Ink: Efficient Incremental k-Critical Path Generation

Che Chang

University of Wisconsin at Madison
Madison, Wisconsin, USA

Guannan Guo
University of Illinois
Urbana-Champaign, Illinois, USA

ABSTRACT

Critical Path Generation (CPG) is crucial for static timing analysis
(STA) applications to validate timing constraints. Recent years have
witnessed CPG algorithms that can rank k critical paths efficiently
and accurately. However, they all suffer from the lack of incremen-
tality, which is the ability to quickly update critical paths after
the circuit is incrementally modified. To solve this problem, we
introduce Ink, an efficient incremental CPG algorithm. Inspired by
the large path trace similarity between adjacent CPG queries, Ink
identifies a set of paths to reuse for the next query and effectively
prunes the path search space. We have demonstrated the promising
performance of Ink on large circuit benchmarks. Ink is up to 22.4x
faster and consumes up to 31% less memory than a state-of-the-art
timer when generating one million paths on a large design.

ACM Reference Format:

Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo, and Shiju
Lin. 2024. Ink: Efficient Incremental k-Critical Path Generation. In 61st
ACM/IEEE Design Automation Conference (DAC °24), June 23-27, 2024, San
Francisco, CA, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3649329.3655897

1 INTRODUCTION

Critical Path Generation (CPG) is a key routine in static timing
analysis (STA) applications. For example, a practical timer counts
on CPG to perform path-based analysis (PBA), such as common
path pessimism removal (CPPR) and advanced on-chip variation
(AOCV) update, for removing unwanted pessimism [1]. As the de-
sign complexity continues to grow, CPG runtime can become a
significant bottleneck in many STA engines [5]. To alleviate this
problem, academia has introduced various CPG algorithms that
can rank k critical paths efficiently. For example, iTimerC intro-
duces a branch-and-bound technique to prune redundant path tra-
versals [6]; iitRace introduces a pin coloring scheme to perform
efficient path reduction [7]; OpenTimer introduces a fast implicit
path representation algorithm using suffix tree and prefix tree [2].

Although existing CPG algorithms have demonstrated efficiency
and accuracy, they all suffer from the lack of incrementality, which

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06....$15.00
https://doi.org/10.1145/3649329.3655897

Tsung-Wei Huang
University of Wisconsin at Madison
Madison, Wisconsin, USA

Dian-Lun Lin
University of Wisconsin at Madison
Madison, Wisconsin, USA

Shiju Lin
The Chinese University of Hong Kong
Hong Kong, China

slack = -1

=% Most Critical
— 2nd Most Critical

=P Most Critical
> 2nd Most Critical

Figure 1: Illustration of CPG (k = 2) for a gate sizing operation
(X1—X2). The second most critical path trace is unaffected.

is the ability to quickly update critical paths after the circuit is
incrementally modified. Incrementality plays an important role in
many optimization flows, such as timing-driven placement and gate
sizing [5]. Figure 1 shows two critical paths before and after a gate
sizing operation that incrementally modifies the circuit. Despite
different slack values, critical path traces exhibit a large similarity
between the two CPG queries (e.g., the second most critical path
trace does not change). In fact, according to [5], the overlap ratio
of path traces between adjacent incremental timing iterations can
go up to 90%. This implies that many path results computed in the
previous CPG query are highly reusable for the next CPG query.
Without incrementality, CPG algorithms will waste substantial time
and memory on recomputing the same paths.

However, designing a fast incremental CPG algorithm is very
challenging because we need to efficiently identify which paths to
keep and reuse for the next CPG query after the circuit is modified.
When those paths are identified, we need to effectively prune them
from the search space to avoid duplicated paths. To overcome these
challenges, we introduce Ink, an efficient incremental CPG algo-
rithm. Ink is inspired by the implicit path representation algorithm
of OpenTimer [2] (suffix and prefix trees), but redesigns its core
search routine to efficiently support incrementality. We summarize
three technical contributions of Ink as follows:

e We design a fast incremental suffix tree update algorithm that
minimally identifies the affected subgraph of the suffix tree and
performs only the necessary updates on shortest path values.

o We design a fast incremental prefix tree expansion algorithm that
identifies a set of paths to reuse for the next CPG query. With
these paths, we can effectively prune the path search space.

o We give rigorous analysis to justify the correctness and complex-
ity of the proposed algorithms.

