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ABSTRACT
Recent static timing analysis (STA) engines have leveraged task depen-
dency graph (TDG) parallelism to accelerate various STA algorithms,
including graph-based analysis and path-based analysis. Despite the
promising speedup via task parallelism, the scheduling cost of a TDG
has become dominant when handling large TDGs. To overcome this
challenge, we propose G-PASTA, a simple and fast TDG partitioning
algorithm to reduce the scheduling cost of large task-parallel STA
algorithms. By harnessing the power of GPU computing, G-PASTA
incurs minimal cost of partitioning while bringing signi�cant runtime
improvement to task-parallel STA algorithms. Compared to a state-of-
the-art CPU-based TDG partitioner, G-PASTA is up to 41.8⇥ faster in
partitioning runtime and can improve the overall STA performance by
43% on large designs.
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1 INTRODUCTION
Static timing analysis (STA) is an important stage in the overall design
�ow because it validates the expected timing behaviors of a circuit
design. As the design complexity continues to grow, STA becomes
very time-consuming. To alleviate the long runtime, recent STA tools,
such as OpenTimer [4, 7] and many others [2, 3], have leveraged task
parallelism to describe timing propagation algorithms in a top-down
task dependency graph (TDG). Each TDG node represents a particular
STA task (e.g., delay calculation, required arrival time update), and
each TDG edge represents a dependency between two STA tasks. By
delegating the scheduling of a TDG to a task execution environment,
such as a dynamic scheduler [5, 6], we can e�ciently parallelize timing
propagation algorithms across manycore CPUs.
∗Both authors contributed equally to this research.
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Figure 1: (a) Runtime breakdown of the core “update_timing”
method in OpenTimer [4] with (right) and without (left) parti-
tioning. (b) Growth of partitioning time with increasing TDG
size for two popular TDG partitioners [1, 10].

Although TDG parallelism o�ers promising speedup, the schedul-
ing cost–comprising the building and execution of a TDG–can become
dominant when dealing with large task-parallel STA workloads [8].
For example, analyzing a circuit of 1.5M gates can spend over 50%
runtime on building a TDG of 4M tasks and 5M dependencies, whereas
the optimal execution performance is achievable using only 8–16 CPU
threads [4]. This result implies that a large TDG is unnecessary given
the small nubmer of saturated CPU threads. Furthermore, most timing
propagation tasks exhibit relatively short runtime, comparable to or
even shorter than per-task scheduling cost (i.e., assigning a task to a
worker on a CPU core). For example, a backward propagation task in
OpenTimer [4] takes about 0.5–50 us, while scheduling a task using
OpenTimer’s Task�ow scheduler [6] can take 0.2–3 us. Striking a bal-
ance between scheduling cost and task granularity is thus important
for optimizing the performance of task-parallel STA algorithms.

A common solution for reducing scheduling cost is to break down
a large TDG into many partitions, where each partition is a cluster of
tasks that run sequentially with respect to their topological order in
the original TDG. Instead of scheduling these clustered tasks one by
one across di�erent workers, we now only schedule a partition once
and run it by a worker, which reduces the scheduling overhead. Note
that TDG partitioning is very di�erent from conventional graph or
hypergraph partitioners (e.g., Metis [9] and Kahypar [11]) by focusing
on partitioning a directed acyclic graph (DAG) to reduce the scheduling
cost without a�ecting much the original TDG parallelism. Figure 1(a)
shows the bene�t of TDG partitioning by pro�ling the runtime of
the core method “update_timing” in OpenTimer [4]. Building and
running the original TDG take 59% and 41% of the runtime. After
applying the proposed partitioner, despite incurring an extra cost for
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partitioning, we can achieve nearly 50% runtime improvement due to
reduced TDG size and scheduling cost.

There are a few popular TDG partitioners. Vivek [10] clusters tasks
based on each task’s impact on the overall TDG parallelism and critical
path length. However, this clustering algorithm su�ers from quadratic
time complexity due to iterative checking of cycles. To solve this prob-
lem, GDCA [1] removes expensive cycle checking using breadth-�rst
traversal, yet at the cost of reduced TDG parallelism. While these TDG
partitioners help reduce the scheduling cost, they are all limited to
single-threaded execution. As the TDG size increases, their partitioning
time grows rapidly (see Figure 1(b)) and can outweigh the advantage
of partitioning. To overcome this challenge, we propose G-PASTA, a
fast GPU-powered TDG partitioning algorithm to improve the perfor-
mance of task-parallel STA algorithms. We summarize three technical
contributions of G-PASTA as follows:
• We design a GPU-accelerated partitioning algorithm that e�ectively
partitions large TDGs into dependent subgraphs to reduce the sched-
uling cost.

