G-kway: Multilevel GPU-Accelerated k-way Graph Partitioner

Wan Luan Lee
University of Wisconsin-Madison
Madison, USA
wanluan.lee@wisc.edu

Dian-Lun Lin
University of Wisconsin-Madison
Madison, USA
dianlun lin@wisc.edu

Tsung-Wei Huang
University of Wisconsin-Madison
Madison, USA
tsung-wei.huang@wisc.edu

Shui Jiang Tsung-Yi Ho Yibo Lin
The Chinese University of Hong Kong The Chinese University of Hong Kong Peking University
Hong Kong, China Hong Kong, China Beijing, China
sjiang22@cse.cuhk.edu.hk tyho@cse.cuhk.edu.hk yibolin@pku.edu.cn
Bei Yu

The Chinese University of Hong Kong
Hong Kong, China
byu@cse.cuhk.edu.hk

Abstract

Graph partitioning is important for the design of many CAD
algorithms. However, as the graph size continues to grow, graph
partitioning becomes increasingly time-consuming. To overcome
these challenges, we propose G-kway, an efficient multilevel GPU-
accelerated k-way graph partitioner. G-kway introduces an effective
union find-based coarsening and a novel independent set-based
refinement algorithm to significantly accelerate both the coarsening
and uncoarsening stages. Experimental results have shown that
G-kway outperforms both the state-of-the-art CPU-based and GPU-
based parallel partitioners with an average speedup of 8.6X and 3.8,
respectively, while achieving comparable partitioning quality.

ACM Reference Format:

Wan Luan Lee, Dian-Lun Lin, Tsung-Wei Huang, Shui Jiang, Tsung-Yi Ho,
Yibo Lin, and Bei Yu. 2024. G-kway: Multilevel GPU-Accelerated k-way Graph
Partitioner. In 61st ACM/IEEE Design Automation Conference (DAC "24), June
23-27, 2024, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3649329.3656238

1 Introduction

Graph partitioning is important for the design of efficient
computer-aided design (CAD) algorithms because it allows an algo-
rithm to break down a problem into smaller and manageable pieces.
Among various partitioning frameworks, multilevel partitioning is
the most popular for large-scale graphs due to its high partitioning
quality and fast runtime. A typical multilevel partitioner iteratively
coarsens the original graph into a smaller representation. When the
graph becomes small enough, the partitioner iteratively restores the
graph back to a larger one, followed by a refinement algorithm.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06....$15.00

https://doi.org/10.1145/3649329.3656238

However, as the size of circuit graphs continues to increase, graph
partitioning becomes time-consuming. To alleviate the long runtime,
existing partitioners [7] have leveraged multi-core CPUs to paral-
lelize the partitioning algorithm. Despite some runtime improve-
ments, the speedup is typically limited to only 8-16 CPU threads [7].
On the other hand, modern GPUs offer a massive amount of par-
allelism and memory bandwidth that present an opportunity to
accelerate graph partitioning to a new performance degree. For in-
stance, [1] proposes a CPU-GPU-hybrid multilevel graph partitioner
that dynamically performs the work on either the GPU or CPU. How-
ever, their approach requires frequent data transfers between CPU
and GPU, resulting in significant runtime overhead. To address this
problem, GKSG [2] performs the entire graph partitioning on GPU.
However, their performance is far from optimal due to limited par-
allelism. Specifically, GKSG’s refinement algorithm can only move
a few vertices (e.g., 8) in parallel due to limited GPU memory, as it
counts on an exponential enumeration to find a valid refinement. Fur-
thermore, GKSG’s coarsening algorithm requires many sequential
matching iterations, largely underutilizing the massive parallelism
in GPU. As a consequence, GKSG reported only an average 1.9x
speedup over a CPU-parallel partitioner [2].

To overcome these problems, we propose G-kway, a new GPU-
accelerated k-way graph partitioner. G-kway introduces a union
find-based coarsening algorithm that can merge many vertices si-
multaneously to substantially reduce the number of coarsening levels
while keeping good partitioning quality. Additionally, G-kway in-
troduces a new independent set-based refinement algorithm that
can refine many vertices in parallel, largely reducing the number of
refinement iterations. To further optimize the performance of our
GPU kernels, G-kway applies various modern GPU optimization
techniques, such as pinned memory access and warp-level primitives.

