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AI-empowered next-generation multiscale 
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adaptation
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Earth system models have been continously improved over the past decades, 
but systematic errors compared with observations and uncertainties in 
climate projections remain. This is due mainly to the imperfect representation 
of subgrid-scale or unknown processes. Here we propose a next-generation 
Earth system modelling approach with artificial intelligence that calls for 
accelerated models, machine-learning integration, systematic use of Earth 
observations and modernized infrastructures. The synergistic approach will 
allow faster and more accurate policy-relevant climate information delivery. 
We argue a multiscale approach is needed, making use of kilometre-scale 
climate models and improved coarser-resolution hybrid Earth system models 
that include essential Earth system processes and feedbacks yet are still 
fast enough to deliver large ensembles for better quantification of internal 
variability and extremes. Together, these can form a step change in the 
accuracy and utility of climate projections, meeting urgent mitigation and 
adaptation needs of society and ecosystems in a rapidly changing world.
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Climate change poses an unprecedented risk for humans and Earth’s 
sustainability1. This grand challenge threatens civil infrastructure, 
agriculture, water availability, public health, economic security and 
international peace2. Climate mitigation is urgently required to reduce 
the magnitude of the climate crisis by decreasing and offsetting anthro-
pogenic emissions. In addition, climate adaptation strategies need to 
be developed to prepare for the negative impacts and consequences 
of climate change while mitigation efforts are ongoing.

Mitigation
Atmospheric concentration of CO2 has risen to ∼420 parts per million 
(2023), ∼50% above its pre-industrial level. Consequently, the global 
surface temperature was 1.09 °C warmer in 2011–2020 compared with 
1850–19003. The speed of this warming is rapid, and it has been unprec-
edented for more than 2,000 years. To limit global warming to 1.5 °C 

above pre-industrial temperatures, we would need to cut today’s CO2 
emissions by ∼43% by 2030, and they would need to continue to decline 
further to achieve net-zero emissions by 2050, followed by negative 
CO2 emissions throughout the rest of the century1,4. Immediate, deep 
and sustained reductions of methane and other greenhouse gases 
would also be required. Otherwise, limiting warming to 1.5 °C or even 
2 °C will be beyond reach. This requires moving towards the phase-out 
of fossil fuel use, with a ‘transitioning away’ and ‘accelerated action in 
this critical decade’ now being called for in the first Global Stocktake 
of the 28th Conference of the Parties.

Adaptation
In every region of the world, we are experiencing the impacts of cli-
mate change, with many extreme events becoming more frequent and 
more severe and high-temperature records regularly being broken. 
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Box 1: Emerging Earth system processes and feedbacks
In addition to uncertainties in climate projections arising from 
subgrid-scale processes, uncertainties arise from the ocean and 
terrestrial carbon cycle response to climate change and increased 
atmospheric CO2 concentrations4, as well as from other important 
Earth system components (for example, cryosphere) and feedbacks 
(for example, chemistry and aerosols)17. Indeed, the effects of 
anthropogenic climate change depend not only on the levels of 
greenhouse gases that humanity continues to emit, but also on how 
the Earth can absorb some of those emissions. Mitigation pathways to 
reach the Paris Agreement require large-scale transformation of our 
industrial, energy and transport systems and large-scale deployment 
of CO2 removal through land, ocean or direct captures towards a 
net-zero world and negative emissions13. Reliable simulation of the 
carbon cycle and other Earth system feedbacks is therefore critical 
to correctly assess the effectiveness of climate mitigation strategies, 
including the effectiveness of nature-based carbon dioxide removal 
strategies such as re/afforestation, bioenergy with carbon capture 
and storage, and sustainable agriculture96. It also requires addressing 
climate mitigation together with air quality improvements related to 
methane emissions and aerosol emission reductions3. As we highlight 
in our proposed approach, it is therefore important to complement 
kilometre-scale climate modelling activities with coarser hybrid 
ESMs that can interactively simulate these feedbacks such as 
permafrost97,98, wildfire99 and biological processes (for example, 
photosynthesis, transpiration and soil respiration)100. AI can help 
to further enhance understanding of important climate and Earth 
system processes and feedbacks and their representation in hybrid 
ESMs (Fig. 1), for example:

