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Human-centric characterization of life 
activity flood exposure shifts focus from 
places to people

Akhil Anil Rajput    , Chenyue Liu    , Zhewei Liu       & Ali Mostafavi

A human-centric approach to assessing flood exposure moves beyond 
traditional spatial assessment by quantifying flood exposure based on life 
activity. This novel method characterizes flood exposure by measuring dwell 
time in flood-prone areas, using fine-resolution, anonymized smartphone 
data. Comparative analysis across 18 US cities reveals important disparities 
in life activity flood exposure (LAFE) and highlights the influence of 
urban forms and structures on LAFE. Furthermore, the research uncovers 
bimodal distributions in LAFE, indicating disparities even among cities 
with similar spatial flood risks. By focusing on the effect of daily human 
activities in flood-prone areas, this approach offers a more comprehensive 
understanding of flood impacts on daily activities and socioeconomic 
factors. The findings provide urban scientists and flood risk managers with 
a practical tool, underscoring the importance of human activity patterns in 
flood risk assessment, and offer valuable insights for enhanced analysis of 
flood exposure and risk.

As a consequence of climate change, the frequency of flooding has 
increased and its severity intensified1–4. Flooding can cause substantial 
loss of life, extensive property damage, as well as social and economic 
losses. Effective flood risk management and response relies on accurate 
evaluation of the extent of flood exposure. The predominantly place-
based approach for assessing flood-hazard exposure involves compar-
ing flood-hazard data with the residential population distribution2,4–6. 
This methodology effectively translates the flood exposure parameter 
into visual landscapes based on residential proximity to flood-prone 
areas. A study by Brouwer et al. from 20091 used this approach by meas-
uring flood exposure based on the distance of residences from river 
banks, premising a linear correlation between flood probability and 
proximity to a water body, a methodology that, despite its practicality, 
may not be applicable universally due to variations in topographical 
features. Broadening the scope, Jongman and colleagues2 integrated 
global flood databases with population and economic data, thereby 
constructing an exhaustive overview of economic and demographic 
exposures to flood hazards. This melding of data types reveals the mul-
tifaceted nature of flood exposure, extending beyond mere exposure of 

physical properties to include the socioeconomic implications of such 
disasters7,8. In the field of place-based flood exposure assessment, flood 
maps have been instrumental for estimating urban and population 
exposures to flood hazards, offering a quantitative interpretation of 
spatial flood risk distribution9–11. Furthermore, assessing flood expo-
sure at the level of residential property provides valuable insights into 
potential flood damages, by considering the potential flood inunda-
tion depth and corresponding damage to residential properties as key 
components of the risk-assessment process12,13. Such approaches offer 
valuable insights, but they fundamentally perceive exposure as a spatial 
phenomenon, a perspective that fails to capture the full complexity of 
human interaction with flood hazards.

Notwithstanding the great strides made in understanding and 
assessing flood exposure, the current body of literature largely neglects 
the human-centric perspective—the extent to which daily life activities 
of individuals are prone to flood-induced disruptions. This human-cen-
tric perspective is critical for better characterizing the socioeconomic 
risks of floods at individual and household levels. Existing studies have 
predominantly focused on the static population distribution, mainly 
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officials and urban economists can quantify the potential socioeco-
nomic impacts of floods on individuals and households based on the 
extent of their disrupted life activities. Third, the specification of latent 
flood exposure enables public officials to evaluate how spatial flood 
hazards influence the entire population (people residing both inside 
and outside flood-prone areas) to better assess the flood exposure of 
the entire population. Fourth, discovering the ways in which urban 
forms and structures shape LAFE informs city planners and designers 
regarding how patterns of urban development and growth affect the 
LAFE of populations. These contributions could facilitate a paradigm 
shift in flood-exposure assessments towards achieving a more human-
centric characterization and understanding.

Results
Intra-county characterization of LAFE
The distribution of census block group (CBG) LAFE within each county 
shows a bimodal distribution (Fig. 2). This bimodal distribution is dis-
tinct in each county, with the variation in the height of the peaks serving 
as indicators of distinct LAFE. A pronounced peak near 0 is observed 
in the LAFE distribution of counties characterized by a lesser spatial 
flood hazard. Conversely, counties with a greater spatial flood hazard 
display a less prominent peak near 0 and a much more substantial 
peak closer to 1.

Figure 2 depicts an increasing spatial flood hazard and correspond-
ing LAFE for San Francisco, Orange, Santa Clara, Harris and Miami-Dade 
counties. The result is clearly represented in the variations in the two 
peaks near 0 and 1. As the extent of the spatial flood hazard increases, 
the overall distribution of LAFE tends to shift towards 1. This is because 
a larger number of CBGs fall within the spatial flood-hazard areas, 

