
Journal of Cosmology
and Astroparticle
Physics

     

PAPER

What determines the rest frame of bubble
nucleation?
To cite this article: Yilin Chen and Alexander Vilenkin JCAP11(2023)084

 

View the article online for updates and enhancements.

You may also like
Bubble nucleation in spherical liquid cavity
wrapped by elastic medium
Xian-Mei Zhang,  , Fan Li et al.

-

A study of cavitation nucleation in pure
water using molecular dynamics simulation
Hua Xie,  , Yuequn Xu et al.

-

Observer dependence of bubble
nucleation and Schwinger pair production
Jaume Garriga, Sugumi Kanno, Misao
Sasaki et al.

-

This content was downloaded from IP address 108.20.157.98 on 30/12/2024 at 20:51

https://doi.org/10.1088/1475-7516/2023/11/084


J
C
A
P
1
1
(
2
0
2
3
)
0
8
4

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

What determines the rest frame of
bubble nucleation?

Yilin Chen and Alexander Vilenkin
Institute of Cosmology, Department of Physics and Astronomy, Tufts University,
Medford, MA 02155, U.S.A.

E-mail: yilin.chen@tufts.edu, vilenkin@cosmos.phy.tufts.edu

Received September 23, 2023
Accepted November 12, 2023
Published November 23, 2023

Abstract. We revisit the question addressed in recent papers by Garriga et al.: what deter-
mines the rest frame of pair nucleation in a constant electric field? The conclusion reached
in these papers is that pairs are observed to nucleate at rest in the rest frame of the detector
which is used to detect the pairs. A similar conclusion should apply to bubble nucleation in
a false vacuum. This conclusion however is subject to doubt due to the unphysical nature
of the model of a constant eternal electric field that was used by Garriga et al. The number
density of pairs in such a field would be infinite at any finite time. Here we address the same
question in a more realistic model where the electric field is turned on at a finite time t0 in
the past. The process of turning on the field breaks the Lorentz invariance of the model and
could in principle influence the frame of pair nucleation. We find however that the conclusion
of Garriga et al. still holds in the limit t0 → ↑↓. This shows that the setup process of the
electric field does not have a lasting e!ect on the observed rest frame of pair nucleation. On
the other hand, the electric current and charge density due to the pairs are determined by
the way in which the electric field was turned on.
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1 Introduction

Coleman’s description of vacuum decay through bubble nucleation [1] is manifestly Lorentz
invariant. The tunneling instanton is O(4) invariant and its analytic continuation is invariant
under Lorentz boosts. There is however some tension between this description and the
semiclassical picture of bubble nucleation. The analytically continued instanton describes a
bubble contracting relativistically from infinite size, then bouncing and re-expanding back to
infinity. On the other hand, physically we expect a bubble to nucleate at rest and expand,
so the contracting part of the worldsheet should be cut o! [2]. But then the cuto! breaks
the Lorentz invariance of the bubble worldsheet, and we have to face the question: what
determines the rest frame of bubble nucleation?

One can anticipate two possible scenarios: (A) it could be that the frame of nucleation
simply coincides with the rest frame of the detector used to observe the bubble. In other
words, each observer will see bubbles forming at rest in her own rest frame. (B) Another
possibility is that the frame of nucleation is influenced by how the decaying false vacuum was
set up. If the false vacuum has zero energy, its spacetime is flat, and the space will be filled
by nucleating bubbles in a finite amount of time. This implies that the false vacuum could
not have existed forever; it must have been created in some manner in the past.

This issue was first addressed by Garriga et al. in ref. [3] using the close analogy between
bubble nucleation and pair production in an electric field. They considered a charged scalar
field ω in a constant electric field E in (1 + 1) dimensions. The field was assumed to be in
the in-vacuum state which was prepared in the infinite past. It was shown in [3] that this
quantum state is Lorentz invariant. In addition to ω, ref. [3] introduced another charged field
ε and a real field ϑ which play the role of a detector. The interaction between the fields was
chosen of the form1

Hint = g(ωε
†
ϑ + h.c.), (1.1)

1
This model was earlier studied by Massar and Parentani [4] and by Gabriel et al. [5] to investigate the

Unruh e!ect for an accelerated detector.