•• Radiation: AI can help better represent radiation and its 
interactions with the atmosphere, including reflection, absorption 
and scattering processes with clouds. It can speed up the 
expensive and infrequent radiation computation in atmospheric 
models, allowing for more frequent calls and, thus, for more 
accurate radiation and cloud–radiation interactions. This can help 
to elucidate the feedback mechanisms influencing Earth’s energy 
balance and the climate system in hybrid ESMs.

•• Clouds, convection and microphysics: exploiting satellite data, 
ground sensors and high-resolution atmospheric models, AI can 
help analyse and better predict cloud feedbacks and cloud–
aerosol interactions, uncovering their roles in climate regulation 
and weather patterns, which enhances understanding of cloud 
dynamics and their impact on global and regional climate. 
ML-based parameterizations implemented into hybrid ESMs can 
reduce systematic biases, for example, in precipitation compared 
with traditional ESMs.

•• Gravity waves: AI can analyse high-resolution model data and 
observations that resolve gravity waves to better represent waves 
in the atmosphere, connect the wave activity and deposited 
momentum to the gravity-wave sources and learn to predict 
the gravity-wave drag, leading to a better understanding of 
gravity-wave processes and their influence on atmospheric 
dynamics. AI can thus enable hybrid ESMs that better represent 
gravity-wave drag and its various effects, helping to eliminate 
some long-standing biases (for example, gravity-wave drag).

•• Turbulence: AI can analyse high-frequency atmospheric 
data from various sources, including aircraft, satellites and 
ground-based stations, along with high-resolution turbulent 
resolving simulations to more accurately model turbulence in the 
atmosphere with unprecedented spatial and temporal resolution. 

This enables the identification of modes of atmospheric 
turbulence that can be incorporated into hybrid ESMs, improving 
the representation of, for example, energy transfer processes and 
mixing in the atmospheric boundary layer.

•• Terrestrial carbon cycle: land processes are not likely to 
improve through high-resolution simulations as many processes 
cannot explicitly be resolved, so the main ways to improve 
models are through the use of observations and process 
representation. AI can analyse vast amounts of satellite imagery 
and meteorological data to identify patterns and trends in 
ecosystems at high spatial and temporal resolution. This enables 
improved prediction of the timing of events across diverse 
ecosystems, enhancing the predictive capacity of ecosystem 
responses to climate change and informing conservation and 
agricultural practices.

•• Land–atmosphere interactions: AI can process and analyse large 
and complex datasets from various in situ or remote-sensing 
sources to identify and model land–atmosphere feedbacks and 
processes with high spatial and temporal accuracy. This can 
enable a detailed understanding and prediction of how vegetation 
and soil moisture interact with the atmosphere, influencing 
surface carbon, water and momentum fluxes, and climate and 
weather at multiple scales.

•• Wildfire: worsening fires in a warming climate are of utmost 
importance to our understanding of climate impacts, but fire in 
ESMs is treated simplistically and does not, for example, account 
for the possible climate feedback rising from changing fire aerosol 
emissions. AI can harvest terrain information, weather conditions, 
fuel loads and satellite estimates of burned area and emissions 
to develop AI-based fire ignition, burned area and emissions 
parameterizations that can be used to more accurately represent 
fire in a changing climate.

•• Permafrost climate–carbon feedback: the permafrost carbon 
stores that are today ‘locked’ in the frozen ground are not 
represented in most models, and no models represent abrupt 
thaw processes that have the potential to dramatically increase 
permafrost carbon emissions and, thereby, projections of 
permissible emissions. AI can be used to establish connections 
between climate, vegetation, soil thermal and fire conditions and 
trends, along with landscape type and vulnerability, that can be 
used to predict the probability of abrupt thaw and carbon release 
so that abrupt thaw can be incorporated into ESMs.

