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Abstract: In this paper, the impact of Lorentz forces and temperature on the natural frequencies
of a piezoresistive sensor composed of two microcantilevers with integrated U-shaped thin-film
aluminum heaters are investigated. Two types of experiments were performed. In the first, the
sensor was placed in a magnetic field so that the current flowing in the heater, in addition to raising
the temperature, produced Lorentz forces, inducing normal stresses in the plane of one of the
microcantilevers. In the second, which were conducted without magnetic fields, only the temperature
variation of the natural frequency was left. In processing of the results, the thermal variations were
subtracted from the variations due to both Lorentz forces and temperature in the natural frequency,
resulting in the influence of the Lorentz forces only. Theoretical relations for the Lorentz frequency
offsets were derived. An indirect method of estimating the natural frequency of one of the cantilevers,
through a particular cusp point in the amplitude—frequency response of the sensor, was used in the
investigations. The findings show that for thin microcantilevers with silicon masses on the order of
4 x 1077 g and currents of 25 A, thermal eigenfrequency variations are dominant. The results may
have applications in the design of similar microsensors with vibrational action.

Keywords: Lorentz force; temperature frequency coefficient (TCF); dual-microcantilever sensor;
natural frequency; vibrations

1. Introduction

The wide variety of sensors and actuators in microelectromechanical systems (MEMSs)
based on Lorentz forces possess compact design, wide measurement range, low power
consumption, and high sensitivity [1,2]. Common components in the design of MEMSs
with Lorentz forces consist of a vibrating elastic element with an integrated conductor
along which a direct or oscillating current flows in the vicinity of an external magnetic
field. The current in the conductor creates a magnetic field that interacts with the external
magnetic field via the Lorentz force, known from physics [3,4].

The application areas of MEMS sensors and actuators with Lorentz forces are diverse
and multidisciplinary. For example, Basha et al. developed a microcantilever sensor that
created a Lorentz force field for the study of magnetothermofluidic electroconductive
flow [5]. A structure of bent beams was used for a microactuator with large displacement
and low driving voltage [6]. In MEMSs, one of the most popular applications of Lorentz
forces is in magnetometers, which measure magnetic flux [7-9]. This type of sensor is
cheap and reliable, has high magnetic flux density, can be used without contact for indirect
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measurements of mechanical quantities, and is applicable to low values of magnetic fields,
including all three axes in space [10-12].

In atomic force microscopes (AFMs), one option for exciting vibrations in the scanning
microcantilever is Lorentz forces. This is achieved by an external permanent magnetic field
interacting with an alternating current flowing through a resistive heater integrated into
the microcantilever [13-15].

When properly oriented relative to the mechanical structures on which they act,
Lorentz forces can induce additional mechanical stresses that deform the vibrating struc-
ture and set the prerequisites for controllably tuning the natural frequency of MEMS
sensors [16,17].

In Lorentz-force-based MEMSs, the flow of current through a conductor also results
in the release of heat, which affects the natural frequency of the system. Because of the
miniature size of the mechanical structures, at higher currents, the temperature offset of
the frequency is added to the influence of the Lorentz forces and can, above certain limits,
become dominant. Thermal frequency tuning has a positive effect in some cases and, when
applied appropriately, increases sensor sensitivity or actuator efficiency [15,18].

Dual-microcantilever sensors for ultralow mass detection typically use an external
vibration excitation of the common base [19]. Single piezoresistive microcantilevers are
widely used for the detection of ultralow masses. The common principle of operation of
these sensors is that with the addition of the detected mass, the natural frequency changes.
To detect this change, the microcantilevers are induced to vibrate either by an external
actuator [20] or by an intrinsic effect such as temperature bending [21,22] or Lorentz
forces [23,24].

The authors of the present paper investigated the operational principle and sensitivity
of a dual-microcantilever sensor by varying the frequency via temperature [25].

The purpose of this paper is to investigate the influence of Lorentz forces on the offset
or tuning of the natural frequency of a dual-microcantilever sensor for the detection of
ultrasmall masses, paying attention to the fact that temperature effects such as thermal
expansion and thermal softening of the material, which also influence the offset of the
natural frequency, occur at high current values. The dual-microcantilever sensor that was
discussed in detail in [25] was used here only as a means by which to evaluate the effects
of Lorentz force and temperature effects on the natural frequency variance of one of the
microcantilevers. These two influences are unrelated to the operating principle of the sensor
but could be used to artificially simulate added mass to one of the microcantilevers, which
could replace the mass increase in a real detection event.

