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Earth system models have been continously improved over the past decades,
but systematic errors compared with observations and uncertaintiesin

climate projections remain. This is due mainly to the imperfect representation
of subgrid-scale or unknown processes. Here we propose a next-generation
Earth system modelling approach with artificial intelligence that calls for
accelerated models, machine-learning integration, systematic use of Earth
observations and modernized infrastructures. The synergistic approach will
allow faster and more accurate policy-relevant climate information delivery.
We argue a multiscale approachis needed, making use of kilometre-scale
climate models and improved coarser-resolution hybrid Earth system models
thatinclude essential Earth system processes and feedbacks yet are still
fastenough to deliver large ensembles for better quantification of internal
variability and extremes. Together, these can form a step change in the
accuracy and utility of climate projections, meeting urgent mitigation and
adaptation needs of society and ecosystems in a rapidly changing world.

Climate change poses an unprecedented risk for humans and Earth’s
sustainability’. This grand challenge threatens civil infrastructure,
agriculture, water availability, public health, economic security and
international peace”. Climate mitigation is urgently required to reduce
the magnitude of the climate crisis by decreasing and offsetting anthro-
pogenic emissions. Inaddition, climate adaptation strategies need to
be developed to prepare for the negative impacts and consequences
of climate change while mitigation efforts are ongoing.

Mitigation

Atmospheric concentration of CO, has risen to ~420 parts per million
(2023), ~50% above its pre-industrial level. Consequently, the global
surface temperature was1.09 °C warmer in2011-2020 compared with
1850-1900°. The speed of this warming is rapid, and it has been unprec-
edented for more than 2,000 years. To limit global warming to 1.5 °C

above pre-industrial temperatures, we would need to cut today’s CO,
emissions by ~43% by 2030, and they would need to continue to decline
further to achieve net-zero emissions by 2050, followed by negative
CO, emissions throughout the rest of the century"*. Immediate, deep
and sustained reductions of methane and other greenhouse gases
would also be required. Otherwise, limiting warming to 1.5 °C or even
2 °Cwillbebeyondreach. Thisrequires moving towards the phase-out
of fossil fuel use, witha ‘transitioning away’ and ‘accelerated actionin
this critical decade’ now being called for in the first Global Stocktake
of the 28th Conference of the Parties.

Adaptation

In every region of the world, we are experiencing the impacts of cli-
mate change, with many extreme events becoming more frequent and
more severe and high-temperature records regularly being broken.
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Box 1: Emerging Earth system processes and feedbacks

In addition to uncertainties in climate projections arising from
subgrid-scale processes, uncertainties arise from the ocean and
terrestrial carbon cycle response to climate change and increased
atmospheric CO, concentrations’, as well as from other important
Earth system components (for example, cryosphere) and feedbacks
(for example, chemistry and aerosols)”. Indeed, the effects of
anthropogenic climate change depend not only on the levels of
greenhouse gases that humanity continues to emit, but also on how

the Earth can absorb some of those emissions. Mitigation pathways to

reach the Paris Agreement require large-scale transformation of our

industrial, energy and transport systems and large-scale deployment

of CO, removal through land, ocean or direct captures towards a
net-zero world and negative emissions'. Reliable simulation of the
carbon cycle and other Earth system feedbacks is therefore critical
to correctly assess the effectiveness of climate mitigation strategies,
including the effectiveness of nature-based carbon dioxide removal
strategies such as re/afforestation, bioenergy with carbon capture

and storage, and sustainable agriculture®®. It also requires addressing

climate mitigation together with air quality improvements related to

methane emissions and aerosol emission reductions®. As we highlight

in our proposed approach, it is therefore important to complement
kilometre-scale climate modelling activities with coarser hybrid
ESMs that can interactively simulate these feedbacks such as
permafrost”¢, wildfire® and biological processes (for example,
photosynthesis, transpiration and soil respiration)'°°. Al can help

to further enhance understanding of important climate and Earth
system processes and feedbacks and their representation in hybrid
ESMs (Fig. 1), for example:

e Radiation: Al can help better represent radiation and its

interactions with the atmosphere, including reflection, absorption

and scattering processes with clouds. It can speed up the
expensive and infrequent radiation computation in atmospheric
models, allowing for more frequent calls and, thus, for more

accurate radiation and cloud-radiation interactions. This can help

to elucidate the feedback mechanisms influencing Earth’s energy
balance and the climate system in hybrid ESMs.