•• Hydrological processes: leveraging remote sensing, historical snow 
information, streamflow and groundwater data, and meteorological 
inputs, AI can forecast hydrological processes, including snowpack 
dynamics, soil moisture and river flows. This provides insights 
into water variations across space and time, enhancing resource 
management, flood forecasting and climate models with detailed, 
spatially explicit forecasts of water availability.

•• Ocean dynamics and cryosphere: harvesting satellite data, ocean 
buoys and atmospheric models, AI can help decipher dynamic 
interactions between ocean currents, temperature and the 
atmosphere as well as improve the representation of unresolved 
turbulent processes and subsurface flow, allowing for improved 
modelling of how these interactions influence global climate 
patterns. In the cryosphere, processes are not likely to improve 
in higher-resolution simulations, but AI can integrate complex 
data sources to improve process understanding and refine model 
parameterizations, enhancing simulations of ice dynamics and 
feedback processes.
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Many recent extreme events would have been highly unlikely without 
human-induced climate change5. Across sectors and regions, the most 
vulnerable people and ecosystems are disproportionately affected by 
these changes. The rise in extremes has led to some irreversible impacts as 
nature and humans are pushed beyond their ability to adapt1. Early invest-
ments can maximize the resiliency and cost-effectiveness of adaptation 
strategies but require reliable climate projections for various plausible 
future socioeconomic scenarios at a scale relevant to actions, which is 
typically regional or local.

Climate modelling for mitigation and adaptation
Climate and Earth system models (ESMs) provide a fundamental 
source of information for climate mitigation and adaptation decisions. 
Applying these models to understand climate change and to provide 
multimodel climate simulations is internationally coordinated by the 
World Climate Research Programme’s Coupled Model Intercomparison 
Project (CMIP), with simulations of the most recent phase, CMIP66, 
just being completed. CMIP has supported climate research since the 

early 1990s, while careful analysis of CMIP model output has provided 
a fundamental basis for Intergovernmental Panel on Climate Change 
assessment reports and climate policy negotiations over the past sev-
eral decades (for example, the Paris Agreement7).

However, due to their complexity and computational costs, ESMs 
typically have a coarse resolution (∼40–160 km (ref. 8)). These models 
still exhibit systematic errors compared with observations9,10, and 
large uncertainties in their projections remain, such as on precipita-
tion changes, the jet stream and ocean circulation changes11,12. These 
climate projection uncertainties may deter policy decisions regarding 
adaptation, investment, security and resiliency. Climate mitigation and 
adaptation decisions could benefit from more reliable projections of 
the Earth system, not only globally but also increasingly on regional 
and local scales, where adaptation and resilience take place. Differ-
ent mitigation pathways involve strategies that differ in when they 
achieve net-zero emissions and vary in the distribution of mitigation 
efforts between short-lived and long-lived climate forcers, reliance 
on land-use strategies and the scope and timing of carbon removal13. 

•• Salinity heat and momentum exchange: AI can improve the 
representation of salinity heat and momentum exchange in  
climate models by analysing vast datasets of oceanic and 
atmospheric interactions from in situ measurements and 
high-resolution simulations that can help identify patterns and 
relationships. These algorithms can then inform the development 
of more accurate parameterizations, improving the fidelity 

of salinity heat and momentum exchange in climate model 
simulations.

Another challenge lies in accurately representing biodiversity, 
ecological, adaptation and evolutionary processes and their role in 
ecosystem functioning101. For further examples of important Earth 
system feedbacks, we refer to ref. 17.
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Fig. 1 | Feedback mechanisms across the Earth’s system introduce 
uncertainties in climate projections, affecting carbon cycles and climate 
change responses. Many feedbacks are poorly understood or resolved, 
which calls for sustained research towards improved coarse-scale ESMs, 
exploiting AI/ML along with emerging data streams to help overcome barriers 

to understanding and representing them in hybrid ESMs. The interplay of 
natural processes and human-induced emissions underscores the complexity 
of mitigating climate change, necessitating innovative solutions such as AI for 
effective climate strategies.
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Therefore, ESMs must depict coupled cycling of greenhouse gases, 
encompassing both natural processes and human-induced influences 
for a broad range of policy-specific scenarios (Box 1).