2. Materials and Methods: Principle of Operation and Design of the Investigated
Piezoresistive Dual-Microcantilever Sensor

The sensor studied here comprised two thin silicon microcantilevers with different
sizes but similar natural frequencies. The fixed ends of the microcantilevers were clamped
to a vibrating common rigid substrate. A single piezoresistor was formed on the surface
of each of the microcantilevers near the fixed end. Two resistors with the same equivalent
resistance as the piezoresistors were formed on the rigid substrate. Gold pads, for the
detection of viruses, pathogens, or gas molecules, were located at the free ends of each
of the microcantilevers. The two piezoresistors and the passive resistors were connected
in a Wheatstone bridge. Passive resistors were used for temperature compensation. In
addition, a U-shaped heater made of a thin aluminum film was formed on the surface of
each microcantilever. Figure 1a shows a simplified 3D sketch of the dual-microcantilever
sensor, with the main elements but without details of the actual layers, dimensions, and
connections. The actual structure and topology of the sensor can be seen from Figure 1b. A
photograph of the appearance of the sensor microchip is shown in Figure 1c.
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Figure 1. Arrangement and elements of the piezoresistive dual-microcantilever sensor: (a) simplified

(b) (c)

3D sketch; (b) picture of the chip topology; (c) appearance of the sensor chip.

The operating principle of the piezoresistive dual-microcantilever sensor is as follows:
the substrate is excited using a piezoelectric actuator to induce bending oscillations of
the microcantilevers in a frequency range including the first natural frequencies of both
microcantilevers. The voltages of the two half-bridges formed by the piezoresistors of the
individual microbeams are measured, and the amplitude—frequency characteristics are
determined. The voltages of the two amplitude—frequency characteristics are subtracted
(Figure 2a), and the absolute value of the difference (Figure 2b) is found, where a cusp point
with frequency f,sp and zero amplitude appears between the two resonant frequencies fg

and f.

(a)

034

024

014

(b)

Figure 2. Amplitude—frequency characteristics of the dual-microcantilever sensor: (a) voltage differ-
ences of the two half-bridges; (b) absolute value of the voltage difference of the two half-bridges.
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Permanent magnet

It has been shown that the cusp-point frequency is stable and depends only on the
eigenfrequencies of the microcantilevers and their losses [25]. The relationship between the
natural frequencies f;; and f;> of microcantilevers 1 and 2, respectively, and the frequency
feusp of the cusp point is given by the formula

\/E 41 B 42
fousp = 22 it/ M M
W2\ - -2 -nd)

where the damping factors 77; and #, of microcantilevers 1 and 2, respectively, are calculated
using the viscous resistance coefficients 1 and B, by the formula#; = 8;/2mi=1, 2.

If a mass is added to one of the microcantilevers, its value is determined by the offset
of the cusp-point frequency. This detection method is robust and highly sensitive and
does not depend on phase differences between the two beams because they are eliminated
at the outset, when the amplitude—frequency characteristics of the two half-bridges are
determined separately. Detailed descriptions of the working principle and investigations
of the method are given in [25,26]. The method and the detection sensor were patented
in [27].

3. Theoretical Study of the Influence of Lorentz Forces on the Natural Frequency of a
Microcantilever with Anisotropic Properties

To investigate the influence of Lorentz forces on the natural frequency of a micro-
cantilever with anisotropic properties, an experimental setup was designed, which is
schematically shown in Figure 3a. Two stacks of neodymium permanent magnets cre-
ated a magnetic field, the magnetic lines of which were oriented perpendicularly to the
planes of the microcantilevers. As shown in Figure 3b, the heater of microcantilever 1 was
plugged into an electrical circuit composed of a battery, an ammeter, and a variable resistor
to regulate the current; the microcantilever was loaded in planar bidirectional tension
longitudinally and transversely. To investigate the influence of the reverse directions of the
Lorentz forces with compression action, the polarity of the battery was inverted (Figure 3c).