e Clouds, convection and microphysics: exploiting satellite data,
ground sensors and high-resolution atmospheric models, Al can
help analyse and better predict cloud feedbacks and cloud-
aerosol interactions, uncovering their roles in climate regulation
and weather patterns, which enhances understanding of cloud
dynamics and their impact on global and regional climate.
ML-based parameterizations implemented into hybrid ESMs can
reduce systematic biases, for example, in precipitation compared
with traditional ESMs.

e Gravity waves: Al can analyse high-resolution model data and
observations that resolve gravity waves to better represent waves
in the atmosphere, connect the wave activity and deposited
momentum to the gravity-wave sources and learn to predict
the gravity-wave drag, leading to a better understanding of
gravity-wave processes and their influence on atmospheric
dynamics. Al can thus enable hybrid ESMs that better represent
gravity-wave drag and its various effects, helping to eliminate
some long-standing biases (for example, gravity-wave drag).

e Turbulence: Al can analyse high-frequency atmospheric
data from various sources, including aircraft, satellites and
ground-based stations, along with high-resolution turbulent
resolving simulations to more accurately model turbulence in the
atmosphere with unprecedented spatial and temporal resolution.

This enables the identification of modes of atmospheric
turbulence that can be incorporated into hybrid ESMs, improving
the representation of, for example, energy transfer processes and
mixing in the atmospheric boundary layer.

Terrestrial carbon cycle: land processes are not likely to
improve through high-resolution simulations as many processes
cannot explicitly be resolved, so the main ways to improve
models are through the use of observations and process
representation. Al can analyse vast amounts of satellite imagery
and meteorological data to identify patterns and trends in
ecosystems at high spatial and temporal resolution. This enables
improved prediction of the timing of events across diverse
ecosystems, enhancing the predictive capacity of ecosystem
responses to climate change and informing conservation and
agricultural practices.

Land-atmosphere interactions: Al can process and analyse large
and complex datasets from various in situ or remote-sensing
sources to identify and model land-atmosphere feedbacks and
processes with high spatial and temporal accuracy. This can
enable a detailed understanding and prediction of how vegetation
and soil moisture interact with the atmosphere, influencing
surface carbon, water and momentum fluxes, and climate and
weather at multiple scales.

Wildfire: worsening fires in a warming climate are of utmost
importance to our understanding of climate impacts, but fire in
ESMs is treated simplistically and does not, for example, account
for the possible climate feedback rising from changing fire aerosol
emissions. Al can harvest terrain information, weather conditions,
fuel loads and satellite estimates of burned area and emissions

to develop Al-based fire ignition, burned area and emissions
parameterizations that can be used to more accurately represent
fire in a changing climate.

Permafrost climate-carbon feedback: the permafrost carbon
stores that are today ‘locked’ in the frozen ground are not
represented in most models, and no models represent abrupt
thaw processes that have the potential to dramatically increase
permafrost carbon emissions and, thereby, projections of
permissible emissions. Al can be used to establish connections
between climate, vegetation, soil thermal and fire conditions and
trends, along with landscape type and vulnerability, that can be
used to predict the probability of abrupt thaw and carbon release
so that abrupt thaw can be incorporated into ESMs.

Hydrological processes: leveraging remote sensing, historical snow
information, streamflow and groundwater data, and meteorological
inputs, Al can forecast hydrological processes, including snowpack
dynamics, soil moisture and river flows. This provides insights

into water variations across space and time, enhancing resource
management, flood forecasting and climate models with detailed,
spatially explicit forecasts of water availability.