considering residential locations9,14,15. However, human activities are 
not confined to residential locations; they span a variety of locations 
described by daily visitation patterns, including workplaces, schools, 
recreation areas and shopping centers16–18. Consequently, a substantial 
portion of an individual’s time is spent outside the residence, expos-
ing people to flood hazards in diverse spatial contexts19–21. This raises 
several critical questions about our understanding of human exposure 
to flood hazards. How accurate is the place-based, residential-centered 
assessment of flood exposure in capturing the true human exposure 
to flood hazards? To what extent does the pattern of human activities 
influence an individual’s exposure to flood hazards? To what extent do 
human activities exacerbate or alleviate exposure to flood hazards? 
These questions have been sparingly addressed by previous work, 
highlighting a need to shift the focus from a place-based approach 
to a human-centric approach that can better represent the dynamic 
nature of human exposure to flood hazards. To address this gap, this 
study proposes a novel, human-centric methodology and measure 
for the analysis of flood exposure. Leveraging privacy-preserving, 
fine-resolution, location-based data to quantify an individual’s flood 
exposure based on dwell time in locations in flood-prone areas, this 
approach enables the characterization of life activity flood exposure 
(LAFE) at a scale never attempted before. Accordingly, the approach 
uncovers latent flood exposures where populations residing outside 
recognized flood-prone areas may still be at considerable risk due to 
their daily activities. Similarly, latent flood immunity is examined to 
identify flood-prone areas whose populations have a relatively lower 
LAFE. Figure 1 provides a conceptual illustration of these terms. Based 
on the characterization of LAFE in multiple US metropolitan areas, we 
examine spatial variations across the regions, and we also examine the 
characteristics of urban forms and structures that potentially shape 
population life activity exposure. We examine 18 US coastal cities 
(within 31 counties) as our study region, and compute LAFEs using 
millions of fully anonymized, fine-resolution, location-based data 
points. The results include intra-city characterization of LAFE, as well 
as the specification of areas with considerable latent flood exposure. 
The findings reveal that the combination of spatial clustering of flood 
hazards and the distance-decay law of human visitation patterns leads 
to the emergence of flood-exposure traps for people living in flood-
prone areas.

The results also show that although the extent of LAFE is highly 
correlated with the spatial extent of flood hazards, variations exist in 
life activity exposure across cities with a similar extent of spatial flood 
hazard. This variation could be due to the effects of urban form and 
structure features, suggesting that cities with a similar extent of spatial 
flood hazard could have different levels of population LAFE depending 
on the patterns of facility distributions and levels of human mobility 
and population density. Also, a greater spatial extent of flood hazards 
would cause greater LAFE for people residing outside flood-prone 
areas. This finding reveals that exacerbating flood hazards in a county 
will increase the LAFE of all populations, not just those residing in 
flood-prone areas. The specification and quantification of latent flood 
exposure show that human mobility extends the spatial reach of flood 
hazards beyond flood-prone areas and influences the life activities of 
people living outside those areas. Also, the bimodal distribution of 
LAFE for individuals in different cities provides data-driven evidence 
of important disparities in individual-level LAFE.

In summary, the main contribution of this study is to provide a 
novel, data-driven and human-centric approach for evaluating popu-
lation flood exposure at a high level of spatial detail. The approach 
and findings will be particularly valuable to academic disciplines and 
diverse stakeholder practitioners. First, the LAFE approach provides 
a human-centric method for urban scientists and flood researchers to 
quantify and evaluate the extent to which floods could disrupt the life 
activities of populations in different areas and across different cities. 
Second, the LAFE index provides a new measure with which public 
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Fig. 1 | Conceptual representation of LAFE. a, Evaluation of LAFE. CBGs that 
intersect with the 100-year floodplain are denoted as areas with spatial flood 
hazard. LAFE is the total flood dwell time of all users residing in a CBG divided by 
the total dwell time. p1, person one; p2, person 2; c1, CBG1; c2, CBG2. b,c, Latent 
flood exposure (b) and immunity (c). Latent flood exposure occurs where CBGs 
outside of the designated flood-hazard zones exhibit high LAFE. Latent flood 
immunity comprises instances where CBGs within flood-hazard zones show 
surprisingly low LAFE due to dwell time in places outside flood-hazard areas.
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so more CBGs have a higher LAFE value. For regions with less spatial 
flood-hazard extent, the peak near 1 is lower compared to the peak for 
values near 0. With the increase in spatial flood-hazard extent, however, 
a notable transition occurs where the peak near 1 becomes larger. In 
regions with the most substantial spatial flood-hazard extent, the peak 
near 0 is almost indiscernible, further reinforcing this phenomenon. 
The bimodal distribution of LAFE in each county suggests the extent of 
disparity in LAFE among residents within a county. For counties such as 
Miami-Dade and San Francisco, the extent of disparity is less, with only 
one dominant peak existing in the distribution of LAFE. For counties 
such as Orange County and Santa Clara, however, the extent of disparity 
is greater due to the presence of two peaks at the two extremes of the 
bimodal distribution of LAFE.

To further examine the characteristics of the LAFE values for CBGs 
within each county, we incorporated box plots with outliers represent-
ing the LAFE in areas both within a floodplain (Supplementary Fig. 1a) 
and outside a floodplain (Supplementary Fig. 1b). The sequence of 
counties, arranged from left to right, is consistent with the previous 
figures, with counties on the left having a lower percentage of CBGs 
in a floodplain, so they manifest lower spatial flood hazards, whereas 
those on the right exhibit a greater spatial flood-hazard extent.

Figure 3 shows the LAFE of Philadelphia County and Harris County 
in comparison to their respective CBGs within flood hazards, demon-
strating the differences in the extent of LAFE for regions within-flood-
plain and outside-floodplain for counties having varied proportions of 
CBGs in the floodplain. In Philadelphia County, the LAFE distribution 
reveals that even those residing in CBGs outside flood-hazard areas are 
spending substantial time in flood-prone regions. This behavior may be 
attributed to life activities such as work or travel, resulting in ~3,000 h 
spent in flood-prone areas out of a total of ~17,000 h. Similarly, Harris 
County’s LAFE distribution indicates that the average user within the 

same 5% of CBGs spends ~4,300 h out of a total of 16,000 h within-
floodplain areas. This pattern underscores the intricate relationship 
between spatial flood-hazard areas and LAFE, regardless of the county’s 
proportion of CBGs in the floodplain. The figure highlights the com-
plexity of flood exposure, emphasizing that geographical boundaries 
do not solely define it. Instead, individual behavior and daily activities 
are vital in shaping the exposure to flood risk.