• We design an e�cient cycle-free clustering algorithm that can auto-
matically cluster tasks to the right granularity without a�ecting too
much the original TDG parallelism.

• We design a deterministic GPU kernel algorithm which allows ap-
plications to enable predictable results.
We evaluate the performance of G-PASTA on a set of large TDGs de-

rived from a state-of-the-art task-parallel STA engine, OpenTimer [4].
Compared to GDCA, G-PASTA is up to 41.8⇥ faster in partitioning
runtime and can improve the overall STA performance by 43% on large
designs.

2 PROBLEM DEFINITION AND CHALLENGES
Given (1) a TDG where each task represents a particular timing propa-
gation task (e.g., required arrival time update) and each edge represents
a task dependency and (2) a tunable parameter of partition size that
restricts the maximum number of tasks per partition, our goal is to par-
tition the TDG to the right granularity such that the partitioned TDG
can produce the best runtime performance compared to the original
TDG. Unlike the typical graph or hypergraph partitioning algorithms,
TDG partitioning exhibits unique constraints and challenges, which
we summarize below:
• Existing graph partitioning algorithms, such as Metis [9] and
KaHypar[11] cannot be used out of the box for our application
because their main goal is to minimize the cut size instead of the
induced scheduling cost by a partitioning result. Furthermore, their
solutions focus on balanced partitions instead of maximal paral-
lelism which can signi�cantly a�ect the overall runtime.

• Unlike undirected graph partitioning algorithms which may intro-
duce cycles when clustering tasks together (see Figure 2(a)), a valid
TDG partitioning result needs to be cycle-free (see Figure 2(b)).
Otherwise, the result cannot be scheduled due to cyclic task depen-
dencies.

• Partitioning a TDG in parallel often leads to non-deterministic out-
comes that prevent applications from obtaining predictable results.
For certain application scenarios (e.g., debugging), deterministic
results are preferable. Thus, there is a requirement for an algorithm
that allows applications to opt-in deterministic outcomes.
Furthermore, for many task-parallel STA workloads, the generated

TDGs to perform parallel timing propagation can be huge (e.g., multi-
millions of tasks and dependencies). To maximize the bene�ts of TDG
partitioning, it is essential for the partitioning process to be as fast as
possible. Otherwise, long partitioning time can outweigh the advan-
tages gained from an improved TDG runtime. Compared to manycore
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Figure 2: (a) An invalid TDG partitioning result due to cyclic
dependencies between P0 and P1. (b) A valid TDG partitioning
result where P0 includes task 0, P1 includes tasks 1 and 2, and
P2 includes task 3.

CPUs, modern GPU o�ers order-of-magnitude more parallelism and
memory bandwidth, which is particularly suitable for handling large
volume of data. This advantage has inspired us to leverage the power
of GPU computing to design a fast TDG partitioner targeting large
task-parallel STA workloads.

3 G-PASTA
G-PASTA addresses the above challenges by introducing a parallelism-
aware partitioning algorithm equipped with a cycle-free clustering
method and a deterministic GPU kernel algorithm.

3.1 Parallelism-aware Partitioning Algorithm
Unlike the existing parallel graph partitioners that focus on minimiz-
ing the cut size of the partitioned graph, a parallel TDG partitioning
algorithm focuses on reducing the scheduling overhead without a�ect-
ing much the original TDG parallelism. Partitioning a large TDG in
parallel requires e�cient parallel traversal of the TDG, which can be
achieved by the well-studied parallel breadth-�rst search (BFS). Based
on BFS, the state-of-the-art GDCA obtains a levelized topological order
of tasks and iteratively clusters tasks level by level to derive a parti-
tioning result. However, this approach can largely reduce the TDG
parallelism as nodes at the same level can run in parallel. As shown
in Figure 3(a), GDCA can lead to a partitioning result of sequential
execution.
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Figure 3: (a) Level-by-level partitioning method [1] can result
in a sequential TDG. (b) Parallelism-aware partitioning method
can produce a parallel TDG.