– 1 –



J
C
A
P
1
1
(
2
0
2
3
)
0
8
4

where g is a coupling constant. If a ε-particle is present in the initial state, it can annihilate
a ω-antiparticle via εω̄ → ϑ. One can then study the momentum distribution of ϑ-particles
in the final state to deduce the momentum distribution of the created pairs. It was found in
ref. [3] that particles (antiparticles) of the pairs are predominantly observed moving in the
direction of (opposite to) the electric field. This was interpreted to indicate that option (A)
above is correct: the pairs are mostly observed to nucleate in the rest frame of the detector.
This conclusion was later reinforced in refs. [6, 7].

A potential problem with these results is that, as noted in ref. [3], the in-vacuum state in
a constant electric field has some unphysical properties. The singularity structure of the two-
point function in this state does not have the Hadamard form, and as a result the expectation
values of physical observables cannot be regulated in a Lorentz invariant way. An important
special case is that of the electric current. One expects that the created pairs moving in the
electric field will develop a nonzero current, which will break the Lorentz invariance. And
indeed one can show that all physical (Hadamard) states of charged particles in a constant
electric field are not Lorentz invariant [3].

Physically, this issue is related to the fact that a metastable vacuum could not have
existed for an infinite time. With pairs created at a constant rate starting from infinite past,
the density of ω-particles at any finite time would be infinite. In a more physical approach
the electric field would have to be time-dependent with E(t → ↑↓) → 0, so the initial
state of the field ω could be chosen as the standard vacuum state. The two-point function is
then Hadamard at t → ↑↓ and is guaranteed to remain Hadamard at later times. The time
dependence of the electric field introduces a preferred frame and explicitly breaks the Lorentz
invariance. The question is to what extent this Lorentz violation influences the conclusions
of [3, 6]. This question is at the focus of the present paper.

We are going to follow the method of refs. [3, 6], except that a constant electric field
E is turned on at some early time t0 and is set to zero at t < t0. In the next section we
specify the quantum states of the pair-producing field ω and of the detector fields ε and ϑ.
Following ref. [3], in order to pinpoint the time of detection (and the detector rest frame
at that time), we switch the detector on for a short time interval T around t = 0. This
is implemented by introducing a time-dependent coupling g(t) = ge

↑t2/T 2 in eq. (1.1). In
section 3 we analyze the pair detection amplitude and compare it with that for an eternal
electric field. In section 4 we perform a similar analysis using an alternative, neutral detector
model introduced in ref. [6]. We shall see that the latter model o!ers significant advantages;
in particular, the time-dependent coupling g(t) is no longer needed. The results we obtain
with the two detector models are fully consistent with one another and with the earlier results
of refs. [3, 6]. Our conclusions are summarized and discussed in section 5.

2 Physical setup

We shall consider an electric field

E(t) =
{

0, t < t0,

E, t ↔ t0.
(2.1)

Pair creation in a similar setting has been discussed by Adorno, Gavrilov and Gitman [8], the
main di!erence being that they studied an electric field which is present for a finite interval
of time and is turned o! at some t1 > t0. Here we do not need to introduce a turn-o! time.
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The hypersurface t = t0 defines an inertial reference frame !0, and our goal here will
be to determine to what extent pair nucleation is influenced by the existence of this frame.
We note that such influence is not a priori excluded, even in the limit of t0 → ↑↓. One
example is the “persistence of memory” e!ect on bubble collisions [9].