Ocean dynamics and cryosphere: harvesting satellite data, ocean
buoys and atmospheric models, Al can help decipher dynamic
interactions between ocean currents, temperature and the
atmosphere as well as improve the representation of unresolved
turbulent processes and subsurface flow, allowing for improved
modelling of how these interactions influence global climate
patterns. In the cryosphere, processes are not likely to improve

in higher-resolution simulations, but Al can integrate complex
data sources to improve process understanding and refine model
parameterizations, enhancing simulations of ice dynamics and
feedback processes.
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(continued from previous page)

e Salinity heat and momentum exchange: Al can improve the
representation of salinity heat and momentum exchange in
climate models by analysing vast datasets of oceanic and
atmospheric interactions from in situ measurements and
high-resolution simulations that can help identify patterns and
relationships. These algorithms can then inform the development
of more accurate parameterizations, improving the fidelity

Earth system feedbacks and processes enhanced with machine learning
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Another challenge lies in accurately representing biodiversity,
ecological, adaptation and evolutionary processes and their role in
ecosystem functioning''. For further examples of important Earth
system feedbacks, we refer to ref. 17.
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Fig.1|Feedback mechanisms across the Earth’s systemintroduce
uncertainties in climate projections, affecting carbon cycles and climate
change responses. Many feedbacks are poorly understood or resolved,
which calls for sustained research towards improved coarse-scale ESMs,
exploiting Al/ML along with emerging data streams to help overcome barriers

Many recent extreme events would have been highly unlikely without
human-induced climate change’. Across sectors and regions, the most
vulnerable people and ecosystems are disproportionately affected by
these changes. Therisein extremes hasled tosomeirreversibleimpactsas
nature and humans are pushed beyond their ability toadapt’. Early invest-
ments can maximize the resiliency and cost-effectiveness of adaptation
strategies but require reliable climate projections for various plausible
future socioeconomic scenarios at a scale relevant to actions, which is
typically regional or local.

Climate modelling for mitigation and adaptation

Climate and Earth system models (ESMs) provide a fundamental
source of information for climate mitigation and adaptation decisions.
Applying these models to understand climate change and to provide
multimodel climate simulations is internationally coordinated by the
World Climate Research Programme’s Coupled Model Intercomparison
Project (CMIP), with simulations of the most recent phase, CMIP6°,
justbeing completed. CMIP has supported climate research since the
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to understanding and representing themin hybrid ESMs. The interplay of
natural processes and human-induced emissions underscores the complexity
of mitigating climate change, necessitating innovative solutions such as Al for
effective climate strategies.

early1990s, while careful analysis of CMIP model output has provided
afundamental basis for Intergovernmental Panel on Climate Change
assessment reports and climate policy negotiations over the past sev-
eral decades (for example, the Paris Agreement’).

However, due to their complexity and computational costs, ESMs
typically have a coarse resolution (~40-160 km (ref. 8)). These models
still exhibit systematic errors compared with observations®', and
large uncertainties in their projections remain, such as on precipita-
tion changes, the jet stream and ocean circulation changes'2, These
climate projection uncertainties may deter policy decisions regarding
adaptation, investment, security and resiliency. Climate mitigation and
adaptation decisions could benefit from more reliable projections of
the Earth system, not only globally but also increasingly on regional
and local scales, where adaptation and resilience take place. Differ-
ent mitigation pathways involve strategies that differ in when they
achieve net-zero emissions and vary in the distribution of mitigation
efforts between short-lived and long-lived climate forcers, reliance
on land-use strategies and the scope and timing of carbon removal®.
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Hybrid (physics + ML) ESMs

FEAN,
A/A7X/A\N)
: '\'AVAV‘V%W,

Earth

observations °
LS -
o8
N
\ 7.
o VAV W4
73
) ,,év% A‘Véﬁ.
Kilometre-scale AVARTEVAVA
climate models VAVATAVAY/