To overcome this challenge, G-PASTA introduces a parallelism-
aware partitioning algorithm. Our algorithm prioritizes clustering tasks
between adjacent levels to largely avoid reducing TDG parallelism.
This is because tasks across di�erent levels typically exhibit at least
one dependency constraint. Compared to Figure 3(a), clustering tasks
between adjacent levels as shown in (b) results in a smaller reduction
of TDG parallelism and can thus produce a better partitioning result.

To this end, we design two arrays: (1) the desired partition ID (3_?83)
array to store the IDs of the partition that each task desires to be
clustered into, and (2) the �nal partition ID (5 _?83) array to store
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the IDs of the partition that each task is eventually clustered into. At
each BFS level, the 5 _?83 of each task is used to assign the 3_?83 of
its neighbors in the next BFS level. Algorithm 1 presents G-PASTA’s
kernel for one partitioning iteration. To cluster the tasks between
adjacent levels, our partitioning kernel consists of two steps as follows:
assign f_pid for current-level tasks by d_pid and assign d_pid and release
neighboring dependencies.

3.1.1 Assign f_pid for current-level tasks by d_pid. In step one, each
thread handles one task in the current BFS level by grabbing a task
from the array ⌘0=3;4 , which stores all the tasks to be handled in
the current BFS level. Then each thread assigns the 5 _83 of the task
with the 3_?83 of the task, which is the 5 _?83 of its parent task in the
previous level. We use a partition size counter ?83_2=C to count the
number of tasks within a partition. If the desired partition of a task is
not full (see line 5 of Algorithm 1, %B is the partition size), we assign
the 3_?83 of the task to the 5 _?83 of the task. Otherwise, the task is
assigned to a new partition.

3.1.2 Assign d_pid and release neighboring dependencies. In step two,
each thread �rst assigns 3_?83 for the neighbors of the current task.
Then, each thread releases the dependencies of the neighbors, i.e.,
marks the number of visited dependency edges. Note that the depen-
dency mentioned in Algorithm 1 only refers to the fan-in dependency.
We use a dependency counter 34?_2=C , which is initialized as the num-
ber of dependencies of the neighbor, to record the remaining number
of dependencies. If the neighbor task’s dependents are fully released
(i.e., 34?_2=C = 0), this neighbor is pushed into ⌘0=3;4 for the next
partitioning iteration.
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Figure 4: An example of our partitioning algorithm in three
iterations under the partition size of 3. � is the array to store
the tasks to be handled by threads.+ is the array of vertex (task)
IDs. ⇡ is the array of the desired partition ID for each task. � is
the array of the �nal partition ID for each task.

To give a better understanding of how Algorithm 1 helps maintain
the TDG parallelism during partitioning, we use Figure 4 to demon-
strate our algorithm in three partitioning iterations under the partition
size of 3. In Figure 4, � is the array to store the tasks to be handled
by the threads. + is the array of vertex (task) ID. ⇡ is the array of the
desired partition ID (3_?83) for each task. � is the array of the �nal
partition ID (5 _?83) for each task. The grey rectangle on the TDG
refers to G-PASTA’s partitioning kernel. The blue, orange, and green
entries in the array refer to the entries that are handled by threads dur-
ing one partitioning iteration. The black triangle is the reading o�set
('> 5 5 B4C ), which is an index in � to indicate the beginning of the task
sequence in� to be handled by threads. We also de�ne the reading size

('B8I4) as the total number of tasks to be handled by threads during
one partitioning kernel as shown in line 2 of Algorithm 1.

Before partitioning, all the source tasks (tasks 0, 2, 4) are pushed
into � , and each source task is assigned with a di�erent 3_?83 (0, 1,
2). '> 5 5 B4C is initialized as 0. We also initialize 'B8I4 as the number
of source tasks (3). Figure 4(a) shows the �rst partitioning iteration.
G-PASTA’s partitioning kernel is invoked at the �rst level of the TDG.
With the '> 5 5 B4C as 0 and the 'B8I4 as 3, threads 1, 2, and 3 handle
tasks 0, 2, and 4, respectively. Based on the initialized 3_?83 of tasks 1,
2, and 3 in ⇡ , threads 1, 2, and 3 assign the 5 _?83 for tasks 0, 2, and 4
as 0, 1, and 2 accordingly, marked as blue, orange, and green entries in
� . Then, threads 1, 2, and 3 update the 3_?83 of the neighboring tasks
of tasks 0, 2, and 4, which are tasks 1, 3, and 5, as 0, 1, and 2 separately,
marked as blue, orange, and green entries in ⇡ . Since tasks 1, 3, and 5
have all their dependencies released by the threads, they are pushed
into � . Then, we update the '> 5 5 B4C as 3 and the 'B8I4 as 3 for the
next iteration since three tasks are written into � in the �rst iteration.