In this Perspective, we call for a hybrid multiscale Earth system 
modelling approach, bringing the artificial intelligence (AI) revolution 
to climate modelling. Machine learning (ML) provides great potential to 
improve some of the limitations apparent in coarse-resolution ESMs14,15 
and high-resolution global kilometre-scale climate models. Our pro-
posed approach provides the potential for a step change in model 
performance and climate data utility while bridging across scales and 
process complexity and utilizing the full hierarchy of models.

Current state of climate modelling
Comprehensive ESMs not only represent the physical climate but also 
include interactive carbon and other biogeochemical cycles16 and 
components such as ice sheets, as well as many other features of the 
Earth system that are important for climate change and its impacts17. 
Compared with earlier generations, CMIP6 models have increased 
spatial resolution and improved physical process representation8. 
Another advance in CMIP66 is the increasing number of large ensem-
bles, which have provided important new insights into the relative 
contribution of internal climate variability and external forcing to 
projected changes18,19. The simulation of mean climate and its variability 
has improved for many large-scale key indicators of climate change, but 
long-standing systematic errors compared with observations remain9,10 
in addition to a large spread in climate projections12 and sensitivity20. 
At regional scales, the intensity and frequency of climate extremes 
such as extreme rainfall, droughts and heatwaves are often not accu-
rately modelled21,22 yet are critical for accurate resilience and adapta-
tion planning. This has motivated the development of techniques to 
constrain uncertainties with the help of observations, emulators and 
palaeoclimate information11.

A large contribution to systematic errors and the large spread in 
climate sensitivity and projections stems from processes occurring 
at scales smaller than the model grid resolution8, such as convection, 
microphysics, aerosol–cloud interactions, or ocean eddies23, and 

dynamical24 processes. These processes need to be empirically approxi-
mated in models by parameterizations. This has motivated the develop-
ment of kilometre-scale climate models25 or more regional large eddy 
simulations (LES) at even finer resolution26. These models can simulate 
key small-scale and fast physical processes with improved accuracy25, 
resolving many of the biases of coarse-resolution simulations, such as 
better global precipitation distributions27, more realistic representa-
tion of extremes28 and better equatorial wave dynamics29. However, 
due to their staggering computational costs, kilometre-scale climate 
models cannot currently be run at climate timescales for multiple dec-
ades or longer. Further, large ensembles with coarser-scale ESMs that 
include important Earth system processes and feedbacks are required 
(Box 1). Simulations with multiple ensemble members as well as careful 
calibration and tuning30 are beyond the reach of kilometre-scale climate 
models. More fundamentally, even kilometre-scale climate models 
exhibit biases, for example, in precipitation25, because they still rely on 
parameterizations for even smaller-scale processes. These challenges 
present fundamental roadblocks to more useful climate projections, 
whether with high- or coarse-resolution climate models.

An AI-empowered approach for faster and more 
accurate hybrid climate modelling
We argue that a holistic approach to climate and Earth system model-
ling that fully integrates AI will be a productive path forwards to make 
progress in climate modelling. Our proposed approach (Fig. 2) is based 
on four pillars: (1) higher resolution across scales with new computing 
opportunities: next-generation climate models and ESMs need to fully 
leverage modern and evolving hardware to enable simulations at higher 
resolution that better resolve important processes such as deep convec-
tion or ocean eddies. Given the shortcomings of even high-resolution 
simulations and the continued need for coarser ESMs to represent 
Earth system complexity, this needs to be complemented by (2) Hybrid 
ESMs improved with physics-aware ML where parameterizations or 
subcomponents of the models are replaced with ML to improve the 
representation of subgrid-scale or poorly known physical and biological 
processes. We also need to (3) harness the wealth of Earth observations 
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Fig. 2 | Schematic of the proposed AI-empowered multiscale climate 
modelling approach for urgent mitigation and adaptation needs. This 
approach bridges across scales and process complexity for faster and more 
accurate climate information also on regional and local scales. We note that LES 

