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Abstract Warming in Central Asia has been accelerating over the past three decades and is expected
to intensify through the end of this century. Here, we develop a summer temperature reconstruction for
western Mongolia spanning eight centuries (1269-2004 C.E.) using delta blue intensity measurements
from annual rings of Siberian larch. A significant cooling response is observed in the year following major
volcanic events and up to five years post-eruption. Observed summer temperatures since the 1990s are
the warmest over the past eight centuries, an observation that is also well captured in Coupled Model
Intercomparison Project (CMIP5) climate model simulations. Projections for summer temperature relative
to observations suggest further warming of between ~3°C and 6°C by the end of the century (2075-2099
cf. 1950-2004) under the representative concentration pathways 4.5 and 8.5 (RCP4.5 and RCP3.5)
emission scenarios. We conclude that projected future warming lies beyond the range of natural climate
variability for the past millennium as estimated by our reconstruction.

Plain Language Summary We have reconstructed nearly 750 years (1269-2004 C.E.) of
summer temperatures in Mongolia based on Siberian Larch tree rings, using a relatively new analysis
method called delta blue intensity (DBI). This is a region of the world with relatively few long records of
climate, and one that is experiencing unprecedented warming over the last three decades. This warming
is projected to intensify and reach levels that go beyond the range of natural climate variability that is
estimated by our reconstruction. In our analysis, we capture the warming trends observed in instrumental
records as well as extreme-cold events that coincide with the well-documented, large-scale volcanic
events of 1459, 1601, 1810-1816, and 1885. Our results add to an increasing number of studies detailing
the potential of DBI to improve paleoclimate models as compared to traditional tree-ring width analysis,
especially in Siberian Larch and other species that express a significant heartwood/sapwood color change.

1. Introduction

Over the past three decades, Mongolia has experienced accelerated warming (Batima et al., 2005; Chen
et al., 2009; Davi et al., 2015) and periods of extreme and extended drought (Dai 2011; Davi et al., 2006; Hessl
et al., 2018; Pederson et al., 2001, 2014). Just in the past 15 years, summer (June-July) temperatures have
warmed 1.59°C (2005-2019 C.E. cf. 1961-1990 C.E., Common Era), a rate that is almost three times that of
the global average (Figure S1). Tree-ring reconstructions have substantially improved our understanding
of such climate variability and extremes, and have added context to recent warming, but development of
such data-sets is limited by the scarcity of meteorological observations necessary to calibrate these proxy
data. For all of Mongolia, only 14 temperature stations recording today extend back to 1950 (Figure S2,
red dots). There are also challenges in finding and accessing suitable tree-ring sites that have both living
wood material from old-growth trees as well as relict logs to extend the reconstructions back in time. To
date, there is only one millennial-length tree-ring based reconstruction of temperature for Mongolia (Davi
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et al., 2015) and an additional handful representing the vast expanse of Central Asia (Esper et al., 2016;
Myzglan et al., 2012; Schneider et al., 2015; Wilson et al., 2016).

Most temperature reconstructions across the Northern Hemisphere are primarily based on two tree-ring
parameters: annual ring width, and the maximum density of the latewood (MXD). Traditionally, ring den-
sity information was estimated by transmitting and measuring light through radiographs of very thin (30
micron) microtomed core surface sections (Park & Telewski, 1993; Schweingruber et al., 1993), however,
the densitometric measuring process is time consuming and expensive, with high sample attrition due to
difficulties in microtoming and developing high quality radiographs (Wilson et al., 2014). For example, at-
tempts to microtome 5 mm core samples (this study) were unsuccessful because of their tendency to break
up at the ring boundaries.

Reconstructions using MXD typically have greater fidelity to meteorological observations than those devel-
oped from ring width (D'Arrigo et al., 2003; Grudd, 2008; Park & Telewski, 1993; Schweingruber et al., 1993;
Wilson & Luckman, 2003), and more robustly capture the impacts of volcanic cooling on tree growth (An-
chukaitis et al., 2012; D'Arrigo et al., 2013; Esper et al., 2015). While MXD has been considered the highest
quality tree-ring proxy variable for generating temperature reconstructions (Esper et al., 2016), its time-con-
suming and expensive processing has made the development of MXD series unattainable for many labs
across the globe (Wilson et al., 2014).