N,

LES

\

ML downscaling/
regional refinement
\ Reduced systematic
-/

errors and more accurate
climate projections

Co-production

Actionable climate science

Impact /
modew\f\
K W\

L
DNS B& if
i

_

Bridging across scales

- Higher resolution with new computing opportunities

« Improved with physics-aware ML

« Constrained and benchmarked with Earth observations

- Modern and operational science infrastructures

Fig.2|Schematic of the proposed Al-empowered multiscale climate
modelling approach for urgent mitigation and adaptation needs. This
approachbridges across scales and process complexity for faster and more
accurate climate information also on regional and local scales. We note that LES

and Earth observations are also used to directly refine kilometre-scale climate
models and coarser-scale ESMs. DNS, direct numerical simulations. Credit:
globes, NASA/Visible Earth.

Therefore, ESMs must depict coupled cycling of greenhouse gases,
encompassing both natural processes and human-induced influences
for abroad range of policy-specific scenarios (Box 1).

In this Perspective, we call for a hybrid multiscale Earth system
modelling approach, bringing the artificial intelligence (Al) revolution
toclimatemodelling. Machinelearning (ML) provides great potential to
improve some of the limitations apparentin coarse-resolution ESMs'*"
and high-resolution global kilometre-scale climate models. Our pro-
posed approach provides the potential for a step change in model
performance and climate data utility while bridging across scales and
process complexity and utilizing the full hierarchy of models.

Current state of climate modelling

Comprehensive ESMs not only represent the physical climate but also
include interactive carbon and other biogeochemical cycles' and
components such as ice sheets, as well as many other features of the
Earth system that are important for climate change and its impacts".
Compared with earlier generations, CMIP6 models have increased
spatial resolution and improved physical process representation®.
Another advance in CMIP6° is the increasing number of large ensem-
bles, which have provided important new insights into the relative
contribution of internal climate variability and external forcing to
projected changes'®". The simulation of mean climate andits variability
hasimproved for many large-scale key indicators of climate change, but
long-standing systematic errors compared with observations remain®'
inaddition to alarge spread in climate projections™ and sensitivity*’.
At regional scales, the intensity and frequency of climate extremes
such as extreme rainfall, droughts and heatwaves are often not accu-
rately modelled®-? yet are critical for accurate resilience and adapta-
tion planning. This has motivated the development of techniques to
constrain uncertainties with the help of observations, emulators and
palaeoclimate information'.

Alarge contribution to systematic errors and the large spread in
climate sensitivity and projections stems from processes occurring
atscales smaller than the model grid resolution®, such as convection,
microphysics, aerosol-cloud interactions, or ocean eddies®, and

dynamical* processes. These processes need to be empirically approxi-
mated in models by parameterizations. This has motivated the develop-
ment of kilometre-scale climate models® or more regional large eddy
simulations (LES) ateven finer resolution?. These models can simulate
key small-scale and fast physical processes withimproved accuracy®,
resolving many of the biases of coarse-resolution simulations, such as
better global precipitation distributions?, more realistic representa-
tion of extremes?® and better equatorial wave dynamics®. However,
due to their staggering computational costs, kilometre-scale climate
models cannot currently be run at climate timescales for multiple dec-
adesor longer. Further, large ensembles with coarser-scale ESMs that
includeimportant Earth system processes and feedbacks are required
(Box1).Simulations with multiple ensemble members as well as careful
calibrationand tuning® are beyond the reach of kilometre-scale climate
models. More fundamentally, even kilometre-scale climate models
exhibitbiases, for example, in precipitation®, because they still rely on
parameterizations for even smaller-scale processes. These challenges
present fundamental roadblocks to more useful climate projections,
whether with high- or coarse-resolution climate models.