and Earth observations are also used to directly refine kilometre-scale climate 
models and coarser-scale ESMs. DNS, direct numerical simulations. Credit: 
globes, NASA/Visible Earth.
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to evaluate, constrain, calibrate and improve models. This needs to be 
supported by (4) modern and operational science infrastructures to 
define common experiments and standards, to provide annual updates 
of climate forcings and climate feedbacks that relate forcings to the 
Earth’s energy imbalance and to operationalize policy-relevant climate 
model simulations and output, including regionally downscaled31 or 
regionally refined32 output.

An important component of this approach is that coarser-scale 
ESMs are enhanced to hybrid models, in which parameterizations and 
subcomponents are improved with ML informed by kilometre-scale 
climate model simulations or even higher-resolution LES and direct 
numerical simulations, and by Earth observations. Hybrid ESMs prom-
ise to have substantially reduced systematic errors and enhanced 
projection capability compared with current ESMs. In contrast to 
kilometre-scale climate models, ESMs incorporate important Earth 
system processes and feedbacks (Box 1) while still being fast enough to 
provide large ensembles important to simulate internal variability and 
extremes18 and to improve attribution and understanding19. These mod-
els can be brought to actionable climate scales using ML-based down-
scaling or regional refinement that can also be used to drive impact 
models. They can themselves be increased in resolution through new 
computing opportunities. Since even kilometre-scale climate models 
still require parameterizations of even smaller-scale processes and for 
processes that are not likely to improve just through increased resolu-
tion (for example, land and cryosphere), they can also be enhanced 
to hybrid kilometre-scale climate models using the same approach. 
We argue that modernized infrastructures are required that utilize 
AI towards the operationalization of policy-relevant simulations and 
model outputs to a broad range of stakeholders. This approach could 
substantially enhance the applicability of climate modelling and pro-
jections also on the regional to local scale to tackle urgent mitigation 
and adaptation needs. It requires co-production as indicated with 
the handshake in Fig. 2 with stakeholders that ensures that services 
utilize the most advanced capabilities available, while the scientific 
community promptly addresses any service gaps33.

High resolution across scales with new computing 
opportunities
Today’s ESMs operate predominantly on parallelized centralized pro-
cessing units, limiting their ability to fully harness the potential of 
advanced new hardware such as graphical processing units and tensor 
processing units34. The use of highly parallelized hardware has played 
a pivotal role in driving the AI revolution35, so we believe that the same 
transition to modern hardware and new codes that are more agile and 
agnostic to different hardware is a critical step for accelerating ESMs 
to allow for higher resolution across scales34,36, and for fully harnessing 
the capabilities of ML algorithms37,38.

To employ ML and leverage modern hardware infrastructure 
within ESMs, barriers posed by languages such as Fortran and C need to 
be overcome, but this requires substantial code modifications, taking 
many years of development. Further, the integration of ML algorithms 
remains ad hoc, with specific language bridges between Fortran or C 
and Python, in which most ML algorithms are written. These bridges 
also do not readily permit ‘online’ learning, that is, the training and 
tuning of the embedded ML subcomponents online when data become 
available in sequence and are used to update the ML on the fly, which 
is critical to utilize Earth observations.