Blue intensity (BI) is a relatively new advancement that uses blue light reflectance properties in high-res-
olution scans of tree-ring samples to derive a relative-density parameter of the latewood in conifer rings
(Bjorklund et al., 2021; Campbell et al., 2007; Larsson, 2016; McCarroll et al., 2002). BI has proven to be
a highly robust climate-sensitive parameter in dendrochronology and has been utilized around the globe
(Babst et al., 2016; Bjorklund et al., 2014, 2015, 2019; Buckley et al., 2018; Osterreicher et al., 2015; Rydval
et al., 2014; Wilson et al., 2014, 2019). Because conifers often have pronounced color differences between
heartwood and sapwood, or due to resin or fungal discoloration, there are substantial challenges in using
light reflectance-based variables due to the potential for non-climatic discoloration related bias (Bjorklund
et al., 2015). For such species, delta blue intensity (DBI), derived by subtracting the raw latewood mini-
mum BI value from the maximum early wood BI value of the same year, is showing promise for reducing
potential biases (Wilson et al., 2017). DBI has been used successfully to reconstruct summer temperature
in the Spanish Pyrenees from Pinus uncinata (Reid & Wilson, 2020), along the Gulf of Alaska using Tsuga
mertensiana (Wilson et al., 2017), and in Northern and Central Sweden using Pinus sylvestris (Bjorklund
et al., 2014, 2015).

Given the potential of BI to improve temperature reconstructions, tree rings from Siberian larch (Larix
sibirica) samples from western Mongolia, originally collected in 1998 and in 2005 but unpublished due to
rather weak temperature signals in ring-width variations, were reprocessed using DBI. This is the first DBI
chronology that we are aware of developed for any larch species (Larix spp.). These samples allowed us to
develop a summer temperature reconstruction that spans 1269-2004 C.E. and represents a considerable re-
gion of Central Asia. We compare our new temperature reconstruction to other Central Asian records, and
explore its climatic response to large-scale tropical volcanic events. We also derive projections of “historical”
(1850-2005 C.E.) and “future” (2006-2099 C.E.) regional summer temperatures from climate model simu-
lations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) to
evaluate how projected warming in the region (Hijioka et al., 2014) compares to natural climate variability
over the past millennium.

2. Data and Methods
2.1. Tree-Ring Data

Living Siberian larch trees were sampled from two sites just below elevational treeline, Bairam Uul (BU—
49.97°N, 91.00°E, 2,445 m), and Khalzan Khamar (KK—49.93°N, 91.56°E, 2,000 m), in the Altai Mountain
region of Bayan-Olgii Province in western Mongolia (Figure S2). Main site features are described in Text S1.
Given the close location of the two sites (~40 km) and strong correlation within the ring width (r = 0.67,
p <0.01) and DBI (r = 0.66, p < 0.01) chronologies over the common period with at least six samples (1484—
1998 C.E.), both datasets were combined to improve overall signal strength (BUKK henceforth).
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Cores were dried, mounted, and sanded using standard dendrochronological practices (Cook & Kairiuks-
tis, 1990; Fritts, 1976). Prior to digital scanning, cores and cross-sections were lightly re-sanded to remove
marks and abrasions. Resins were extracted via immersion in acetone for 72 hours to reduce differences in
color between the heartwood and sapwood that might alter reflectance measurements as described earlier.
Cores and cross sections were scanned at high resolution (2,400 dpi) and processed using the CooRecord-
er measurement software (Larsson, 2016). Prior to DBI analysis, ring-width boundaries in the scans were
visually cross-dated and checked with COFECHA software (Holmes, 1983). To ensure color consistency an
IT-8 calibration card in conjunction with Silverfast scanning software were used to scan the samples on an
Epson V850 Pro model scanner.