We evaluate Ink’s performance on real circuit benchmarks gen-
erated by a state-of-the-art timer, OpenTimer [2]. Compared to
OpenTimer’s CPG algorithm [2], Ink is up to 22.4x faster and con-
sumes up to 31% less memory when generating one million critical
paths on a large design.

https://doi.org/10.1145/3649329.3655897
https://doi.org/10.1145/3649329.3655897
https://doi.org/10.1145/3649329.3655897

DAC 24, June 23-27, 2024, San Francisco, CA, USA

2 BACKGROUND

2.1 Incremental Critical Path Generation

The circuit network is input as a directed-acyclic graph G = {V, E}.
V is a set of n vertices that represent pins of circuit components
(e.g., logic gates, flip-flops, etc.). E is a set of m edges that represent
pin-to-pin connections. Each edge e is directed from its head vertex
u to tail vertex v and is associated with a delay we. A path is an
ordered sequence of edges (ey, ez, ..., €;). The path delay is the sum-
mation of delays through all edges of that path. A circuit modifier
is an operation that modifies the circuit to perform timing-driven
optimization. In this paper, we target the circuit modifier that only
alters the edge weights of the graph, which is a specific yet widely
used scenario.

Given a circuit graph G and a positive integer k, a CPG query
reports the top-k critical paths in ascending order of path slack
(or path delay depending on how the graph is formulated [2]). An
incremental iteration is defined as at least one circuit modifier
followed by one CPG query.

2.2 Implicit Path Representation

(Suffix Tree il Prefix Tree il

() (©

Figure 2: Implicit path representation using suffix tree and
prefix tree. Suffix (e9) + Prefix (ey, eg) = Path (ey, eg, €9).

Although there are many CPG algorithms [2, 6, 7], we adopt the
implicit path representation algorithm proposed by OpenTimer [2],
which outperforms existing algorithms in space and time complex-
ity. As shown in Figure 2, OpenTimer represents critical paths using
two complementary data structures, suffix tree and prefix tree. A
suffix tree is a shortest path tree rooted at the destination vertices,
constructed with topological relaxations. Figure 2(a) shows an ex-
ample graph and its suffix tree. Solid edges denote the suffix tree,
and dashed edges denote non-suffix tree edges. Numbers on the
vertices denote the shortest distance to their destination vertices.

A prefix tree is a tree order of non-suffix tree edges. Each prefix
tree node implicitly represents a path deviated from its parent path.
The prefix tree root refers to the shortest path in the suffix tree.
Figure 2(b) shows an example. The prefix tree root ¢ implicitly
represents the shortest path (e, es, e7) in the suffix tree. The prefix
tree node marked by “es” (colored in gray) implicitly represents
the path with prefix (ey) from its parent path deviated on e and
followed by suffix (eg) from the suffix tree. Figure 2(c) illustrates
this path as bold edges (e, eg, e9). To retrieve the path delay, we
record the “deviation cost” of each non-suffix tree edge e: dvi[e]
= dis[tail[e]] + weight[e] — dis[head[e]], where dis[v] denotes the
shortest distance from vertex v to its destination vertex. Intuitively,
deviation cost measures the distance loss by deviating on edge e

Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo, and Shiju Lin

instead of taking the ordinary shortest path to the destination vertex.
For example, in Figure 2(a), eg has a deviation cost of dis[tail[es]] +
weight[es] — dis[head[es]] = 10, which means by deviating on eg,
we get a path that is 10 longer than the shortest path from head[es]
to its destination vertex. To conclude, Table 1 lists the data fields to
which we apply for each prefix tree node [2].

l Constructor [PfxtNode(p, e, w) [RespurListltem(pfx, pes)]

p: parent node

e: deviation edge

w: cumulative dvi[e]
Table 1: Data fields of a prefix tree node (PfxtNode) and a
re-spur list item (RespurListItem).

pfx: prefix tree node

Members pes: pruned edges for pfx

3 INK:INCREMENTAL k-CRITICAL PATH
GENERATION

Ink has two stages, incremental suffix tree update and incremental
prefix tree expansion, to perform incremental CPG.

