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A human-centric approach to assessing flood exposure moves beyond
traditional spatial assessment by quantifying flood exposure based on life
activity. This novel method characterizes flood exposure by measuring dwell

timein flood-prone areas, using fine-resolution, anonymized smartphone
data. Comparative analysis across 18 US cities reveals important disparities
inlife activity flood exposure (LAFE) and highlights the influence of

urban forms and structures on LAFE. Furthermore, the research uncovers
bimodal distributions in LAFE, indicating disparities even among cities
with similar spatial flood risks. By focusing on the effect of daily human
activitiesin flood-prone areas, this approach offers amore comprehensive
understanding of flood impacts on daily activities and socioeconomic
factors. The findings provide urban scientists and flood risk managers with
apractical tool, underscoring the importance of human activity patternsin
flood risk assessment, and offer valuable insights for enhanced analysis of
flood exposure and risk.

As a consequence of climate change, the frequency of flooding has
increased and its severity intensified' . Flooding can cause substantial
loss of life, extensive property damage, as well as social and economic
losses. Effective flood risk management and response relies on accurate
evaluation of the extent of flood exposure. The predominantly place-
based approach for assessing flood-hazard exposure involves compar-
ing flood-hazard data with the residential population distribution**,
Thismethodology effectively translates the flood exposure parameter
into visual landscapes based on residential proximity to flood-prone
areas. Astudy by Brouwer et al. from 2009' used this approach by meas-
uring flood exposure based on the distance of residences from river
banks, premising a linear correlation between flood probability and
proximity toawater body, amethodology that, despite its practicality,
may not be applicable universally due to variations in topographical
features. Broadening the scope, Jongman and colleagues’ integrated
global flood databases with population and economic data, thereby
constructing an exhaustive overview of economic and demographic
exposuresto flood hazards. This melding of data types reveals the mul-
tifaceted nature of flood exposure, extending beyond mere exposure of

physical properties toinclude the socioeconomicimplications of such
disasters”®. Inthefield of place-based flood exposure assessment, flood
maps have been instrumental for estimating urban and population
exposures to flood hazards, offering a quantitative interpretation of
spatial flood risk distribution’™. Furthermore, assessing flood expo-
sure at the level of residential property provides valuable insights into
potential flood damages, by considering the potential flood inunda-
tiondepthand corresponding damage to residential properties as key
components of therisk-assessment process™". Such approaches offer
valuableinsights, but they fundamentally perceive exposure as a spatial
phenomenon, a perspective that fails to capture the full complexity of
human interaction with flood hazards.

Notwithstanding the great strides made in understanding and
assessing flood exposure, the current body of literature largely neglects
the human-centric perspective—the extent to which daily life activities
ofindividuals are prone to flood-induced disruptions. This human-cen-
tric perspective is critical for better characterizing the socioeconomic
risks of floods atindividual and household levels. Existing studies have
predominantly focused on the static population distribution, mainly
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considering residential locations®**, However, human activities are
not confined to residential locations; they span a variety of locations
described by daily visitation patterns, including workplaces, schools,
recreation areas and shopping centers'*™'®. Consequently, asubstantial
portion of an individual’s time is spent outside the residence, expos-
ing people to flood hazards in diverse spatial contexts' 2. This raises
several critical questions about our understanding of human exposure
toflood hazards. How accurateis the place-based, residential-centered
assessment of flood exposure in capturing the true human exposure
to flood hazards? To what extent does the pattern of human activities
influence anindividual’s exposure to flood hazards? To what extent do
human activities exacerbate or alleviate exposure to flood hazards?
These questions have been sparingly addressed by previous work,
highlighting a need to shift the focus from a place-based approach
to a human-centric approach that can better represent the dynamic
nature of human exposure to flood hazards. To address this gap, this
study proposes a novel, human-centric methodology and measure
for the analysis of flood exposure. Leveraging privacy-preserving,
fine-resolution, location-based data to quantify an individual’s flood
exposure based on dwell time in locations in flood-prone areas, this
approach enables the characterization of life activity flood exposure
(LAFE) at a scale never attempted before. Accordingly, the approach
uncovers latent flood exposures where populations residing outside
recognized flood-prone areas may still be at considerable risk due to
their daily activities. Similarly, latent flood immunity is examined to
identify flood-prone areas whose populations have a relatively lower
LAFE.Figure1provides aconceptualillustration of these terms. Based
onthe characterization of LAFE in multiple US metropolitan areas, we
examine spatial variations across the regions, and we also examine the
characteristics of urban forms and structures that potentially shape
population life activity exposure. We examine 18 US coastal cities
(within 31 counties) as our study region, and compute LAFEs using
millions of fully anonymized, fine-resolution, location-based data
points. Theresultsincludeintra-city characterization of LAFE, as well
as the specification of areas with considerable latent flood exposure.
The findings reveal that the combination of spatial clustering of flood
hazards and the distance-decay law of human visitation patternsleads
to the emergence of flood-exposure traps for people living in flood-
prone areas.