\\ Cantilever 2

Permanent magnet

(a)

Figure 3. Loading of microcantilever 1 with Lorentz forces: (a) schematic of the mutual orientation of

the two microcantilevers in a homogeneous magnetic field with induction B perpendicular to the plane
of the beam; (b) microcantilever heater power supply 1 with adjustable current 7; (¢) microcantilever
1 heater power supply with adjustable current 7 in the reverse direction.

According to Lorentz’s law, a force Fj, occurs in the heater wire. This force is calculated
by the formula
N

— —
Fr =il xB, 2)
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where i is the current, 7 is the length of the wire, and E is the magnetic field induction. As
shown in Figure 3b,c, there were three sections in the U-shaped heater, two with lengths I}
and one with length /5, and a Lorentz force occurred in each of these sections.

Since the heater frames moved parallelly to magnetic field lines when they vibrated,
no Faraday effect voltages were induced in them.

If the orientation and direction of the magnetic induction and the direction of the
current are as shown in Figure 2b, three forces occur, which can be represented by the
following scalar expressions:

Fp1 =ilpB
Fip =il B 3)
Fr3 = —Fp»

The force Fr; loads the cantilever in tension longitudinally, and the forces Fr, and Fj3
load it in tension transversely. If only the direction of the current or only the direction of the
magnetic induction is reversed, analogous forces occur, but with opposite directions, and
the microcantilever is loaded entirely in compression. In either case, the microcantilever
changes its natural frequency because of the increase or decrease in size and the change in
Young’s modulus.

For the following calculations, it is assumed that the microcantilevers are homoge-
neous, of constant thickness, and made of silicon, and the influence of the thin layers
of aluminum and gold is neglected. The influence of the leads and doped areas of the
piezoresistors is also neglected.

Silicon is an anisotropic material for which, for type n and microcantilever location
in the plane (100) and direction [110], the mechanical stresses are computed by Hook’s
law [4,28] by multiplying the matrices

(%] Cll C12 C]z 0 0 0 €1

05} Cp Cyp C2 0 0 0fle

0 _ C12 C12 C]l 0 0 0 €3 (4)
0 0 0 0 Cyu 0 0]l

0 0 0 0 0 Caa O ||es

0 0 0 0 0 0 C44 &g

which leads to the linear system of equations

01 = Cr1€1 + Cpoez + Croe3
0y = Cy18p + Croe1 + Cppe3 5)
0= C11€3 + C12€1 + C12€2

whence the strains are found

e = Eno1+Cpoi—Cpop
1= Cn—Crp)(Cri2C2)
€ = 1102 —C1201+C1p0» 6
(C11—C12)(C11+2C12) - (6)
£3 = Cia(01+02)
2C%,—C11C1o—C3

Here, C = [C; j] is the elasticity matrix, o = [0;] is the mechanical stress matrix, and
e = [¢;] is the strain matrix [29].
Having assumed [, = I and [;; = [, the mechanical stresses are calculated using the

formulae ‘
oy =+ =+

Il I
1'2L3 i% 4 (7)

where the “+” sign is for tension (Figure 3b) and the “—" sign is compression (Figure 3c).
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From (7), it is evident that for the Lorentzian loading thus specified, the mechanical
stresses in both directions of the microcantilever are equal regardless of the ratio of the
length to the width of the microcantilever.

If the original length, width, and thickness of the microcantilever are denoted by /19,
Iy, and I3, respectively, and the resulting deformed dimensions due to loading are denoted
by Iy, I, and I3, respectively, the relationships can be written

l = ho(1+¢),
I =l (1+e2), 8)
I3 = 130(1 +£3).