Particle-antiparticle pairs are described by a complex field operator ω(x, t),

ω(x, t)=
∫

dk
↗

2ϖ

(
akωk(t) + b

†
↑kω

↓
k(t)

)
e

ikx
, (2.2)

where ak and bk are respectively the particle and antiparticle annihilation operators in the
in-vacuum state |0, in↘,

ak |0, in↘ = bk |0, in↘ = 0. (2.3)

We also introduce two additional fields, ε and ϑ, which will play the role of a detector. ε is
a complex field,

ε(x, t)=
∫

dq
↗

2ϖ

(
dqεq(t) + f

†
↑qε

↓
q (t)

)
e

iqx
, (2.4)

and ϑ is real,

ϑ(x, t)=
∫

dp
↗

2ϖ

(
cpϑp(t) + c

†
↑pϑ

↓
p(t)

)
e

ipx
. (2.5)

In what follows, we shall always use the notation k, q and p to denote the momenta of ω, ε

and ϑ particles, respectively. We shall also use mω, mε and mϑ for the masses of ω, ε and
ϑ-particles respectively.

At t < t0, the mode functions ωk(t) corresponding to the in-vacuum state are positive-
frequency plane-wave solutions of the Klein-Gordon equation, while at t > t0 they are linear
combinations of solutions in a constant external electric field.2 The particular combination
can be found by matching ωk(t) and their time derivatives at t = t0 [8]:

ωk(t) =
{

C(”k) exp[↑i”k(t ↑ t0)], t < t0,

C(”k) {a1(”k)Dϖ→ [↑(1 ↑ i)z] + a2(”k)Dϖ [↑(1 + i)z]} , t ↔ t0,
(2.6)

where

”k =
√

m2

ω + (k + eEt0)2, z =
↗

eE

(
t + k

eE

)
, ϱ = ↑

1 + iς

2 , ς =
m

2

ω

eE
, (2.7)

C(”k) = 1/
↗

2”k and Dϖ are parabolic cylinder functions. The coe"cients a1 and a2 satisfy

C
2(|a1|

2
↑ |a2|

2) = e
↑ ω

4 ϱ

↗
2eE

(2.8)

and are given by

aj = (↑1)j

↗
2

e
iω
2 ( 1

2 +ϖ→)
√

z2
0

+ ςf
(+)

j (z0), j = 1, 2, (2.9)

2
Here we use the gauge A0 = 0.
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where3

f
(+)

1
(z) =

(
1 ↑

i
↗

z2 + ς

d

dz

)
Dϖ [↑(1 + i)z],

f
(+)

2
(z) =

(
1 ↑

i
↗

z2 + ς

d

dz

)
Dϖ→ [↑(1 ↑ i)z] (2.10)

and z0 = z(t0). The relation (2.8) follows from the definitions (2.9) and the Jacobian

Dϖ(z) d

dz
D↑1↑ϖ(iz) ↑ D↑1↑ϖ(iz) d

dz
Dϖ(z) = ↑ie

↑i ω
2 ϖ

. (2.11)

In the case of a time-independent (eternal) electric field considered in [3], the in-vacuum
mode functions are obtained by setting a2 = 0 in eq. (2.6).

The mode functions εq for ε-particles are given by similar expressions with k replaced
by q and mω by mε. We shall denote the coe"cients aj for ω and ε particles by ajω and ajε

respectively. For neutral ϑ-particles the mode functions are simply plane waves,

ϑp(t) = 1
√

2φp
e

↑iςpt
, φp =

√
p2 + m2

ϑ. (2.12)

The detection process is a scattering εω
↓

→ ϑ in which a ε-particle detector collides
with the ω-antiparticle of the pair, turning into a neutral ϑ-particle. Our goal is to study the
correlation between the observed frame of pair nucleation and the rest frame of the ε-detector
at the time of collision. Note however that the ε-particle is accelerated by the electric field,
so its rest frame changes with time. In order to pinpoint the time of collision, we make the
coupling g in eq. (1.1) time-dependent:

g(t) = ge
↑t2/T 2

. (2.13)

This ensures that the detection occurs in the interval #t ≃ T around t = 0. We shall
assume that

t0 < 0, |t0| ⇐ T, (2.14)

so that the measurement is well separated from the setup of the electric field.
It is shown in [3] that the momentum distribution of ϑ-particles after the measurement

can be expressed as

dNϑ

dp
= 1

2ϖ
|Aϑ(p; q)|2, (2.15)

where the amplitude Aϑ is given by

Aϑ(p; q) =
∫

dt g(t)ω↓
q↑p(t)εq(t)ϑ↓

p(t). (2.16)

In the next section we will analyze this integral and compare the result with that for an
eternal electric field.