Figure 4(b) shows the second partitioning iteration. The partitioning
kernel moves to the second level of the TDG. With the '> 5 5 B4C as 3
and the 'B8I4 as 3, threads 1, 2, and 3 handle tasks 1, 3, and 5. Based on
the 3_?83 of tasks 1, 3, and 5, which are 0, 1, and 2, respectively, threads
1, 2, and 3 assign the 5 _?83 of tasks 1, 3, and 5 as 0, 1, and 2 accordingly
since the ?83_2=C of %0, %1, and %2 is less than the partition size (3).
Then threads 1, 2, and 3 simultaneously try to assign the 3_?83 for
task 6. Based on our proposed cycle-free clustering algorithm, which
will be discussed in the next section, thread 3 eventually assigns the
3_?83 of task 6 as 2. The partitioning kernel �nishes in Figure 4(c) by
assigning the 5 _?83 of task 6 as 2.

Algorithm 1: G-PASTA partitioning kernel

1: /* Step 1: assign f_pid for current-level tasks by d_pid */
2: parallel for each thread gid { /* gid < Rsize */
3: cur = handle[Ro�set + gid];
4: cur_pid = d_pid[cur];
5: if (atomicAdd(pid_cnt[cur_pid], 1) < Ps) then
6: f_pid[cur] = cur_pid;
7: else then
8: new_pid = atomicAdd(max_pid, 1) + 1;
9: f_pid[cur] = new_pid;
10: pid_cnt[new_pid] ++;
11: }
12: /* Step 2: assign d_pid and release neighboring dependencies */
13: parallel for each thread gid {
14: for each n 2 neighbors of cur
15: /* cycle_free_clustering_algorithm() */
16: atomicMax(d_pid[n], f_pid[cur]);
17: if (atomicSub(dep_cnt[n], 1) == 1) then
18: Wo�set = atomicAdd(Wsize, 1);
19: handle[Ro�set + Rsize +Wo�set] = n;
20: }

3.2 Cycle-free Clustering Algorithm
To ensure the partitioned TDG is cycle-free, one simple solution is to
iteratively check cycles and avoid clustering tasks that can introduce
cyclic dependencies during the partitioning process [10]. However, it-
erative cycle checking can incur signi�cant runtime overhead. To solve
this problem, GDCA [1] partitions the TDG based on its topological
order and clusters tasks level by level to avoid backward dependencies.
Nevertheless, as shown in Figure 3(a), this method can largely reduce
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the TDG parallelism because tasks at the same level should run in par-
allel. To overcome these challenges, we propose a simple yet e�cient
cycle-free clustering algorithm by restricting the parent partition to
which a task can be clustered.

Speci�cally, we assign each task a partition ID. When multiple
partitions want to cluster a task, only the partition with the largest ID
can cluster this task. Since we traverse the TDG level by level using BFS,
the partition IDs of all tasks at one level are always larger than those
at previous levels. This organization implies no cyclic dependencies
because the partition with a larger ID will always come after a partition
with a smaller ID. Formally speaking, given a DAG, ⌧ , for each vertex
E8 2 ⌧ , we de�ne ?83 (8) as the partition ID of E8 and %'⇢ (8) as the set
of parent vertices of E8 . We denote % as a partition in⌧ and+ (%) as the
set of vertices within % . We say % is convex when (1) 8E8 , E 9 2 + (%),
8 < 9 , and (2) 8E: in any paths between E8 and E 9 , E: 2 + (%). With
these notations, we outline our clustering rule as follows: 8E8 2 ⌧ ,
?83 (8) =<0G{?83 ( 9) | E 9 2 %'⇢ (8)}.

Theorem 1. The proposed clustering algorithm does not introduce
any cycle during the partitioning process.