We have evaluated the performance of G-kway on industrial
circuit graphs and compared our results with two state-of-the-art
parallel graph partitioners, CPU-based mt-metis [7] and GPU-based
GKSG [2]. On average, experimental results have shown that G-kway
outperforms 32-threaded mt-metis and GKSG by 8.6x and 3.8 faster,
respectively, with comparable cut sizes.

https://doi.org/10.1145/3649329.3656238
https://doi.org/10.1145/3649329.3656238

2 Problem Definition and Notation

Given an undirected graph, G = (V, E), where V is a set of vertices,
and E is a set of edges. Each element in E is of the form e = (u,v)
which represents the connection between u and v in V. For a vertex
v € V, we denote the weight of v by W, while for an edge e € E, we
denote the weight of e by W,. For a vertex v € V, its adjacent vertex
set is denoted as adj(v). Given k, if P = {p1, p2, ..., px } is a disjoint
partition of V, we call P a k-way partition. For v € V, we define
P(v) =iifv € p;. We define the cut size as Yo (4,0) e E,P(1)£P(v) We-
Cut size is widely used for evaluating the quality of a partition since
it represents the interconnect complexity among partitions. The
partition weight of p; is defined as W), = Yvep; Wy. The goal of the
graph partition problem is to find a k-way partition that satisfies
the balance constraint while minimizing the cut size. The balance
constraint limits the maximum weight of p; as Wj, < (1+¢) M
where 0 < € < 1 and € is the imbalance ratio given by applications.

3 GPU Multilevel k-way Partitioner
Figure 1 shows the overview of G-kway that consists of three
main stages: coarsening, initial partition, and uncoarsening.

o Coarsening. The goal is to coarsen the graph into a smaller rep-
resentation level by level while preserving the original graph’s
structure. The coarsening level continues until the graph size
becomes smaller than a certain threshold (typically W).
We develop a union find-based coarsening that substantially re-
duces the number of coarsening levels while still maintaining a
good representation of the original graph structure.

Initial partition. The goal is to create an initial partition from

the coarsest graph. We utilize single-threaded Metis [5] for the

initial partition. Since the coarsest graph is much smaller than
the original graph, the initial partition stage is very fast and does
not benefit much from CPU/GPU parallelism.

e Uncoarsening. The goal is to iteratively restore the coarsened
graph back to its previous graph and reduce the cut size of a
coarsened graph by moving each vertex to a partition (i.e., refine-
ment). The uncoarsening level continues until the graph size is
the same as the original graph. We develop an efficient indepen-
dent set-based refinement algorithm that reduces the cut size by
moving many vertices among partitions in parallel.

Multilevel graph partitioning requires many iterative control-
flow operations performed on the CPU to determine termination.
Such frequent CPU-GPU data transfers can result in significant
runtime overhead. To address this issue, G-kway utilizes CUDA
pinned memory for control-flow data to avoid swapping out memory
to disk by the operating system. In both coarsening and uncoarsening
stages, we utilize modern warp-level primitives for our GPU kernels
to further optimize the performance. In terms of graph storage, G-
kway utilizes the commonly used compressed sparse row (CSR) data
structure [2] for efficient GPU computing.

3.1 Union Find-based Coarsening with Scoring
Most existing parallel multilevel graph partitioners such as
GKSG [2] implement a parallel Heavy Edge Matching (HEM) al-
gorithm that finds matching pairs to coarsen the original graph.
Specifically, each vertex searches for a neighbor with the heaviest
edge to form a matching pair and coarsen the two vertices into a
coarsened vertex. However, this matching algorithm requires both

1 I
! 4 Union find-based coarsening N !
' Q Sclect neighbors » Update graph :
1 1
: @ Perform union find « - : 1
AN J Coarsening 1

(Independent set-based refinement \

0 [F ind an independent set of vertex movcs]

e[Calculate delta partition weights]

Select vertex moves]j

Figure 1: Overview of G-kway that consists of three main
stages: coarsening, initial partition, and uncoarsening.

vertices to choose each other. If both vertices have many neighbors
connected with the same heaviest edges, they may choose differ-
ent neighbors for matching, preventing the formation of matching
pairs and leaving many vertices unable to match. The unmatched
vertices continue to search with their remaining neighbors in the
next matching iteration. Such an iterative algorithm largely under-
utilizes the massive parallelism in GPU. Furthermore, GKSG can
only coarsen two vertices per matching pair, thus requiring many
coarsening levels until the size of the coarsened graph is smaller
than the threshold. Figure 2 shows the comparison between GKSG’s
coarsening algorithm and ours. As shown in (a), GKSG can only
match v1 and vy in the first iteration, leaving the unmatched vertices
v3 and vy for the next matching iteration.