3
Note the sign di!erence with [8] in the terms containing derivatives. This is because the mode functions

in [8] are negative frequency modes, while we are using positive frequency modes.
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3 Amplitude for the process ωε̄ → ϑ

We will be interested in the amplitude (2.16) in the limit t0 → ↑↓. Substituting the mode
functions (2.12), (2.6) and similar mode function for ε-particles in eq. (2.16), we express the
amplitude as a sum of five integrals:

Aϑ(p; q) = I0 + I11 + I12 + I21 + I22, (3.1)

where

I0 = g

2
√

2φp↼q”q↑p

∫ t0

↑↔
dt e

i(!q↑p↑φq+ςp)t↑t2/T 2
, (3.2)

I11 =
ga

↓
1ωa1ε

2
√

2φp↼q”q↑p

∫ ↔

t0
dt e

iςpt↑t2/T 2
Dϖε [↑(1 + i)zω]Dϖ→

ϑ
[↑(1 ↑ i)zε], (3.3)

I12 =
ga

↓
1ωa2ε

2
√

2φp↼q”q↑p

∫ ↔

t0
dt e

iςpt↑t2/T 2
Dϖε [↑(1 + i)zω]Dϖϑ [↑(1 + i)zε], (3.4)

I21 =
ga

↓
2ωa1ε

2
√

2φp↼q”q↑p

∫ ↔

t0
dt e

iςpt↑t2/T 2
Dϖ→

ε
[↑(1 ↑ i)zω]Dϖ→

ϑ
[↑(1 ↑ i)zε], (3.5)

I22 =
ga

↓
2ωa2ε

2
√

2φp↼q”q↑p

∫ ↔

t0
dt e

iςpt↑t2/T 2
Dϖ→

ε
[↑(1 ↑ i)zω]Dϖϑ [↑(1 + i)zε]. (3.6)

Here, ↼q =
√

(q + eEt0)2 + m2

ε, zω =
↗

eE

(
t + q↑p

eE

)
and zε =

↗
eE

(
t + q

eE

)
.

The first integral I0 is rather simple

I0 =
↗

ϖgT

4
√

2φp↼q”q↑p
e

↑ 1
4 (!q↑p↑ςq+ςp)

2T 2
(

1 ↑ erf
(

i(”q↑p ↑ φq + φp)T
2 ↑

t0

T

))
, (3.7)

where erf is the error function. Due to the assumption (2.14), we can use the asymptotic form

erf(z) ⇒ 1 ↑
e

↑z2

↗
ϖz

(
|z| ⇐ 1, |arg z| <

3ϖ

4

)
. (3.8)

This shows that I0 approaches zero exponentially fast as ↑t0/T → ↓:

I0 ⇑ exp
(

↑
t
2
0

T 2

)

. (3.9)

Now, it is shown in appendix A that the lower limit of integration in the remaining
integrals Ijk can be extended from t0 to ↑↓ with an error which is also O

[
exp

(
↑

t2
0

T 2

)]
.

The dependence on t0 in Ijk is then limited to the coe"cients aj(ω), aj(ε). Furthermore, in
appendix B we show that

a2

a1

≃
1

eEt2
0

. (3.10)

for both ω and ε modes. We can therefore neglect I12, I21 and I22 compared to I11 in the
limit of t0 → ↑↓. Finally, it follows from eq. (2.8) that in this limit the a1 coe"cients have
the same values as for an eternal electric field (when a2 = 0).
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This shows that the amplitude for the ω
↓-particle detection in a field turned on at a

finite t0 approaches the amplitude for a constant eternal field in the limit t0 → ↑↓. The
conclusion is that, as far as these detection processes are concerned, the in-vacuum state
gradually “forgets” how it was created and measurements of pair nucleation at late times
yield a nucleation frame close to the rest frame of the detector.