3.1 Incremental Suffix Tree Update

The goal of incremental suffix tree update is to perform only neces-
sary topological relaxations on the affected subgraph of the suffix
tree, as opposed to the complete bottom-up topological relaxations
in OpenTimer [2]. Algorithm 1 presents the incremental suffix tree
update algorithm. After collecting an array of head vertices M from
user-modified edges, we perform DFS on M to identify the affected
vertices V in reversed topological order (line 2). We record the af-
fected prefix tree nodes for the second stage (line 5:6) and perform
edge relaxations on the fanouts of each vertex in V (line 7).
Following the suffix tree example in Figure 2(a), Figure 3(a) shows
that we modify the weights of ey, e3, e, and ejy. Figure 3(b) shows
that after performing DFS on the head vertices of the modified
edges, we identify five affected vertices (marked in gray). We then
perform edge relaxations on the fanouts of these five vertices. For
example, as shown in Figure 3(b), we perform edge relaxations on
e5 (dis[tail[es]] + weight[es] = —3) and e (dis[tail[es]] + weight[es]
= —4). Since —3 > —4, —4 becomes head[es]’s new shortest distance
to its destination vertex. tail[es] is the new successor of head[es].
Lemma 1 concludes Algorithm 1.
Lemma 1. Algorithm 1 takes O(n + km) time complexity.

Algorithm 1: IncSfxt(M)

Input: array of head vertices of user-modified edges M
Global: array of affected prefix tree nodes P
1 Pe—¢;
2 V « DFS on M to identify affected vertices in reversed
topological order;
3 ForeachueV
4 Foreach e € fanout(u)

5 Foreach n € dependent_pfxt_nodes(e)
6 ‘ P« PUn
7 Relax(u, tail[e], weight[e]);

Ink: Efficient Incremental k-Critical Path Generation

(Suffix Tree) Suffix Tree]

(b) Updated subgraph

(a) Edge weight modifications

Figure 3: Illustration of Algorithm 1. We only perform topo-
logical relaxations on the fanouts of the gray vertices in (b).

3.2 Incremental Prefix Tree Expansion

After updating the suffix tree, the next step is to explore paths that
deviate from the suffix tree by expanding the prefix tree. To be clear,
“expand” means to generate the children nodes for a certain prefix
tree node by finding non-suffix tree edges to deviate on. When a
timing-driven application queries k critical paths (potentially very
large k), expanding the prefix tree becomes very expensive if not
done incrementally. However, incremental prefix tree expansion
has two major challenges: 1) we need to know which prefix tree
nodes are reusable after applying the circuit modifiers and 2) after
identifying these nodes, we need to prune them from the search
space for the next query to avoid generating duplicated nodes. To
overcome challenge 1, we introduce a theorem that serves as the
cornerstone of our incremental prefix tree expansion algorithm:
Theorem 1. Given a prefix tree node p and p’s children C, and each
child c; € C is associated with an edge e;, where i represents the order
in which c; is discovered. Vi, j € Zxo, ifi < j and ej becomes a suffix
tree edge after the circuit is changed, then c; remains p’s child.

PRroOF. Assume c; is not p’s child, we examine two cases: 1) if e;
and e; have the same head vertex v, e; must be a suffix tree edge,
which contradicts the fact that e; is the only suffix edge among
o’s fanouts. 2) if e; and e; have different head vertices, since c; is
discovered later than c;, ¢; is not affected. Thus, by contradiction
Theorem 1 is correct. o

Intuitively, Theorem 1 states that if c; is associated with a suffix
tree edge after the circuit is changed (meaning that c; will disappear
from the prefix tree in the next CPG query), we can reuse c;’s left
siblings because they are discovered before ¢; and removing c; does
not affect them. We only need to update these siblings’ cumulative
deviation costs. Since Theorem 1 applies to every level of the prefix
tree, we can maximize the number of reusable nodes and reduce
memory reallocation overhead. To overcome challenge 2, we main-
tain a “re-spur list” that records which nodes need re-expansion.
For each of these nodes, to avoid generating duplicated children
nodes, we also record which edges to skip during re-expansion.
Table 1 lists the data field to which we apply for each re-spur list
item. pes records what edges we should skip when generating the
children nodes for pfx.