P����. We summarize three cases where a cycle can happen during
the partitioning process and prove that none of them can exist in
our algorithm. The �rst case where a cycle can occur is when % is
not convex. As shown in Figure 5(a), %0 is not convex as E1 is in the
path between E0 and E2 and E1 8 %0. Based on our algorithm, we have
?83 (0) < ?83 (1) and ?83 (1) < ?83 (2). Thus ?83 (0) < ?83 (2). However,
this is contradictory to the fact that ?83 (0) = ?83 (2) as E0, E2 2 + (%0).
Thus, the �rst casewill not exist and % must always be convex following
our algorithm. The second case is when a cycle occurs among partitions
even when partitions are all convex. As shown in Figure 5(b), assuming
%0 and %1 are convex, there is a cycle between them. Based on our
algorithm, we have ?83 (0) < ?83 (1) and ?83 (4) < ?83 (2). Besides,
?83 (1) = ?83 (4) as E1, E4 2 + (%1). Thus ?83 (0) < ?83 (2). However,
this is contradictory to the fact that ?83 (0) = ?83 (2) as E0, E2 2 %0. Thus
the second case won’t exist. The case in Figure 5(b) can be extended
to a more general case as shown in Figure 5(c), where there is a cycle
among n convex partitions. Based on the above analysis, eventually
we have ?83 (0) < ?83 (= + 2), which is still contradictory to the fact
that ?83 (0) = ?83 (= + 2) as E0, E=+2 2 + (%0). Thus, the more general
case as shown in Figure 5(c) will not exist. ⇤

The proposed cycle-free clustering algorithm can be e�ciently im-
plemented using just one lightweight GPU atomic operation, as shown
in lines 15–16 in Algorithm 1. As a result, our algorithm is easy to
implement and is extremely e�cient with little kernel overhead. Be-
sides, our algorithm always decides a lower bound for the number of
partitions in the TDG since partitions with smaller IDs cannot continue
to cluster tasks if all the available tasks are clustered by the partition
with the largest ID. For instance, in Figure 4(c), there are no available
tasks to cluster for %0 and %1. Thus, our algorithm guarantees a lower
bound for the TDG parallelism regardless of the partition size. This
property highlights the advantage of G-PASTA that users do not need
to �ne-tune a partition size as GDCA but simply use the original TDG
size as the default value.

3.3 Deterministic GPU Kernel Algorithm
Although our cycle-free kernel algorithm is e�cient in parallel cluster-
ing, it can introduce non-deterministic partitioning results, preventing
certain applications of interest from obtaining predictable outcomes.
As shown in Figure 6, two of the four tasks (task 0, 1, 2, and 3) can
be clustered into %0. However, the selection of which two tasks are
clustered is entirely determined by the runtime. To further enhance
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Figure 5: Three cases where cycles are introduced.

our algorithm by o�ering an option for predictable partitioning re-
sults, we propose an e�cient deterministic GPU kernel algorithm. As
presented in Algorithm 2, our kernel algorithm consists of four steps:
sort the handle array and the desired partition ID array, identify the �rst
task in each partition, determine if a desired partition is full, and assign
deterministic partitioning results.

Algorithm 2: G-PASTA deterministic kernel

1: /* Step 1: sort the handle arr and the desired partition ID arr */
2: parallel for each thread gid {
3: key_arr[gid] = d_pid[gid] « 32 | handle[gid];
4: }
5: handle = parallel_sort_by_key(handle, key);
6: d_pid = get_d_pid_sort(handle, d_pid);
7: /* Step 2: identify the �rst task in each partition */
8: ones an array of ones; // reduce values
9: �r_tid_arr = parallel_reduce_by_key(ones, d_pid);
10: �r_tid_arr = parallel_exclusive_scan(�r_tid_arr);
11: /* Step 3: determine if a desired partition is full */
12: parallel for each thread gid {
13: �r_index = binarySearch(gid, �r_tid_arr);
14: num_left = Ps - pid_cnt[handle[Ro�set + gid]];
15: if (gid < num_left + �r_tid_arr[�r_index]) then
16: is_full_pid[gid] = 0;
17: else then
18: is_full_pid[gid] = 1;
19: }
20: num_full_arr = parallel_inclusive_scan(is_full_pid);
21: /* Step 4: assign deterministic partitioning results */
22: parallel for each thread gid {
23: if (is_full_pid[gid] == 1) then
24: f_pid[gid] = max_pid + num_full_arr[gid];
25: else then
26: f_pid[gid] = d_pid[gid];
27: atomicAdd(pid_cnt[f_pid[gid]], 1);
28: }
29: max_pid += num_full_arr.back();