An attentive reader might have noticed that there is still a potential problem with this
analysis. We used a time-dependent coupling g(t), where t is the time coordinate in the
frame !0 of initial conditions. This time dependence also breaks Lorentz invariance and
could in principle influence the frame of nucleation. One could argue that our result, that
the detection amplitude is independent of !0, indicates that it is also independent of how
the electric field was set up. There is however still a caveat that the two Lorentz violations
could somehow compensate one another. This seems rather unlikely, but it would be better
to have a cleaner analysis where this issue would not arise. In the next section we will show
that such analysis can be performed using the neutral detector model of ref. [6].

4 Neutral detector

The neutral detector model of ref. [6] is based on the 4-point interaction

Hint = g(ϑ1ϑ
↓
2ωε

↓ + ϑ
↓
1ϑ2ω

↓
ε), (4.1)

where ϑ1 and ϑ2 are electrically neutral complex scalar fields. The detection process is the
scattering ϑ1ω → ϑ2ε. The scalar detector particle ϑ1 collides with the ω particle of a pair
producing a di!erent kind of scalar particle ϑ2 and a charged ε-particle. By measuring the
momenta of the incoming ϑ1 and outgoing ϑ2 particles one can determine the momentum of
the ω particle at the time of collision [6]. The benefit of this setup is clear: we will not need
to turn the interaction on and o! since the momenta of the detector and the product are not
a!ected by the electric field.

It is shown in ref. [6] that the momentum distribution of ϑ2-particles after the measure-
ment is

dN2

dqdp
= 1

(2ϖ)2

∣∣A2(k, q, p; p
↗)

∣∣2, (4.2)

where the amplitude is given by

A2(k, q, p; p
↗) = g

∫ ↔

↑↔
dt ω

↓
k(t)ε↓

q (t)ϑ1,p↓(t)ϑ↓
2,p(t) (4.3)

with k = q + p. Here, p
↗ and p are respectively the momenta of ϑ1 and ϑ2, while k and q are

respectively the canonical momenta of ω and ε.
To compare the amplitude (4.3) to that for the same process in an eternal electric field,

we will closely follow our analysis of the amplitude (2.16) for a charged detector. As in
eq. (3.1), the amplitude can be represented as a sum of five integrals. The main di!erence
is that the integrals now do not include the Gaussian suppression factors exp

(
↑t

2
/T

2
)
. In-

tegration can again be extended to the infinite range (the details are given in appendix C)
and terms including the coe"cients a2,ω, a2,ε can be neglected with an error ⇑ t

↑2

0
. Then

the amplitude (4.3) reduces to that in an eternal electric field.

– 6 –
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The latter amplitude was calculated by Garriga et al. [6], who found that it is indepen-
dent of q and that the distribution of ϑ2 particles can be expressed as

dN2

dtdp
= eE

(2ϖ)2

∣∣A2(p; p
↗)

∣∣2. (4.4)

Furthermore, in the frame of the ϑ1 detector (p↗ = 0) they found that ω particles are mov-
ing predominantly in the direction of E. Thus the pairs are observed to nucleate in the
detector frame.

5 Summary and discussion

We have revisited the question that was addressed in a number of recent papers [3, 6, 7]:
what determines the rest frame of pair nucleation in a constant electric field? The conclusion
reached in refs. [3, 6, 7] is that pairs are observed to nucleate at rest in the rest frame of
the detector which is used to detect the pairs. The physics of pair production is Lorentz
invariant, but the invariance is broken by the interaction of pairs with the detector.