Across all counties, we observe that more than 75% of CBGs within 
spatial flood hazards present a LAFE exceeding 0.8. As the overall 
counties’ spatial flooding extent increases, the variation in LAFE values 
decreases; most CBGs within flood-hazard areas have a LAFE close 
to 1. Similarly, for CBGs outside flood-hazard zones, more than 75% 
have a LAFE of less than 0.2, which remains the case even for counties 
subjected to very high spatial flood hazards. Here, the LAFE variation 
diminishes for counties with a lower overall spatial flooding hazard 
extent, with most CBGs in such scenarios exhibiting LAFE values closely 
approximating 0.

It is also important to note that the number of outliers in counties 
with less than 60% flood exposure are much higher as some CBGs expe-
rience very high LAFE, even though they are not in flood-hazard areas, 
and some have very low LAFE, even though they are in flood-hazard 
areas, hinting at the role of human mobility and visitation activities in 
shaping LAFE. We notice that a number of CBGs that are not positioned 
within flood-hazard zones are nonetheless experiencing exceedingly 
high LAFEs, suggesting that LAFE is not purely a product of the geo-
graphical location of an individual’s residence, but is also influenced 
by patterns of population visitation activities and mobility22,23. For 
example, residents of these CBGs may need to commute regularly to 
areas within flood-hazard zones for work or to access services, thereby 
increasing their LAFE. In such cases, even though the CBGs themselves 
are geographically secure, the lifestyle of the inhabitants exposes 
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Fig. 2 | Bimodal LAFE distribution and spatial flood hazards across five 
example counties. Each county demonstrates distinct peaks near 0 and 1 on the 
LAFE scale. The shift in dominance of these peaks, from 0 towards 1, is evident 
with the intensification of spatial flood hazards extent. In areas with limited 
flood exposure, the peak at 1 is nearly imperceptible, but as flood hazards 

escalate, the prominence of the peak near 1 increases, dwarfing the peak at 0 in 
regions with substantial flood hazards. This progression indicates a rise in LAFE 
corresponding to an increase in spatial flood hazards extent. The presence of two 
distinct peaks indicates disparities in LAFE among the CBGs of a county.
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them to high flood exposure. Conversely, we also observe a subset 
of CBGs situated within flood-hazard zones but with surprisingly low 
LAFE values. This shows that being within a flood-hazard zone does 
not automatically translate to a high LAFE. We examine these outliers 
of latent flood exposure and flood immunity in the next subsection.

Latent flood exposure and latent flood immunity
To deepen our understanding of the outlier patterns observed in the 
previous section, we introduce two novel concepts: ‘latent flood expo-
sure’ and ‘latent flood immunity’. Latent flood exposure characterizes 
situations where CBGs are not geographically situated within flood-
hazard zones, yet exhibit high LAFE values. This seemingly paradoxical 
situation suggests that such CBGs possess an underlying, unappar-
ent vulnerability to flood exposure, perhaps attributable to human 
mobility patterns or other socio-environmental dynamics. Latent flood 
immunity, on the other hand, captures instances where CBGs that lie 
within flood-hazard zones have surprisingly low LAFE values. These two 
concepts capture instances of human life activities and mobility that 
exacerbate or ameliorate their LAFE. Such instances emerge as a result 
of a lifestyle involving visitation to places in neighboring CBGs outside 
spatial flood hazards, reducing flood dwell time in flood-prone areas.

To visually demonstrate these concepts, we plotted cumulative 
LAFE curves for in-floodplain and out-of-floodplain CBGs for each 

county (Methods), as demonstrated in Fig. 4 and Supplementary  
Figs. 2–6. These figures collectively provide a combined snapshot of 
the overall county characteristics in terms of latent flood exposure 
and immunity. In these graphical representations, a larger area under 
the curve for out-of-flood hazard LAFE implies a lower degree of latent 
flood exposure. Conversely, a more extensive area under the in-flood-
hazard LAFE curve suggests a greater level of latent flood immunity. 
However, it is important to note that the extent of latent flood exposure 
and immunity in a county are not always correlated; counties with high 
latent flood exposure do not necessarily demonstrate high latent flood 
immunity. For example, only a small number of counties (Los Angeles 
(C1), San Diego (C2) and Harris (C4)) exhibit both high latent flood 
exposure and high latent flood immunity based on their respective 
cumulative distribution function curves and associated areas. This 
county-level characterization of the combined latent flood exposure 
and immunity enables cross-county comparisons, as discussed in the 
following subsections.