A range of detrending methods were applied to the raw DBI tree-ring data to assess the most suitable ap-
proach to maximize the climate signal. A data adaptive age-dependent spline (ADS—Melvin et al., 2007),
constrained to retain increasing trends using the signal-free framework (ADS-SF; hereafter—Melvin & Brif-
fa, 2008), was applied to detrend the raw DBI data. Previous work has shown that this approach captures
mid-to-high frequency information very well (Wilson et al., 2019) but it is still susceptible to the loss of po-
tential low frequency information beyond the mean lengths of the samples (Cook et al., 1995). We therefore
also experimented with, and present in the supplementary material, a range of regional curve standardiza-
tion approaches (RCS; Briffa & Melvin, 2011; Briffa et al., 1996) to ascertain the sensitivity of the captured
longer-term secular trends. Three RCS variants were created by first dividing the full DBI dataset into two
groups (2GR), and also three groups (3GR) based on mean values of the raw data. Age-aligned curves were
generated for each group and were then used to detrend the data respectively. The signal free (SF) frame-
work (Melvin & Briffa, 2008, 2014) was employed to create two RCS variants (hereafter denoted as 2GR-
RCS-SF and 3GR-RCS-SF) while a non-SF traditional 3GR version was also derived (3GR-RCS-TRAD).

The BUKK chronology was truncated prior to 1269 C.E. when the sample depth dropped below six trees,
to ensure reasonable chronology quality. We used the Expressed Population Statistic (EPS) (Cook & Kairi-
ukstis, 1990) to measure the strength of the common signal from all tree-ring series in a given chronology
(Wigley et al., 1984), and the RBAR statistic to measure the mean correlation between tree-ring series.

2.2. Climate Data/Target Data and Reconstruction Procedure

To examine the climate signal in the DBI data we utilized station records from the Global Historic Climate
Network (Lawrimore et al., 2011), gridded mean temperature and precipitation data from CRU TS v. 4.04
(Harris et al., 2020), and the gridded self-calibrating Palmer Drought Severity Index (scPDSI) from van der
Schrier et al. (2013) (88°-92.5°E, 47.5°-50°N, 1950-2004). Because the period of overlap available to cali-
brate our reconstruction model is relatively short (55 years), we applied a sequential leave-20-out calibra-
tion-validation linear regression approach (Cook et al., 1994), as opposed to dividing the temperature data
into a fixed calibration and validation period. The first reconstruction model was calibrated on observations
between 1970 and 2004 (35 years) and validated against instrumental temperatures between 1950 and 1969
(20 years). We then iteratively shifted the 20-year validation block one year forward at a time while re-cali-
brating the reconstruction with the remaining 35 years of instrumental data. The last reconstruction model
was calibrated on instrumental observations between 1950 and 1984 and validated against instrumental
observations between 1985 and 2004.

The final reconstruction was calculated as the median of all 36 sequential leave-20-out models with an
uncertainty range equal to (£) twice the model root mean squared error (RMSQ) of the final median recon-
struction. A composite RCS reconstruction (RCS-COMP), presented in supplementary material, was calcu-
lated as the median of the three RCS reconstructions (2GR-RCS-SF, 3GR-RCS-SF, and 3GR-RCS-TRAD),
and the uncertainty range for each year included the widest possible range of uncertainties from the three
reconstructions. We evaluated model fidelity of the final ADS-SF reconstruction and of the RCS-COMP re-
construction and each of their ensemble members using: (i) CRSQ (calibration period coefficient of multiple
determination), (ii) VRSQ (validation period square of the Pearson correlation) (Cook & Kairiukstis, 1990),
(iii) VRE (validation period reduction of error), and (iv) VCE (validation period coefficient of efficiency).
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2.3. Identifying Volcanic Signatures in Mongolian DBI

Widespread cooling after volcanic eruptions has been well established in paleo-reconstructions, climate
model simulations, and instrumental observations (Anchukaitis et al., 2012; Briffa et al., 1998; D'Arrigo
et al., 2013; Jones et al., 1995; Robock, 2000; Schneider et al., 2015). As additional millennial-scale recon-
structions are created, particularly from data-sparse regions, there is increased opportunity to understand
the spatial impact of these events (Anchukaitis et al., 2017; Stoffel et al., 2015). Due to lower temporal
persistence (autocorrelation) and a more robust temperature signal, the post-volcanic cooling response in
tree-ring MXD and BI measurements has been found to better match climate data as well as model-simu-
lated cooling relative to RW measurements (Esper et al., 2015; Liicke et al., 2019; Reid & Wilson, 2020; Zhu,
Emile-Geay, et al., 2020).