An Al-empowered approach for faster and more
accurate hybrid climate modelling

We argue that a holistic approach to climate and Earth system model-
ling that fully integrates Al willbe a productive path forwards to make
progressin climate modelling. Our proposed approach (Fig. 2) is based
onfour pillars: (1) higher resolution across scales with new computing
opportunities: next-generation climate models and ESMs need to fully
leverage modern and evolving hardware to enable simulations at higher
resolution thatbetter resolveimportant processes such as deep convec-
tion or ocean eddies. Given the shortcomings of even high-resolution
simulations and the continued need for coarser ESMs to represent
Earth system complexity, thisneeds tobe complemented by (2) Hybrid
ESMs improved with physics-aware ML where parameterizations or
subcomponents of the models are replaced with ML to improve the
representation of subgrid-scale or poorly known physical and biological
processes. We also need to (3) harness the wealth of Earth observations
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to evaluate, constrain, calibrate and improve models. This needs tobe
supported by (4) modern and operational science infrastructures to
define common experiments and standards, to provide annual updates
of climate forcings and climate feedbacks that relate forcings to the
Earth’senergy imbalance and to operationalize policy-relevant climate
model simulations and output, including regionally downscaled* or
regionally refined® output.

An important component of this approach is that coarser-scale
ESMs are enhanced to hybrid models, inwhich parameterizations and
subcomponents are improved with ML informed by kilometre-scale
climate model simulations or even higher-resolution LES and direct
numerical simulations, and by Earth observations. Hybrid ESMs prom-
ise to have substantially reduced systematic errors and enhanced
projection capability compared with current ESMs. In contrast to
kilometre-scale climate models, ESMs incorporate important Earth
system processes and feedbacks (Box 1) while still being fast enough to
provide large ensembles important to simulate internal variability and
extremes'®and toimprove attributionand understanding”. These mod-
elscanbebrought to actionable climate scales using ML-based down-
scaling or regional refinement that can also be used to drive impact
models. They can themselves be increased in resolution through new
computing opportunities. Since even kilometre-scale climate models
still require parameterizations of even smaller-scale processes and for
processes that are not likely toimprove just throughincreased resolu-
tion (for example, land and cryosphere), they can also be enhanced
to hybrid kilometre-scale climate models using the same approach.
We argue that modernized infrastructures are required that utilize
Al towards the operationalization of policy-relevant simulations and
model outputs to abroad range of stakeholders. This approach could
substantially enhance the applicability of climate modelling and pro-
jections also on the regional to local scale to tackle urgent mitigation
and adaptation needs. It requires co-production as indicated with
the handshake in Fig. 2 with stakeholders that ensures that services
utilize the most advanced capabilities available, while the scientific
community promptly addresses any service gaps®.

High resolution across scales with new computing
opportunities

Today’s ESMs operate predominantly on parallelized centralized pro-
cessing units, limiting their ability to fully harness the potential of
advanced new hardware such as graphical processing units and tensor
processing units**. The use of highly parallelized hardware has played
apivotalroleindriving the Al revolution®, so we believe that the same
transition to modern hardware and new codes that are more agile and
agnostic to different hardware is a critical step for accelerating ESMs
toallow for higher resolution across scales®**°, and for fully harnessing
the capabilities of ML algorithms®*%,

To employ ML and leverage modern hardware infrastructure
within ESMs, barriers posed by languages such as Fortranand Cneed to
be overcome, but this requires substantial code modifications, taking
many years of development. Further, the integration of ML algorithms
remains ad hoc, with specific language bridges between Fortran or C
and Python, in which most ML algorithms are written. These bridges
also do not readily permit ‘online’ learning, that is, the training and
tuning of the embedded ML subcomponents online when databecome
available in sequence and are used to update the ML on the fly, which
is critical to utilize Earth observations.