Algorithm 2 describes a key subroutine of Ink, MarkPfxtNodes.
The goal of Algorithm 2 is to categorize the prefix tree nodes into
reusable and removed nodes by applying Theorem 1. We update

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

Algorithm 2: MarkPfxtNodes(P, Q)
Input: array of affected prefix tree nodes P, queue Q
Output: re-spur list R

1 Sort P in ascending order of level;

2 R, pes < ¢;

3 Foreach pe P

4 if p is updated or p is removed then

5 ‘ continue;

6 Foreach s € siblings(p)

7 ‘ Q.push(s);

8 while Q is not empty

9 n < Q.pop();

10 if n.parent € a re-spur list item then

11 ‘ mark n as removed;

12 if n is not removed then

13 if tail[n.e] = successor[head[n.e]] then
14 mark n as removed;

15 if n.parent ¢ a re-spur list item then
16 r <— new RespurListItem(n.parent, pes);
17 R—RUr;

18 clear pes;

19 else

20 update n.w and mark n as updated;
21 pes < pes U n.e;
22 Foreach c € n.children

23 Q.push(c);

24 if nis removed then

25 ‘ mark ¢ as removed;

26 return R;

the cumulative deviation costs of the reusable nodes and mark
others for lazy removal. Note that Algorithm 2 only prepares Ink
for incremental prefix tree expansion by generating the re-spur
list; the actual expansion happens in Algorithm 4. To ensure top-
down traversal of the affected prefix tree nodes, we sort the array of
affected prefix tree nodes P in ascending order of level (line 1). We
initialize a re-spur list R and a set of pruned edges pes (line 2). For
each node in P, if unmarked (line 4:5), we push its siblings to a queue
Q to perform BFS (line 6:7). This is because Theorem 1 requires us
to visit these nodes in the same order as they are discovered. We
pop a node n from Q (line 9). If n’s parent is already in the re-spur
list (line 10), implying that a left sibling of n is marked as removed,
we mark n as removed too (line 11), since n is discovered later than
this sibling. If n is unmarked (line 12), we check if n.e is a suffix tree
edge (line 13). If so, n disappears from the prefix tree, and we mark
n as removed (line 14). We create a re-spur list item (line 16:17),
indicating that n’s parent will later expand but skip pes. Otherwise,
we update n’s cumulative deviation cost and add n’s edge to its
parent’s pes (line 20:21). We finally enqueue n’s children for the
later BFS iterations (line 22:25).

Continuing from the updated suffix tree in Figure 3(b), Figure
4 illustrates Algorithm 2. We denote a prefix tree node associated
with e; and cumulative deviation cost w as PfxtNode(e;, w). For
simplicity, we leave out the parent node member mentioned in

DAC 24, June 23-27, 2024, San Francisco, CA, USA

Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo, and Shiju Lin

[Prefix Tree | Queue | Prefix Tree | Queue | PrefixTree | Queue J
e [eg] [ez]es|es] [leslesles]es]
+10[+16) [+9]+18+24] L THI6 +9[+18]+24)

Legend R Updated --push children----- 5-»»--push children----
egen ’—L} +10
To Re-spur Re-spur List: (@,61)
(a) (©
[Queue] [Queue] (Prefix Tree | Queue J
+9 |+18[+2/ 598 +18+2159H
.
mark self as removed +/8) Re-spur List:(¢ | e/) (Fr24)e3)
(@ (e) (f)