As we discussed in the Introduction, this conclusion is subject to doubt because the
quantum state of the pairs that was used in refs. [3, 6, 7] assumed that a constant electric
field had existed forever and therefore had some unphysical properties. In particular, the
number density of pairs in such a field would be infinite at any finite time. In a physically
realistic setting, the electric field would be turned on at a finite time in the past. This,
however, would also break Lorentz invariance and could in principle influence the frame of
pair nucleation. Our goal in this paper was to resolve this remaining ambiguity. We used a
(1 + 1)-dimensional model of pair production in electric field very similar to that in ref. [8].
We also used the same model of particle detector. The only di!erence is that in our present
model the electric field is turned on at a finite time t0 in the distant past. We found that
the amplitude for particle detection approaches that in a constant eternal field in the limit
t0 → ↑↓. This shows that the setup process of the electric field does not have a lasting
e!ect on the observed rest frame of pair nucleation.

We thus conclude that at late times, after the initial disturbance caused by turning on
the electric field has settled down, the pairs are observed to nucleate with their rest frame
close to the rest frame of the detector. Due to the close analogy between pair production
and bubble nucleation in false vacuum, we expect a similar conclusion to apply in the latter
case as well: all inertial observers will observe bubbles to nucleate in their own rest frames.

We emphasize however that the way in which the false vacuum is set up does have an
e!ect on some physical observables. In the case of our pair nucleation model this can be
illustrated by the ω-particle electric current J

µ(t). The expectation value of this current in
the quantum state (2.6) was calculated in ref. [8]. In the late time limit4 it is given by

J
0 = 0, J

1
⇒ C(t ↑ t0), (5.1)

where C = 2eṅω and

ṅω = e
2
E

ϖ
exp

(

↑
ϖm

2

ω

eE

)

(5.2)

4
Here, the back-reaction of the pairs on the electric field is neglected, as it was done in [3, 6] due to the

weak field limit m2 → eE. For weak fields, the back-creation takes place on a long timescale, which should

be at least as long as t ↑ ṅ↑1/d
, where d is the spacetime dimension. A thorough computation of Fermion

can be found in ref. [10].
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is the rate of ω-pair production. This result has a clear physical meaning. Particles and
antiparticles are produced at the same rate, hence the charge density is J

0 = 0. The pairs
rapidly approach relativistic speeds, and thus the current density grows at the rate dJ

1
/dt ≃

2eṅω. This picture, however, applies only in a specific reference frame, where the electric
field is turned on at the same time t0 everywhere in space. In a di!erent reference frame,
moving at velocity v with respect to the original one, the current is obtained by a Lorentz
transformation:

J
1↗ = ↽

2
C(t↗ + vx

↗), J
0↗ = ↑vJ

1↗
, (5.3)

where ↽ = (1 ↑ v
2)↑1/2 is the Lorentz factor. The frame in which the electric field was set up

can be determined by measuring, for example, the charge density J
0: it is the frame where

J
0 = 0. This memory of the initial state persists no matter how much time elapsed after the

field was turned on.
The nature of this e!ect is similar to that of the “persistence of memory” e!ect on bubble

nucleation [9]. An observer in a false vacuum will generally see nucleating bubbles arriving at
di!erent rates from di!erent directions. Once again, this anisotropy will persist at arbitrarily
late times. The distribution of the arrival directions will be isotropic only for an observer
whose world line is orthogonal to the hypersurface where the false vacuum was set up. The
corresponding e!ect in our present context is the following. Particles and antiparticles move
in opposite directions at nearly the speed of light and generally have di!erent densities. This
means that they generally have di!erent fluxes. The fluxes will be the same only in the frame
where the electric field was set up.
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A Extending integration to t → ↑↓

Here we show that integration over t in the integrals I11, I12, I21, I22 can be extended to
t → ↑↓ with an exponentially small error.

Taking I11 as an example, we can express it as

I11 =
ga

↓
1ωa1ε

2
√

2φp↼q”q↑p

∫ ↔

↑↔
↑

∫ t0

↑↔


dt e

iςpt↑t2/T 2
Dϖε [↑(1 + i)zω]Dϖ→

ϑ
[↑(1 ↑ i)zε] ⇓ I ↑ I

↗
,

(A.1)

where I is the extended integral over the infinite range and I
↗ is the subtracted remnant. We

need to check that the remnant I
↗ is negligible.

