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ABSTRACT
Critical Path Generation (CPG) is crucial for static timing analysis
(STA) applications to validate timing constraints. Recent years have
witnessed CPG algorithms that can rank : critical paths e�ciently
and accurately. However, they all su�er from the lack of incremen-
tality, which is the ability to quickly update critical paths after
the circuit is incrementally modi�ed. To solve this problem, we
introduce Ink, an e�cient incremental CPG algorithm. Inspired by
the large path trace similarity between adjacent CPG queries, Ink
identi�es a set of paths to reuse for the next query and e�ectively
prunes the path search space. We have demonstrated the promising
performance of Ink on large circuit benchmarks. Ink is up to 22.4⇥
faster and consumes up to 31% less memory than a state-of-the-art
timer when generating one million paths on a large design.
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1 INTRODUCTION
Critical Path Generation (CPG) is a key routine in static timing
analysis (STA) applications. For example, a practical timer counts
on CPG to perform path-based analysis (PBA), such as common
path pessimism removal (CPPR) and advanced on-chip variation
(AOCV) update, for removing unwanted pessimism [1]. As the de-
sign complexity continues to grow, CPG runtime can become a
signi�cant bottleneck in many STA engines [5]. To alleviate this
problem, academia has introduced various CPG algorithms that
can rank : critical paths e�ciently. For example, iTimerC intro-
duces a branch-and-bound technique to prune redundant path tra-
versals [6]; iitRace introduces a pin coloring scheme to perform
e�cient path reduction [7]; OpenTimer introduces a fast implicit
path representation algorithm using su�x tree and pre�x tree [2].

Although existing CPG algorithms have demonstrated e�ciency
and accuracy, they all su�er from the lack of incrementality, which
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Figure 1: Illustration of CPG (: = 2) for a gate sizing operation
(X1!X2). The second most critical path trace is una�ected.

is the ability to quickly update critical paths after the circuit is
incrementally modi�ed. Incrementality plays an important role in
many optimization �ows, such as timing-driven placement and gate
sizing [5]. Figure 1 shows two critical paths before and after a gate
sizing operation that incrementally modi�es the circuit. Despite
di�erent slack values, critical path traces exhibit a large similarity
between the two CPG queries (e.g., the second most critical path
trace does not change). In fact, according to [5], the overlap ratio
of path traces between adjacent incremental timing iterations can
go up to 90%. This implies that many path results computed in the
previous CPG query are highly reusable for the next CPG query.
Without incrementality, CPG algorithms will waste substantial time
and memory on recomputing the same paths.

However, designing a fast incremental CPG algorithm is very
challenging because we need to e�ciently identify which paths to
keep and reuse for the next CPG query after the circuit is modi�ed.
When those paths are identi�ed, we need to e�ectively prune them
from the search space to avoid duplicated paths. To overcome these
challenges, we introduce Ink, an e�cient incremental CPG algo-
rithm. Ink is inspired by the implicit path representation algorithm
of OpenTimer [2] (su�x and pre�x trees), but redesigns its core
search routine to e�ciently support incrementality. We summarize
three technical contributions of Ink as follows:

• We design a fast incremental su�x tree update algorithm that
minimally identi�es the a�ected subgraph of the su�x tree and
performs only the necessary updates on shortest path values.

• We design a fast incremental pre�x tree expansion algorithm that
identi�es a set of paths to reuse for the next CPG query. With
these paths, we can e�ectively prune the path search space.

• We give rigorous analysis to justify the correctness and complex-
ity of the proposed algorithms.