Our findings also highlight a distinct trend: the propensity for 
latent flood exposure increases with an increase in the county’s spatial 
flood hazard extent. As the proportion of CBGs within a county’s flood-
hazard zones increases, so do the chances of encountering higher LAFE 
values for the entire county. Conversely, latent flood immunity tends to 
decrease as the spatial flood-hazard extent grows, as fewer CBGs exist 
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Fig. 3 | LAFE distribution in Philadelphia and Harris County. The figures 
capture the intricate relationship between spatial flood-hazard areas and LAFE 
in two distinct counties. a,c, Demarcation of CBGs based on their positioning 
either within or outside flood-hazard zones in Philadelphia (a) and Harris (c) 
counties. b,d, Distribution of LAFE across CBGs for Philadelphia (b) and Harris 
(d) counties, emphasizing the variance in flood exposure (shown by color 

intensity) among residents, based on their life activities. Color bar represents 
LAFE values for CBGs in b and d. In Philadelphia, users residing in 5% of the CBGs 
that fall outside flood-hazard areas still spend a substantial portion of their time 
(~3,000 h out of a total of ~17,000 h) in flood-prone areas. Similarly, in Harris 
County, the average user within the same 5% of CBGs spends ~4,300 h out of a 
total of 16,000 h within-floodplain areas.
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outside flood-prone areas to alleviate flood exposure stemming from 
mobility patterns. The characterizations of latent flood exposure and 
immunity provide new insights regarding the way in which populations 
of a county are exposed to the potential impacts of floods in their daily 
life activities, irrespective of the location of their residence.

County-level population LAFE
PLAFE provides a novel measure for quantifying and evaluating county-
level population LAFE. Unlike the traditional binary approach that 
categorizes regions mainly as either within or outside a floodplain, 
our method offers a more specific and quantitative measure of flood 
exposure for the populations of each city or county. PLAFE takes values 
between 0 and 1, providing a continuum that facilitates more objective 
comparisons across different cities and counties. Figure 5 illustrates 
the PLAFE values for counties across the United States, juxtaposed 
with the extent of spatial flood hazards. The extent of spatial flood 
hazards is assessed based on the proportion of CBGs that intersect 
with floodplains.

Our results show the direct relationship between PLAFE and spatial 
flood-hazard extent. Figure 5b highlights a clear linear relationship 
between spatial flood hazards and PLAFE, implying that regions with 
a greater spatial flood-hazard extent have a greater PLAFE. However, 
we also observed variations among the PLAFE values of counties with 
comparable spatial flood-hazard extents. The counties are categorized 
(from C1 to C5) according to their spatial flood-hazard extents, seg-
mented into 20% increments (that is, 0–20%, 20–40% and so on). We 
found that certain categories exhibited a wide range of PLAFE values 
despite having a similar extent of spatial flood-hazard exposure. This 
result demonstrates the importance of considering the PLAFE metric 
when evaluating the population-level flood exposure for cities and 
counties. Furthermore, these results suggest that variations in the 
PLAFE of counties with similar spatial flood-hazard exposure might be 
due to differences in their mobility level as well as their urban form and 
structure features. In subsequent sections, we delve deeper into these 
factors, seeking to uncover the reasons behind the observed variations 
in PLAFE in areas with similar spatial flood exposure.

Spatial flood hazard and PLAFE disparity
To better understand the observed variability, we further analyzed 
PLAFE by computing and comparing the PLAFE for CBGs in-floodplain 
and outside-floodplain for each county. In this analysis, we examined 
the relationship between the spatial distribution of flood hazard (extent 

of CBGs in floodplains) and the PLAFE values of in-floodplain and out-
of-floodplain CBGs in each county.

Figure 6a,b shows the spatial extents of flooding and PLAFE. Our 
observations from Fig. 6c,d clearly indicate that regions within spatial 
flood-hazard zones exhibit a higher PLAFE than regions outside such 
zones. More specifically, the PLAFE of CBGs situated within flood haz-
ards typically ranges from 0.84 to 1, whereas in CBGs outside flood haz-
ards the range is substantially lower, varying from 0.01 to 0.16. However, 
we noted some peculiar trends in regions with similar extents of spatial 
flood-hazard distribution. For example, Chesapeake City and Norfolk 
(Boston) counties, where ~70% of CBGs are within flood-hazard zones, 
show a similar out-of-floodplain PLAFE to regions with ~30% spatial 
flood exposure. Conversely, San Diego, Santa Clara, Harris and Duval 
exhibit higher PLAFE in areas outside flood-hazard zones than counties 
with similar spatial flood-hazard exposure. Remarkably, although these 
counties have higher out-of-floodplain PLAFE values, the corresponding 
in-floodplain PLAFE does not follow a similar or inversely proportional 
trend. This observation is consistent across all categories, indicating 
that PLAFE for areas within flood-hazard zones and those outside these 
zones seem to have distinct characteristics across different counties. 
The variation in the PLAFE values of counties with comparable spatial 
flood-hazard extent might stem from differences in urban form and 
structures. These differences, in turn, could lead to varying lifestyles 
and mobility patterns among the populace that subsequently shape the 
PLAFE of a county. In later sections of this Article, we present an early 
analysis of this aspect in favor of our hypothesis.

Role of urban form and structure
To examine the variation in the PLAFE of counties with comparable 
spatial flood-hazard extent, we examined the relationship of urban 
form and structure features with PLAFE, latent flood exposure and 
latent flood immunity. To understand this relationship, we used a Spear-
man correlation plot, observing the overall set of counties as well as 
specific county groupings based on spatial flood-hazard categories 
C1–C5. The results are illustrated in Supplementary Figs. 7, 8, 9, 10, 11 
and 12, which respectively represent ‘all counties’ and C1, C2, C3, C4 
and C5 counties. We considered urban form and structure features such 
as the human mobility index (HMI), the urban centrality index (UCI), 
points of interest (POI) density (based on area and per capita), road 
density and population per square kilometer. These features have been 
shown to shape human activities and mobility in cities24. When these fea-
tures are examined across all counties, no important patterns emerge.  
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Fig. 4 | Evaluation of latent flood exposure and immunity. a, PLAFE across 
counties (right axis) compared to the percentage of CBGs in floodplains (left 
axis). b, Depiction of the linear correlation between these two variables using a 
two-sided test. Counties are categorized (C1 through C5) based on similar extents 
of spatial flood hazard, divided into increments of 20%. The linear relationship 