Refactoring codes with modern high-level languages, such as
Python/JAX* orJulia*, offers transformative possibilities*. These lan-
guages can flexibly leverage modern hardware (for example, graphical
processing units or tensor processing units)*~**and support differenti-
able programming****, which is the capacity to take the derivative to
avariable of interest within numerical precision and at very limited
computational cost®. It is one of the backbones of the ML revolution
to efficiently compute gradients of nonlinear functions and could

be applied to model code to tune physical or ML parameters and ini-
tial conditions, creating seamless ML physical model integration***°.
NeuralGCM, the first fully differentiable hybrid atmospheric model
combining physics and neural networks in an end-to-end trainable
fashion, is a breakthrough in that direction, written in Python/JAX".
We expect differentiable programming with modern languages such
as Python/JAX to play animportantrole.

All these advances would accelerate the transition to exascale
computing to run high-resolution ESMs that explicitly resolve more
processes, enhancing model accuracy and more easily integrating ML.
These advances will benefit from collaboration with the computer sci-
ence community and the private sector*®, potentially leveraging large
language models to accelerate code refactorization®.

Hybrid ESMs improved with physics-aware ML
Toreduce systematic errorsin coarser-scale ESMs, ML trained on short
high-resolution climate model simulations has been successfully sub-
stituted for conventional parameterizations of deep convection, cloud
cover and ocean turbulence, thereby enhancing the fidelity of the host
ESM, forexample, for ocean transport, cloud-cover distribution, sea sut-
face temperature biases or precipitation distributions and timing>°~°.
ML canalsobe usedto replace parameterized processes that donothave
a clear physical basis and that are still unresolved in high-resolution
simulations, suchaswarmrainorice microphysics, photosynthesis, veg-
etation phenology, orland-atmosphere or ocean-atmosphere interac-
tions, aslongas sufficient Earth observations are available (Fig. 1). For
example, for land, ML has been used to find the optimal regulation of
land-atmosphere flux exchange, such as canopy or aerodynamic resist-
anceand its dependence on atmospheric stability’”*® or to unravel the
role of microbial carbon-use efficiency for soil carbon storage™. These
hybrid approaches are, however, not without limits, and several ML
challenges need to be overcome*®, First, ML struggles with extrapola-
tionbeyond the training regime (out-of-distribution prediction). New
approaches to improve those predictions, such as by incorporating
climate invariant variables®® or multi-fidelity approaches that merge
traditional parameterization with ML trained on historical data, are
showing promising progress®®2, MLapproaches canalsolead to numeri-
cal instabilities when integrated into a host climate model®. Combin-
ing causal discovery and deep learning can help mitigate instability
problems by learning the physical drivers of subgrid-scale processes
and improving numerical stability during temporal roll-out®*. Trust and
generalizability of ML models can be further enhanced by introducing
more interpretable latent dimensions®** or equation discovery*>>°¢,
We argue that even kilometre-scale climate models could be
improved with such ahybrid ML-based approach by being abletolearn
fromultra-high-resolution simulations (for example, direct numerical
simulations and LES) and Earth observations (Fig. 2). This is because
evenkilometre-scale climate models exhibit biases as they still require
parameterizations of even smaller-scale processes (for example, micro-
physics and turbulence) as well as parameterizations for land (for
example, photosynthesis, ecosystem respiration and wildfires), ocean,
sea-ice and land-ice processes. Land and cryosphere processes and
biases, for example, are not likely to improve through just increased
resolution as many processes are not explicitly resolved even at high
resolution or because they involve complex biological systems whose
structural form is currently unknown®’.

Harnessing the wealth of Earth observations

Numerical weather prediction fuses model trajectories with observa-
tions viadataassimilationthat corrects the model trajectory asaninitial
condition problemand, sometimes, adjusts physical parameters of the
model tobetter predict weather. Data assimilation has beenimmensely
successful®®®, Yet the model’s inherent biases appear again in longer
simulations as the dataassimilation does not correct them. For exam-
ple, onsubseasonal to seasonal timescales, amodel similar to the ones
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used to predict weather tends to be less accurate than a climatology™.
Theseissuesreveal that the model structure and parameterizations of
high-resolution weather models are also imperfect.