Figure 2: Examples of three coarsening methods for one itera-
tion, including (a) Heavy Edge Matching (HEM) by GKSG, (b)
Union find-based coarsening without scoring, and (c) Union
find-based coarsening with scoring. Each vertex has a red ar-
row pointing to its selected neighbor. Vertices circled in the
same color are coarsened into a coarsened vertex.

To address these issues, our initial solution is to merge vertices
into subsets and coarsen all vertices in the same subset into a coars-
ened vertex. Each vertex finds a neighbor with the heaviest edge. If
that neighbor belongs to another subset, we merge the vertex into
the same subset. This union find-based strategy eliminates the need
for iteratively searching neighbors to match, ensuring each vertex
can find a neighbor to merge in only one iteration. Also, since we
merge multiple vertices per subset, it requires much fewer coars-
ening levels than GKSG. However, this strategy can cause highly
imbalanced subsets that largely impact refinement quality in the
next stage since many vertices may all be merged into the same
subset. As shown in 2 (b), v; and v3 choose vz, vz chooses v, and vy
chooses v3. While the solution allows each vertex to find a neighbor
in one iteration, all vertices are eventually merged together.

To this end, we propose a union find-based coarsening with scor-
ing. Each vertex calculates the score for each connected edge and

selects a neighbor with the highest score to form a subset. Specifi-
cally, when a vertex u has multiple neighbors with the same heaviest
edge, we prioritize the neighbor of u with the lower degree by assign-
ing a higher score to the edge connected to this neighbor. Figure 2
(c) shows our union find-based coarsening with scoring. 3 selects
v4 instead of 02 since v4 has lower degree than v2, resulting in two
balanced subsets. Our coarsening algorithm consists of two steps:
select neighbors and perform union find.

3.1.1 Select neighbors. We first find a neighbor connected by the

edge with the highest score for each vertex. Given a source vertex
u, we define the score of its edge (u,0) as s(u,0) = ¢ X Wy,) —
degree(v), where degree(v) is the number of neighbors of v, ¢ is a
constant no less than the maximum degree of the graph, and W, ,,)
is the edge weight of e = (u,v). Algorithm 1 shows our neighbor
selection algorithm which leverages an efficient Warp segmentation
technique [6]. We assign 32 consecutive vertices and their edges
to each GPU warp. Each GPU thread then processes an edge (u,v)
by finding the source vertex (line 5) and calculating the edge score
(line 6). Next, threads whose assigned edges belong to the same
source vertex perform parallel reduction to identify the edge with the
highest score (line 8). During reduction, we employ CUDA warp-level
primitives, __shfl_up_sync, to efficiently exchange scores among
threads in the same warp. Using the warp-level primitive allows
threads in the same warp to share data through registers, which is
much faster than through GPU global or share memory [6]. Finally,
we map each thread to a vertex, and each thread is responsible for
writing a vertex’s neighbor connected by the highest-score edge to
the array selected_nbr in the GPU’s global memory (line 10).

3.1.2 Perform union find. After selecting the highest score neighbor
for each vertex, we perform union_find to merge vertices into a
subset. We maintain an additional array, d_subset_ID, to record
each vertex’s subset ID, where each vertex’s subset ID is initialized
to its vertex ID. We assign each vertex v; to a GPU thread; then,
each thread gets its assigned vertex’s selected neighbor from the
previous step stored in selected_nbr (line 15), and its vertex and
selected neighbor’s subset IDs from d_set_ID (lines 16-17). Each
thread then merges vertices by comparing its assigned vertex and
the selected neighbor’s subset ID and changing the larger ID to the
smaller one (lines 18-21). At the end of each iteration, we employ
CUDA warp-level voting primitives, __any_sync, to efficiently check
if any thread in the warp updates the subset ID (line 23). We then
repeat this process until no vertex’s subset ID is updated. Finally, we
coarsen vertices with the same subset ID into a coarsened vertex to
derive the coarsened graph.