between spatial flood hazards and PLAFE implies that regions with greater 
spatial flood hazards have a greater PLAFE. Remarkably, certain counties with 
comparable spatial flood hazards show disparate levels of PLAFE, underscoring 
the possible role of urban form and structure features and mobility levels in 
shaping the extent of PLAFE.
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This is due to the fact that the overall PLAFE values for each county are 
predominantly influenced by the extent of spatial flood hazard. When 
examining the relationship within each category of counties (with 
comparable spatial flood-hazard extent), however, interesting results 
start to emerge. For example, POI density (area-based) and road density 
explain the variation in PLAFE values in C1 counties, which have fewer 
than 20% of their CBGs within the floodplain. C1 counties with lower 
POI density and higher road density have a greater value of PLAFE. This 
result suggests that in counties with a relatively low extent of spatial 
flood hazard, dense development (measured by road network density) 
could exacerbate PLAFE. In the case of C3 counties, road density and 
urban centrality proved influential. This result suggests that in counties 
with moderate levels of spatial flood-hazard extent, decentralization 
of facilities and dense development lead to a greater PLAFE. Also, the 
HMI is strongly correlated with PLAFE in C5 counties. This result implies 
that, when counties have extensive spatial flood exposure, a greater 
level of human mobility amplifies PLAFE.

In these specific categories, a higher road density correlated 
with increased PLAFE. Notably, elevated POI density and a greater UCI 
resulted in lower PLAFE. This suggests that a polycentric city structure 
could potentially reduce PLAFE for counties with moderate levels of 
spatial flood-hazard extent. In addition, a greater POI density may 
indicate that essential POIs are concentrated outside flood-prone areas 
(land-use policy to encourage development outside flood-prone areas). 
These results underscore the critical role urban form and structure can 
play in the extent of PLAFE in cities and counties.

Discussion
The LAFE index, offering a data-driven, human-centric method to 
quantify flood exposure in cities, reveals the varying extents of popu-
lation life activity exposure within and across different US counties. 
By categorizing counties from C1 to C5 based on spatial flood-hazard 
extents, we observed variations in the normalized PLAFE, even among 
counties with similar flood-hazard proportions. Our results show an 
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Fig. 5 | Relationship between PLAFE and spatial flood-hazard extent.  
a,b, Mapping of the spatial extent of flood hazards (a) alongside the 
corresponding PLAFE (b), providing a comparative view. c,d, A focus on  

PLAFE in regions outside (c) and within (d) the flood-hazard zones, highlighting 
the variations in population flood exposure based on their locations relative to 
flood-hazard zones.
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evident linear relationship between spatial flood-hazard extent and 
PLAFE across counties, with regions within flood-hazard zones exhib-
iting PLAFE values ranging from 0.84 to 1, and those outside ranging 
from 0.01 to 0.16. The large PLAFE value for CBGs in high flood-hazard 
areas is due to the combined effects of spatial clustering of hazards 
and the distance-decay law of human visitation, where people have 
greater visits and dwell times in locations in the proximity of their 
residence, which leads to a greater LAFE. Also, the concepts of latent 
flood exposure and latent flood immunity reveal hidden exposure and 
immunity due to human mobility that spatial flood risk maps cannot 
capture. Furthermore, the role of urban form and structure features, 
including road density, POI density and the UCI, is examined, show-
ing their importance in explaining the variation in PLAFE for counties 
with similar spatial flood-hazard extent. The findings emphasize the 
multifaceted nature of population-level flood exposure assessment 
and the importance of considering spatial dynamics, human mobility 
and urban structure for a refined understanding of flood exposure. The 
results highlight the capability of the proposed approach to quantify 
populations’ flood exposure.

Certain limitations stem from the representativeness of the data 
employed in this study. The location dataset utilized may not compre-
hensively encompass the diverse range of socio-demographic charac-
teristics, potentially resulting in an underrepresentation of individuals 
who do not use smartphones and specific socioeconomic cohorts 
less inclined to engage with location-tracking services. Although it is 
acknowledged that the Spectus dataset possesses limitations in fully 
encapsulating the entire socio-demographic spectrum, it is important 
to note its substantial coverage, spanning ~20% of the US population. 
This extensive coverage facilitates a broad cross-sectional examina-
tion of the populace, thereby fortifying the generalizability of our 
research findings.

This study makes several noteworthy contributions to the field of 
flood exposure assessment and urban studies. The first is the creation 
of LAFE, a novel, human-centric measure of flood exposure allowing 
for a more quantitative and data-driven analysis of flood exposure at 
individual levels for inter- and intra-city analyses. Flood exposure stud-
ies have primarily focused on the exposure of physical properties and 
places of residence. By examining human activities, our study offers 
a deeper understanding of how flood hazards could affect the daily 
life activities of residents, irrespective of their place of residence. By 
providing a new human-centric way to quantify the extent of food expo-
sure, the LAFE method extends beyond the existing binary approach 
(inside versus outside flood plain). The LAFE index, providing a con-
tinuum from 0–1, enables a more objective comparison of the extent 
to which people’s life activities in certain areas are exposed to flood 
hazards. The index enables evaluation of the potential socioeconomic 
impacts of floods on individuals and households due to disruptions of 
daily life activities during flood events. These findings provide urban 
scientists and flood researchers with new measures for quantifying 
population flood exposure. LAFE and PLAFE can be analyzed every 
few years with updated data regarding spatial flood-hazard exposure 
and human life activity patterns to evaluate the extent to which flood 
mitigation measures and urban growth and development exacerbate 
or improve LAFE across different CBGs and at a city scale.