In this case, the newly obtained volume of the microcantilever due to the change in its
dimensions is

Vi =hLhl; = V0(£1€2€3 +ererte1es+ ezt e +es+1), 9)

where V| denotes the initial undeformed volume of the microcantilever.
Since the mass does not change, the density of the deformed beam is

m m

= — = . 10
P Vi Vo(erepes +e160 + €163 +€xes + €1+ €2 +e3+1) (10)

The cross-sectional area A of the deformed beam is obtained as
Ay = Dbl = A0(€283 +é& +é&3+ 1), (11)

where A( denotes the area of the undeformed beam.
For the moment of inertia I; of the deformed microcantilever, it is analogously

derived as
b I 3 2 3 2
L = TRET) e0€3 + 3epe3 + €3 +3epe3 +3e53 +ex +e3+ 1), (12)

where I is the moment of inertia of the undeformed microcantilever.
The changed natural angular frequency @; of the deformed microcantilever after
considering the above conclusions can be calculated [30,31] by the formula

El 14+e3)%(14¢
@1 = (4.694) L = wio (L4 &) ( 3 2, (13)
p1A1l (1+¢)

where @ is the natural angular frequency of the undeformed microcantilever.
After substituting (6) into (13) and assuming the notations

o =0 =0, (14)

using the result in (7), after transformations for the natural angular frequency changed due
to the deformations, is found

3
@1 = @y (C%l 4+ C11C12 — 2C12(C12 + 0’)) (15)
= 5 .
(C11 = C12)(C3 + (C12+0)Cr1 — C3,) " (Cr1 +2Cp2)
To match the newly assumed notations, Formula (7) can be rewritten as
o= :tE (16)

7
I30



Micro 2024, 4

578

and after substitution in (15),

—(2C15Bi — 130C,C1)?
130C1 (I30CaCy + C11Bi)*Cy

@1 = @19 (17)

is obtained.

The dependence between the regular natural frequency f;; of the undeformed micro-
cantilever and the resulting natural frequency f,11 due to deformations from Lorentz forces
has the form

(130C2C1 — 2C12Bi)?

fs1=fa . (18)
130C1 (I30CaCy + C11Bi)*Cy
In the above two formulae, substitutions are made:
Ci=Cn+2Cp _ (19)

C=Cn—Cp

Formulae (17) and (18) can be used to calculate the dependence of the natural fre-
quency variation on the current when deforming the beam with Lorentz force at constant
magnetic induction.

4. Experimental Study of the Influence of Lorentz Forces on the Amplitude-Frequency
Response of a Dual-Microcantilever Sensor

To experimentally investigate the influence of Lorentz forces on the natural frequency
of a dual-microcantilever sensor, a dedicated measurement system was set up (Figure 4).
The general appearance of the measurement system is shown in Figure 4a. A National
Instruments PXI system with 24-bit resolution and a 2 MS/s sample rate was used to record
and process the voltage data from the Wheatstone bridge. To implement the above process-
ing method, a LabVIEW 2011 program was compiled to measure high-frequency vibrations
with frequencies up to 300 kHz and a minimum resolution of 0.01 Hz [5]. Additionally, two
stacks of neodymium magnets were added to the system, which were designed to interact
with the microcantilever heaters if current flowed on them. Lorentz forces acted in the
plane of the microcantilever and caused tension or compression depending on the direction
of the current in the heater. Figure 4b shows a close-up view of the integrated sensor. A
piezoelectric actuator drove the base of the two microcantilevers via a Digilent controlled
signal generator. Current was supplied to the heater of one of the microcantilevers via a
battery through variable resistors. The value of the current was controlled by means of
an ammeter.

Experiments on the effect of Lorentz forces on the natural frequency were conducted
over a range from 64 kHz to 68 kHz, which included the natural frequencies of the two
microcantilevers. The selected frequency range was divided into 400 steps. For each
step at these frequencies, vibrations of the order of several periods were generated, and
the maximum amplitude between the extreme voltages of the half-bridges involving the
piezoresistors of the two microcantilevers separately and the output of the Wheatstone
bridge were measured. Using LabVIEW, the results were recorded in an Excel file and then
processed in Maple 16.

The heater of microcantilever 1 was initially connected electrically according to the
scheme shown in Figure 3b, and then the voltage polarization was inverted (Figure 3c). A
series of experiments was also conducted in the manner described above, where for each
current applied to the heater, the sensor was first in a position between the two stacks of
magnets and then in a position without magnetic field. The electric current in the heaters
was varied from —750 to 750 pA through a current step of 25 LA. As a result, 60 files were
obtained with the recorded voltage differences of the amplitude—frequency characteristics
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of the two half-bridges and the currents in the heaters. The sensor geometrical parameters,
material data, and experimental setup are given in Table 1.