3.3.1 Sort the handle array and the desired partition ID array. The
goal of this step is to sort the handle array and the desired partition
ID array by each task’s desired partition ID, such that tasks with
the same desired partition ID are grouped together. As presented in
lines 1–6 of Algorithm 2, we create a 64-bit sorting key array :4~_0AA
where the left 32 bits of each key store the desired partition ID, and
the right 32 bits store the task ID of a given task. We then apply the
parallel_reduce_by_key method on the handle array. This sort-by-
key strategy eliminates the non-deterministic arising from the original
ordering of tasks in the handle array. By the sorted handle array, we
can also obtain the sorted desired partition ID array, 3_?83 . As shown
in Figure 6, after step 1, tasks 0, 1, 2, and 3 with 3_?83 = 0 are grouped
together, and tasks 4 and 5 with 3_?83 = 1 are grouped together.
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Figure 6: Example of the deterministic GPU kernel algorithm
under the partition size of 4. A grey vertex represents a task
that can be clustered into its desired partition. A blue vertex
represents a task with a new partition.

3.3.2 Identify the first task in each partition. Based on the sorted ar-
rays, the goal of this step is to identify the �rst task in each par-
tition. We create 5 8A_C83_0AA to store the ID of each �rst task. As
presented in lines 7–10 of Algorithm 2, to get 5 8A_C83_0AA , we ap-
ply parallel_reduce_by_key on an array of ones with the key as
3_?83_B>AC to get the size of each partition. We then store the re-
duced values in 5 8A_C83_0AA and apply parallel_exclusive_scan

on 5 8A_C83_0AA to obtain the �nal result. As shown in Figure 6, after
step 2, 5 _C83 has two entries where 0 represents that task 0 is the �rst
task in %0, and 4 represents that task 4 is the �rst task in %1.

3.3.3 Determine if a desired partition is full. The goal of this step is to
determine if a task can be clustered into its desired partition. If a task’s
desired partition is full, we need to create a new partition for that task
and increment the maximum partition ID,<0G_?83 . To this end, we cre-
ate two arrays, 8B_5 D;;_0AA and =D<_5 D;;_0AA . 8B_5 D;;_0AA indicates if
each task’s desired partition is full or not. =D<_5 D;;_0AA indicates the
accumulated number of full partitions corresponding to 8B_5 D;;_0AA .
Speci�cally, =D<_5 D;;_0AA is the pre�x sum (i.e., scan) of 8B_5 D;;_0AA .
As presented in lines 11–20 of Algorithm 2, we assign a task to a
GPU thread. Each thread applies binary_search on the 5 8A_C83_0AA
to �nd which desired partition the task belongs to. We then calcu-
late =D<_;4 5 C , the remaining number of tasks that can be clustered
into that desired partition. If the task E can still be clustered into its
desired partition, 8B_5 D;;_0AA [E] = 0; otherwise, 8B_5 D;;_0AA [E] = 1.
After we obtain 8B_5 D;;_0AA , we derive =D<_5 D;;_0AA by applying
parallel_inclusive_scan on the 8B_5 D;;_0AA .

3.3.4 Assign deterministic partitioning results. Based on the
8B_5 D;;_0AA and =D<_5 D;;_0AA , we �nally calculate the deterministic
partitioning results and store them into 5 _?83 . As presented in lines
21–29 of Algorithm 2, we assign a task to a GPU thread. We then
check whether a task can be clustered into its desired partition using
8 5 _5 D;;_0AA . If not, we assign the task to a new partition where
the new partition ID is the maximum partition ID plus the task’s
corresponding element in =D<_5 D;;_0AA . This organization not only
ensures the assigned partition ID per task is deterministic, but also
avoids synchronization that atomically gets a new partition ID for a
task. Finally, we update ?83_2=C for the next partition iteration. As
shown in Figure 6, tasks 0, 1, and 4 are clustered into their desired

partition (shown in grey), whereas tasks 2, 3, and 5 is 1 are assigned
into new partitions (shown in blue). After four steps described in
Algorithm 2, we increment the maximum partition ID by the number
of new partitions created in this iteration (i.e., the last element in
=D<_5 D;;_0AA ).