We evaluated the influence of large-scale tropical eruptions on summer temperature in Western Mongolia
using Superposed Epoch Analysis (SEA—Haurwitz & Brier, 1981; Rao et al., 2019). We tested for statistical
significance using “random bootstrapping” (Efron & Tibshirani, 1986) where we compared the “volcanic
response” to multiple random draws of “pseudo-eruption years,” a composite of 1,000 draws of 10 years at
random between 1269 and 1982, and estimated the likelihood of obtaining the response by chance.

Significant tropical volcanic events were identified using the Toohey and Sigl (2017) eVolv2k database
that had peak estimated northern hemisphere stratospheric aerosol optical depth values (SAOD) greater
than 0.08, indicating climatically significant eruptions. The eVolv2k database by Toohey and Sigl (2017)
incorporates improvements by Sigl et al. (2015) to the ice core record of volcanism in terms of the syn-
chronization and dating accuracy of volcanic events. Their tropical volcanic eruption event listing (see
Tables 1 and 2 in Toohey & Sigl, 2017) included the following: 1991—Pinatubo, Philippines; 1982—El
Chicho6n, México; 1902—Santa Maria, Guatemala; 1883—XKrakatau, Indonesia; 1835—Cosegiiina, Nic-
aragua; 1831—Babuyan Claro, Philippines; 1815—Tambora, Indonesia; 1808; 1694; 1640—Parker, Phil-
ippines; 1600—Huaynaputina, Pert; 1585—Colima, México; 1457; 1452; 1344; 1285; 1257—Rinjani, Sa-
malas, Indonesia; 1229.

2.4. Evaluating CMIP5 Temperature Simulations

We extracted June-July mean summer temperatures for western Mongolia (86°-94.5°E, 46.5°-52°N) from
28 climate models and multiple ensemble members from CMIP5 (Taylor et al., 2012; Table S1) for compar-
ison with the Mongolian DBI data. This spatial range represents a domain that is 2° latitude and longitude
larger than was used for the reconstruction to retain enough grid cells of model output to calculate spatial
averages of temperature in the region. We obtained temperature simulations for the 1850-2005 C.E. “histor-
ical” period, and the 2006-2099 C.E. “future” simulation period. For the future simulation period we used
the representative concentration pathways 4.5 and 8.5 (RCP4.5 (modest mitigation) and RCP8.5 (high emis-
sions)—Ho et al., 2019; Rogelj et al., 2016; Schwalm et al., 2020) that represent a net radiative imbalance of
4.5 and 8.5 W/m® in earth's radiative budget by the end of the 21st century (Knutti & Sedld&ek, 2013; Riahi
et al., 2011). These projections reflect potential end members in estimates of future summer temperature
in the region, with expected temperature at the end-of-the-century likely lying in-between estimates, and
dependent on the effectiveness of the emission mitigation measures adopted.

3. Results

The BUKK DBI ADS-SF chronology consists of 89 cores and/or sections from 67 trees, and spans 1178-
2004 C.E. The mean segment length is 233 years. EPS reaches the 0.85 threshold when there are a minimum
of 17 samples, after 1414 C.E. Prior to that time, EPS drops with sample depth (Figure S3). RBAR ranged
from 0.17 to 0.42, with a mean of 0.31 (Figure S3).