3.2 Independent Set-based Refinement

The goal of the refinement algorithm is to reduce the cut size by
moving a vertex to a partition, seeking the maximum gain in cut
size reduction. We define the gain of a vertex u for a partition p;
as gain(u, p;) = ed(u, p;) — id(u), where u ¢ p;. id(u) represents
the internal degree of u, which is the sum of the weights of each
edge (u,v) such that u and v are in the same partition. ed(u, p;)
represents the external degree of u to partition p;, which is the
sum of the weights of each edge (u,v) such that v is in partition p;.
In refinement, we only consider moving a vertex at the partition
boundary (i.e., one of its neighbors is located in a different partition).

Algorithm 1 Union find-based coarsening with scoring

1: /* select neighbors: assign 32 vertices and their edges to a GPU warp */
2: parallel for each thread in a warp {
3 while (there are more edges to process) {
4 get an edge e; = (u, v) to process
5: find the assigned edge’s source vertex u
6 s(u,) « ¢ X W(y,) - degree(v)
7 /* using __shfl_up_sync */

8 reduce on the scores with threads have the same source vertex
9 }

10: write a vertex u’s selected neighbor to selected_nbr array

11: }

12: /* union find: assign each vertex v; to a GPU thread T; */

13: while (any threads is still updating) {

14: parallel for each thread in a warp {

15: nbr « selected_nbr[v;]

16: v;_subset_ID « d_subset_ID[v;]

17: nbr_subset_ID «— d_subset_ID[nbr]

18: if (v;_subset_ID > nbr_subset_ID) then

19: atomicMin(&d_subset_ID[v;], nbr_subset_ID)
20: else if (v;_subset_ID < nbr_subset_ID) then

21: atomicMin(&d_subset_ID[nbr], v;_subset_ID)
22: /* using __any_sync */

23: check if any thread in a warp updates subset_IDs

24: }

25: }

Moving vertices not at the partition boundary cannot have positive
gain, as ed(u, p;) is always zero.

To move multiple vertices in parallel while ensuring that the move
results in the largest gain, GKSG’s refinement algorithm enumerates
all possible moves [2]. Each move represents a combination of ver-
tices, where each vertex either moves to its destination partition or
not. For example, to move eight vertices in parallel, GKSG will launch
a GPU kernel with 28 x 32 threads to calculate 28 possible moves,
where each move is verified by a GPU warp of 32 threads. This ex-
ponential enumeration algorithm limits the number of vertices that
can be moved in parallel due to the limited GPU memory.

To overcome this problem, we propose an independent set-based
refinement algorithm that can move many vertices in parallel. Our
algorithm does not exponentially enumerate all possible moves,
thus enabling much more parallelism without being constrained
by GPU memory limitations. Algorithm 2 shows our refinement
algorithm, which contains three steps: find an independent set of
vertex moves, calculate delta partition weights, and select vertex moves.
We iteratively perform our refinement algorithm until no vertex
with positive gain can be moved.

3.2.1 Find an independent set of vertex moves. Moving multiple
vertices in parallel is challenging. Even though each vertex has a
positive gain, the overall cut size after all moves can remain or even
increase due to interconnections among vertices. Furthermore, mov-
ing connected (i.e., adjacent) vertices in parallel requires expensive
synchronization to keep updating gains. To address these issues, we
find an independent set of vertices to move in parallel. We define
each vertex move as mzrc’d“, a struct that consists of a vertex ID (u),
its source partition ID (src), its destination partition ID (dst), and the
gain. We then use a move buffer to store vertex moves.

Algorithm 2 presents our independent set-based refinement al-
gorithm. To find an independent set of vertex moves, we distribute
each vertex in the graph to a GPU thread, where each GPU thread
determines whether its vertex is at the partition boundary. If the
vertex is at the boundary, the GPU thread finds a legal destination
partition for that vertex (line 7).