We evaluate Ink’s performance on real circuit benchmarks gen-
erated by a state-of-the-art timer, OpenTimer [2]. Compared to
OpenTimer’s CPG algorithm [2], Ink is up to 22.4⇥ faster and con-
sumes up to 31% less memory when generating one million critical
paths on a large design.
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2 BACKGROUND
2.1 Incremental Critical Path Generation
The circuit network is input as a directed-acyclic graph⌧ = {+ , ⇢}.
+ is a set of = vertices that represent pins of circuit components
(e.g., logic gates, �ip-�ops, etc.). ⇢ is a set of< edges that represent
pin-to-pin connections. Each edge 4 is directed from its head vertex
D to tail vertex E and is associated with a delay F4 . A path is an
ordered sequence of edges h41, 42, ..., 4ii. The path delay is the sum-
mation of delays through all edges of that path. A circuit modi�er
is an operation that modi�es the circuit to perform timing-driven
optimization. In this paper, we target the circuit modi�er that only
alters the edge weights of the graph, which is a speci�c yet widely
used scenario.

Given a circuit graph ⌧ and a positive integer : , a CPG query
reports the top-: critical paths in ascending order of path slack
(or path delay depending on how the graph is formulated [2]). An
incremental iteration is de�ned as at least one circuit modi�er
followed by one CPG query.

2.2 Implicit Path Representation
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Figure 2: Implicit path representation using su�x tree and
pre�x tree. Su�x h49i + Pre�x h40, 46i = Path h40, 46, 49i.

Although there are many CPG algorithms [2, 6, 7], we adopt the
implicit path representation algorithm proposed by OpenTimer [2],
which outperforms existing algorithms in space and time complex-
ity. As shown in Figure 2, OpenTimer represents critical paths using
two complementary data structures, su�x tree and pre�x tree. A
su�x tree is a shortest path tree rooted at the destination vertices,
constructed with topological relaxations. Figure 2(a) shows an ex-
ample graph and its su�x tree. Solid edges denote the su�x tree,
and dashed edges denote non-su�x tree edges. Numbers on the
vertices denote the shortest distance to their destination vertices.

A pre�x tree is a tree order of non-su�x tree edges. Each pre�x
tree node implicitly represents a path deviated from its parent path.
The pre�x tree root refers to the shortest path in the su�x tree.
Figure 2(b) shows an example. The pre�x tree root i implicitly
represents the shortest path h40, 45, 47i in the su�x tree. The pre�x
tree node marked by “46” (colored in gray) implicitly represents
the path with pre�x h40i from its parent path deviated on 46 and
followed by su�x h49i from the su�x tree. Figure 2(c) illustrates
this path as bold edges h40, 46, 49i. To retrieve the path delay, we
record the “deviation cost” of each non-su�x tree edge e: dvi[e]
= dis[tail[e]] + weight[e] � dis[head[e]], where dis[v] denotes the
shortest distance from vertex v to its destination vertex. Intuitively,
deviation cost measures the distance loss by deviating on edge e

instead of taking the ordinary shortest path to the destination vertex.
For example, in Figure 2(a), 46 has a deviation cost of dis[tail[46]] +
weight[46] � dis[head[46]] = 10, which means by deviating on 46,
we get a path that is 10 longer than the shortest path from head[46]
to its destination vertex. To conclude, Table 1 lists the data �elds to
which we apply for each pre�x tree node [2].

Constructor PfxtNode(p, e, w) RespurListItem(pfx, pes)

Members
p: parent node pfx: pre�x tree node
e: deviation edge pes: pruned edges for pfx
w: cumulative dvi[e]

Table 1: Data �elds of a pre�x tree node (PfxtNode) and a
re-spur list item (RespurListItem).

3 INK: INCREMENTAL :-CRITICAL PATH
GENERATION

Ink has two stages, incremental su�x tree update and incremental
pre�x tree expansion, to perform incremental CPG.

3.1 Incremental Su�x Tree Update
The goal of incremental su�x tree update is to perform only neces-
sary topological relaxations on the a�ected subgraph of the su�x
tree, as opposed to the complete bottom-up topological relaxations
in OpenTimer [2]. Algorithm 1 presents the incremental su�x tree
update algorithm. After collecting an array of head verticesM from
user-modi�ed edges, we perform DFS on M to identify the a�ected
vertices V in reversed topological order (line 2). We record the af-
fected pre�x tree nodes for the second stage (line 5:6) and perform
edge relaxations on the fanouts of each vertex in V (line 7).