Figure 4: Illustration of Algorithm 2 (continuation of Figure 3(b)), a key subroutine of the proposed incremental prefix tree
expansion algorithm. (a) Prefix tree and a queue that has PfxtNode(e, 8) and its siblings. (b) e; is still a non-suffix tree edge, so
we update PfxtNode(ey, 8)’s cumulative deviation cost to 14. (c) e¢ is now a suffix tree edge, so we mark PfxtNode(eg, 10) and its
children as removed. We then create a re-spur list item indicating that ¢ will skip e; during re-expansion. (d) eg is discovered
later than eg, so we mark PfxtNode(eg, 16) and its children as removed. (e) Similar to (b), we update PfxtNode(e3, 9)’s cumulative
deviation cost to 21. (f) Similar to (c), we mark PfxtNode(eg, 18) as removed. We then create a re-spur list item indicating that

PfxtNode(ez, 14) will skip e3 during re-expansion.

Table 1, since it is already illustrated. Figure 4(a) illustrates the
prefix tree for four paths and a queue containing PfxtNode(e;, 8)
and its siblings. Note that a four-critical path query may generate
more than four nodes [2], so we see eight nodes in Figure 4(a).
Figure 4(b) illustrates that we pop PfxtNode(e;, 8) from the queue.
Since ej is still a non-suffix tree edge, PfxtNode(e;, 8) remains
¢’s child. We update PfxtNode(e;, 8)’s cumulative deviation cost to
0+9—(—5) = 14 using the shortest path values in Figure 3(b). We also
push PfxtNode(e;, 14)’s children to the queue. Figure 4(c) illustrates
that we pop PfxtNode(egs, 10) from the queue. Since e4 is now a suffix
tree edge, PfxtNode(es, 10) should be removed. We create a re-spur
list item indicating that PfxtNode(es, 10)’s parent ¢ will skip e;
during re-expansion. We should remove PfxtNode(eg, 10)’s children
as well, and we push them to the queue. Figure 4(d) illustrates that
we pop PfxtNode(es, 16) from the queue. PfxtNode(es, 16)’s parent
¢ belongs to a re-spur list item, indicating that one of PfxtNode(es,
16)’s left siblings is removed. Since PfxtNode(eg, 16) is discovered
later than this removed sibling, we remove PfxtNode(es, 16) and
its children. Figure 4(e)—(f) repeat the same procedure and finally
produce two re-spur list items. Lemma 2 concludes Algorithm 2.
Lemma 2. Algorithm 2 takes O(k log k) time complexity.
Algorithm 3 describes another subroutine, which redesigns the
Spur algorithm in [2] to support incrementality. Algorithm 3 ex-
pands the prefix tree from a given prefix tree node. Our algorithm
includes a set of pruned edges pes as input, which allows us to
minimally expand the prefix tree from a given node by pruning pes
during expansion (lines 1 and 5). Lemma 3 concludes Algorithm 3.
Lemma 3. Algorithm 3 takes O(n + mlogk + k) time complexity.
Using Algorithms 2-3 as primitives, Algorithm 4 describes the
incremental prefix tree expansion algorithm. The goal of Algorithm
4 is to retrieve the top-k critical paths in ascending order of path
delay by incrementally expanding the prefix tree. Since we are

Algorithm 3: SpurPruned(pfx, d, O, pes)
Input: a prefix tree node pfx, destination vertex d, priority
queue Q, a set of pruned edges pes
1 mark all edges in pes as pruned in the given graph;
2 u « tail[pfx.e];

3 while u # d

4 Foreach e € fanout(u)

5 if tail[e] = successor[u] or e is pruned then

6 | continue;

7 pfx_new < new PfxtNode(pfx, e, pfx.w + dvi[e]);
8 Q.enqueue(pfx_new);

9 u « successor[u];

10 unmark all edges in pes in the given graph;

retrieving paths incrementally, we transfer the essential information
from the previous CPG query, including a priority queue Q of nodes
keyed on their cumulative deviation costs (line 1) and the dequeued
nodes A (line 2). We initialize the solution path set and a queue
Q (line 3). We generate a re-spur list R using Algorithm 2 (line 4).
Since Algorithm 2 invalidates O's heap property, we heapify O (line
5). With R, we can reuse updated nodes from the previous CPG
and minimally expand the prefix tree (line 6:7). In OpenTimer [2],
this critical path retrieval procedure always satisfies the condition
where the nodes in A have cumulative deviation costs no more than
the minimum cumulative deviation cost in Q. However, Algorithm 2
may cause A to violate this condition. To solve this, we recover
unremoved paths from A and record the maximum cumulative
deviations cost max_dc in A (line 8); we also expand any leaf nodes
in A, because they may have undiscovered children. If in the path
search loop (line 9:18), we see a node that has a cumulative deviation

