided reference shape in

the image. Evidence of this can be seen in Fig. 8 that shows

the steady-state shape feature errors recorded for each of the

modules in these experiments. The shape feature plots for the

experiment demonstrated in Fig. 7f are shown in Fig. 9 and

Fig. 10. They demonstrate our controller’s ability to closely

track the growing shape reference for the active module and

converge to the final shape with minimal steady state error

in the image.

Fig. 7. Eight different experiments validating grow-to-shape performance
to different shape references in the image. Desired shape references are
depicted with purple curves, and the final shape achieved by module 1 and
module 2 is shown by the yellow and pink curves respectively.

Fig. 8. Box plot showing the mean and standard deviation of shape feature
errors recorded for each module at steady-state.

C. Controller Performance Comparison

The response of the image-based controller is compared

for varying speeds of the growing reference curve in the

image. We use the experiment shown in Fig.7f as our baseline

of comparison. The controller parameters, for the baseline

trial, are tuned such that the overshoot in shape feature

errors is always below 7%. The shape feature plots shown

in Fig.11 are for 2 trials of the same experiment where

the growing speed of the reference is varied. For each

experiment, the shape features converge to their reference

values with minimal steady state error. Since the speed of

the growing reference is increased, we observe a slightly

higher overshoot (within 10%) for these trials. These results

demonstrate our controllers ability to track shape references

with faster growing speeds in the image.

D. Proof of Concept: Obstacle Avoidance

In Fig. 12, we demonstrate proof of concept experiments

to show that our controller can be applied to cluttered

or constrained environments. Note, we do not explicitly

implement obstacle avoidance as shown in [25]. Instead, we

visually select reference shapes that are free of collisions.

Our controller ensures the growing references are tracked

closely to avoid collisions (as seen in the supplementary

video) in the environment while still ensuring convergence

to the final shape with a smooth transient response.



Fig. 9. Feature convergence plot for shape features (s1, κ1) of module 1
for the experiment shown in Fig. 7d.

E. Limitation

Our proposed grow-to-shape formulation is currently lim-

ited to 2-D. An approach to extending the capabilities of

this algorithm to control the shape of the robot in 3-D is to

use information from depth sensors to fit Piecewise Constant

Curvature curves. Indeed, there will be challenges of noisy

depth data that will need to be handled. Extending these

capabilities to 3-D would enable us to use this work to

address practical problems in various domains such as object

manipulation, inspection, and assistive robotics.

VI. CONCLUSION & FUTURE WORK

In this paper, we develop an adaptive vision-based shape

controller that allows us to utilize the configuration redun-

dancies of a novel variable length continuum robot while

ensuring that the robot tracks desired shape curves in the

image space as it expands from its minimum length to the

desired shape. We first obtain a parametric representation of

the manipulator’s shape in the image by fitting piecewise

constant curvature arcs. The arc features of each piecewise

segment are used as image features for visual servoing.

Notably, we do not use markers or fiducials on the entire

robot’s body to compute our image features. We only use

markers to track the base and end effector pose of the robot

in the image and this information is not used in the control

loop. An adaptive visual servoing controller that does not

require any initial excitation velocities is applied to control

each module of the manipulator such that it tracks a growing

reference shape in the image. Further, our controller does not

use any information from the robot’s sensors, we only utilize

information about the robot’s morphology in the image.

Fig. 10. Feature convergence plot for shape features (s2, κ2) of module
2 for the experiment shown in Fig. 7d.

Experiments are performed on a numerical simulation as well

as a two module origami arm hardware. The experimental

results demonstrate that the manipulator is able to accurately

track the growing shape references in the image using our

approach.

This work is inspired from reaching motions observed

in nature. Such motions enable complex environmental in-

teractions such as object manipulation and inspection in

unstructured settings. The use of vision-based control to

close the shape control loop is advantageous to incorporate

task relevant information in the control cycle. Our work is

fundamental to ensuring safe operation of variable length

robots in cluttered and constrained environments. It unlocks

an important shape-based control skill for reaching areas or

objects of interest with a variable length continuum arm in

such environments. Further investigation in robust techniques

for estimating the whole body configuration of the continuum

arm in the image without relying on static transforms would

enhance the ability of our system to react to unexpected

disturbances to the inactive module. Additionally, expanding

this work to control the robot in 3-D is of interest to us.
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