4 EXPERIMENTAL RESULTS
We implemented G-PASTA in C++ and CUDA and compiled it using
nvcc v12.2 with -O2 and -std=c++17 enabled. We performed exper-
iments on a 4.8 GHz 64-bit Linux machine equipped with an Intel
Core i5-13500 CPU and an Nvidia RTX A4000 GPU. We compare the
performance of G-PASTA with its two variants, seq-G-PASTA and
deter-G-PASTA, and a baseline GDCA [1]. Seq-G-PASTA is a sequen-
tial, CPU-based implementation of G-PASTA using a single thread.
Deter-G-PASTA incorporates the proposed deterministic GPU kernel
algorithm to produce deterministic partitioning results.

We consider GDCA as our baseline due to its e�ciency. As GDCA
requires users to provide a partition size, we �ne-tune it and use the
value that produces the best performance for each circuit; for G-PASTA,
we simply use the TDG size for the partition size, as our algorithm
will converge to a suitable value. We conduct our experiments by
integrating di�erent partitioners into OpenTimer [4] and run graph-
based analysis (update_timing command) on six industrial circuits.
Speci�cally, when calling update_timing, OpenTimer will generate a
TDG to perform parallel timing update. Statistics of these circuits and
their generated TDGs are listed in Table 1. All data is an average of 10
runs.

4.1 Partition Performance Comparison
Table 1 compares the overall performance amongGDCA, seq-G-PASTA,
G-PASTA, and deter-G-PASTA in terms of their runtime improvement
on generated TDGs and their partitioning runtime. The values un-
der the ))⇡⌧% column show the runtime of partitioned TDGs and
their speedup over the original TDGs. The values under the )%0AC8C8>=
column show the runtime of partitioners and their speedup over the
baseline GDCA. We measure the performance in one full-timing itera-
tion through the update_timing method in OpenTimer. The largest
circuit, leon2, generates a TDG of 4.3M tasks and 5.3M dependencies
to perform parallel timing update.

In general, all partitioners can improve the performance of
update_timing due to reduced TDG size and scheduling cost. For
instance, GDCA can improve the TDG runtime of the smallest circuit
(aes_core) from 4.7 ms to 3.1 ms (1.5⇥) and of the largest circuit (leon2)
from 349.1 ms to 193.5 ms (1.8⇥). Regardless of the improvement by
GDCA, G-PASTA always outperforms GDCA. For instance, G-PASTA
can improve the TDG runtime of the six circuits by 1.7–2.0⇥, whereas
GDCA is 1.5–1.8⇥. Similar results can be observed in the other two
variants of G-PASTA, seq-G-PASTA (1.7–2.0⇥) and deter-G-PASTA
(1.7–2.0⇥). We attribute this result to G-PASTA’s parallelism-aware
partitioning algorithm that minimizes the impact on the original TDG
parallelism during task clustering.

In terms of partitioning runtime, G-PASTA has demonstrated su-
perior performance over GDCA because of the e�ciency of our GPU
kernel algorithm. The largest speedup values are observed in the three
largest circuits, leon3mp, netcard, and leon2, where G-PASTA is 38.5⇥,
34.2⇥, and 41.8⇥ faster than GDCA. On the other hand, we can see
that deter-G-PASTA is a bit slower than G-PASTA (though still much
faster than GDCA) due to the overhead of our deterministic kernel
algorithm. Even without GPU, seq-G-PASTA is still 2.4–6.2⇥ faster
than GDCA across all circuits. As a result, we cannot see any bene�t of
GDCA because its long partitioning runtime outweighs its advantage
in improved TDG runtime.
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Table 1: Overall performance comparison among di�erent partitioners (GDCA, seq-G-PASTA, G-PASTA, deter-G-PASTA) and their
improvements on generated TDGs in the core update_timingmethod of OpenTimer [4].

circuit #tasks #deps ))⇡⌧
))⇡⌧% (ms) )%0AC8C8>= (ms)