The results also show that although the extent of LAFE is highly
correlated with the spatial extent of flood hazards, variations exist in
life activity exposure across cities with a similar extent of spatial flood
hazard. This variation could be due to the effects of urban form and
structure features, suggesting that cities with a similar extent of spatial
flood hazard could have different levels of population LAFE depending
on the patterns of facility distributions and levels of human mobility
and populationdensity. Also, agreater spatial extent of flood hazards
would cause greater LAFE for people residing outside flood-prone
areas. Thisfinding reveals that exacerbating flood hazardsinacounty
will increase the LAFE of all populations, not just those residing in
flood-prone areas. The specification and quantification of latent flood
exposure show that human mobility extends the spatial reach of flood
hazards beyond flood-prone areas and influences the life activities of
people living outside those areas. Also, the bimodal distribution of
LAFE for individuals in different cities provides data-driven evidence
of important disparities inindividual-level LAFE.

In summary, the main contribution of this study is to provide a
novel, data-driven and human-centric approach for evaluating popu-
lation flood exposure at a high level of spatial detail. The approach
and findings will be particularly valuable to academic disciplines and
diverse stakeholder practitioners. First, the LAFE approach provides
ahuman-centric method for urban scientists and flood researchers to
quantify and evaluate the extent to which floods could disrupt the life
activities of populations in different areas and across different cities.
Second, the LAFE index provides a new measure with which public
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Fig.1| Conceptual representation of LAFE. a, Evaluation of LAFE. CBGs that
intersect with the 100-year floodplain are denoted as areas with spatial flood
hazard. LAFE is the total flood dwell time of all users residing in a CBG divided by
the total dwell time. p1, person one; p2, person 2; c1, CBGI1; c2, CBG2. b,c, Latent
flood exposure (b) and immunity (c). Latent flood exposure occurs where CBGs
outside of the designated flood-hazard zones exhibit high LAFE. Latent flood
immunity comprises instances where CBGs within flood-hazard zones show
surprisingly low LAFE due to dwell time in places outside flood-hazard areas.

officials and urban economists can quantify the potential socioeco-
nomic impacts of floods on individuals and households based on the
extent of their disrupted life activities. Third, the specification of latent
flood exposure enables public officials to evaluate how spatial flood
hazards influence the entire population (people residing both inside
and outside flood-prone areas) to better assess the flood exposure of
the entire population. Fourth, discovering the ways in which urban
forms and structures shape LAFE informs city planners and designers
regarding how patterns of urban development and growth affect the
LAFE of populations. These contributions could facilitate a paradigm
shiftin flood-exposure assessments towards achieving amore human-
centric characterization and understanding.

Results

Intra-county characterization of LAFE

Thedistribution of census block group (CBG) LAFE within each county
shows abimodal distribution (Fig. 2). This bimodal distribution is dis-
tinctin each county, with the variationin the height of the peaks serving
asindicators of distinct LAFE. A pronounced peak near 0 is observed
in the LAFE distribution of counties characterized by alesser spatial
flood hazard. Conversely, counties with a greater spatial flood hazard
display a less prominent peak near O and a much more substantial
peakclosertol.

Figure 2 depictsanincreasing spatial flood hazard and correspond-
ing LAFE for San Francisco, Orange, Santa Clara, Harris and Miami-Dade
counties. Theresultis clearly represented in the variations in the two
peaks near 0 and 1. As the extent of the spatial flood hazard increases,
the overall distribution of LAFE tends to shift towards 1. This is because
alarger number of CBGs fall within the spatial flood-hazard areas,
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Fig.2|Bimodal LAFE distribution and spatial flood hazards across five
example counties. Each county demonstrates distinct peaks near 0 and1on the
LAFE scale. The shift in dominance of these peaks, from O towards 1, is evident
with theintensification of spatial flood hazards extent. In areas with limited
flood exposure, the peak at1is nearly imperceptible, but as flood hazards

escalate, the prominence of the peak near lincreases, dwarfing the peakat O in
regions with substantial flood hazards. This progression indicates arisein LAFE
corresponding to anincrease in spatial flood hazards extent. The presence of two
distinct peaks indicates disparities in LAFE among the CBGs of a county.

so more CBGs have a higher LAFE value. For regions with less spatial
flood-hazard extent, the peak near1is lower compared to the peak for
valuesnear 0. With theincrease in spatial flood-hazard extent, however,
anotable transition occurs where the peak near 1 becomes larger. In
regions with the most substantial spatial flood-hazard extent, the peak
near 0 is almost indiscernible, further reinforcing this phenomenon.
Thebimodal distribution of LAFE in each county suggests the extent of
disparity in LAFE among residents withina county. For counties such as
Miami-Dade and San Francisco, the extent of disparity is less, with only
one dominant peak existing in the distribution of LAFE. For counties
such as Orange County and Santa Clara, however, the extent of disparity
is greater due to the presence of two peaks at the two extremes of the
bimodal distribution of LAFE.

To further examine the characteristics of the LAFE values for CBGs
withineach county, weincorporated box plots with outliers represent-
ingthe LAFE inareas both within a floodplain (Supplementary Fig. 1a)
and outside a floodplain (Supplementary Fig. 1b). The sequence of
counties, arranged from left to right, is consistent with the previous
figures, with counties on the left having a lower percentage of CBGs
inafloodplain, so they manifest lower spatial flood hazards, whereas
those on the right exhibit a greater spatial flood-hazard extent.

