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ABSTRACT
Radiometers play a crucial role in providing accurate geo-
physical information, relying heavily on precise calibration
for both radiometric accuracy and spectral consistency. Ra-
diometers consistently allocate time and hardware resources
to calibration, resources that could otherwise be utilized for
environmental sensing. In addition, calibration faces chal-
lenges such as frequency dependence and environmental in-
fluences, requiring to the need for innovative solutions. In
this study, advancements in deep learning (DL) techniques are
utilized, using NASA’s Soil Moisture Active Passive (SMAP)
satellite data to create a DL-based radiometer calibrator. The
use of 2-D spectral features as input in a convolutional neu-
ral network shows promising results with high correlation and
low error. Notably, ancillary features like internal thermistor
temperature prove accurate for estimating antenna tempera-
ture. This compensates for changes in receiver noise temper-
ature and short-term gain fluctuations, even when there’s no
reference load or noise diode power. The proposed calibration
technique, emphasizing reduced reference information, holds
significant potential for a higher number of antenna scene ob-
servations within a footprint.

Index Terms— Radiometric Calibration, deep learning
(DL), machine learning (ML), artificial intelligence (AI), mi-
crowave radiometry, neural network, radio frequency interfer-
ence (RFI), soil moisture active passive (SMAP).

1. INTRODUCTION
Microwave and millimeter-wave radiometry significantly con-
tribute to our understanding of geophysical parameters, such
as soil moisture, sea-surface wind, atmospheric water vapor
and ocean salinity. These instruments play a vital role in di-
verse fields like hydrology and meteorology [1–3]. Ensuring
their accuracy and sensitivity is crucial for reliable parameter
derivation. While accuracy impacts data reliability, sensitiv-
ity determines the smallest detectable change, accounting for
internal noise.

This work was supported by National Science Foundation under Grant
No. 2332661 and National Aeronautics and Space Administration under
Grant No. 80NM0018D0004.

Microwave radiometers employ various calibration meth-
ods to ensure precise and reliable measurements of microwave
radiation, enhancing the accuracy of collected data. These
calibration techniques fall into two categories: external cali-
bration and internal calibration [4, 5]. External calibration in-
volves using references or targets in space to calibrate the ra-
diometer’s measurements, utilizing well-characterized radio-
metric properties of known targets as references for a voltage-
to-antenna temperature calibration line. However, challenges
arise, including accessing stable calibration references, en-
vironmental variations, instrument stability within the cali-
bration cycle, and correcting fast 1/f noise gain fluctuations.
On the other hand, radiometer internal calibration incorpo-
rates noise injection and Dicke-switching reference loads. By
rapidly switching between internal calibration sources, this
technique effectively eliminates gain fluctuations caused by
1/f noise at the receiver output. However, uncertainties may
be introduced in the calibration due to factors such as noise
diode instability from thermal fluctuations and aging, as well
as potential mismatches at the reference load. These factors
can lead to errors or biases in the calibration, impacting the
accuracy of radiometric measurements.

This paper introduces a novel calibration approach based
on deep learning (DL), leveraging 2-D time–frequency spec-
tral features and reduced reference information from refer-
ence and noise sources to estimate antenna temperature [6].
The application of convolutional neural network (CNN) based
DL framework demonstrates promising potential in minimiz-
ing the need for frequent internal calibration, allowing for
increased frequency in antenna temperature measurements.
Post-launch, samples from vicarious sources or other calibra-
tion targets can be used to fine-tune the DL-based calibration
during on-orbit operation. This adjustment is crucial in ac-
commodating on-orbit effects and non-stationary instrument
changes, such as aging and orbital variations. Data-driven
calibration methods have been introduced first in this [7, 8].
This work is centered around using average voltage or an-
tenna temperature. However, with radiometers transitioning
to wideband sensing in unprotected regions, there’s a grow-
ing emphasis on harnessing spectral information. Radiome-
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Fig. 1. Illustration of input features for DL-based radiometer calibration. (a) Two-dimensional (16 × 8) Primary inputs.
(b) Scalar secondary inputs. (c) Five feature groups (FG) for different training/testing scenarios illustrated with colors. (d)
SMAP data structure for a particular HDF5 file and corresponding switching sequence of a particular footprint. (e) The overall
spectrogram of a particular footprint comprises 8 antenna measurements and 16 sub-bands for each antenna measurement [6].

ters capture 2-D time-frequency data, an aspect not directly
tapped into by conventional calibration methods. This study
introduces an innovative approach that incorporates these 2-
D features, along with supplementary ancillary information,
for calibration. The goal is to assess the robustness of this
approach with reduced reference information, employing var-
ious validation strategies to understand the generalization ca-
pability of DL in estimating antenna temperature. Future stud-
ies will implement this DL-based calibrator in a software-
defined radio (SDR)-based L-band radiometer [9].