Strong positive correlations were found with mean June and July (JJ) monthly temperatures from the
nearest station records over 1950-2004, consistent with RW studies from this region (Davi et al., 2015;
Oyunmunkh et al., 2019). June-July correlations ranged from 0.55 to 0.70 for the ADS-SF chronology with
the five closest and most complete station records, which ranged from ~134 km (strongest correlation), to
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310 km away from the study site. The regionalized CRU data (rectangular box in Figure S2) included the
locations of the closest station records (blue dots) and also showed the strongest positive correlations with
JJ, with an average correlation of 0.62 for June, and 0.62 for July, and 0.75 for JJ (Figure S4). Average JJ
temperature was therefore used as the target to be reconstructed for further analysis. We also assessed the
climate signal of the BUKK ring-width (RW) data, standardized using the same Signal Free and Regional
Curve Standardization methods, with the same regionalized CRU data described above. The results also
showed the strongest positive correlations coefficients with JJ (R = 0.51, [p = 0.001]) which are substan-
tially weaker than DBI. The resulting RW model only explained 26% of the JJ temperature variance in
comparison.

The BUKK summer temperature DBI reconstruction spans eight centuries (Figure 1) and captures the year-
to-year variation in the regionalized CRU data, explaining ~56.7% (bootstrapped 5th and 95th percentiles
of R’s: 42.0%-68.7%) of the temperature variance in the instrumental data (Figure 1a). The median cali-
bration-validation statistics for our final model are 55.1% CRSQ, 61.4% VRSQ, 0.56 VRE, and 0.52 VCE
(Figure 1b).

The five coldest/warmest years and 5-year non-overlapping periods expressed by the ADS-SF reconstruc-
tion are detailed in Table S2. Four of the five coldest periods occur during the 19th century during the latter
part of the so-called Little Ice Age (LIA) (Grove, 1988) and all five non-overlapping warmest 5-year periods
occur during the 20th century/early 21st century when rapid warming over the past two decades is evident.
In fact, the five warmest years of the reconstruction occur between 1991 and 2004.

Spatial correlations (Figure 2 top and Figure S5) of the strongest temperature signal over the 1950-2004
period with the BUKK ADS-SF reconstruction encompasses the Altai Mountain region of Central and East
Asia, western Mongolia, northwestern China, far eastern Kazakhstan and the southern Altai Republic of
Russia. We also calculated all the statistics described above for the RCS-COMP reconstruction (Figure S6).
The four standardized chronology variants broadly agree with each other (Figure S7) with the largest differ-
ences occurring prior to ~1450 C.E.

Several extremely cold years coincide with known climatically significant volcanic events, for example, in
1230, 1459, 1601, 1810-1816, and 1885 (Figure 1c). SEA indicates significant cooling of ~0.6°C one-year
post event and (p < 0.05) also at year two (p < 0.10), year four (p < 0.01), and year five (p < 0.01) (Figure 2
bottom). Similar volcanic signatures are observed in northern Mongolia (Davi et al., 2015) using RW and
the Altai region of western China (Myglan et al., 2012; Schneider et al., 2015) using a combination of
RW and MXD. See Figure S8 for a comparison between the post-volcanic response for DBI and RW at the
BUKK site.

Comparisons between CMIP5 simulations for mean June-July temperatures over the “historical” and “fu-
ture” period under RCP 4.5 and RCP 8.5 against instrumental observations and the reconstruction show
that the CMIP5 simulations capture the general trends, including recent rapid warming seen in the recon-
struction and instrumental temperatures since the mid-20th century (Figure 3). Relative to the 1961-1990
period, instrumental temperatures between 2005 and 2019 showed a mean warming of 1.41°C. During the
same period RCP4.5 and RCP 8.5 simulations suggest a mean warming of 1.25°C and 1.36°C. Therefore,
the current trajectory of summer warming in Mongolia is in line with climate model simulated warming.
Towards the end of the century these two different emissions scenarios, RCP 4.5 and RCP 8.5, predict a
mean warming of 3.32°C and 5.82°C between 2075 and 2099 relative to 1961-1990 conditions. Both future
projections of Western Mongolia summer temperature exceed both the observed temperatures during the
instrumental period and the reconstructed temperatures for the past millennium (Figure 1).