We say a vertex has a legal destination partition if there exists one
destination partition such that moving the vertex to that partition
has a positive gain without violating the balance constraint. If a
vertex has a legal destination partition, the GPU thread checks if any
of its neighbors also have a legal destination partition (line 9). If no
such neighbor exists, the GPU thread creates a vertex move for the
vertex and inserts it into the move buffer (lines 10-12). Otherwise, we
compare that vertex with its neighbors’ IDs. We then only create a
vertex move for the vertex with the smallest ID and insert it into the
move buffer (lines 13-16). This organization ensures that no adjacent
vertices are inserted into the move buffer.

Algorithm 2 Independent set-based refinement

1: while (true) {
2 /* find an independent set of vertex moves */
3 /* assign each vertex v; to a GPU thread T; */
4 parallel for each thread {
5: if v; is not at a partition boundary then
6 return
7 dst « find a legal destination partition with the largest gain
8 if (dst exists) then
9: nbors < nbr in adj(v;) has a legal destination partition
10: if (nbors is empty) then
11: create a vertex move for v;
12: insert the vertex move to the move buffer
13: else
14: if (v;.ID < each nbr.ID in nbors) then
15: create a vertex move for v;
16: insert the vertex move to the move buffer
17: }
18: if (the move buffer is empty) then
19: return
20: calculate delta partition weights ~ /* Section 3.2.2 */
21: select vertex moves /* Section 3.2.3 */
22: }
23: return

After finding an independent set of vertex moves, we need to
select a subset of them such that applying those vertex moves still
satisfies the balance constraint. However, finding the best subset
still encounters the exponential enumeration problem (i.e., to select
or not to select per vertex move). To address this challenge, we
design a sequence-based strategy that first sorts each vertex move
by gain to form a sequence and selects the longest sub-sequence of
vertex moves that satisfies the balance constraint. While this strategy
may not be the absolute best subset, selecting vertex moves from
the largest gain ensures we prioritize the vertex moves that make
a substantial contribution to overall cut size improvement. In the
following sections, we present how to find that sub-sequence of
vertex moves.

3.2.2 Calculate delta partition weights. In this step, we sort each
vertex move by gain in descending order and calculate the delta
partition weight of each vertex move to check the balance constraint.

We define the delta partition weight of a vertex move mlsfc’dSt for a
partition p; as follows:

Wy, i =dst
5,~(mflrc’d3t) =< =W, i=src
0, otherwise

We maintain a k-segment array, del_p_wgt, where each segment
initially stores the delta partition weight of each vertex move for
a partition. The segment size is the minimum of the total num-
ber of vertex moves and 1024. Since most modern GPUs have 1024
threads per GPU block, calculating more than 1024 vertex moves
needs multiple blocks for each segment, which requires expensive
synchronization across multiple blocks.

Figure 3 shows an example of our algorithm for six vertex moves
with k = 2. Each element in del_p_wgt records the delta partition
weight of each of the six vertex moves, where the first six elements
(i-e., segment 0) and the last six elements (i.e., segment 1) are for
partitions pg and p1, respectively. We then perform a parallel scan
on del_p_wgt to accumulate delta partition weights for each parti-
tion. Specifically, after applying the parallel scan, the j th element in
segment s stores the accumulated delta partition weight from the
first to the j* vertex moves for partition s (i.e., a sub-sequence from
the first to the j vertex moves). This accumulation allows us to
quickly access each partition’s accumulated delta partition weight if
we apply all vertex moves in a sub-sequence of vertex moves. We
then use these accumulated results to find the longest sub-sequence

m® m
2
calculate Plo

of vertex moves in the next step.
mg® 0 mt
i
[1]o] of1][r]o]
P1
delta A

i | ot T3 5 |« R

0,1

1,0 1,0
my mg

1]
0

sorted u | gain
vertex moves |src | dst

weights segment 0 segment 1
. parallel scan parallel scan

del p_wgt
= 2 -50-2
L delpngt [3] o 5] 2] 6

move GPU

maximum | threqd ID

vertices

B: balanced (W, +4; < 14)
IB: imbalanced

L apply the first five vertex moves

Figure 3: Illustration of the process to construct del_p_wgt and
bal_seq with k = 2 under six vertex moves. Assuming current
partition weights are 13 and 10 for p and p1, respectively, with
a balance constraint of 14.