The remainder of the paper is organized as follows: dataset
utilized in this study is detailed in Section 2, while the method-
ology for DL-based calibration is in Section 3. Results and
discussions are provided in Section 4 and finally, a conclu-
sion is drawn in Section 5.

2. DATASET
2.1. SMAP Level 1A Data
The SMAP level 1A data product includes antenna counts at
both full-band and subband levels, with these counts being
represented by various statistical raw moments [10]. Among
these moments, the second raw moments are particularly im-
portant as they serve as an equivalent measure of power. In
our research, we focus on these second raw moments as the
primary input for analysis. Fig. 1a provides a list of features
extracted from the level 1A data product, and our input fea-
tures also encompass the measured counts of the reference
load and the reference plus ND. These reference counts offer
valuable information and are used alongside the raw antenna
moments in our analysis. It’s worth noting that all these mo-
ments are accessible in both the in-phase (I) and quadrature
(Q) channels for both horizontal polarization (H-pol) and ver-
tical polarization (V-pol). This comprehensive set of features

forms the basis for our research investigation.

2.2. SMAP Level 1B Data
The level 1B data products include antenna temperature mea-
surements, quality flags indicating data reliability, and details
about various radiometer components’ loss elements [11,12].
Fig. 1a and Fig. 1b present these features. In our study, we
use the antenna temperature values for both horizontal (H-
pol) and vertical polarization (V-pol) as ground truth refer-
ences. These values help us model the relationship between
the measured input voltage and the resulting antenna temper-
ature. To enhance calibration, we incorporate thermistor data
from the reference load and ND physical temperature as in-
put features for our model. Additionally, the model includes
thermistor/physical temperature readings from different satel-
lite components, such as the reflector, feed horn, orthomode
transducer (OMT), and correlated noise source (CNS) during
training. Crucial to radiometer calibration are the loss ele-
ments of various components, including reflector loss, feed
horn loss, and phase imbalances, which are extracted from
SMAP level 1B data products. For more in-depth informa-
tion about these features, refer to the algorithm theoretical
basis document of SMAP.

2.3. Data Preparation
The input features for the DL-based calibrator are categorized
into primary and secondary groups. Primary inputs include
2-D time–frequency spectrograms fed directly into the con-
volutional layers of the DL model. Secondary inputs, divided
into five feature groups (FGs), are integrated within the DL
framework along with primary input features. The five FGs
serve various roles in calibrating radiometers, accommodat-
ing scenarios with or without power information from the ref-
erence and ND. They include features related to the 2nd raw
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moments (FG1), power of the reference load (FG2), power
of ND (FG3), internal physical temperature (FG4), and el-
ement losses and physical temperatures (FG5). Radiometer
footprints are sequences of 12 packets, each lasting 1.2 ms.
FG1 packets focus on observing the scene, while FG2 and
FG3 packets are allocated for internal calibration. The data
within each packet is divided into 16 subbands covering the
SMAP radiometer band of 1400–1427 MHz. The primary in-
puts, represented by 2-D spectrograms, have a shape of 16
× 8. An example antenna count spectrogram (Fig. 1e) dis-
plays eight antenna measurements and 16 subbands within a
particular footprint. To maintain a consistent matrix size for
the DL model, observations are broadcasted into 16 × 8, in-
volving the extension of the same reference packet for four
consecutive packets in a specific subband.