Since we are interested in the limit t0 → ↑↓ and the integration in I
↗ is restricted to

the interval (↑↓, t0], we can use the asymptotic form of the parabolic cylinder functions:

Dϖ(z) ≃ z
ϖ
e

↑ z2
4 . (A.2)

Then we have

I
↗
⇑

∫ t0

↑↔
dt e

iςpt↑t2/T 2 (↗

2|zε|

)ϖ→
ϑ

e
i
2 z2

ϑ

(↗

2|zω|

)ϖε
e

↑ i
2 z2

ε . (A.3)
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This can be further simplified using zω, zε ⇒
↗

eEt, and we find

∣∣I ↗∣∣ ⇑

∣∣∣∣
∫ t0

↑↔
dt e

↑t2/T 2 (
↑

↗

2eEt

)ϖ→
ϑ+ϖε

∣∣∣∣ <

(↗

2eE|t0|

)Re(ϖ→
ϑ+ϖε)

∫ t0

↑↔
dt e

↑t2/T 2

=
(↗

2eE|t0|

)↑1
↗

ϖT

2 e
↑

ϖ2
pT 2

4


1 ↑ erf

(
↑

t0

T

)
,

(A.4)

where we have used the fact that Re(ϱ↓
ε + ϱω) = ↑1. Now, using eq. (3.8), we see that I

↗

approaches zero exponentially:

∣∣I ↗∣∣ ⇑ exp
(

↑
t
2
0

T 2

)

. (A.5)

The same argument can be applied to the remaining integrals I12, I21, I22.

B Relative magnitude of a1 and a2

From eq. (2.9) we know that aj ⇑ f
(+)

j (z0). In the limit t0 → ↑↓ we can use the asymptotic
form (A.2) of the parabolic cylinder functions to evaluate f

(+)

j . Starting with f
(+)

1
, we

can write

f
(+)

1
(z0) =

(
1 ↑

i
↗

z2 + ς

d

dz0

)
Dϖ [↑(1 + i)z0]

⇒



1 ↑
z0√

z2
0

+ ς



 e
↑i

z2
0
2 [↑(1 ↑ i)z0]ϖ . (B.1)

Then, with z0 → ↑↓ we have

|f
(+)

1
(z0 → ↑↓)| ≃ |z0|

↑1/2
. (B.2)

For f
(+)

2
(z0) we need to keep terms up to second order:

f
(+)

2
(z0) ⇒



1 + z0√
z2

0
+ ς

↑
(1 + i)ϱ↓

z0

√
z2

0
+ ς



 e
i

z2
0
2 [↑(1 + i)z0]ϖ→

⇒
(1 + i)ϱ↓

z2
0

e
i

z2
0
2 [↑(1 + i)z0]ϖ→

. (B.3)

We thus conclude that

|f
(+)

2
(z0 → ↑↓)| ≃ |z0|

↑5/2 (B.4)

and
∣∣∣∣
a2

a1

∣∣∣∣ ≃ |z0|
↑2

≃
1

eEt2
0

. (B.5)
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C Amplitude for a neutral detector

Following the analysis for a charged detector in section 3, we express the amplitude (4.3) as
a sum of five terms:

A2(k, q, p; p
↗) = I0 + I11 + I12 + I21 + I22. (C.1)

Here

I0 = g

4(φp̃φp̃↓↼q”k)1/2

∫ t0

↑↔
dt e

i(φq+!k+ςp̃↑ςp̃↓ )t↑↼t
, (C.2)

I11 =
ga

↓
1ωa

↓
1ε

4(φp̃φp̃↓↼q”k)1/2

∫ ↔

t0
dt e

i(ςp̃↑ςp̃↓ )t
Dϖε [↑(1 + i)zω]Dϖϑ [↑(1 + i)zε], (C.3)

I12 =
ga

↓
1ωa

↓
2ε

4(φp̃φp̃↓↼q”k)1/2

∫ ↔

t0
dt e

i(ςp̃↑ςp̃↓ )t
Dϖε [↑(1 + i)zω]Dϖ→

ϑ
[↑(1 ↑ i)zε], (C.4)