Algorithm 3 presents the calculation of delta partition weights. We
first sort vertex moves in the move buffer by gain in descending order
in parallel using a parallel sorting algorithm (line 1). We assign each
vertex move, mf,rc’d“, to a GPU thread, T; based on its gid. Each GPU
thread first gets the index of a vertex move’s source (src_p_idx) and
destination partition (des_p_idx) in delta_p_wgt (lines 6-7). Each
GPU thread then writes the corresponding delta partition weights
to del_p_wgt (lines 8-9).

Finally, we apply our parallel scan kernel on each segment to
obtain the accumulated delta partition weights per partition (lines
13-18). We launch our parallel scan kernel with the number of GPU
blocks equal to k (i.e., number of partitions), where each GPU block
conducts a parallel scan simultaneously for its assigned segment (line
15). To further improve performance, we utilize a CUDA warp-level
primitive, __shfl_up_sync, for our parallel scan kernel.

y ——

Algorithm 3 Calculate delta partition weights

1: parallel sort the move buffer in descending order by gain
2: seg_size « min(#vertex_moves, 1024)

3: gid « thread’s global ID

4: /[*assign a vertex move m%¢ to a GPU thread T; based on its gid*/
5: parallel for each thread {

6: sre_p_idx — mS %t sre x seq_size + gid

7: dst_p_idx «— m3"S% dst x seq_size + gid

8: del_p_wgt[src_p_idx] « -W,

9: del_p_wgt[dst_p_idx] «— Wy,
10: return
11: }
12: /*assign segment seg; of del_p_wgt to a GPU block b;*/
13: parallel for each block {
14: seg;_start < b;.ID X seg_size
15: seg;_end « seg;_start + seg_size
16: parallel scan on seg; /* __shfl_up_sync */
17: return
18: }

3.2.3 Select vertex moves. In this step, we select the longest sub-
sequence of vertex moves while ensuring that applying those vertex
moves satisfies the balance constraint. This selection is based on our
accumulated delta partition weights.

As shown in Figure 3, we maintain a bal_seq array to record
the balanced condition for a sub-sequence of vertex moves. The
value stored at index j in bal_seq indicates whether applying the
sub-sequence of vertex moves from the first to the jth results in
a balanced partition. We then select the longest sub-sequence of
vertex moves by finding the largest index j such that bal_seq[j] = B
(balanced). Finally, we apply all vertex moves in the longest sub-
sequence of vertex moves.

In the example shown in Figure 3, each GPU thread checks if a sub-
sequence of vertex moves results in a balanced partition and writes
the result to the bal_seq array. Specifically, the first thread (Tp) checks
the balanced result for the sub-sequence of vertex moves of the first
vertex move, the second thread (T7) checks for the sub-sequence
of vertex moves from the first to the second vertex moves, and so
on. Each thread fetches the accumulated delta partition weight for
each partition from each segment in del_p_wgt, and checks whether
every partition’s current weight plus its accumulated delta partition
weight satisfies the balance constraint. For example, assuming the
balance constraint is 14, Ty fetches del_p_wgt[0] and del_p_wgt[6]
for po and p1, and checks if both Wpo + Ag < 14 and Wp1 + Ag <
14. If one of the partitions does not satisfy the balance constraint,
the thread writes 'IB’ (imbalanced); otherwise, 'B’ (balanced) to its
corresponding index in bal_seq.

After each thread finalizes bal_seq, we can observe that apply-
ing only the first vertex move results in an imbalanced partition
(bal_seq[0] = IB). However, applying the first five vertex moves

helps to restore the partition result back to balance (bal_seq[4] = B).
In the example shown in Figure 3, the longest sub-sequence is from
the first to the fifth vertex moves. Since the sequence of vertex moves
is sorted by gain in descending order, we can prioritize those vertex
moves that make a substantial contribution to the overall improve-
ment in cut size. Finally, we apply all vertex moves in the longest
sub-sequence of vertex moves in parallel.

4 Experimental Evaluation

We evaluate the performance of G-kway on six industrial circuit
graphs generated by [3, 4], where regular graphs are used to rep-
resent timing graphs. Additionally, we test G-kway’s performance
on four large non-circuit graphs (Idoor, NLR, delaunay, asia.osm)
from DIMACS Graph Partitioning Challenge to demonstrate our
applicability beyond CAD algorithms. Table 1 lists the statistics of
each graph. We implement G-kway using C++17 and CUDA 12.0 and
compile it with nvce on a host compiler of GCC-8 with -O3 enabled.
We run experiments on a 64-bit Linux machine with 40 Intel Xeon
Gold 6138 CPU cores at 2.00 GHz and 256 GB RAM. Our GPU is
A6000 with 48 GB global memory.