(ms) GDCA seq-G-PASTA G-PASTA deter-G-PASTA GDCA seq-G-PASTA G-PASTA deter-G-PASTA
aes_core 66.8K 86.4K 4.7 3.1 (1.5⇥) 2.3 (2.0⇥) 2.3 (2.0⇥) 2.4 (1.9⇥) 7.3 1.9 (3.8⇥) 2.3 (3.1⇥) 12.4
des_perf 303.7K 387.3K 25.5 16.0 (1.5⇥) 13.5 (1.8⇥) 13.6 (1.8⇥) 13.4 (1.9⇥) 49.4 9.4 (5.2⇥) 3.5 (14.1⇥) 16.4 (3.0⇥)
vga_lcd 397.8K 498.9K 33.5 21.2 (1.5⇥) 19.2 (1.7⇥) 19.3 (1.7⇥) 19.0 (1.7⇥) 70.7 11.4 (6.2⇥) 3.7 (19.1⇥) 17.1 (4.1⇥)
leon3mp 3.4M 4.1M 265.9 153.0 (1.7⇥) 131.8 (2.0⇥) 133.1 (1.9⇥) 130.8 (2.0⇥) 727.9 261.1 (2.7⇥) 18.9 (38.5⇥) 61.3 (11.8⇥)
netcard 4.0M 4.9M 312.1 175.2 (1.7⇥) 153.3 (2.0⇥) 154.7 (2.0⇥) 151.2 (2.0⇥) 856.8 338.8 (2.5⇥) 25.0 (34.2⇥) 61.1 (14.0⇥)
leon2 4.3M 5.3M 349.1 193.5 (1.8⇥) 173.3 (2.0⇥) 172.7 (2.0⇥) 171.1 (2.0⇥) 986.9 399.2 (2.4⇥) 23.6 (41.8⇥) 67.6 (14.5⇥)

))⇡⌧ : TDG runtime before partitioning ))⇡⌧% : TDG runtime after partitioning )%0AC8C8>= : partitioning runtime
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Figure 7: Comparison of STA runtime improvement between
GDCA and G-PASTA over 8K incremental timing iterations.
The black lines represents the original runtime without any
partitioning.
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Figure 8: Comparison of TDG runtime (after partitioning)
among GDCA, seq-G-PASTA, G-PASTA, and deter-G-PASTA un-
der di�erent partition sizes.

4.2 STA Runtime Comparison
Figure 7 compares the overall STA runtime between GDCA and G-
PASTA over 8K incremental timing iterations, where the given parti-
tioner is iteratively issused at each call to a design modi�er followed
by update_timing. The overall STA runtime includes the time of par-
titioning, construction, and execution of partitioned TDGs. The black
line represents the original STA runtime without applying any parti-
tioners to the generated TDGs. As we can see, G-PASTA largely im-
proves the performance of update_timing due to its fast partitioning
runtime and high partitioning quality. The improvement continues to
accumulate as we increase the number of incremental timing iterations.
However, we do not observe any bene�t of using GDCA primarily
because of its long partitioning runtime. For instance, running 8K iter-
ations on leon2, G-PASTA speeds up the overall STA performance by
43%, whereas GDCA slows down the process by 3.7⇥.

4.3 TDG Runtime vs Di�erent Partition Sizes
Figure 8 compares the TDG runtime (after partitioning) among GDCA,
seq-G-PASTA, G-PASTA, and deter-G-PASTA under di�erent partition
sizes. Note that the partition size refers to the maximum number of

tasks within a partition. As GDCA strictly requires each partition to
have the same size, its TDG runtime shows a V-shape pattern, where
the runtime �rst decreases because of reduced scheduling cost and
then increases because of reduced parallelism. For GDCA, it is user’s
responsibility to �nd the right partition size that produces the best
performance. However, for G-PASTA, the TDG runtime continues to
decrease until saturation (e.g., partition size of 15 for leon2). This is
because Algorithm 1 always decides a lower bound for the number
of partitions that cannot be clustered together, guaranteeing a lower
bound for the resulting TDG parallelism. This property highlights
another advantage of G-PASTA that user does not need to �ne-tune
the partition size but can simply use the original TDG size as the default
value. G-PASTA will automatically converge to the right partition size
and granularity that produce the best TDG runtime performance.

5 CONCLUSION
In this paper, we have proposed G-PASTA, a fast TDG partitioning
algorithm to reduce the scheduling cost of large task-parallel STA
algorithms. G-PASTA introduces an e�cient cycle-free clustering al-
gorithm that can automatically cluster tasks to the right granularity
without a�ecting too much the TDG parallelism. Compared to a state-
of-the-art CPU-based TDG partitioner, G-PASTA is up to 41.8⇥ faster
in partitioning runtime and can improve the overall STA performance
by 43% on large designs.
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