Refactoring codes with modern high-level languages, such as 
Python/JAX39 or Julia40, offers transformative possibilities34. These lan-
guages can flexibly leverage modern hardware (for example, graphical 
processing units or tensor processing units)41–43 and support differenti-
able programming44,45, which is the capacity to take the derivative to 
a variable of interest within numerical precision and at very limited 
computational cost45. It is one of the backbones of the ML revolution 
to efficiently compute gradients of nonlinear functions and could 

be applied to model code to tune physical or ML parameters and ini-
tial conditions, creating seamless ML physical model integration44,46. 
NeuralGCM, the first fully differentiable hybrid atmospheric model 
combining physics and neural networks in an end-to-end trainable 
fashion, is a breakthrough in that direction, written in Python/JAX47. 
We expect differentiable programming with modern languages such 
as Python/JAX to play an important role.

All these advances would accelerate the transition to exascale 
computing to run high-resolution ESMs that explicitly resolve more 
processes, enhancing model accuracy and more easily integrating ML. 
These advances will benefit from collaboration with the computer sci-
ence community and the private sector48, potentially leveraging large 
language models to accelerate code refactorization49.

Hybrid ESMs improved with physics-aware ML
To reduce systematic errors in coarser-scale ESMs, ML trained on short 
high-resolution climate model simulations has been successfully sub-
stituted for conventional parameterizations of deep convection, cloud 
cover and ocean turbulence, thereby enhancing the fidelity of the host 
ESM, for example, for ocean transport, cloud-cover distribution, sea sur-
face temperature biases or precipitation distributions and timing50–56. 
ML can also be used to replace parameterized processes that do not have 
a clear physical basis and that are still unresolved in high-resolution 
simulations, such as warm rain or ice microphysics, photosynthesis, veg-
etation phenology, or land–atmosphere or ocean–atmosphere interac-
tions, as long as sufficient Earth observations are available (Fig. 1). For 
example, for land, ML has been used to find the optimal regulation of 
land–atmosphere flux exchange, such as canopy or aerodynamic resist-
ance and its dependence on atmospheric stability57,58 or to unravel the 
role of microbial carbon-use efficiency for soil carbon storage59. These 
hybrid approaches are, however, not without limits, and several ML 
challenges need to be overcome48. First, ML struggles with extrapola-
tion beyond the training regime (out-of-distribution prediction). New 
approaches to improve those predictions, such as by incorporating 
climate invariant variables60 or multi-fidelity approaches that merge 
traditional parameterization with ML trained on historical data, are 
showing promising progress61,62. ML approaches can also lead to numeri-
cal instabilities when integrated into a host climate model63. Combin-
ing causal discovery and deep learning can help mitigate instability 
problems by learning the physical drivers of subgrid-scale processes 
and improving numerical stability during temporal roll-out64. Trust and 
generalizability of ML models can be further enhanced by introducing 
more interpretable latent dimensions28,53 or equation discovery52,65,66.

We argue that even kilometre-scale climate models could be 
improved with such a hybrid ML-based approach by being able to learn 
from ultra-high-resolution simulations (for example, direct numerical 
simulations and LES) and Earth observations (Fig. 2). This is because 
even kilometre-scale climate models exhibit biases as they still require 
parameterizations of even smaller-scale processes (for example, micro-
physics and turbulence) as well as parameterizations for land (for 
example, photosynthesis, ecosystem respiration and wildfires), ocean, 
sea-ice and land-ice processes. Land and cryosphere processes and 
biases, for example, are not likely to improve through just increased 
resolution as many processes are not explicitly resolved even at high 
resolution or because they involve complex biological systems whose 
structural form is currently unknown67.

Harnessing the wealth of Earth observations
Numerical weather prediction fuses model trajectories with observa-
tions via data assimilation that corrects the model trajectory as an initial 
condition problem and, sometimes, adjusts physical parameters of the 
model to better predict weather. Data assimilation has been immensely 
successful68,69. Yet the model’s inherent biases appear again in longer 
simulations as the data assimilation does not correct them. For exam-
ple, on subseasonal to seasonal timescales, a model similar to the ones 
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used to predict weather tends to be less accurate than a climatology70. 
These issues reveal that the model structure and parameterizations of 
high-resolution weather models are also imperfect.