Following the su�x tree example in Figure 2(a), Figure 3(a) shows
that we modify the weights of 41, 43, 46, and 410. Figure 3(b) shows
that after performing DFS on the head vertices of the modi�ed
edges, we identify �ve a�ected vertices (marked in gray). We then
perform edge relaxations on the fanouts of these �ve vertices. For
example, as shown in Figure 3(b), we perform edge relaxations on
45 (dis[tail[45]] + weight[45] = �3) and 46 (dis[tail[46]] + weight[46]
= �4). Since �3 > �4, �4 becomes head[46]’s new shortest distance
to its destination vertex. tail[46] is the new successor of head[46].
Lemma 1 concludes Algorithm 1.
Lemma 1. Algorithm 1 takes $ (= + :<) time complexity.

Algorithm 1: IncSfxt(M)
Input: array of head vertices of user-modi�ed edges M
Global :array of a�ected pre�x tree nodes P

1 P q ;
2 V  DFS on M to identify a�ected vertices in reversed

topological order;
3 Foreach u 2 V
4 Foreach e 2 fanout(u)
5 Foreach n 2 dependent_pfxt_nodes(e)
6 P P [ n;
7 Relax(u, tail[e], weight[e]);
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Figure 3: Illustration of Algorithm 1. We only perform topo-
logical relaxations on the fanouts of the gray vertices in (b).

3.2 Incremental Pre�x Tree Expansion
After updating the su�x tree, the next step is to explore paths that
deviate from the su�x tree by expanding the pre�x tree. To be clear,
“expand” means to generate the children nodes for a certain pre�x
tree node by �nding non-su�x tree edges to deviate on. When a
timing-driven application queries : critical paths (potentially very
large :), expanding the pre�x tree becomes very expensive if not
done incrementally. However, incremental pre�x tree expansion
has two major challenges: 1) we need to know which pre�x tree
nodes are reusable after applying the circuit modi�ers and 2) after
identifying these nodes, we need to prune them from the search
space for the next query to avoid generating duplicated nodes. To
overcome challenge 1, we introduce a theorem that serves as the
cornerstone of our incremental pre�x tree expansion algorithm:
Theorem 1. Given a pre�x tree node p and p’s children C, and each
child 2i 2 C is associated with an edge 4i, where i represents the order
in which 2i is discovered. 88, 9 2 Z>0, if 8 < 9 and 4j becomes a su�x
tree edge after the circuit is changed, then 2i remains p’s child.

P����. Assume 2i is not p’s child, we examine two cases: 1) if 4i
and 4j have the same head vertex E , 4i must be a su�x tree edge,
which contradicts the fact that 4j is the only su�x edge among
E ’s fanouts. 2) if 4i and 4j have di�erent head vertices, since 2j is
discovered later than 2i, 2i is not a�ected. Thus, by contradiction
Theorem 1 is correct. ⇤

Intuitively, Theorem 1 states that if 2j is associated with a su�x
tree edge after the circuit is changed (meaning that 2j will disappear
from the pre�x tree in the next CPG query), we can reuse 2j’s left
siblings because they are discovered before 2j and removing 2j does
not a�ect them. We only need to update these siblings’ cumulative
deviation costs. Since Theorem 1 applies to every level of the pre�x
tree, we can maximize the number of reusable nodes and reduce
memory reallocation overhead. To overcome challenge 2, we main-
tain a “re-spur list” that records which nodes need re-expansion.
For each of these nodes, to avoid generating duplicated children
nodes, we also record which edges to skip during re-expansion.
Table 1 lists the data �eld to which we apply for each re-spur list
item. pes records what edges we should skip when generating the
children nodes for pfx.