A wealth of Earth observation data from satellite, in situ and
ground-based measurements are now available, with data volumes
already well beyond hundreds of petabytes’, as well as palaeoclimate
proxies’. They are routinely used to guide manual climate model
tuning®*”* and for model evaluation’, supported by modern evaluation
packages”™’. However, these datasets are only starting to be used to
drive automated model tuning and parameterization refinement yet
offer tremendous potential for placing observational constraints on
many subgrid-scale physical and biological processes, in particular
because of the increasing spatial resolution of observational systems
alongside new observations with a focus on Earth system processes
(for example, hydrology, biology and cryosphere)™®.

We advocate a new model-data fusion approach in climate
modelling that relies on ML-based parameter estimation (inference),
which, unlike in traditional data assimilation, corrects model structure
(parameterizations, whether physically based or ML based) instead of
model trajectories (initial conditions)”. Traditional data assimilation
is limited in its applicability to climate because it addresses primarily
the production of accurate initial conditions’’, whereas climate is
impacted mainly by boundary conditions. Instead, we support efforts
tofocus oninferring model structure, including physical or ML-based
parameterizations based on sparse, noisy and indirect observations.
This approach targets not individual state trajectories, as day-to-day
matchingisimpossible for freely evolving climate models, but rather
statistics of variables. Statistics are more directly relevant to climate,
whichfocuses on changesinstatistics rather than onsingle trajectories,
and because often, exact initial conditions are unknown and matching
conditions on specific days isimpossible because of internal variabil-
ity. There are now new algorithmic developments that can accelerate
progressonthat front. Forexample, generative Aland diffusion models
can help define and constrain statistics and are already starting to be
applied in climate modelling®.

This approach for model-data fusion requires substantial algo-
rithmic developments, merging traditional data assimilation and ML
techniques’ and targeting statistics®, also utilizing differentiable com-
puting. Challengesinclude handling high-dimensional data, develop-
ing new frameworks for statistics’ evolution or fine tuning deep neural
networksin the presence of uncertainty®, due to observational error,
process uncertainty and inherent stochasticity. Current ML approaches
face difficulties in the presence of sparse, noisy and indirect observa-
tions, typical of Earth observations such as from satellites®’. While ML
has been used for climate model parameter tuning®, it often lacks
uncertainty quantification®’. Recent advances in Bayesian inference
and probabilistic numerics can advance the field***,

Modern and operational science infrastructures
CMIP hasbeen very successful over the yearsin developing an efficient
infrastructure withcommon standards for climate model output, dra-
matically facilitating and expanding the analysis and use of multimodel
climate simulations. These guidelines and standards, coupled with the
long-termviability of the overall CMIP process, have allowed and encour-
aged the parallel evolution of data and evaluation infrastructures.
Nevertheless, because of the changing needs of a range of stake-
holders, including climate services such as the Copernicus service of
the European Union and emerging efforts from the National Oceanic
and Atmospheric Administration in the United States, more timely cli-
mate projection updates arerequired so that the impact of changes to
pastand likely future emission trajectories dueto global events such as
pandemics, wars, climate policy changes, global economic disruptions
or natural shocks such as amajor volcanic eruption can be accounted
for so that the best climate information is available for events such as
the annual Conference of the Parties and the Global Stocktakes. Such

aprocess should include yearly updating and quality control of forc-
ing datasets based on historical and near-real-time observations®*®, a
process to produce rapidly updatable policy-relevant scenarios that
reflect actual emissions, recent events and climate policy changes®”*$,
aswellasthe operationalization of policy-relevant climate simulations
and the provision of corresponding output to users. The opportunities
of ML in this regard should be further explored®.

Akey component that we advocateis interactivity to enable users
to explore, understand and extract relevant simulated climate data
easily, muchinline with digital twins®’. Cloud computing and modern
ML techniques offer promising solutions for enhancing user inter-
actions. For example, active learning” and causal inference®®*” can
help optimize, analyse and embed users in the simulation loop while
addressing causal (for example, counterfactual) queries. ML can also
support making the data available to users at scale with effective data
compression tools®”.