Figure 3 shows the LAFE of Philadelphia County and Harris County
incomparison to their respective CBGs within flood hazards, demon-
strating the differencesin the extent of LAFE for regions within-flood-
plain and outside-floodplain for counties having varied proportions of
CBGs inthe floodplain. In Philadelphia County, the LAFE distribution
revealsthateventhoseresidingin CBGs outside flood-hazard areas are
spendingsubstantial time in flood-proneregions. This behavior may be
attributed to life activities suchaswork or travel, resulting in~3,000 h
spentin flood-prone areas out of a total of -17,000 h. Similarly, Harris
County’s LAFE distribution indicates that the average user within the

same 5% of CBGs spends ~4,300 h out of a total of 16,000 h within-
floodplain areas. This pattern underscores the intricate relationship
between spatial flood-hazard areas and LAFE, regardless of the county’s
proportion of CBGs in the floodplain. The figure highlights the com-
plexity of flood exposure, emphasizing that geographical boundaries
donotsolely defineit. Instead, individual behavior and daily activities
arevital in shaping the exposure to flood risk.

Across all counties, we observe that more than 75% of CBGs within
spatial flood hazards present a LAFE exceeding 0.8. As the overall
counties’ spatial flooding extentincreases, the variationin LAFE values
decreases; most CBGs within flood-hazard areas have a LAFE close
to 1. Similarly, for CBGs outside flood-hazard zones, more than 75%
have a LAFE of less than 0.2, which remains the case even for counties
subjected to very high spatial flood hazards. Here, the LAFE variation
diminishes for counties with a lower overall spatial flooding hazard
extent, withmost CBGs insuch scenarios exhibiting LAFE values closely
approximating O.

Itisalsoimportant to note that the number of outliersin counties
withless than 60% flood exposure are much higher as some CBGs expe-
rience very high LAFE, even though they are notin flood-hazard areas,
and some have very low LAFE, even though they are in flood-hazard
areas, hinting at the role of human mobility and visitation activitiesin
shaping LAFE. We notice that anumber of CBGs that are not positioned
within flood-hazard zones are nonetheless experiencing exceedingly
high LAFEs, suggesting that LAFE is not purely a product of the geo-
graphical location of an individual’s residence, but is also influenced
by patterns of population visitation activities and mobility*>*, For
example, residents of these CBGs may need to commute regularly to
areas within flood-hazard zones for work or to access services, thereby
increasing their LAFE. Insuchcases, even though the CBGs themselves
are geographically secure, the lifestyle of the inhabitants exposes
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Fig.3|LAFE distribution in Philadelphia and Harris County. The figures
capture the intricate relationship between spatial flood-hazard areas and LAFE
intwo distinct counties. a,c, Demarcation of CBGs based on their positioning
either within or outside flood-hazard zones in Philadelphia (a) and Harris (c)
counties. b,d, Distribution of LAFE across CBGs for Philadelphia (b) and Harris
(d) counties, emphasizing the variance in flood exposure (shown by color
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intensity) among residents, based on their life activities. Color bar represents
LAFE values for CBGsinb and d. In Philadelphia, users residing in 5% of the CBGs
that fall outside flood-hazard areas still spend a substantial portion of their time
(-3,000 hout of atotal of 17,000 h) in flood-prone areas. Similarly, in Harris
County, the average user within the same 5% of CBGs spends -4,300 hout of a
total of 16,000 h within-floodplain areas.

them to high flood exposure. Conversely, we also observe a subset
of CBGs situated within flood-hazard zones but with surprisingly low
LAFE values. This shows that being within a flood-hazard zone does
not automatically translate to a high LAFE. We examine these outliers
of latent flood exposure and flood immunity in the next subsection.

Latent flood exposure and latent flood immunity
To deepen our understanding of the outlier patterns observed in the
previous section, weintroduce two novel concepts: ‘latent flood expo-
sure’and ‘latent flood immunity’. Latent flood exposure characterizes
situations where CBGs are not geographically situated within flood-
hazard zones, yet exhibit high LAFE values. This seemingly paradoxical
situation suggests that such CBGs possess an underlying, unappar-
ent vulnerability to flood exposure, perhaps attributable to human
mobility patterns or other socio-environmental dynamics. Latent flood
immunity, on the other hand, captures instances where CBGs that lie
within flood-hazard zones have surprisingly low LAFE values. These two
concepts capture instances of human life activities and mobility that
exacerbate orameliorate their LAFE. Suchinstances emerge asaresult
ofalifestyle involving visitation to places in neighboring CBGs outside
spatial flood hazards, reducing flood dwell time in flood-prone areas.
To visually demonstrate these concepts, we plotted cumulative
LAFE curves for in-floodplain and out-of-floodplain CBGs for each

county (Methods), as demonstrated in Fig. 4 and Supplementary
Figs. 2-6. These figures collectively provide a combined snapshot of
the overall county characteristics in terms of latent flood exposure
and immunity. In these graphical representations, alarger areaunder
the curve for out-of-flood hazard LAFE implies alower degree of latent
flood exposure. Conversely, amore extensive area under the in-flood-
hazard LAFE curve suggests a greater level of latent flood immunity.
However, itisimportant to note that the extent of latent flood exposure
and immunity ina county are not always correlated; counties with high
latent flood exposure do not necessarily demonstrate high latent flood
immunity. For example, only asmall number of counties (Los Angeles
(C1), San Diego (C2) and Harris (C4)) exhibit both high latent flood
exposure and high latent flood immunity based on their respective
cumulative distribution function curves and associated areas. This
county-level characterization of the combined latent flood exposure
and immunity enables cross-county comparisons, as discussed in the
following subsections.