Algorithm 2 describes a key subroutine of Ink, MarkPfxtNodes.
The goal of Algorithm 2 is to categorize the pre�x tree nodes into
reusable and removed nodes by applying Theorem 1. We update

Algorithm 2:MarkPfxtNodes(P, Q)
Input: array of a�ected pre�x tree nodes P, queue Q
Output: re-spur list R

1 Sort P in ascending order of level;
2 R, pes q ;
3 Foreach p 2 P
4 if p is updated or p is removed then
5 continue;
6 Foreach s 2 siblings(p)
7 Q.push(s);
8 while Q is not empty
9 n Q.pop();

10 if n.parent 2 a re-spur list item then
11 mark n as removed;
12 if n is not removed then
13 if tail[n.e] = successor[head[n.e]] then
14 mark n as removed;
15 if n.parent 8 a re-spur list item then
16 r  new RespurListItem(n.parent, pes);
17 R R [ r ;
18 clear pes;
19 else
20 update n.w and mark n as updated;
21 pes pes [ n.e;
22 Foreach c 2 n.children
23 Q.push(c);
24 if n is removed then
25 mark c as removed;
26 return R;

the cumulative deviation costs of the reusable nodes and mark
others for lazy removal. Note that Algorithm 2 only prepares Ink
for incremental pre�x tree expansion by generating the re-spur
list; the actual expansion happens in Algorithm 4. To ensure top-
down traversal of the a�ected pre�x tree nodes, we sort the array of
a�ected pre�x tree nodes P in ascending order of level (line 1). We
initialize a re-spur list R and a set of pruned edges pes (line 2). For
each node in P, if unmarked (line 4:5), we push its siblings to a queue
Q to perform BFS (line 6:7). This is because Theorem 1 requires us
to visit these nodes in the same order as they are discovered. We
pop a node n from Q (line 9). If n’s parent is already in the re-spur
list (line 10), implying that a left sibling of n is marked as removed,
we mark n as removed too (line 11), since n is discovered later than
this sibling. If n is unmarked (line 12), we check if n.e is a su�x tree
edge (line 13). If so, n disappears from the pre�x tree, and we mark
n as removed (line 14). We create a re-spur list item (line 16:17),
indicating that n’s parent will later expand but skip pes. Otherwise,
we update n’s cumulative deviation cost and add n’s edge to its
parent’s pes (line 20:21). We �nally enqueue n’s children for the
later BFS iterations (line 22:25).

Continuing from the updated su�x tree in Figure 3(b), Figure
4 illustrates Algorithm 2. We denote a pre�x tree node associated
with 4i and cumulative deviation cost F as PfxtNode(4i, F ). For
simplicity, we leave out the parent node member mentioned in
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Figure 4: Illustration of Algorithm 2 (continuation of Figure 3(b)), a key subroutine of the proposed incremental pre�x tree
expansion algorithm. (a) Pre�x tree and a queue that has PfxtNode(41, 8) and its siblings. (b) 41 is still a non-su�x tree edge, so
we update PfxtNode(41, 8)’s cumulative deviation cost to 14. (c) 46 is now a su�x tree edge, so we mark PfxtNode(46, 10) and its
children as removed. We then create a re-spur list item indicating that i will skip 41 during re-expansion. (d) 48 is discovered
later than 46, so we mark PfxtNode(48, 16) and its children as removed. (e) Similar to (b), we update PfxtNode(43, 9)’s cumulative
deviation cost to 21. (f) Similar to (c), we mark PfxtNode(46, 18) as removed. We then create a re-spur list item indicating that
PfxtNode(41, 14) will skip 43 during re-expansion.

Table 1, since it is already illustrated. Figure 4(a) illustrates the
pre�x tree for four paths and a queue containing PfxtNode(41, 8)
and its siblings. Note that a four-critical path query may generate
more than four nodes [2], so we see eight nodes in Figure 4(a).
Figure 4(b) illustrates that we pop PfxtNode(41, 8) from the queue.
Since 41 is still a non-su�x tree edge, PfxtNode(41, 8) remains
i ’s child. We update PfxtNode(41, 8)’s cumulative deviation cost to
0+9�(�5) = 14 using the shortest path values in Figure 3(b).We also
push PfxtNode(41, 14)’s children to the queue. Figure 4(c) illustrates
that we pop PfxtNode(46, 10) from the queue. Since 46 is now a su�x
tree edge, PfxtNode(46, 10) should be removed. We create a re-spur
list item indicating that PfxtNode(46, 10)’s parent i will skip 41
during re-expansion. We should remove PfxtNode(46, 10)’s children
as well, and we push them to the queue. Figure 4(d) illustrates that
we pop PfxtNode(48, 16) from the queue. PfxtNode(48, 16)’s parent
i belongs to a re-spur list item, indicating that one of PfxtNode(48,
16)’s left siblings is removed. Since PfxtNode(48, 16) is discovered
later than this removed sibling, we remove PfxtNode(48, 16) and
its children. Figure 4(e)–(f) repeat the same procedure and �nally
produce two re-spur list items. Lemma 2 concludes Algorithm 2.
Lemma 2. Algorithm 2 takes $ (: log:) time complexity.