(b)

Figure 4. Experimental setup for testing piezoresistive sensors with two microcantilevers: (a) general

view; (b) sensor with magnet stacks. 1, sensor; 2, NI PXI system; 3, ammeter; 4, Digilent sine
signal generator; 5, variable resistors for current regulation in the microcantilever heater; 6, batteries;
7, monitor; 8, microchip; 9, piezoelectric actuator; 10, sensor housing; 11, neodymium magnet stacks.

Table 1. Data for dual-microcantilever sensor and experimental setup.

Parameter Symbol Unit Value
Magnetic flux density of the magnet stack B T 0.0022
Length 1 of the microcantilever 1 heater I M 292 x 10~
Length 2 of the microcantilever 1 heater Lo M 148 x 106
Length of microcantilever 1 I1q M 294 x 106
Length of microcantilever 2 l1p M 292 x 10~
Width of microcantilever 1 Iy M 150 x 10~°
Width of microcantilever 2 I M 172 x 10~°
Height of microcantilever 1 I3 m 4 %10
Height of microcantilever 2 I3 m 4 %10
Density of silicon 0 kg/m?3 2329 *
Mass of the silicon in cantilever 1 my kg 411 x 10710
Mass of the silicon in cantilever 2 my kg 4.62 x 10710
Young’s modulus of the n silicon in [110] direction E110 GPa 170 **
Stiffness for n type silicon plane 100 in axis [010] Cio Pa 63.94 x 107 **
Stiffness for n type silicon plane 100 in axis [001] Cyy Pa 79.51 x 107 **
Stiffness for n type silicon plane 100 in axis [110] Cnn Pa 165.65 x 107 **
Natural angular frequency of microcantilever 1 @ g1 10,402.535
Natural angular frequency of microcantilever 2 @ 571 10,568.028
Natural frequency of microcantilever 1 fs1 Hz 65,361.057
Natural frequency of microcantilever 2 fs2 Hz 66,400.888
Frequency of the cusp point feusp Hz 65,889.063
Damping factor of microcantilever 1 B1 s7! 1554.755
Damping factor of microcantilever 2 B2 g1 1675.886

* According to data from [32]. ** According to data from [33].
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In each Excel file, the smallest value in the amplitude—frequency response array was
found using Maple, and the array was divided into left decreasing and right increasing
parts. The two parts of the array were approximated by parabolas, and their intersection
point, called the experimental cusp point, was found from the equation

al+blfcexp+clfc2exp :ﬂr+brfcexp+crfc2exp/ (20)

where a;, b;, and ¢; (i = r,l) are approximation coefficients.
Figure 5 illustrates the processing of the experimental results for a single file.

A ans
V(rbs. Vabs/_ Vabs;: [V] \

0.06

0.054

0.04+

V absr

absl

003+
002+
001+

/1Hz]

>

T

64620 64640 64660 ' 64680 64700 64720 64740

Figure 5. Experimental data processing of an Excel file obtained at current i = —750 pA. V,, is the
measured shifted voltage, V4 is the approximated left parabola, V,;, is the approximated right
parabola, and feexp is the experimentally obtained cusp point.

Figure 6 shows the data for experimental cusp-point frequency under thermal action
only and under mixed thermal and magnetic action. The plot in Figure 6a shows the
experimental frequency f.,spr of the cusp points under pure heating, with no Lorentz
forces acting. This graph shows only the thermal variation in the frequency. Figure 6b
shows the graph of the frequency f.,sps of the cusp points under the combined action of
heat and Lorentz force. As can be seen from the two graphs, the differences were negligible,
and thermal action played a dominant role even at small currents on the order of 25 pA.

From the combined magnetic and thermal action data (Figure 6b), the thermal action
data (Figure 6a) were extracted; these data are shown in Figure 7. The linear approximation
of the same data is shown in the same figure.

The conclusion of the dominant frequency-dependent thermal offset action is con-
firmed in Figure 7, where it is evident that the thermal action changed the frequency by a
factor of 80 relative to the Lorentz forces.