Our study also offers a detailed characterization of latent flood 
exposure. This aspect of flood exposure affects the life activities of 
populations residing outside traditional flood zones. The concept 
of latent flood exposure was introduced to describe instances where 
CBGs, although not directly located within flood-hazard zones, exhibit 
high LAFE, implying high susceptibility of their population activities 
to flood hazards. These insights are essential for urban planners and 
emergency managers to evaluate the flood exposure of the entire 
population, rather than just those residing in flood-prone areas. Third, 
an inter-city analysis of cities based on PLAFE revealed considerable 
variation in LAFE across cities with similar spatial flood-hazard extents. 
These variations could be explained based on urban form and struc-
ture features, such as POI density, road density and urban centrality, 
underscoring how these factors shape LAFE. We evaluated the extent 
to which features of urban form and structure explain the variability 
in PLAFE in cities with similar spatial flood-hazard extents. The results 
underscore the role of urban form and structure in shaping flood 
exposure, and the influence of development density, distribution of 
facilities, and level of human mobility in shaping the extent of PLAFE 
in counties with a similar spatial flood-hazard extent. These results can 
inform urban designers and city managers regarding ways to alleviate 
LAFE through urban growth and development strategies based on 
concentrating facilities in non-flood-prone areas and reducing the 
overall development density.

In summary, these contributions could facilitate a paradigm shift 
in flood exposure assessments towards a more data-driven and human-
centric characterization and understanding. Future studies can build 
upon the LAFE method and approach presented in this study to further 
evaluate the characteristics of communities and cities that shape popu-
lation LAFE. Also, longitudinal studies are needed to evaluate changes 
in LAFE as cities grow and develop and their spatial flood-hazard extents 
evolve due to flood mitigation strategies. Also, future empirical stud-
ies of flood events can examine the relationship between LAFE and 
the well-being and socioeconomic impacts of floods on individuals 
and households.

Methods
Approach for quantifying LAFE
Extracting stop-point data. Stop-point information is derived from 
high-resolution data from anonymous smartphone users who have vol-
untarily opted in to anonymized data collection for research purposes 
via mobile applications. The data are collected by Spectus25, a location 
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intelligence company that adheres to robust privacy policies, including 
The General Data Protection Regulation (GDPR) and The California 
Consumer Privacy Act (CCPA).

The stop-point table is a component of the Spectus main datasets 
that provides comprehensive information pertaining to each user 
stop, including user ID, date of occurrence, time of occurrence, dura-
tion of occurrence and the polygon representing the geographical 
location of each unique stop on a daily basis. This table serves as a 
valuable resource within the Spectus database, facilitating in-depth 
analysis and an understanding of stop-related patterns and behav-
iors. In accordance with its ‘Sensitive Points of Interest’ policy, visits 
to privacy-sensitive locations are omitted from the dataset by the 
data provider.

In addition to the stop-point table, the Spectus main database 
features a home CBG table. Data in this table capture each user’s home 
CBG information. Alongside the user ID, the home CBG table contains 
geographic entity codes (GEOIDs), which provide a standardized iden-
tification system for geographical areas. Home location data are uplev-
eled to the CBG by the data provider to preserve user privacy, serving as 
a means to identify the CBG where a user resides. The CBG shape table 
for each county is sourced from the US Census Bureau26. This table 
comprises GEOIDs corresponding to each CBG, alongside the geometry 
information that defines the boundaries and shape of each CBG.

To capture the life activity of users across different cities, we 
collected stop-point data spanning a duration of one month, from  
1 March 2023 to 31 March 2023. Because the patterns of life activities 
do not change considerably, capturing activities over a month can 
provide a representative picture of population life activities. For our 
project, the focus was limited to stop-point data within each county. 
By merging the stop-point table with the home CBG table using the 
user ID as a common identifier, a home CBG GEOID could be assigned 
to each user. This enabled identifying and selecting individuals who 
reside within a particular CBG and treating them as the targeted popu-
lation for analysis in each CBG. Accordingly, the stop-point table was 
filtered to extract information pertaining only to stops made by the 
targeted people. The data were extracted for 31 counties encompass-
ing 18 major US metropolitan cities in proximity of the coast and 
having varied levels of flood susceptibility. A detailed list including 
county names, city names and GEIODs (unique spatial zone identi-
fier) is provided in Table 1. The Spectus dataset, while extensive, may 
not capture the full diversity of socio-demographic characteristics, 
potentially underrepresenting non-smartphone users and certain 
socioeconomic groups that are less likely to opt into location-tracking 
services. Although the Spectus dataset may have limitations in captur-
ing the full socio-demographic spectrum, its substantial coverage of 
~20% of the US population through diverse mobile applications offers 
a broad cross-section of the populace, supporting the generalizability 
of our findings.