Conclusions

Long-standing systematic errors in coarse-scale ESMs have motivated
the development of kilometre-scale global climate modelling efforts
with the goal to provide more accurate near-term climate predictions®.
However, these models are too expensive to be run on century time-
scales and are often limited in their representation of the complexity
ofthe Earth system complexity. Climate projections with coarser ESMs
that comprehensively simulate emerging Earth system processes and
feedbacks (Box 1) will continue to be required to reliably project the
long-term forced climate change response and extreme events in the
face ofintrinsic climate variability. However, astep change in the mod-
els’ performanceis required.

In this Perspective, we share a vision of an Al-empowered next-
generation multiscale climate modelling approach based on four pillars:
acceleration, hybridization of ESMs, full integration of Earth observa-
tions and improvements of infrastructure. With this integration, we
expect substantial reductions of systematic errors in new ESMs com-
pared with the current generation. Such ML approaches blending Earth
observationand domain knowledge effectively will provide the benefits
ofincreasedresolutionand improvements across scales. Today’s results
on parameterization and physics-data integration are promising and
suggest thatinteraction between ML and physics-based models will yield
hybrid models that produce improvements in process representation
and ESM fidelity, even when run at a coarser resolution, still allowing
century-long simulations, many ensemble members and the tuning of
models against observations. On the basis of this potential, we believe
that the future of climate modelling will involve hybrid ESMs, where
ML approaches replace many model subcomponents that advance
towards process understanding and modelinterpretability, not just ML
emulation. We note that so far, hybrid developments have beenlargely
restricted to specific subcomponents of the atmosphere, ocean or land
models, yet the integration of ML-based hybrid approachesinto a fully
coupled ESMto perform CMIP-type simulations remains adaunting task.

This approach must be fully embedded into a modernized and
operationalized infrastructure to be maximally impactful, delivering
critical information about climate change in a broad and accessible
format for targeted adaptation and mitigation to a wide group of stake-
holders. This multiscale climate modelling vision would provide astep
change in providing accurate climate information to serve emerging
mitigation and adaptation needs at more frequent intervals than is
currently possible, allowing interactivity for users through enhanced
ML techniques. It will also provide the foundation for more realistic
digital twins of the Earth system’ that are scalable, user interactive
and adaptive. This holisticapproach to hybrid climate and Earth system
modelling could form an integral part of international activities such
as World Climate Research Programme’s CMIP® and high-resolution
activities such as Destination Earth (https://destination-earth.eu/) or
Earth Visualization Engines (EVE™).
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To achieve this vision, the international community must tackle
several challenges on the ML side*®, the algorithmic part, the opera-
tionalization of policy-relevant simulations and forcing, and the broad
and inclusive accessibility of climate model data, as we outline here.
Challenges lie ahead, but this objective has never appeared to be as
much within reach as it is today. We believe that the debate of future
modelling should not be centred around high-resolution climate
modelling versus complex, coarser-resolution ESMs. Instead, a new
ML-empowered multiscale climate modelling approach that integrates
Earth observations through modernized code, hardware innovations
and adaptiveinternational science infrastructuresisrequired. Indeed,
we argue that climate modelling needs to be approached within a
hierarchy of models going across complexity and resolution ranging
from high-resolution to coarser ESMs that are enhanced with ML and
downscaled or regionally refined to drive impact models, as described
in this Perspective. This way, we will be able to better project the full
complexity of future Earth’s climate and extreme events at unprec-
edented accuracy, alsoimproving climate information and technology
assessments for sustainable developments of sectors such as transport,
energy and aviation. It isincumbent on the whole Earth system mod-
elling community to join forces to offer the best and most accurate
climate information for urgent mitigation and adaptation needs in a
rapidly changing world. Time is of the essence.
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