Our findings also highlight a distinct trend: the propensity for
latent flood exposure increases withanincrease in the county’s spatial
flood hazard extent. As the proportion of CBGs withina county’s flood-
hazard zonesincreases, so do the chances of encountering higher LAFE
values for the entire county. Conversely, latent flood immunity tends to
decrease as the spatial flood-hazard extent grows, as fewer CBGs exist
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Fig. 4 |Evaluation of latent flood exposure and immunity. a, PLAFE across
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axis). b, Depiction of the linear correlation between these two variables using a
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between spatial flood hazards and PLAFE implies that regions with greater
spatial flood hazards have a greater PLAFE. Remarkably, certain counties with
comparable spatial flood hazards show disparate levels of PLAFE, underscoring
the possible role of urban form and structure features and mobility levels in
shaping the extent of PLAFE.

outside flood-prone areas to alleviate flood exposure stemming from
mobility patterns. The characterizations of latent flood exposure and
immunity provide new insights regarding the way in which populations
ofacounty are exposed to the potentialimpacts of floods in their daily
life activities, irrespective of the location of their residence.

County-level population LAFE

PLAFE provides anovel measure for quantifying and evaluating county-
level population LAFE. Unlike the traditional binary approach that
categorizes regions mainly as either within or outside a floodplain,
our method offers a more specific and quantitative measure of flood
exposure for the populations of each city or county. PLAFE takes values
between 0 and1, providing a continuum that facilitates more objective
comparisons across different cities and counties. Figure 5 illustrates
the PLAFE values for counties across the United States, juxtaposed
with the extent of spatial flood hazards. The extent of spatial flood
hazards is assessed based on the proportion of CBGs that intersect
with floodplains.

Ourresults show the directrelationship between PLAFE and spatial
flood-hazard extent. Figure 5b highlights a clear linear relationship
between spatial flood hazards and PLAFE, implying that regions with
a greater spatial flood-hazard extent have a greater PLAFE. However,
we also observed variations among the PLAFE values of counties with
comparable spatial flood-hazard extents. The counties are categorized
(from C1 to C5) according to their spatial flood-hazard extents, seg-
mented into 20% increments (that is, 0-20%, 20-40% and so on). We
found that certain categories exhibited a wide range of PLAFE values
despite having a similar extent of spatial flood-hazard exposure. This
result demonstrates theimportance of considering the PLAFE metric
when evaluating the population-level flood exposure for cities and
counties. Furthermore, these results suggest that variations in the
PLAFE of counties with similar spatial flood-hazard exposure might be
duetodifferencesintheir mobility level as well as their urban formand
structure features. Insubsequent sections, we delve deeperinto these
factors, seeking touncover the reasons behind the observed variations
in PLAFE in areas with similar spatial flood exposure.

Spatial flood hazard and PLAFE disparity

To better understand the observed variability, we further analyzed
PLAFE by computing and comparing the PLAFE for CBGs in-floodplain
and outside-floodplain for each county. In this analysis, we examined
the relationship between the spatial distribution of flood hazard (extent

of CBGsin floodplains) and the PLAFE values of in-floodplainand out-
of-floodplain CBGs in each county.

Figure 6a,b shows the spatial extents of flooding and PLAFE. Our
observations fromFig. 6¢,d clearly indicate that regions within spatial
flood-hazard zones exhibit a higher PLAFE than regions outside such
zones. More specifically, the PLAFE of CBGs situated within flood haz-
ards typically ranges from 0.84 to1, whereasin CBGs outside flood haz-
ardstherangeis substantially lower, varying from 0.01to 0.16. However,
we noted some peculiar trends in regions with similar extents of spatial
flood-hazard distribution. For example, Chesapeake City and Norfolk
(Boston) counties, where ~70% of CBGs are within flood-hazard zones,
show a similar out-of-floodplain PLAFE to regions with -30% spatial
flood exposure. Conversely, San Diego, Santa Clara, Harris and Duval
exhibit higher PLAFE in areas outside flood-hazard zones than counties
with similar spatial flood-hazard exposure. Remarkably, although these
counties have higher out-of-floodplain PLAFE values, the corresponding
in-floodplain PLAFE does not follow asimilar or inversely proportional
trend. This observation is consistent across all categories, indicating
that PLAFE for areas within flood-hazard zones and those outside these
zones seem to have distinct characteristics across different counties.
The variation in the PLAFE values of counties with comparable spatial
flood-hazard extent might stem from differences in urban form and
structures. These differences, in turn, could lead to varying lifestyles
and mobility patterns among the populace that subsequently shape the
PLAFE of a county. In later sections of this Article, we present an early
analysis of this aspect in favor of our hypothesis.

Role of urban form and structure

To examine the variation in the PLAFE of counties with comparable
spatial flood-hazard extent, we examined the relationship of urban
form and structure features with PLAFE, latent flood exposure and
latent flood immunity. To understand this relationship, we used aSpear-
man correlation plot, observing the overall set of counties as well as
specific county groupings based on spatial flood-hazard categories
C1-C5. Theresults areillustrated in Supplementary Figs. 7, 8, 9,10, 11
and 12, which respectively represent ‘all counties’ and C1, C2, C3, C4
and C5counties. We considered urban formand structure features such
as the human mobility index (HMI), the urban centrality index (UCI),
points of interest (POI) density (based on area and per capita), road
density and population per square kilometer. These features have been
shown to shape human activities and mobility in cities**. When these fea-
tures are examined across all counties, no important patterns emerge.
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PLAFE inregions outside (c) and within (d) the flood-hazard zones, highlighting
the variations in population flood exposure based on their locations relative to
flood-hazard zones.