Identify spatial flood-hazard extent. To determine an area with spatial 
flood hazard, this study used 100-year floodplain data provided by the 
US Federal Emergency Management Agency (https://www.fema.gov/). 
The 100-year floodplain areas indicate areas with a 1% annual chance 
of flooding. The 100-year floodplain was overlaid with the CBG shape 
table, then the CBG was marked as flood-prone if it overlapped with any 
part of the floodplain. We considered these CBGs to be within spatial 
flood-hazard areas. Figure 1 provides a brief explanation of the core 
terminologies used in this study.

Total dwell time and flood-prone dwell time. The total dwell time 
(TD) was calculated by aggregating the total dwell-time duration of 
people residing in a CBG. Flood-prone dwell time (FD) was calculated by 
aggregating the dwell time related to visits to locations (POI) in flood-
prone CBGs. The total and flood dwell times were first calculated for 
individual users then aggregated at the CBG level.

LAFE and PLAFE. The LAFE, representing the level of flood exposure 
within a CBG, can be calculated using two variables, and is determined 
using the formula

LAFE = FD
TD

(1)

Each county’s PLAFE can be calculated by normalizing the LAFE by the 
total population in each CBG. This normalization allows for a compari-
son of LAFE levels across different counties as follows:

PLAFE =
∑ipopulationi × LAFEi

∑ipopulationi
(2)

where i stands for the ith CBG in the county.

List of cities
We examined cities and their corresponding counties, with a primary 
focus on coastal cities. Washington was excluded due to there being 
unavailable data. See Table 1 for further details.

Table 1 | Cities and their respective counties used for this 
study

City County GEIOD

Boston

Middlesex 25017

Norfolk 25021

Suffolk 25025

New York

Richmond 36085

Queens 36081

Kings 36047

New York (Manhattan) 36061

Bronx 36005

Philadelphia Philadelphia 42101

Jacksonville Duval 12031

Orlando Orange 12095

Miami
Broward 12011

Miami-Dade 12086

Tampa Pinellas 12103

Hillsborough 12057

New Orleans
Jefferson Parish 22051

Orleans Parish 22071

Houston Harris 48201

San Diego San Diego 06073

Los Angeles
Los Angeles 06037

Orange 06059

San Jose Santa Clara 06085

Fremont Alameda 06001

San Mateo San Mateo 06081

San Francisco San Francisco 06075

Portland
Multnomah 41051

Washington 41067

Seattle King 53033

Norfolk

Norfolk 51710

Portsmouth 51740

Chesapeake City 51550

These include most of the coastal cities except for Washington, for which some data were 
unavailable.

http://www.nature.com/natcities
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Urban form and structure parameters
To evaluate the extent to which variations in county-level LAFE are 
explained by urban form and structure features, we computed five 
different parameters that look at city structure, the distribution and 
density of POI, road density and population density as supporting data 
for our study. The UCI was computed at the county level, whereas other 
parameters were at the CBG level. For this study we used the median 
value across all CBGs as the representative value of the county for mak-
ing cross-county comparisons.

Urban centrality index. The UCI quantifies the degree of centralization 
of facilities within a county. This metric was reproduced based on the 
methods provided in ref. 27. It was computed as the multiplication of 
two key factors: the local coefficient (LC) and the proximity index (PI). 
The LC is determined by the count of POI in each census tract, whereas 
the PI takes into account both the number of POI and a distance matrix, 
which encapsulates the distances between different census tracts. 
The UCI value can fall anywhere between 0 and 1. A value closer to 0 
indicates a polycentric distribution of facilities, whereas a value closer 
to 1 denotes a monocentric distribution.

The LC is given by

LC = 1
2

N
∑
i=1

(ki −
1
N ) (3)

The PI is expressed as

PI = 1 − V
Vmax

(4)

The Venables index (V) is calculated as

V = K × D × K (5)

where N denotes the total count of census tracts within a county, and 
K is a vector that encapsulates the number of POI for each census tract. 
The element ki within vector K corresponds to the number of POI in the 
ith census tract. Matrix D represents the distances between the various 
census tracts, and Vmax is derived by presuming that all POI are evenly 
distributed along the county’s boundary. The LC is utilized to  
gauge the uneven distribution of POI, and the PI handles the normaliza-
tion aspect28,29.

These equations collectively define the UCI, providing a compre-
hensive measure of urban centralization:

UCI = LC × PI (6)

Point of interest density. The calculation of POI density promotes an 
understanding of the distribution and concentration of various facili-
ties within a given region. We computed the POI density in two forms 
for each CBG by normalizing the number of POI based on two distinct 
metrics: population and area. First, the number of POI is divided by the 
total population of the CBG, yielding a population-based POI density. 
This measure reflects the accessibility of POI per capita. Second, the 
POI count is also normalized by the total area of the CBG, providing 
an area-based POI density that illustrates the spatial concentration 
of facilities. The POI data utilized for these calculations were sourced 
from SafeGraph.

Road density. The road density metric quantifies the extent of the 
road network within a specific region, such as a CBG. Road data were 
obtained from the US Census TIGER dataset30. This metric was calcu-
lated by measuring the total length of all the roads (primary, second-
ary and local) and then normalizing this value by the total area of the 
CBG. This normalization by area provides a standardized measure 

that reflects the concentration of roads in the region, allowing for 
comparisons across different areas.

Population density. Population density was computed by taking the total 
population of the CBG and dividing it by its total area. This area-based nor-
malization offers a uniform metric that illustrates the spatial distribution 
of the population. Population data were sourced from US Census data31.