While comparisons between CMIP5 simulations for mean June-July temperatures over the “historical” and
“future” period under RCP 4.5 and RCP 8.5 against the reconstruction shows that the CMIP5 simulations
are similar in recent decades, they do not have a comparable magnitude of cooling at the end of “Little
Ice Age” in the middle of the 19th century. Our reconstruction expresses a substantially colder mid-19th
century than the median modeled temperatures anomalies. However, there remains considerable overlap
between the lower range of modeled temperatures and the uncertainty envelope of the reconstruction, sug-
gesting that at least some models do simulate cool conditions during this period.
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Figure 2. Top panel: Spatial correlation between our ADS-SF BUKK mean June-July temperature DBI reconstruction
and CRU TS v. 4.04 mean June-July temperature between 1950 and 2004 C.E. Both series are first-differenced to
minimize the influence of linear warming trends in recent decades on correlation values (see Figure S5 for non-
transformed correlations). Only grid-cells with a correlation value significant at p < 0.05 using a 2-tailed t-test are
shown. The star highlights the location of the Bairam Uul (BU) and Khalzan Khamar (KK) tree-ring sites used in the
reconstruction. The stippled grid-cells to the south-west of the tree-ring sites indicate the spatial region over which
CRU TS v. 4.04 mean June-July temperature data was averaged to develop the reconstruction presented in Figure 1.
The larger rectangular box indicates the spatial region for which CMIP5 temperature projections were derived

(in Figure 3). Bottom Panel: Superposed Epoch Analysis (SEA) for the BUKK DBI reconstruction demonstrating
significant cooling one-year post-eruption (p < 0.05) than would be expected by chance. The confidence intervals
represent the 5th and 95th percentiles of temperature for each year. The horizontal dotted lines indicate the threshold
required for temperature anomalies to be statistically significant. The temperature response and its corresponding
error bars are derived from 1,000 unique draws of 10 eruption key years drawn at random from the 17 eruption years,
while significance thresholds are derived using 10,000 draws of 10 years at random (i.e., pseudo key years) from the
reconstruction.

Figure 1. Instrumental observations (in red) and the delta blue intensity (DBI) ADF-SF (age dependent spline-signal free) standardized chronology derived
reconstruction (in black) of mean June-July (JJ) summer temperatures for Western Mongolia (88-92.5°E, 47.5-50°N). (a) Comparison between instrumental
observations and our reconstruction since the 1950s. The text in the figure describes the median and 5th and 95th percentiles of the reconstruction model
bootstrapped R’ (b) Range of reconstruction calibration-validation statistics computed for all 36 sequential leave-20-out model cross-validations developed
using the ADS-SF chronology variant. The median values for 36-member reconstruction ensemble are also shown. (i) CRSQ (calibration period coefficient

of multiple determination), (ii) VRSQ (validation period square of the Pearson correlation), (iii) VRE (validation period reduction of error), and (iv) VCE
(validation period coefficient of efficiency). (c) Reconstruction of mean JJ temperature for western Mongolia between 1269 and 2004 C.E. (in black) along with
associated reconstruction uncertainties (in gray). The red triangles represent dates for 17 large tropical volcanic eruptions since 1269 C.E. from Toohey and
Sigl, 2017.
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8r 4. Discussion

—— Observations gg &
O 6} —— Reconstruction / gg% For a broader perspective, the BUKK ADS-SF reconstruction was com-
7-5 CMIP5 IQR ’ // 0B u'é pared to a MXD based temperature reconstruction from the Altai moun-
= s 4r | g§ 8 tain region in China (Myglan et al., 2012; see also Biintgen et al., 2016),
o A s a ring-width based temperature reconstruction from northern Mongolia
E g e ‘Mﬂ'! l (OZN—Davi et al., 2015), a mean of nine geographically related grids
=2 5 L s M " m ,'_'_“ ___________________ from the Asia2K project (Cook et al., 2013; Table S3) and to the large-scale
s E \ W‘v WF Eastern Eurasian tree-ring based composite record from the NTREND
§ v_2 analysis (Wilson et al., 2016) (Figure S9). Late 20th century warming is
= apparent in all records as well as peak cooling through the late 18th and
s 4} 19th centuries. A brief period of relatively warm conditions is consistent
between all records in the early 17th century after which the prolonged
'16850 19'00 19'50 20'00 20'50 21'00 cooling of the broadly defined period known as the Little Ice Age begins
Years (Grove, 1988).