Thisis dueto the fact that the overall PLAFE values for each county are
predominantly influenced by the extent of spatial flood hazard. When
examining the relationship within each category of counties (with
comparable spatial flood-hazard extent), however, interesting results
starttoemerge. For example, POl density (area-based) and road density
explain the variationin PLAFE values in C1 counties, which have fewer
than 20% of their CBGs within the floodplain. C1 counties with lower
POl density and higher road density have agreater value of PLAFE. This
result suggests that in counties with a relatively low extent of spatial
flood hazard, dense development (measured by road network density)
could exacerbate PLAFE. In the case of C3 counties, road density and
urban centrality proved influential. This result suggests thatin counties
with moderate levels of spatial flood-hazard extent, decentralization
of facilities and dense development lead to a greater PLAFE. Also, the
HMIlis strongly correlated with PLAFE in C5 counties. Thisresultimplies
that, when counties have extensive spatial flood exposure, a greater
level of human mobility amplifies PLAFE.

In these specific categories, a higher road density correlated
withincreased PLAFE. Notably, elevated POl density and agreater UCI
resultedinlower PLAFE. This suggests that a polycentric city structure
could potentially reduce PLAFE for counties with moderate levels of
spatial flood-hazard extent. In addition, a greater POl density may
indicate that essential POIs are concentrated outside flood-prone areas
(land-use policy to encourage development outside flood-prone areas).
Theseresults underscore the critical role urban form and structure can
play inthe extent of PLAFE in cities and counties.

Discussion

The LAFE index, offering a data-driven, human-centric method to
quantify flood exposure in cities, reveals the varying extents of popu-
lation life activity exposure within and across different US counties.
By categorizing counties from C1 to C5 based on spatial flood-hazard
extents, we observed variationsin the normalized PLAFE, even among
counties with similar flood-hazard proportions. Our results show an
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Fig. 6| Acomprehensive representation of PLAFE in various CBGs within the
studied counties. a,b, The cumulative density function (CDF) of places within

(a) and outside (b) spatial flood hazard, respectively. The area under the curves
indicates the extent of LAFE for flood-prone (a) and non-flood-prone (b) CBGsina
county. ¢, Theshape of the curvesindicates the extent of latent flood exposure (blue)
andimmunity (red) ineach county. d, The areabetween the two curves provides a
combined metric that captures the extent of latent exposure and immunity for each
county. This metric can be used for cross county-county comparison.

evident linear relationship between spatial flood-hazard extent and
PLAFE across counties, with regions within flood-hazard zones exhib-
iting PLAFE values ranging from 0.84 to 1, and those outside ranging
from 0.01t0 0.16. The large PLAFE value for CBGsin high flood-hazard
areas is due to the combined effects of spatial clustering of hazards
and the distance-decay law of human visitation, where people have
greater visits and dwell times in locations in the proximity of their
residence, which leads to a greater LAFE. Also, the concepts of latent
flood exposure and latent flood immunity reveal hidden exposure and
immunity due to human mobility that spatial flood risk maps cannot
capture. Furthermore, the role of urban form and structure features,
including road density, POl density and the UCI, is examined, show-
ing theirimportance in explaining the variation in PLAFE for counties
with similar spatial flood-hazard extent. The findings emphasize the
multifaceted nature of population-level flood exposure assessment
andtheimportance of considering spatial dynamics, human mobility
andurbanstructure for arefined understanding of flood exposure. The
results highlight the capability of the proposed approach to quantify
populations’ flood exposure.

Certain limitations stem from the representativeness of the data
employed inthis study. The location dataset utilized may not compre-
hensively encompass the diverse range of socio-demographic charac-
teristics, potentially resultingin an underrepresentation of individuals
who do not use smartphones and specific socioeconomic cohorts
less inclined to engage with location-tracking services. Althoughiit is
acknowledged that the Spectus dataset possesses limitations in fully
encapsulating the entire socio-demographic spectrum, itisimportant
to note its substantial coverage, spanning ~20% of the US population.
This extensive coverage facilitates a broad cross-sectional examina-
tion of the populace, thereby fortifying the generalizability of our
research findings.

This study makes several noteworthy contributions to the field of
flood exposure assessment and urban studies. The first is the creation
of LAFE, a novel, human-centric measure of flood exposure allowing
for amore quantitative and data-driven analysis of flood exposure at
individuallevels for inter-and intra-city analyses. Flood exposure stud-
ies have primarily focused on the exposure of physical properties and
places of residence. By examining human activities, our study offers
a deeper understanding of how flood hazards could affect the daily
life activities of residents, irrespective of their place of residence. By
providing anew human-centric way to quantify the extent of food expo-
sure, the LAFE method extends beyond the existing binary approach
(inside versus outside flood plain). The LAFE index, providing a con-
tinuum from 0-1, enables a more objective comparison of the extent
to which people’s life activities in certain areas are exposed to flood
hazards. Theindex enables evaluation of the potential socioeconomic
impacts of floods onindividuals and households due to disruptions of
daily life activities during flood events. These findings provide urban
scientists and flood researchers with new measures for quantifying
population flood exposure. LAFE and PLAFE can be analyzed every
few years with updated data regarding spatial flood-hazard exposure
and human life activity patterns to evaluate the extent to which flood
mitigation measures and urban growth and development exacerbate
orimprove LAFE across different CBGs and at a city scale.