2.4. Training Scenarios
In the previous section, we discussed how input features are
categorized into five Functional Groups (FGs) for radiometer
calibration. These FGs play a crucial role in creating differ-
ent training schemes for DL-based frameworks, each aimed
at determining the optimal amount of voltage or power in-
formation needed from the reference unit to accurately esti-
mate antenna temperature. In these cases, FG2 and FG3 rep-
resent using only the 5th and 6th time packet observation of
FG2 and FG3. These schemes are illustrated in Fig. 2. Case
1 aligns with conventional radiometer calibration using the
same input features. While a direct comparison with conven-
tional approaches is beyond our study scope, future research
will explore applying this calibration method to airborne L-
band radiometers for performance comparison. Case 2 uses
information from ND without matched reference load infor-
mation, while Case 3 does the opposite. Case 4 involves using
one packet of reference and ND information, unlike conven-
tional calibration requiring two packets per radiometer foot-
print. Case 5 uses no power information from the reference
load and ND. Throughout the training process, FG1, FG4, and
FG5 are always incorporated, with FG4 containing the phys-
ical temperature feature of the reference and ND. Our find-
ings suggest that thermistor temperature and loss elements
exhibit sufficient stability to compensate for variations in re-
ceiver noise temperature and short-term gain fluctuations in
the absence of reference load and ND power.

3. METHODOLOGY
3.1. DL-Based Framework for Calibration
The DL framework, depicted in Fig. 3, comprises convolu-
tional layers for extracting features from n-channel spectro-
grams, concatenation layers to combine these features with
secondary inputs, and densely connected layers for mapping
the combined features to radiometer antenna temperature. The
primary input is 2-D spectrograms containing data about ob-
servation, reference, ND, and phases. To assess the model’s
flexibility, it’s trained and tested under five different scenar-
ios, demonstrating its superiority over conventional forward

1 2 3 4 5 6 7 8 9 10 11 12

4 Packets of Scene 
Observation (FG 1)

4 Packets of Scene 
Observation (FG 1)

Calibration Calibration

FG 2 FG 3 FG 3FG 2

1 2 3 4 6 7 8 9 10 11 125 11

Case 1 
(𝑨𝒍𝒍 𝑭𝑮)

Case 2
(𝑭𝑮𝟏 + 𝑭𝑮𝟑 +
𝑭𝑮𝟒 + 𝑭𝑮𝟓)

1 2 3 4 5 7 8 9 10 116 12

1 2 3 4 7 8 9 10 11 125 6

1 2 3 4 7 8 9 105 6 11 12
Case 5

(𝑭𝑮𝟏 + 𝑭𝑮𝟒 +
𝑭𝑮𝟓)

Case 3 
(𝑭𝑮𝟏 + 𝑭𝑮𝟐 +
𝑭𝑮𝟒 + 𝑭𝑮𝟓)

Case 4 
(𝑭𝑮𝟏 + 𝑭𝑮𝟐

∗ +
𝑭𝑮𝟐

∗ + 𝑭𝑮𝟒 +
𝑭𝑮𝟓)

Fig. 2. Different training schemes for DL-based calibrator.
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Fig. 3. Deep learning architecture to predict antenna temper-
ature [6].

modeling. Three convolutional layers, using 32, 64, and 128
filters with 3 × 3 kernels and no padding, extract meaning-
ful features from the input spectrograms. Each convolutional
layer is followed by ReLU activation and batch normaliza-
tion, enhancing non linearity and stabilizing distributions for
efficient learning. The normalization process in batch normal-
ization minimizes internal covariate shift during training, pro-
moting faster network convergence. With no feature normal-
ization before entering the model, batch normalization aids
convergence by reducing the need for careful initialization.
A total of 640 features are extracted, flattened, and combined
with secondary features. These combined features pass through
three fully connected layers (256, 128, and 64 neurons) with
ReLU activation, and the last layer, with a linear activation
function, produces the final output. The DL model estimates
antenna temperature, with input variations based on training
scenarios. Ground truth is established using SMAP antenna
temperature for a specific footprint. The training optimizes
parameters through backpropagation, employing a mean squared
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error (MSE) loss function that ensures alignment between SMAP-
derived ground truth and DL model output. Notably, the model
undergoes robust training with a combination of techniques,
including learning rate schedulers and early stopping, aiming
for a balanced fit to training data and effective generalization
to unseen data.