Ink: Efficient Incremental k-Critical Path Generation

cost less than max_dc (line 16), meaning the above condition is still
violated, we continue executing the loop. The path search loop
iteratively dequeues a node pfx (line 10), recovers the path (line
14:15), and then expands the search space for pfx (line 18) until
we retrieved enough paths and the above condition is fulfilled.
Combining Lemma 2-3, we draw the following theorem.
Theorem 2. Algorithm 4 takes O(n + m + k) space complexity and
O(kn + kmlogk + k?) time complexity.

Proor. The space complexity of Algorithm 4 involves O(n + m)
for storing the circuit graph, O(n) for the suffix tree, O(k) for the
prefix tree, and O(k) for the re-spur list. Hence, the total space
complexity is O(n + m + k). We perform Algorithm 3 up to k iter-
ations to obtain the top-k critical paths. Therefore, the total time
complexity is O(kn + kmlog k + k?).]

Algorithm 4: IncPfxt(d, k, P)
Input: destination vertex d, path count k, affected prefix
tree nodes P
Output: solution set ¥ of critical paths

Q « priority queue of nodes from the previous CPG;

[

A « transfer dequeued nodes from the previous CPG;

3V, Q¢

R « MarkPfxtNodes(P, Q);

O-heapify();

Foreach r e R
‘ SpurPruned(r.pfx, d, Q r.pes);

num_paths, max_dc, ¥ « recover paths from nodes that are
unremoved in A and record max cumulative deviation cost;

while Qis not empty

10 pfxc — Q.dequeue();

[N}

'S

w

o

=

®

©

11 if pfx is removed then

12 ‘ continue;

13 num_paths < num_paths + 1;
14 path « recover path from pfx;

15 ¥ «— ¥ U path;

16 if pfx.w > max_dc and num_paths > k then
17 ‘ break;

18 SpurPruned(pf, d, 0, ¢);

9 return ¥;

-

4 EXPERIMENTAL RESULTS

We implemented Ink in C++ and compiled it with GCC 11.4.0 on
a 4.8-GHz 64-bit Linux machine of an Intel Core i5-13500 Pro-
cessor. We enable the optimization flag -03 and C++17 standard
-std=c++17. We select seven large circuits generated by Open-
Timer [2] to evaluate Ink’s performance. We only compare the
proposed algorithms with OpenTimer beacuse its CPG algorithm
outperformed existing methods.

4.1 Opverall Performance Comparison

Table 2 compares the suffix tree update runtime, prefix tree ex-
pansion runtime, total runtime, and memory usage between full

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

CPG and incremental CPG (Ink) on seven circuits. For each circuit,
we measure the performance of Ink by taking the average of 100
incremental iterations that simulate a gate-sizing optimization algo-
rithm developed atop OpenTimer [2]. For wb_dma, tv80, ac97_ctrl,
aes_core, and des_perf, we use their maximum path counts for each
CPG call. For vga_lcd and netcard, whose maximum path counts are
enormous, we use sufficiently large path counts (one million and
five million) for each CPG call. Each incremental iteration randomly
resizes a gate to alter the edge weight of the circuit graph and issue
a CPG call to trigger a timing update. Full CPG refers to the update
that re-runs the whole CPG without incrementality, which is how
OpenTimer [2] deals with circuit graph updates, while incremen-
tal CPG refers to the proposed method. As shown in Table 2, Ink
outperforms full CPG in all circuits. Since Ink partially reuses the
previous CPG results, it is faster and uses less memory than full
CPG. For example, Ink is 22.4x faster and uses 31% less memory in
vga_lcd. We do not compare accuracy because our algorithms can
produce the same solutions as the golden solutions produced by
OpenTimer.