Figure 3. CMIP5 simulations of mean June-July temperatures for Prior to 1600, BUKK, Altai, and OZN all indicate a period of marginally

Western Mongolia over the 1850-2005 “historical” period and 2006-2099
“future” simulation period under two different emission scenarios, RCP 4.5
and RCP 8.5 (in orange). The multi-model median presented is smoothed
as a running 15-year average to reduce the impact of random interannual
variability in model simulations. The simulations are compared against
instrumental observations (in red) and reconstructed (in black) mean
June-July temperature. All datasets are plotted relative to their 1960-1990
mean. The shading around CMIP5 simulations is the interquartile range
(IQR, i.e., 5th, 50th, and 95th percentiles) across 28 models.

warmer conditions which are not reflected in the larger scale regionally
averaged reconstructed values in Asia2k and NTREND. The east Asian
NTREND composite includes both OZN and Asia2K gridded data so they
are not entirely independent, but it is likely that the inferred cooler con-
ditions in NTREND reflect the RW data incorporated into the Asia2K
grids for this region. These cooler conditions are, however, not reflected
in OZN. Prior to 1500, BUKK (ADS-SF), and OZN as well as the NTREND
east Asian composite suggest slightly warmer conditions while the Al-
tai data suggest cooler conditions. The supplemental BUKK RCS-COMP
reconstruction (Figure S6) and RCS reconstruction variants (Figure S7)
also suggest substantially cooler conditions during this period. We urge caution, however, in interpreting
the pre-1500 period; as replication in the BUKK composite is relatively low during this period and is based
largely on data from Bairam Uul, with more relict sections, which could potentially bias the resulting chro-
nologies. However, the variation in the BUKK reconstructions does not fully address the inconsistencies
with OZN, Altai, and the wider regional NTREND composite. More work is needed to increase replication
in the pre-1500 period.

Station records and proxy reconstructions from Mongolia, including this study, consistently show unprece-
dented warming over the last few decades. Our temperature reconstruction ends in 2004, but station records
and gridded CRU data show the same warming trajectory through 2020 (Figure 1a), which is predicted
to continue over the 21st century (Zhu, Wei, et al., 2020) (Figure 3). At no period in the last eight centu-
ries have temperatures been so warm. Since the mid-1800s, mean summer temperatures have increased
~3°C which will likely threaten fragile ecosystems and pastures that the Mongolian agricultural system is
dependent on. Drought is also a chronic concern, with particularly extreme and widespread droughts oc-
curring during the last two decades (Davi et al., 2006; Hessl et al., 2018; Pederson et al., 2001, 2014). These
droughts have exacerbated devastating livestock losses and economic hardship for pastoralists that depend
on livestock production (Algaa, 2020; Nandintsetseg et al., 2018; Rao et al., 2015). Without continued invest-
ment in infrastructure (Bayasgalan et al., 2009) and climate reliance programs such as index-based livestock
insurance (Bertram-Huemmer & Kraehnert, 2018), this region will face increased vulnerability. Environ-
mental impacts of warming are already apparent (Jufi¢ka et al., 2020; Lamchin et al., 2016; Pan et al., 2017).

5. Conclusion

Herein, we have shown that the optical DBI parameter resulted in an improved climate signal and summer
temperature reconstruction from living and relict material in a region of the world that has very few long,
high-resolution temperature proxy records. These new results add to the small but increasing number of
papers detailing the potential of the DBI parameter for species that express a significant heartwood/sap-
wood color change (Bjérklund et al., 2014, 2015; Reid & Wilson 2020; Wilson et al., 2017). This is the first
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DBI chronology developed for larch (Larix sibirica) and it has captured the warming trends observed in the
instrumental series, captured volcanic related cooling, which was not as apparent from the RW data, and
shows similar low-frequency temperature variations at least back to the 1500s with other tree-ring (RW and
MXD) reconstructions in the region. The period before ca.1500 is deemed the most uncertain period where
reconstructed temperatures using RCS detrending (Figures S6 and S7) are generally colder than most other
proxy temperature for this part of Asia.
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