4. RESULTS AND DISCUSSION
4.1. Overall Performance
Two validation techniques, train-test split and K-fold, are uti-
lized with a dataset comprising land and land-water samples.
Table 1 summarizes the overall performance in various training-
testing scenarios for both land and land-water mixtures. In the
train-test split, Case 1 excels with the lowest RMSE values
(0.24 K for land, 0.29 K for land-water) and high R2 values
(0.9998 and 0.9997), underlining DL’s efficacy with features
comparable to conventional radiometers. Case 2, excluding
power information, maintains impressive performance (RMSE
0.42 for land, 0.40 for land-water), showcasing DL’s ability
with minimal reference data. Case 3, incorporating reference
plus ND power, outperforms Case 2. Case 4, using a single
packet of power information, surpasses Cases 2 and 3. De-
spite Case 5’s decline without reference and ND power, the
DL calibrator maintains RMSE (0.67 K land, 0.45 K land-
water) below SMAP radiometer uncertainty (1.3K). Training
with land-water mix data yields lower RMSE, indicating di-
verse features. K-fold validation aligns with train-test split,
confirming DL’s resilience. Case 1 excels, while Cases 2-5
with reduced reference data exhibit low RMSE and high R2,
catering to specific radiometer needs.

4.2. Computational Complexity
This study introduces a DL framework for predicting SMAP
radiometer antenna temperature, considering diverse spatial
and temporal data distributions. The quantitative analysis fo-
cuses on determining the required amount of data for pre-
diction. Fig. 4 illustrates RMSE performance for varying
training sizes across five cases, with a fixed SMAP radiome-
ter uncertainty line at 1.3 K. Generally, RMSE decreases with
larger training sizes. Notably, Cases 1 and 4 achieve accept-
able RMSE with only 25% of the training dataset, while Cases
2 and 3 require around 40%. Case 5 needs approximately
60%. Cases 1 and 4 benefit from power features, aiding quick
convergence, while Cases 2 and 3, with less reference in-
formation, demand more training samples. Overall, the DL-
based calibrator demonstrates satisfactory performance even
with reduced reference information and training data.

5. CONCLUSION

This research highlights the effectiveness of calibrating ra-
diometers through the use of DL techniques. It takes ad-
vantage of limited reference information and organizes two-
dimensional antenna counts into time and frequency sub-bands.
This DL-based calibrator will play a vital role in a future end-
to-end data-driven microwave radiometer setup. It will be

Table 1. Performance Metrics of DL-based Calibrator with
Train-Test Split and K-Fold

Validation
Techniques

Training
Scenarios

Land Land and Water

RMSE (K) R2 RMSE (K) R2

Train-Test
Split

Case 1 0.24 0.9998 0.29 0.9997

Case 2 0.42 0.9994 0.40 0.9995

Case 3 0.43 0.9994 0.37 0.9996

Case 4 0.35 0.9996 0.33 0.9996

Case 5 0.67 0.9991 0.45 0.9993

K-Fold

Case 1 0.27 0.9997 0.31 0.9997

Case 2 0.45 0.9993 0.41 0.9994

Case 3 0.47 0.9992 0.40 0.9994

Case 4 0.37 0.9996 0.36 0.9996

Case 5 0.72 0.9990 0.51 0.9992

5 10 15 20 25 30 40 50 60 70 80
Train Size (%)

1

2

3

4

5

RM
SE

 (K
)

Case 1
Case 2
Case 3
Case 4
Case 5
SMAP Radiometer
Uncertainty

Fig. 4. Comparing RMSE Errors of Various Training Scenar-
ios with SMAP Radiometer Uncertainty.

integrating seamlessly into a framework that includes a pre-
existing unit for detecting and mitigating radio frequency in-
terference [13–15].

6. REFERENCES

[1] N. Grody, “Remote Sensing of Atmospheric Water
Content From Satellites Using Microwave Radiome-
try,” IEEE Transactions on Antennas and Propagation,
vol. 24, no. 2, pp. 155–162, 1976.

[2] D. M. Le Vine, A. J. Griffis, C. T. Swift, and T. J. Jack-
son, “ESTAR: A Synthetic Aperture Microwave Ra-
diometer For Remote Sensing Applications,” Proceed-
ings of the IEEE, vol. 82, no. 12, pp. 1787–1801, 1994.

[3] C. S. Ruf, C. T. Swift, A. B. Tanner, and D. M.
Le Vine, “Interferometric Synthetic Aperture Mi-
crowave Radiometry for the Remote Sensing of the

6275

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on December 30,2024 at 19:11:28 UTC from IEEE Xplore.  Restrictions apply. 