Figure 5 plots the runtime distribution of full CPG and Ink across
50 incremental iterations. Depending on the circuit modifier, the
runtime per incremental iteration can vary. Regardless of the vari-
ation, we see a consistent runtime gap between full CPG and Ink.
Taking netcard as an example, Ink is 8.3 faster than full CPG at
the 22" incremental iteration.

netcard
f‘
6,000 | [\ |-~ mk H
3 @ S A
E 400} 1B ﬁf " ity
° o 4,000f
E ~FullceG | B :
= | - Ik | E
g 200 g 2000}
& &
ol] (U]
0 10 20 30 40 50 0 10 20 30 40 50

Incremental iteration Incremental iteration

Figure 5: Runtime distribution of full CPG and Ink across 50
incremental iterations for des_perf and netcard.

des_perf netcard
9 e 9 e
8F 8F
7 s
%6* 1 e 6f
© 51 1 —g St
8 4f 18 4f
9 a,
a3l a3
2} 2t
1 1
0 0

10° 10* 10% 10° 10* 10° 10° 107
Path count

10° 10' 10% 10 10* 10° 10°
Path count

Figure 6: Speedup vs path count for des_perf and netcard.

4.2 Performance at Different Path Counts

Figure 6 demonstrates the speedup of Ink over full CPG at different
path counts for des_perf and netcard. As we increase the path count,

DAC 24, June 23-27, 2024, San Francisco, CA, USA

Che Chang, Tsung-Wei Huang, Dian-Lun Lin, Guannan Guo, and Shiju Lin

Table 2: Overall performance comparison between full CPG (OpenTimer [2]) and incremental CPG (Ink).

Full CPG (OpenTimer [2]) Incremental CPG (Ink)
Circuit |V| | E| Path count Sfxt Pfxt Total Mem Sfxt Pfxt Total Mem
() (ms) (ms) (ms) (MB) (ms) (ms) (ms) (MB)
wb_dma 12602 8184 32 13 39 52 231 04 (33%) 0.6 (65X) 1(5.2%) 17.8 (-23%)
tv80 16681 11364 45 2 6.3 8.3 30.4 0.5 (4%) 1.1 (5.7x) 1.6 (5.2X) 22.6 (-26%)
ac97 ctrl 40210 25803 103 7 194 264 643 17 (41x) 3 (6.5X) 47 (5.6X) 47.2 (-27%)
aes_core 66221 43022 172 132 561 693 1047 3.3 (4x) 6 (9.4%) 9.3(7.5X) 75.9 (-28%)
des_perf 295808 189276 757 82.1 260.3 342.4 447.1 13.4 (6.1%) 30.8 (8.5%) 44.2 (7.7X) 320.8 (-28%)
vga_led 397806 473772 1000 99.6 712 8116 7787 57(17.5x) 30.5(23.3X) 36.2(22.4X) 538.5 (-31%)
netcard 3901343 2402788 5000 1612.4 3012.1 4624.5 4308.9 440.2 (3.7X) 209.5(14.4X) 649.7 (7.1x) 3466.2 (-20%)
Sfxt: suffix tree update runtime Pfxt: prefix tree expansion runtime
5 des_perf 5 netcard realistically one incremental iteration involves only modifying far
T T less than 1% of the gates in the circuit. On the contrary, Ink is still
4) 14 1 faster at 100% graph modification rate. For example, Ink is almost 2x
= 1= | faster in netcard at 100% graph modification rate. This is because
@ § even if the whole circuit is updated, it is very likely that many
&4 1 & | critical path traces remain the same. Ink only needs to update the
1 1 path delays, which largely reduces memory reallocation overhead.
020 0 0 80 100 ° 0 20 40 60 80 100 4.4 Speedup Breakdown of IncSfxt and IncPfxt

Graph modification rate (%) Graph modification rate (%)

Figure 7: Speedup vs incrementality for des_perf and netcard.