Algorithm 3 describes another subroutine, which redesigns the
Spur algorithm in [2] to support incrementality. Algorithm 3 ex-
pands the pre�x tree from a given pre�x tree node. Our algorithm
includes a set of pruned edges pes as input, which allows us to
minimally expand the pre�x tree from a given node by pruning pes
during expansion (lines 1 and 5). Lemma 3 concludes Algorithm 3.
Lemma 3. Algorithm 3 takes $ (= +< log: + :) time complexity.

Using Algorithms 2–3 as primitives, Algorithm 4 describes the
incremental pre�x tree expansion algorithm. The goal of Algorithm
4 is to retrieve the top-: critical paths in ascending order of path
delay by incrementally expanding the pre�x tree. Since we are

Algorithm 3: SpurPruned(pfx, d, Q̂, pes)
Input: a pre�x tree node pfx, destination vertex d, priority

queue Q̂, a set of pruned edges pes
1 mark all edges in pes as pruned in the given graph;
2 u tail[pfx.e];
3 while u < d
4 Foreach e 2 fanout(u)
5 if tail[e] = successor[u] or e is pruned then
6 continue;
7 pfx_new new PfxtNode(pfx, e, pfx.w + dvi[e]);
8 Q̂.enqueue(pfx_new);
9 u successor[u];

10 unmark all edges in pes in the given graph;

retrieving paths incrementally, we transfer the essential information
from the previous CPG query, including a priority queue Q̂ of nodes
keyed on their cumulative deviation costs (line 1) and the dequeued
nodes ⇤ (line 2). We initialize the solution path set and a queue
Q (line 3). We generate a re-spur list R using Algorithm 2 (line 4).
Since Algorithm 2 invalidates Q̂’s heap property, we heapify Q̂ (line
5). With R, we can reuse updated nodes from the previous CPG
and minimally expand the pre�x tree (line 6:7). In OpenTimer [2],
this critical path retrieval procedure always satis�es the condition
where the nodes in ⇤ have cumulative deviation costs no more than
the minimum cumulative deviation cost in Q̂. However, Algorithm 2
may cause ⇤ to violate this condition. To solve this, we recover
unremoved paths from ⇤ and record the maximum cumulative
deviations cost max_dc in ⇤ (line 8); we also expand any leaf nodes
in ⇤, because they may have undiscovered children. If in the path
search loop (line 9:18), we see a node that has a cumulative deviation
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cost less than max_dc (line 16), meaning the above condition is still
violated, we continue executing the loop. The path search loop
iteratively dequeues a node pfx (line 10), recovers the path (line
14:15), and then expands the search space for pfx (line 18) until
we retrieved enough paths and the above condition is ful�lled.
Combining Lemma 2–3, we draw the following theorem.
Theorem 2. Algorithm 4 takes $ (= +< + :) space complexity and
$ (:= + :< log: + :2) time complexity.