Our study also offers a detailed characterization of latent flood
exposure. This aspect of flood exposure affects the life activities of
populations residing outside traditional flood zones. The concept
of latent flood exposure was introduced to describe instances where
CBGs, although not directly located within flood-hazard zones, exhibit
high LAFE, implying high susceptibility of their population activities
to flood hazards. These insights are essential for urban planners and
emergency managers to evaluate the flood exposure of the entire
population, rather than just those residingin flood-prone areas. Third,
an inter-city analysis of cities based on PLAFE revealed considerable
variationin LAFE across cities with similar spatial flood-hazard extents.
These variations could be explained based on urban form and struc-
ture features, such as POl density, road density and urban centrality,
underscoring how these factors shape LAFE. We evaluated the extent
to which features of urban form and structure explain the variability
in PLAFE in cities with similar spatial flood-hazard extents. The results
underscore the role of urban form and structure in shaping flood
exposure, and the influence of development density, distribution of
facilities, and level of human mobility in shaping the extent of PLAFE
incounties with a similar spatial flood-hazard extent. These results can
informurban designers and city managers regarding ways to alleviate
LAFE through urban growth and development strategies based on
concentrating facilities in non-flood-prone areas and reducing the
overall development density.

Insummary, these contributions could facilitate a paradigm shift
inflood exposure assessments towards amore data-drivenand human-
centric characterization and understanding. Future studies can build
uponthe LAFE method and approach presented in this study to further
evaluate the characteristics of communities and cities that shape popu-
lation LAFE. Also, longitudinal studies are needed to evaluate changes
inLAFE as cities grow and develop and their spatial flood-hazard extents
evolve due to flood mitigation strategies. Also, future empirical stud-
ies of flood events can examine the relationship between LAFE and
the well-being and socioeconomic impacts of floods on individuals
and households.

Methods

Approach for quantifying LAFE

Extracting stop-point data. Stop-point information is derived from
high-resolution data from anonymous smartphone users who have vol-
untarily opted into anonymized data collection for research purposes
viamobile applications. The dataare collected by Spectus®, alocation
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intelligence company that adheres to robust privacy policies, including
The General Data Protection Regulation (GDPR) and The California
Consumer Privacy Act (CCPA).

The stop-point tableisacomponent of the Spectus main datasets
that provides comprehensive information pertaining to each user
stop, including user ID, date of occurrence, time of occurrence, dura-
tion of occurrence and the polygon representing the geographical
location of each unique stop on a daily basis. This table serves as a
valuable resource within the Spectus database, facilitating in-depth
analysis and an understanding of stop-related patterns and behav-
iors.Inaccordance with its ‘Sensitive Points of Interest’ policy, visits
to privacy-sensitive locations are omitted from the dataset by the
data provider.

In addition to the stop-point table, the Spectus main database
featuresahome CBGtable. Datain this table capture each user’shome
CBG information. Alongside the user ID, the home CBG table contains
geographic entity codes (GEOIDs), which provide astandardized iden-
tification system for geographical areas. Home location data are uplev-
eled tothe CBG by the data provider to preserve user privacy, serving as
ameans toidentify the CBG where a user resides. The CBG shape table
for each county is sourced from the US Census Bureau®. This table
comprises GEOIDs corresponding to each CBG, alongside the geometry
information that defines the boundaries and shape of each CBG.

To capture the life activity of users across different cities, we
collected stop-point data spanning a duration of one month, from
1March 2023 to 31 March 2023. Because the patterns of life activities
do not change considerably, capturing activities over a month can
provide arepresentative picture of population life activities. For our
project, the focus was limited to stop-point data within each county.
By merging the stop-point table with the home CBG table using the
user ID asacommon identifier,ahome CBG GEOID could be assigned
to each user. This enabled identifying and selecting individuals who
reside withinaparticular CBG and treating them as the targeted popu-
lation for analysisin each CBG. Accordingly, the stop-point table was
filtered to extract information pertaining only to stops made by the
targeted people. The datawere extracted for 31 counties encompass-
ing 18 major US metropolitan cities in proximity of the coast and
having varied levels of flood susceptibility. A detailed list including
county names, city names and GEIODs (unique spatial zone identi-
fier) is provided in Table 1. The Spectus dataset, while extensive, may
not capture the full diversity of socio-demographic characteristics,
potentially underrepresenting non-smartphone users and certain
socioeconomic groups thatare less likely to optinto location-tracking
services. Although the Spectus dataset may have limitations in captur-
ing the full socio-demographic spectrum, its substantial coverage of
~20% of the US population through diverse mobile applications offers
abroad cross-section of the populace, supporting the generalizability
of our findings.