A wealth of Earth observation data from satellite, in situ and 
ground-based measurements are now available, with data volumes 
already well beyond hundreds of petabytes71, as well as palaeoclimate 
proxies72. They are routinely used to guide manual climate model 
tuning30,73 and for model evaluation74, supported by modern evaluation 
packages75,76. However, these datasets are only starting to be used to 
drive automated model tuning and parameterization refinement yet 
offer tremendous potential for placing observational constraints on 
many subgrid-scale physical and biological processes, in particular 
because of the increasing spatial resolution of observational systems 
alongside new observations with a focus on Earth system processes 
(for example, hydrology, biology and cryosphere)33.

We advocate a new model–data fusion approach in climate 
modelling that relies on ML-based parameter estimation (inference), 
which, unlike in traditional data assimilation, corrects model structure 
(parameterizations, whether physically based or ML based) instead of 
model trajectories (initial conditions)77. Traditional data assimilation 
is limited in its applicability to climate because it addresses primarily 
the production of accurate initial conditions77, whereas climate is 
impacted mainly by boundary conditions. Instead, we support efforts 
to focus on inferring model structure, including physical or ML-based 
parameterizations based on sparse, noisy and indirect observations. 
This approach targets not individual state trajectories, as day-to-day 
matching is impossible for freely evolving climate models, but rather 
statistics of variables. Statistics are more directly relevant to climate, 
which focuses on changes in statistics rather than on single trajectories, 
and because often, exact initial conditions are unknown and matching 
conditions on specific days is impossible because of internal variabil-
ity. There are now new algorithmic developments that can accelerate 
progress on that front. For example, generative AI and diffusion models 
can help define and constrain statistics and are already starting to be 
applied in climate modelling78.

This approach for model–data fusion requires substantial algo-
rithmic developments, merging traditional data assimilation and ML 
techniques79 and targeting statistics80, also utilizing differentiable com-
puting. Challenges include handling high-dimensional data, develop-
ing new frameworks for statistics’ evolution or fine tuning deep neural 
networks in the presence of uncertainty81, due to observational error, 
process uncertainty and inherent stochasticity. Current ML approaches 
face difficulties in the presence of sparse, noisy and indirect observa-
tions, typical of Earth observations such as from satellites81. While ML 
has been used for climate model parameter tuning82, it often lacks 
uncertainty quantification83. Recent advances in Bayesian inference 
and probabilistic numerics can advance the field84,85.

Modern and operational science infrastructures
CMIP has been very successful over the years in developing an efficient 
infrastructure with common standards for climate model output, dra-
matically facilitating and expanding the analysis and use of multimodel 
climate simulations. These guidelines and standards, coupled with the 
long-term viability of the overall CMIP process, have allowed and encour-
aged the parallel evolution of data and evaluation infrastructures.

Nevertheless, because of the changing needs of a range of stake-
holders, including climate services such as the Copernicus service of 
the European Union and emerging efforts from the National Oceanic 
and Atmospheric Administration in the United States, more timely cli-
mate projection updates are required so that the impact of changes to 
past and likely future emission trajectories due to global events such as 
pandemics, wars, climate policy changes, global economic disruptions 
or natural shocks such as a major volcanic eruption can be accounted 
for so that the best climate information is available for events such as 
the annual Conference of the Parties and the Global Stocktakes. Such 

a process should include yearly updating and quality control of forc-
ing datasets based on historical and near-real-time observations86, a 
process to produce rapidly updatable policy-relevant scenarios that 
reflect actual emissions, recent events and climate policy changes87,88, 
as well as the operationalization of policy-relevant climate simulations 
and the provision of corresponding output to users. The opportunities 
of ML in this regard should be further explored89.

A key component that we advocate is interactivity to enable users 
to explore, understand and extract relevant simulated climate data 
easily, much in line with digital twins90. Cloud computing and modern 
ML techniques offer promising solutions for enhancing user inter-
actions. For example, active learning91 and causal inference66,92 can 
help optimize, analyse and embed users in the simulation loop while 
addressing causal (for example, counterfactual) queries. ML can also 
support making the data available to users at scale with effective data 
compression tools93.