Earth,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 26, no. 5, pp. 597–611, 1988.

[4] F. T. Ulaby, R. K. Moore, and A. K. Fung, “Microwave
Remote Sensing: Active and Passive. Volume 1 - Mi-
crowave Remote Sensing Fundamentals and Radiome-
try,” 1981.

[5] J. R. Piepmeier, P. Focardi, K. A. Horgan, J. Knuble,
N. Ehsan, J. Lucey, C. Brambora, P. R. Brown, P. J.
Hoffman, R. T. French, R. L. Mikhaylov, E.-Y. Kwack,
E. M. Slimko, D. E. Dawson, D. Hudson, J. Peng, P. N.
Mohammed, G. De Amici, A. P. Freedman, J. Medeiros,
F. Sacks, R. Estep, M. W. Spencer, C. W. Chen, K. B.
Wheeler, W. N. Edelstein, P. E. O’Neill, and E. G.
Njoku, “SMAP L-Band Microwave Radiometer: Instru-
ment Design and First Year on Orbit,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 55, no. 4,
pp. 1954–1966, 2017.

[6] A. M. Alam, M. Kurum, M. Ogut, and A. C. Gurbuz,
“Microwave radiometer calibration using deep learning
with reduced reference information and 2-d spectral fea-
tures,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 17, pp. 748–
765, 2024.

[7] M. Ogut, X. Bosch Lluis, and S. C. Reising, “A Deep
Learning Approach for Microwave and Millimeter-
Wave Radiometer Calibration,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 57, no. 8, pp.
5344–5355, 2019.

[8] M. Ogut, X. Bosch-Lluis, and S. C. Reising, “Deep
Learning Calibration of the High-Frequency Air-
borne Microwave and Millimeter-Wave Radiometer
(HAMMR) Instrument,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 58, no. 5, pp. 3391–
3399, 2020.

[9] A. M. Alam, M. M. Farhad, M. Kurum, and A. Gurbuz,
“An advanced testbed for passive/active coexistence re-
search: A comprehensive framework for rfi detection,
mitigation, and calibration,” in 2024 United States Na-
tional Committee of URSI National Radio Science Meet-
ing (USNC-URSI NRSM), 2024, pp. 280–280.

[10] J. R. Piepmeier, E. J. Kim, P. Mohammed, J. Peng, and
C. Ruf, “SMAP L1A Radiometer Time-Ordered Parsed
Telemetry, Version 2,” Nat. Snow Ice Data Center, Boul-
der, CO, USA, 2015.

[11] J. R. Piepmeier, P. Mohammed, J. Peng, E. J. Kim,
G. De Amici, J. Chaubell, and C. Ruf, “SMAP L1B Ra-
diometer Half-Orbit Time-Ordered Brightness Temper-
atures, Version 5,” Nat. Snow Ice Data Center, Boulder,
CO, USA, 2020.

[12] J. Piepmeier, P. Mohammed, G. De, A. E. Kim,
J. Peng, and C. Ruf, “Soil Moisture Active Pas-
sive (SMAP) Algorithm Theoretical Basis Document
(ATBD) SMAP Calibrated, Time-Ordered Brightness
Temperatures L1B TB Data Product,” 2014.

[13] A. M. Alam, M. Kurum, and A. C. Gurbuz, “High-
Resolution Radio Frequency Interference Detection
in Microwave Radiometry Using Deep Learning,” in
IGARSS 2023 - 2023 IEEE International Geoscience
and Remote Sensing Symposium, 2023, pp. 6779–6782.

[14] A. M. Alam, A. C. Gurbuz, and M. Kurum, “SMAP
Radiometer RFI Prediction with Deep Learning using
Antenna Counts,” in IGARSS 2022 - 2022 IEEE Inter-
national Geoscience and Remote Sensing Symposium,
2022, pp. 8016–8019.

[15] A. M. Alam, M. Kurum, and A. C. Gurbuz, “Radio Fre-
quency Interference Detection for SMAP Radiometer
Using Convolutional Neural Networks,” IEEE Journal
of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 15, pp. 10 099–10 112, 2022.

6276

Authorized licensed use limited to: Mississippi State University Libraries. Downloaded on December 30,2024 at 19:11:28 UTC from IEEE Xplore.  Restrictions apply. 