Identify spatial flood-hazard extent. To determine an area with spatial
flood hazard, this study used 100-year floodplain data provided by the
US Federal Emergency Management Agency (https:/www.fema.gov/).
The 100-year floodplain areas indicate areas with a 1% annual chance
of flooding. The 100-year floodplain was overlaid with the CBG shape
table, thenthe CBG was marked as flood-prone if it overlapped with any
part of the floodplain. We considered these CBGs to be within spatial
flood-hazard areas. Figure 1 provides a brief explanation of the core
terminologies used in this study.

Total dwell time and flood-prone dwell time. The total dwell time
(Tp) was calculated by aggregating the total dwell-time duration of
peopleresidingina CBG. Flood-prone dwell time (F,,) was calculated by
aggregating the dwell timerelated to visits to locations (POI) in flood-
prone CBGs. The total and flood dwell times were first calculated for
individual users then aggregated at the CBG level.

Table 1| Cities and their respective counties used for this
study

City County GEIOD
Middlesex 25017
Boston Norfolk 25021
Suffolk 25025
Richmond 36085
Queens 36081
New York Kings 36047
New York (Manhattan) 36061
Bronx 36005
Philadelphia Philadelphia 42101
Jacksonville Duval 12031
Orlando Orange 12095
Broward 1201
Miami
Miami-Dade 12086
Tampa Pinellas 12103
Hillsborough 12057
Jefferson Parish 22051
New Orleans
Orleans Parish 22071
Houston Harris 48201
San Diego San Diego 06073
Los Angeles Los Angeles 06037
Orange 06059
San Jose Santa Clara 06085
Fremont Alameda 06001
San Mateo San Mateo 06081
San Francisco San Francisco 06075
portland Multnomah 41051
Washington 41067
Seattle King 53033
Norfolk 51710
Norfolk Portsmouth 51740
Chesapeake City 51550

These include most of the coastal cities except for Washington, for which some data were
unavailable.

LAFE and PLAFE. The LAFE, representing the level of flood exposure
withina CBG, canbe calculated using two variables, and is determined
using the formula

LAFE = — 0

Each county’s PLAFE can be calculated by normalizing the LAFE by the
total populationin each CBG. This normalization allows for acompari-
son of LAFE levels across different counties as follows:

2.;population; x LAFE;
2.;population;

PLAFE = 2)

where istands for the ith CBGin the county.

List of cities

We examined cities and their corresponding counties, with a primary
focus on coastal cities. Washington was excluded due to there being
unavailable data. See Table 1 for further details.
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Urban form and structure parameters

To evaluate the extent to which variations in county-level LAFE are
explained by urban form and structure features, we computed five
different parameters that look at city structure, the distribution and
density of POI, road density and population density as supporting data
for our study. The UCIwas computed at the county level, whereas other
parameters were at the CBG level. For this study we used the median
value across all CBGs as the representative value of the county for mak-
ing cross-county comparisons.

Urban centrality index. The UCI quantifies the degree of centralization
of facilities within a county. This metric was reproduced based on the
methods provided in ref. 27. It was computed as the multiplication of
two key factors: the local coefficient (LC) and the proximity index (PI).
TheLCisdetermined by the count of POlin each census tract, whereas
thePltakesintoaccountboth thenumber of POland a distance matrix,
which encapsulates the distances between different census tracts.
The UCl value can fall anywhere between 0 and 1. A value closer to O
indicates a polycentric distribution of facilities, whereas a value closer
to1ldenotes amonocentric distribution.
TheLCisgivenby

LC=%é(k,-—%) ®)

The Plis expressed as

@)

The Venablesindex (V) is calculated as

V=KxDxK (5)

where N denotes the total count of census tracts within a county, and
Kisavectorthatencapsulates the number of POl for each census tract.
Theelement k;within vector K corresponds to the number of POlin the
ithcensus tract. Matrix D represents the distances between the various
census tracts, and V,,,, is derived by presuming that all POl are evenly
distributed along the county’s boundary. The LC is utilized to
gauge the unevendistribution of POI, and the Pl handles the normaliza-
tionaspect®%,

These equations collectively define the UCI, providing acompre-
hensive measure of urban centralization:

UCI=LCxPI (6)

Point of interest density. The calculation of POl density promotes an
understanding of the distribution and concentration of various facili-
ties within a given region. We computed the POI density in two forms
for each CBG by normalizing the number of POl based on two distinct
metrics: populationand area. First, the number of POl is divided by the
total population of the CBG, yielding a population-based POl density.
This measure reflects the accessibility of POI per capita. Second, the
POI count is also normalized by the total area of the CBG, providing
an area-based POI density that illustrates the spatial concentration
of facilities. The POI data utilized for these calculations were sourced
from SafeGraph.

Road density. The road density metric quantifies the extent of the
road network within a specific region, such as a CBG. Road data were
obtained from the US Census TIGER dataset™. This metric was calcu-
lated by measuring the total length of all the roads (primary, second-
ary and local) and then normalizing this value by the total area of the
CBG. This normalization by area provides a standardized measure

that reflects the concentration of roads in the region, allowing for
comparisons across different areas.

Population density. Population density was computed by taking the total
populationofthe CBGand dividing it by its total area. This area-based nor-
malization offers auniform metric thatillustrates the spatial distribution
of the population. Population data were sourced from US Census data®.