The large scatter in the data in Figure 7 is due to the small differences in the tempera-
ture and mixed data, which resulted in Lorentz frequencies with errors close to the accuracy
of the measurement method.
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Figure 6. Cusp-point frequency shift under the influence of Lorentz forces and temperature-frequency
coefficient: (a) thermal frequency shift only; (b) sum of thermal and Lorentz effects.
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Figure 7. Frequency offset of the cusp-point amplitude—frequency response of the dual-
microcantilever sensor.

The equation of the approximating line in Figure 7 is
Afeuspr = 1943.73392i. (21)

From Formula (18), the natural frequency offset Af;; due to Lorentz forces was
derived as

(I30CoCy — 2Cy,Bi)®

1], 22)
I30C1(I30C2Cq 4 C11Bi)"Cy

Afa = fs11 — fa = fa
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where f,11 is the changed value of the natural frequency of microcantilever 1. Taking into
account the small values of the current i, from (22), Af;; was expanded in a Maclaurin
series of the second order, obtaining

fs1B(C11 +3Cp2) . 2
Afgq =~ . 2
fa GG z+O<z ) (23)
After the substitution
fsu1 = fa +Afa (24)

in Formula (1), the offset frequency f.,s,1 was represented in the form

V2 (fa+Afa) = f4
cuspl — 7~ , 25
Jam = TN U v o~ o207 1) )

which was expanded in the Maclaurin series versus the small difference Af;, obtaining

2
4(’7% 521 - ’7% 522) - ( 521 *fszz)
203 — f4 =25+ f5) (fh — f&

fcuspl ~ fcusp (1 + ( )fslAfsl> + O<Af521)- (26)

For the offset of the cusp point A fcusp in this case followed the relation

2
feusp {4(’7% a-mafa) = (fao— f2) }
(2n% = f3 = 2m3 + f3) (f — £)

The natural frequency increment A f;; was substituted by (23), and the linear function

fsl Afsl . (27)

Afcusp = fcuspl *fcusp ~

2
fcuspfsle[‘l 521 (’7% - W%) = 521 - szz) ](Cn +3C12)
130C1Ca (207 — f4 — 2113 + f3) (f — f)

Afcusp = i (28)

was obtained. The coefficient prior in (28), compared with that in (21), was used to evaluate
the accuracy of the experiment.

5. Conclusions

Using a specialized experimental setup, investigations into the cusp-point frequency
offset in the amplitude—frequency response of a dual-microcantilever piezoresistive sensor
were conducted. The two microcantilevers of the sensor had heaters made of thin aluminum
film, which heated the microcantilevers, and Lorentz forces occurred when a magnetic
field was applied along with the heating. With the same current in the heater of one of
the microcantilevers, first, the frequency offset under the combined influence of Lorentz
forces and heating was measured, and then the frequency offset in the absence of Lorentz
forces was determined. After eliminating the thermal influence, results were obtained for
the influence of only Lorentz forces on the cusp point of the amplitude—frequency response,
and then for the natural frequency variation of the microcantilever.

The theoretical relationships for the anisotropic deformation of silicon microcantilevers
due to Lorentz forces have been derived, and the theoretical relationship between the
variation in the natural frequency and the current in the heater has been determined.

It was found that for a microcantilever sensor with a beam mass of the order of a few
ng, at a minimum heater current of 25 pA, the variations in the natural frequency due to
temperature were dominant and an order of magnitude higher than those due to Lorentz
forces. These conclusions were made by measuring with steady-state temperatures. Most
micromechanical devices work in resonance, allowing a very short pulse of the driving
stimulus to be applied. Under such conditions, one can rely on Lorentz forces, which, when
acting under steady-state temperatures, can be dominant over thermal influence.
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Through experiments and some theoretical deductions, it was found that regardless
of the direction of the current, thermal action resulted only in a reduction in the natural
frequency. The Lorentz force can increase or decrease the natural frequency of the micro-
cantilever depending on the direction of the current or the direction of the magnetic field
polarization. To change the frequency of a microcantilever with the Lorentz force, it is
possible to use an electromagnet, which brings more tuning possibilities.

Changes in frequency, whether by temperature or Lorentz forces, can be used to test
the suitability of sensors to detect small masses that will cause the same frequency changes.

The conclusions obtained here may be useful in the design of other types of vibration
sensors or actuators in which the natural frequency needs to be tuned or controlled.
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