4.1 Baselines

We consider mt-metis v0.7.2 [7] and GKSG [2] as baseline parti-
tioners. Mt-metis is a state-of-the-art CPU-parallel graph partitioner
that renovates the sequential Metis algorithm [5] to a parallel target
using OpenMP. GKSG is a state-of-the-art GPU-accelerated graph
partitioner. Since GKSG is not open-source, we implemented its al-
gorithm on our GPU except for the initial partitioning. Because the
coarsest graph is typically very small, we do not observe any advan-
tage in using GPU. In all experiments, we set the imbalance ratio
to 3% and the coarsening threshold to W. These settings

are the same as the default values of mt-metis [7] and GKSG [2] that
can produce the best results. All data is an average of ten runs.

4.2 Overall Performance Comparison

Table 1 compares the overall runtime and cut size results among
G-kway, GKSG, and mt-metis at k = 2. We run mt-metis using 32
threads to achieve the best performance on our machine. In terms of
runtime, G-kway outperforms GKSG and mt-metis across all graphs,
with an average speedup of 3.8X and 8.6, respectively. The largest
speedups we observe are 9.1X over GKSG in asia.osm and 14.3X
over mt-metis in wb_dma. The significant improvement on runtime
demonstrates the promise of our union find-based coarsening and
independent set-based refinement algorithms. For the smallest graph,
ldoor, G-kway still achieves 6.5x and 1.6x over GKSG and mt-metis.
We attribute this significant speedup to our efficient coarsening
algorithm that efficiently coarsen many vertices per subset, thus
largely reducing the number of coarsening levels. Regarding cut
size, G-kway outperforms mt-metis and GKSG on nearly all graphs.
For instance, on vga_lcd, our cut size is 3.6X better than mt-metis.
We attribute this improvement to our coarsening algorithm, which
results in better-coarsened graphs. Similar improvements can be
found when comparing G-kway with GKSG.

4.3 Runtime Analysis

Figure 4 shows the speedup of G-kway over mt-metis (32 threads)
and GKSG with different k on two circuit graphs (wb_dma, tv80) and
two non-circuit graphs (delaunay, ldoor). Regardless of k, G-kway

Benchmark GKSG mt-metis G-kway Speedup vs Cut size improvement vs

Name # Vertices [# Edges Time (s) [Cut size | Time (s) [Cut size | Time (s) [Cut size | GKSG [mt-metis | GKSG mt-metis
pci_bridge | 12,394,539 15,809,551 0.89 5,114 3.21 4,773 0.27 4,293 3.5% 12.5% 1.2 1.1
vga_led 1,392,3210 24,904,499 1.33 5,661 3.80 17,237 0.46 4,737 2.9% 8.4% 1.2 3.6
wb_dma 19,686,000 20,236,297 1.21 7,131 3.81 7,844 0.32 6,915 4.6X 14.3X 1.0 1.1
usb 25,215,939 31,630,268 2.03 7,933 6.97 10,283 0.58 6,709 3.5% 12.0% 1.2 1.5
tv80 13,102,222 17,759,671 0.70 2,575 2.46 3,094 0.26 2,457 2.6X 9.3% 1.0 1.3
mem_ctrl 6,422,461 8,455,835 0.62 7,368 1.35 7,126 0.26 6,976 24X 5.3%X 1.1 1.0
1door 952,203 2,278,5136 0.84 25,676 0.21 25,088 0.13 25,578 6.5X 1.6X 1.0 1.0
NLR 4,163,763 12,487,976 0.16 4,432 0.34 4,262 0.15 4,705 1.1x 2.3X 0.9 0.9
delaunay 16,777,216 50,331,601 0.48 12,650 2.23 8,614 0.27 8,463 1.8X 8.3X 1.5 1.0
asia.osm 11,950,757 12,711,603 0.96 9 1.30 8 0.11 7 9.1X 12.4X 1.3 1.1
Average 3.8 8.6X 1.1 14