Path count = 1M

Path count = 5M
O IncSfxt
73.8%

W D Il’lCPth h

Figure 8: Speedup breakdown of Algorithm 1 (IncSfxt) and
Algorithm 4 (IncPfxt) at different path counts.

the speedup of Ink first decreases and then increases after a certain
path count. For example, in des_perf, the speedup decreases from
over 3X to less than 2X between one path and 100K paths, and
then the speedup increases after 100K paths. This is because when
the path count is small, Algorithm 1 is the major contributor to
Ink’s overall speedup. As we increase the path count, prefix tree
expansion starts to dominate the performance, but the path count
is not large enough for Algorithm 4 to become effective; thus, Ink’s
overall speedup decreases. As we further increase the path count,
Algorithm 4 exhibits a large speedup over full prefix tree expansion;
thus, Ink’s overall speedup increases.

4.3 Performance at Different Incrementalities

Figure 7 demonstrates the speedup of Ink over full CPG at different
graph modification rates for des_perf and netcard. As we increase
the graph modification rate, the speedup drops accordingly. For
example, Ink’s speedup drops from 3.6X to 1.8X in netcard. This is
because the higher the graph modification rate, the more nodes that
Ink needs to visit in Algorithm 2. Ink is most effective at a low graph
modification rate. For example, Ink is over 4X faster in des_perf at
1% graph modification rate. This emphasizes Ink’s benefit because

Figure 8 demonstrates the speedup breakdown of Algorithm 1 (IncS-
fxt) and Algorithm 4 (IncPfxt) for netcard. As we increase the path
count from one million to five million, the speedup of Algorithm 4
becomes more remarkable. For example, the speedup of Algorithm
4 increases from 26.2% to 70.5%. This is because the efficiency of
Algorithm 1 is constrained by the size of the affected subgraph of
the suffix tree.

5 CONCLUSION

In this paper, we have introduced Ink, an efficient incremental k-
critical path generation algorithm. Compared to a state-of-the-art
timer, Ink is up to 22.4X faster and consumes up to 31% less memory
when generating one million critical paths on a large design. We
plan to extend Ink to a parallel target using [3, 4].

ACKNOWLEDGMENTS

This project is supported by NSF grants 2235276, 2349144, 2349143,
2349582, and 2349141.

REFERENCES

[1] Jayaram Bhasker and Rakesh Chadha. 2009. Static Timing Analysis for Nanometer
Designs: A Practical Approach. Springer.

Tsung-Wei Huang, Guannan Guo, Chun-Xun Lin, and Martin D. F. Wong. 2021.
OpenTimer v2: A New Parallel Incremental Timing Analysis Engine. IEEE TCAD
(2021).

Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. 2019. Cpp-
Taskflow: Fast Task-based Parallel Programming using Modern C++. In IEEE IPDPS.
974-983.

Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing System. In IEEE
TPDS, Vol. 33. IEEE, 1303-1320.

Tsung-Wei Huang and Martin D. F. Wong. 2015. OpenTimer: A High-Performance
Timing Analysis Tool. In IEEE/ACM ICCAD. 895-902.

Pei-Yu Lee, Iris Hui-Ru Jiang, Cheng-Ruei Li, Wei-Lun Chiu, and Yu-Ming Yang.
2015. iTimerC 2.0: Fast incremental timing and CPPR analysis. In ACM/IEEE
ICCAD.

Chaitanya Peddawad, Aman Goel, Dheeraj B, and Nitin Chandrachoodan. 2015.
iitRACE: A memory efficient engine for fast incremental timing analysis and clock
pessimism removal. In ACM/IEEE ICCAD.

	Abstract
	1 Introduction
	2 Background
	2.1 Incremental Critical Path Generation
	2.2 Implicit Path Representation

	3 Ink: Incremental k-Critical Path Generation
	3.1 Incremental Suffix Tree Update
	3.2 Incremental Prefix Tree Expansion

	4 Experimental Results
	4.1 Overall Performance Comparison
	4.2 Performance at Different Path Counts
	4.3 Performance at Different Incrementalities
	4.4 Speedup Breakdown of IncSfxt and IncPfxt

	5 Conclusion
	Acknowledgments
	References