Human mobility index

To analyze therelationship between LAFE and mobility levels for each
county, we used mobility data provided by Spectus. Spectus provides
the HMIfor each county. We selected datafrom aspan of 28 days in April
2019, a period devoid of external anomalies that could disrupt normal
human activities. The construction of the HMI involved attributing
each visit point v;to a specific CBG within a county. The HMI was then
computed using the formula

ZU,‘

HMI =
28n

where n is the count of CBGs in the county. We then normalized the
HMI values to a range of 0 to 1 by min-max scaling. This normaliza-
tion allows the HMI to effectively indicate the level of human mobility
within a county, with values nearer to O reflecting lower activity and
those closer to1signifying higher activity. More details on this metric
areavailableinref.32.

Latent population flood exposure and immunity calculation
The CBGs were categorized into two types: flood-prone CBGs (within
spatial flood hazard) and non-flood-prone CBGs (outside spatial flood
hazard). For flood-prone CBGs, the latent population flood immu-
nity was determined based on the ratio of the dwell time in non-flood
prone places (D(NF, user)) to the total dwell time at any place for each
user (D(T, user)) living in the flood-prone CBG. This calculation can
berepresented as

DNF, user (7)

T, user

Latent population flood immunity =

For the non-flood-prone CBGs, latent population flood exposure
was determined as the ratio of the dwell time in any flood-prone
places (D(F, user)) to the total dwell time at any location for each user
(D(T, user)) living in the non-flood-prone CBG. This calculation can
be expressed as

DF, user (8)

Latent population flood exposure =
DT, user

To evaluate the extent of latent flood exposure and latent flood
immunity, we used the cumulative density function of LAFE to evalu-
ate the combined extent of latent flood exposure and immunity at an
aggregate level for each county, as shownin Fig. 4.

Cumulative distribution function for LAFE

We used astatistical approachto evaluate the variation of LAFEamong
CBGs for intra-county analysis. The measurement was accomplished
using the discrete cumulative distribution function (CDF). The CDF F(x)
foradiscreterandom variable Xis defined as the probability that X will
take avalue less than or equal to x. Inthe context of LAFE, the CDF was
used to evaluate the proportion of CBGs in a county that have a LAFE
index valueless than orequaltoagiventhreshold. Mathematically, the
CDF of LAFE is defined as

FO) = PX <) = )} p(x) 9)

X;<x
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where p(x,) represents the probability mass function at a given flood
exposure level x;.

By evaluating the CDF at various threshold levels, we can generate
adetailed profile of LAFE across different CBGs withina county. These
calculations also allow for the assessment of latent flood exposure and
immunity across CBGs in each county.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this Article.

Data availability

The data used in this study are not publicly available under the legal
restrictions of the data provider. Interested readers canrequest it from
Spectus (https://spectus.ai/).

Code availability
The code that supports the findings of this study is available from the
corresponding authors upon request.
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A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  The code used to aggregate data can be made available upon request. The data processing was done on Spectus (data provider) server and is
not publicly available
Data analysis Analysis for this paper was done using code written in Python 3.7. The code will be made available upon request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The human mobility data used in this study are not publicly available under the legal restrictions of the data provider. Interested readers can request it from Spectus
(https://spectus.ai/). The US Census TIGER dataset can be accessed from the US Census Bureau
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |X| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description A human-centric perspective on flood exposure assessment of flood-hazard vulnerability transcends the conventional focus on
spatial exposure by quantifying the effect of daily human activities in flood-prone areas. Using a novel index to quantify the time
individuals spend in flood-prone areas, this method characterizes latent flood exposure. Calculations rely on millions of fine-
resolution location-based data points collected anonymously from smartphones of opted-in users. A comparative analysis of multiple
U.S. metropolitan cities based on latent flood exposure with similar extents of spatial flood risk reveals significant spatial disparities in
LAFE.The collected data are quantitative. A bimodal distribution in life activity flood exposure index values in 18 coastal metropolitan
areas reveals flood exposure disparities. The inter-city analysis results also uncovers the role of urban forms and structures in shaping
LAFE, revealing how spatial clustering of flood hazards and distance-decay characteristic of human visitation can exacerbate flood
exposure. Our findings provide a novel and more human-centric approach to characterizing and quantifying flood exposure by
shifting focus from places to people. The life activity flood exposure captures the extent to which a population’s daily life activities
would be disrupted due to flooding and could capture the socio-economic aspects of flood exposure (such as loss of access to critical
facilities and work) more objectively than the existing approaches. The findings provide interdisciplinary researchers and
practitioners across urban sciences, flood risk management, emergency response with novel human-centric measure and insights to
better examine flood exposure and risk.

Research sample Users from Spectus. The detailed demographic of Spectus data are not accessible. However, the Spectus datasets have been widely
used and verified for representativeness by multiple previous studies. The census data from U.S Census Bureau cover the total
population of residents in U.S

Sampling strategy Full sample

Data collection For experiments, we collect human mobility datasets from Spectus, which is a location intelligence and measurement platform
collecting mobility data of anonymized devices. The data is collected using the installed SDK on each phone users, and the collected
data is accessed via granted account provided by Spectus. The researchers are blind to the experimental condition. Data from about
15 M active users are collected by Spectus in the United States. The previous studies have proven the high demographic
representativeness of the Spectus dataset

Timing The data were collected and processed in Jan - May, 2022
Data exclusions No-data excluded

Non-participation No participants involved in the study

Randomization Participants were not allocated to control groups

Reporting for specific materials, systems and methods




We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms

Clinical data
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