P����. The space complexity of Algorithm 4 involves$ (= +<)
for storing the circuit graph, $ (=) for the su�x tree, $ (:) for the
pre�x tree, and $ (:) for the re-spur list. Hence, the total space
complexity is $ (= +< + :). We perform Algorithm 3 up to : iter-
ations to obtain the top-: critical paths. Therefore, the total time
complexity is $ (:= + :< log: + :2). ⇤

Algorithm 4: IncPfxt(d, k, P)
Input: destination vertex d, path count k, a�ected pre�x

tree nodes P
Output: solution set  of critical paths

1 Q̂ priority queue of nodes from the previous CPG;
2 ⇤ transfer dequeued nodes from the previous CPG;
3  ,Q q
4 R MarkPfxtNodes(P, Q);
5 Q̂.heapify();
6 Foreach r 2 R
7 SpurPruned(r.pfx, d, Q̂, r.pes);
8 num_paths, max_dc,   recover paths from nodes that are

unremoved in ⇤ and record max cumulative deviation cost;
9 while Q̂ is not empty
10 pfx  Q̂.dequeue();
11 if pfx is removed then
12 continue;
13 num_paths num_paths + 1;
14 path recover path from pfx;
15    [ path;
16 if pfx.w � max_dc and num_paths � k then
17 break;
18 SpurPruned(pfx, d, Q̂, q);
19 return  ;

4 EXPERIMENTAL RESULTS
We implemented Ink in C++ and compiled it with GCC 11.4.0 on
a 4.8-GHz 64-bit Linux machine of an Intel Core i5-13500 Pro-
cessor. We enable the optimization �ag -O3 and C++17 standard
-std=c++17. We select seven large circuits generated by Open-
Timer [2] to evaluate Ink’s performance. We only compare the
proposed algorithms with OpenTimer beacuse its CPG algorithm
outperformed existing methods.

4.1 Overall Performance Comparison
Table 2 compares the su�x tree update runtime, pre�x tree ex-
pansion runtime, total runtime, and memory usage between full

CPG and incremental CPG (Ink) on seven circuits. For each circuit,
we measure the performance of Ink by taking the average of 100
incremental iterations that simulate a gate-sizing optimization algo-
rithm developed atop OpenTimer [2]. For wb_dma, tv80, ac97_ctrl,
aes_core, and des_perf, we use their maximum path counts for each
CPG call. For vga_lcd and netcard, whose maximum path counts are
enormous, we use su�ciently large path counts (one million and
�ve million) for each CPG call. Each incremental iteration randomly
resizes a gate to alter the edge weight of the circuit graph and issue
a CPG call to trigger a timing update. Full CPG refers to the update
that re-runs the whole CPG without incrementality, which is how
OpenTimer [2] deals with circuit graph updates, while incremen-
tal CPG refers to the proposed method. As shown in Table 2, Ink
outperforms full CPG in all circuits. Since Ink partially reuses the
previous CPG results, it is faster and uses less memory than full
CPG. For example, Ink is 22.4⇥ faster and uses 31% less memory in
vga_lcd. We do not compare accuracy because our algorithms can
produce the same solutions as the golden solutions produced by
OpenTimer.

Figure 5 plots the runtime distribution of full CPG and Ink across
50 incremental iterations. Depending on the circuit modi�er, the
runtime per incremental iteration can vary. Regardless of the vari-
ation, we see a consistent runtime gap between full CPG and Ink.
Taking netcard as an example, Ink is 8.3⇥ faster than full CPG at
the 22=3 incremental iteration.
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Figure 5: Runtime distribution of full CPG and Ink across 50
incremental iterations for des_perf and netcard.
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Figure 6: Speedup vs path count for des_perf and netcard.

4.2 Performance at Di�erent Path Counts
Figure 6 demonstrates the speedup of Ink over full CPG at di�erent
path counts for des_perf and netcard. As we increase the path count,
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Table 2: Overall performance comparison between full CPG (OpenTimer [2]) and incremental CPG (Ink).