Table 1: Overall comparison of runtime (second) and cut size among GKSG, mt-metis (32 threads), and G-kway at k = 2. The last

four columns represent the speedup and cut size improvement

G-kway vs mt-metis

a o= B k=2 ® k=4 Tk=s |
2 10
5
a5
w

0

wb_dma tv80 delaunay ldoor

s G-kway vs GKSG
Ex =
g ¢ =1l
" —a =il

0 - =

delaunay ldoor

Figure 4: The speedup of G-kway over mt-metis (top) and

GKSG (bottom) at different k.

is always faster than mt-metis and GKSG. Compared to mt-metis,
G-kway achieves over 6x and 10x for more than 80% and 40% of
the partitioning problem instances, respectively. For large graphs,
such as wb_dma, our speedups are remarkable. The proposed GPU-
accelerated coarsening and refinement algorithms bring significant
performance benefits to parallel graph partitioning. Similar speedup
values can also be observed in the comparison with GKSG. For
instance, G-kway is 7x faster than GKSG on the wb_dma with k = 32.

4.4 Cut Size Analysis

Figure 5 shows the cut size improvement ratio of G-kway over
mt-metis and GKSG at k = {2,4, 8,16, 32}. In general, G-kway can
produce partitions with comparable quality to mt-metis and GKSG.
Compared to GKSG, G-kway finds partitions with significantly less
cut size for delaunay. We attribute this to our refinement algorithm.
GKSG can only move a few vertices (e.g., eight) at one refinement it-
eration due to the memory limitation of its exponential enumeration
algorithm. On the other hand, our refinement algorithm identifies a
sequence of vertices through independent set finding and identifies
the longest sub-sequence that satisfies the balance constraint. This
approach allows G-kway to discover more valid moves in one itera-
tion that can lead to a better cut size. However, moving too many
vertices simultaneously can sometimes trap us in a local minima
that produces a worse cut size than GKSG, such as tv80 at k = 32.
Compared to other graphs, tv80 has longer path connectivity among

of G-kway over GKSG and mt-metis, respectively.

vertices which can benefit from more fine-grained refinement as
GKSG.

G-kway vs mt-metis

>

S 15k B k=2 ¢
g‘ 1 k=16
E . ER
& 05
S 0

wb_dma tv80 delaunay

. G-kway vs GKSG

5 15[

% .
|

]
3

]
@)

delaunay

Figure 5: The cut size improvement ratio of G-kway over mt-
metis (top) and GKSG (bottom) at different k.

5 Conclusion

In this paper, we have introduced G-kway, an efficient GPU-
accelerated multilevel k-way graph partitioner. Experimental results
have shown that G-kway outperforms the state-of-the-art CPU-
based and GPU-based parallel partitioners.

Acknowledgment
This project is supported by NSF grants 2235276, 2349144, 2349143,
2349582, and 2349141.

References

[1] Bahareh Goodarzi, Martin Burtscher, and Dhrubajyoti Goswami. 2016. Parallel
graph partitioning on a CPU-GPU architecture. In IPDPSW. IEEE.

Bahareh Goodarzi, Farzad Khorasani, Vivek Sarkar, and Dhrubajyoti Goswami. 2019.
High performance multilevel graph partitioning on GPU. In HPCS. IEEE.
Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow:
A Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
TPDS 33, 6 (2022), 1303-1320.

Tsung-Wei Huang and Martin DF Wong. 2015. OpenTimer: A high-performance
timing analysis tool. In ICCAD. IEEE.

George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SISC 20, 1.

Farzad Khorasani, Rajiv Gupta, and Laxmi N Bhuyan. 2015. Scalable simd-efficient
graph processing on gpus. In PACT. IEEE.

Dominique LaSalle and George Karypis. 2013. Multi-threaded graph partitioning.
In IPDPS. IEEE.

	Abstract
	1 Introduction
	2 Problem Definition and Notation
	3 GPU Multilevel –way Partitioner
	3.1 Union Find-based Coarsening with Scoring
	3.2 Independent Set-based Refinement

	4 Experimental Evaluation
	4.1 Baselines
	4.2 Overall Performance Comparison
	4.3 Runtime Analysis
	4.4 Cut Size Analysis

	5 Conclusion
	References