Conclusions
Long-standing systematic errors in coarse-scale ESMs have motivated 
the development of kilometre-scale global climate modelling efforts 
with the goal to provide more accurate near-term climate predictions94. 
However, these models are too expensive to be run on century time-
scales and are often limited in their representation of the complexity 
of the Earth system complexity. Climate projections with coarser ESMs 
that comprehensively simulate emerging Earth system processes and 
feedbacks (Box 1) will continue to be required to reliably project the 
long-term forced climate change response and extreme events in the 
face of intrinsic climate variability. However, a step change in the mod-
els’ performance is required.

In this Perspective, we share a vision of an AI-empowered next- 
generation multiscale climate modelling approach based on four pillars: 
acceleration, hybridization of ESMs, full integration of Earth observa-
tions and improvements of infrastructure. With this integration, we 
expect substantial reductions of systematic errors in new ESMs com-
pared with the current generation. Such ML approaches blending Earth 
observation and domain knowledge effectively will provide the benefits 
of increased resolution and improvements across scales. Today’s results 
on parameterization and physics-data integration are promising and 
suggest that interaction between ML and physics-based models will yield 
hybrid models that produce improvements in process representation 
and ESM fidelity, even when run at a coarser resolution, still allowing 
century-long simulations, many ensemble members and the tuning of 
models against observations. On the basis of this potential, we believe 
that the future of climate modelling will involve hybrid ESMs, where 
ML approaches replace many model subcomponents that advance 
towards process understanding and model interpretability, not just ML 
emulation. We note that so far, hybrid developments have been largely 
restricted to specific subcomponents of the atmosphere, ocean or land 
models, yet the integration of ML-based hybrid approaches into a fully 
coupled ESM to perform CMIP-type simulations remains a daunting task.

This approach must be fully embedded into a modernized and 
operationalized infrastructure to be maximally impactful, delivering 
critical information about climate change in a broad and accessible 
format for targeted adaptation and mitigation to a wide group of stake-
holders. This multiscale climate modelling vision would provide a step 
change in providing accurate climate information to serve emerging 
mitigation and adaptation needs at more frequent intervals than is 
currently possible, allowing interactivity for users through enhanced 
ML techniques. It will also provide the foundation for more realistic 
digital twins of the Earth system90 that are scalable, user interactive 
and adaptive. This holistic approach to hybrid climate and Earth system 
modelling could form an integral part of international activities such 
as World Climate Research Programme’s CMIP6 and high-resolution 
activities such as Destination Earth (https://destination-earth.eu/) or 
Earth Visualization Engines (EVE95).

http://www.nature.com/naturegeoscience
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To achieve this vision, the international community must tackle 
several challenges on the ML side48, the algorithmic part, the opera-
tionalization of policy-relevant simulations and forcing, and the broad 
and inclusive accessibility of climate model data, as we outline here. 
Challenges lie ahead, but this objective has never appeared to be as 
much within reach as it is today. We believe that the debate of future 
modelling should not be centred around high-resolution climate 
modelling versus complex, coarser-resolution ESMs. Instead, a new 
ML-empowered multiscale climate modelling approach that integrates 
Earth observations through modernized code, hardware innovations 
and adaptive international science infrastructures is required. Indeed, 
we argue that climate modelling needs to be approached within a 
hierarchy of models going across complexity and resolution ranging 
from high-resolution to coarser ESMs that are enhanced with ML and 
downscaled or regionally refined to drive impact models, as described 
in this Perspective. This way, we will be able to better project the full 
complexity of future Earth’s climate and extreme events at unprec-
edented accuracy, also improving climate information and technology 
assessments for sustainable developments of sectors such as transport, 
energy and aviation. It is incumbent on the whole Earth system mod-
elling community to join forces to offer the best and most accurate 
climate information for urgent mitigation and adaptation needs in a 
rapidly changing world. Time is of the essence.
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