I21 =
ga

↓
2ωa

↓
1ε

4(φp̃φp̃↓↼q”k)1/2

∫ ↔

t0
dt e

i(ςp̃↑ςp̃↓ )t
Dϖ→

ε
[↑(1 ↑ i)zω]Dϖϑ [↑(1 + i)zε], (C.5)

I22 =
ga

↓
2ωa

↓
2ε

4(φp̃φp̃↓↼q”k)1/2

∫ ↔

t0
dt e

i(ςp̃↑ςp̃↓ )t
Dϖ→

ε
[↑(1 ↑ i)zω]Dϖ→

ϑ
[↑(1 ↑ i)zε], (C.6)

and we have inserted a convergence factor exp(↑⇀t) with ⇀ → 0+ in eq. (C.2).
The integration in I0 is straightforward; we have

I0 = ↑ig

4(φp̃φp̃↓↼q”k)1/2

e
i(φq+!k+ςp̃↑ςp̃↓ )t0

↼q + ”k + φp̃ ↑ φp̃↓
(C.7)

and

|I0| ⇑ (
↗

eE|t0|)↑2 (C.8)

with a coe"cient independent of t0.
As before, we can neglect I12, I21 and I22 compared to I11 in the limit of t0 → ↑↓.

Further, the integration in I11 can be extended to ↑↓ with a small error. To verify this
we write

I11 =
ga

↓
1ωa

↓
1ε

4(φp̃φp̃↓↼q”k)1/2

∫ ↔

↑↔
↑

∫ t0

↑↔


dt e

i(ςp̃↑ςp̃↓ )t
Dϖε [↑(1 + i)zω]Dϖϑ [↑(1 + i)zε]

⇓I ↑ I
↗
, (C.9)

where I is the extended integral over the infinite range and I
↗ is the subtracted remnant. We

need to check that the remnant I
↗ is negligible. As in appendix A, we can use zω, zε ⇒

↗
eEt

and the asymptotic form (A.2) of the parabolic cylinder functions:

I
↗
⇑

∫ t0

↑↔
dt e

i(ςp̃↑ςp̃↓ )t
(↗

2|zε|

)ϖϑ
e

↑ i
2 z2

ϑ

(↗

2|zω|

)ϖε
e

↑ i
2 z2

ε

⇑

∫ t0

↑↔
dt e

↑ieEt2
+i(ςp̃↑ςp̃↓ )t

(
↑

↗

2eEt

)ϖϑ+ϖε
.

(C.10)
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The exponential factor in the integrand is a rapidly oscillating function, with the oscillation
frequency growing towards larger values of |t|. The main contribution to the integral is
therefore given by the vicinity of the upper limit, t ⇒ t0, so we can estimate

I
↗
⇑

∫ t0

↑↔
dt e

↑ieEt2
+i(ςp̃↑ςp̃↓ )t

(
↑

↗

2eEt

)ϖϑ+ϖε
<

(
↑

↗

2eEt0

)ϖϑ+ϖε
∫ t0

↑↔
dt e

↑ieEt2
+i(ςp̃↑ςp̃↓ )t

=
(
↑

↗

2eEt0

)ϖϑ+ϖε

↗
ϖ

2
↗

eE
e

i 3
4 ↽

e
i

(ϖp̃↑ϖp̃↓ )2

4eE

(
1 ↑ erf

(
e

i ω
4

(φp̃ ↑ φp̃↓) ↑ 2eEt0

2
↗

eE

))
.

(C.11)
By using eq. (3.8), we have I

↗
upper, the upper limit of I

↗

I
↗
upper ⇑

(
↑

↗

2eEt0

)ϖϑ+ϖε

↗
ϖ

2eEt0

e
i 3

4 ↽
e

↑ieEt2
0 (C.12)

and
∣∣∣I ↗

upper

∣∣∣ ⇑ |t0|
↑2

. (C.13)

We thus conclude that in the limit t0 → ↑↓ the amplitude (4.3) reduces to the transition
amplitude in an eternal electric field.
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