Human mobility index
To analyze the relationship between LAFE and mobility levels for each 
county, we used mobility data provided by Spectus. Spectus provides 
the HMI for each county. We selected data from a span of 28 days in April 
2019, a period devoid of external anomalies that could disrupt normal 
human activities. The construction of the HMI involved attributing 
each visit point vi to a specific CBG within a county. The HMI was then 
computed using the formula

HMI = Σvi
28n

where n is the count of CBGs in the county. We then normalized the 
HMI values to a range of 0 to 1 by min–max scaling. This normaliza-
tion allows the HMI to effectively indicate the level of human mobility 
within a county, with values nearer to 0 reflecting lower activity and 
those closer to 1 signifying higher activity. More details on this metric 
are available in ref. 32.

Latent population flood exposure and immunity calculation
The CBGs were categorized into two types: flood-prone CBGs (within 
spatial flood hazard) and non-flood-prone CBGs (outside spatial flood 
hazard). For flood-prone CBGs, the latent population flood immu-
nity was determined based on the ratio of the dwell time in non-flood 
prone places (D(NF, user)) to the total dwell time at any place for each 
user (D(T, user)) living in the flood-prone CBG. This calculation can 
be represented as

Latent population flood immunity =
DNF,user
DT,user

(7)

For the non-flood-prone CBGs, latent population flood exposure 
was determined as the ratio of the dwell time in any flood-prone 
places (D(F, user)) to the total dwell time at any location for each user 
(D(T, user)) living in the non-flood-prone CBG. This calculation can 
be expressed as

Latent population flood exposure =
DF,user
DT,user

(8)

To evaluate the extent of latent flood exposure and latent flood 
immunity, we used the cumulative density function of LAFE to evalu-
ate the combined extent of latent flood exposure and immunity at an 
aggregate level for each county, as shown in Fig. 4.

Cumulative distribution function for LAFE
We used a statistical approach to evaluate the variation of LAFE among 
CBGs for intra-county analysis. The measurement was accomplished 
using the discrete cumulative distribution function (CDF). The CDF F(x) 
for a discrete random variable X is defined as the probability that X will 
take a value less than or equal to x. In the context of LAFE, the CDF was 
used to evaluate the proportion of CBGs in a county that have a LAFE 
index value less than or equal to a given threshold. Mathematically, the 
CDF of LAFE is defined as

F(x) = P(X ≤ x) = ∑
xi≤x

p(xi) (9)
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where p(xi) represents the probability mass function at a given flood 
exposure level xi.

By evaluating the CDF at various threshold levels, we can generate 
a detailed profile of LAFE across different CBGs within a county. These 
calculations also allow for the assessment of latent flood exposure and 
immunity across CBGs in each county.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this Article.

Data availability
The data used in this study are not publicly available under the legal 
restrictions of the data provider. Interested readers can request it from 
Spectus (https://spectus.ai/).

Code availability
The code that supports the findings of this study is available from the 
corresponding authors upon request.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The code used to aggregate data can be made available upon request. The data processing was done on Spectus (data provider) server and is 
not publicly available

Data analysis Analysis for this paper was done using code written in Python 3.7. The code will be made available upon request. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The human mobility data used in this study are not publicly available under the legal restrictions of the data provider. Interested readers can request it from Spectus 
(https://spectus.ai/). The US Census TIGER dataset can be accessed from the US Census Bureau
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Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description A human-centric perspective on flood exposure assessment of flood-hazard vulnerability transcends the conventional focus on 
spatial exposure by quantifying the effect of daily human activities in flood-prone areas. Using a novel index to quantify the time 
individuals spend in flood-prone areas, this method characterizes latent flood exposure. Calculations rely on millions of fine-
resolution location-based data points collected anonymously from smartphones of opted-in users. A comparative analysis of multiple 
U.S. metropolitan cities based on latent flood exposure with similar extents of spatial flood risk reveals significant spatial disparities in 
LAFE.The collected data are quantitative. A bimodal distribution in life activity flood exposure index values in 18 coastal metropolitan 
areas reveals flood exposure disparities. The inter-city analysis results also uncovers the role of urban forms and structures in shaping 
LAFE, revealing how spatial clustering of flood hazards and distance-decay characteristic of human visitation can exacerbate flood 
exposure. Our findings provide a novel and more human-centric approach to characterizing and quantifying flood exposure by 
shifting focus from places to people. The life activity flood exposure captures the extent to which a population’s daily life activities 
would be disrupted due to flooding and could capture the socio-economic aspects of flood exposure (such as loss of access to critical 
facilities and work) more objectively than the existing approaches. The findings provide interdisciplinary researchers and 
practitioners across urban sciences, flood risk management, emergency response with novel human-centric measure and insights to 
better examine flood exposure and risk.

Research sample Users from Spectus. The detailed demographic of Spectus data are not accessible. However, the Spectus datasets have been widely 
used and verified for representativeness by multiple previous studies. The census data from U.S Census Bureau cover the total 
population of residents in U.S 

Sampling strategy Full sample

Data collection For experiments, we collect human mobility datasets from Spectus, which is a location intelligence and measurement platform 
collecting mobility data of anonymized devices. The data is collected using the installed SDK on each phone users, and the collected 
data is accessed via granted account provided by Spectus. The researchers are blind to the experimental condition. Data from about 
15 M   active users are collected by Spectus in the United States. The previous studies have proven the high demographic 
representativeness of the Spectus dataset

Timing The data were collected and processed in Jan - May, 2022

Data exclusions No-data excluded

Non-participation No participants involved in the study

Randomization Participants were not allocated to control groups
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