Full CPG (OpenTimer [2]) Incremental CPG (Ink)

Circuit |+ | |⇢ | Path count
(K)

Sfxt
(ms)

Pfxt
(ms)

Total
(ms)

Mem
(MB)

Sfxt
(ms)

Pfxt
(ms)

Total
(ms)

Mem
(MB)

wb_dma 12602 8184 32 1.3 3.9 5.2 23.1 0.4 (3.3⇥) 0.6 (6.5⇥) 1 (5.2⇥) 17.8 (-23%)
tv80 16681 11364 45 2 6.3 8.3 30.4 0.5 (4⇥) 1.1 (5.7⇥) 1.6 (5.2⇥) 22.6 (-26%)

ac97_ctrl 40210 25803 103 7 19.4 26.4 64.3 1.7 (4.1⇥) 3 (6.5⇥) 4.7 (5.6⇥) 47.2 (-27%)
aes_core 66221 43022 172 13.2 56.1 69.3 104.7 3.3 (4⇥) 6 (9.4⇥) 9.3 (7.5⇥) 75.9 (-28%)
des_perf 295808 189276 757 82.1 260.3 342.4 447.1 13.4 (6.1⇥) 30.8 (8.5⇥) 44.2 (7.7⇥) 320.8 (-28%)
vga_lcd 397806 473772 1000 99.6 712 811.6 778.7 5.7 (17.5⇥) 30.5 (23.3⇥) 36.2 (22.4⇥) 538.5 (-31%)
netcard 3901343 2402788 5000 1612.4 3012.1 4624.5 4308.9 440.2 (3.7⇥) 209.5 (14.4⇥) 649.7 (7.1⇥) 3466.2 (-20%)

Sfxt: su�x tree update runtime Pfxt: pre�x tree expansion runtime
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Figure 7: Speedup vs incrementality for des_perf and netcard.
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Figure 8: Speedup breakdown of Algorithm 1 (IncSfxt) and
Algorithm 4 (IncPfxt) at di�erent path counts.

the speedup of Ink �rst decreases and then increases after a certain
path count. For example, in des_perf, the speedup decreases from
over 3⇥ to less than 2⇥ between one path and 100K paths, and
then the speedup increases after 100K paths. This is because when
the path count is small, Algorithm 1 is the major contributor to
Ink’s overall speedup. As we increase the path count, pre�x tree
expansion starts to dominate the performance, but the path count
is not large enough for Algorithm 4 to become e�ective; thus, Ink’s
overall speedup decreases. As we further increase the path count,
Algorithm 4 exhibits a large speedup over full pre�x tree expansion;
thus, Ink’s overall speedup increases.

4.3 Performance at Di�erent Incrementalities
Figure 7 demonstrates the speedup of Ink over full CPG at di�erent
graph modi�cation rates for des_perf and netcard. As we increase
the graph modi�cation rate, the speedup drops accordingly. For
example, Ink’s speedup drops from 3.6⇥ to 1.8⇥ in netcard. This is
because the higher the graph modi�cation rate, the more nodes that
Ink needs to visit in Algorithm 2. Ink is most e�ective at a low graph
modi�cation rate. For example, Ink is over 4⇥ faster in des_perf at
1% graph modi�cation rate. This emphasizes Ink’s bene�t because

realistically one incremental iteration involves only modifying far
less than 1% of the gates in the circuit. On the contrary, Ink is still
faster at 100% graphmodi�cation rate. For example, Ink is almost 2⇥
faster in netcard at 100% graph modi�cation rate. This is because
even if the whole circuit is updated, it is very likely that many
critical path traces remain the same. Ink only needs to update the
path delays, which largely reduces memory reallocation overhead.

4.4 Speedup Breakdown of IncSfxt and IncPfxt
Figure 8 demonstrates the speedup breakdown of Algorithm 1 (IncS-
fxt) and Algorithm 4 (IncPfxt) for netcard. As we increase the path
count from one million to �ve million, the speedup of Algorithm 4
becomes more remarkable. For example, the speedup of Algorithm
4 increases from 26.2% to 70.5%. This is because the e�ciency of
Algorithm 1 is constrained by the size of the a�ected subgraph of
the su�x tree.

5 CONCLUSION
In this paper, we have introduced Ink, an e�cient incremental :-
critical path generation algorithm. Compared to a state-of-the-art
timer, Ink is up to 22.4⇥ faster and consumes up to 31% less memory
when generating one million critical paths on a large design. We
plan to extend Ink to a parallel target using [3, 4].
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