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Abstract—Efficient resource allocation is crucial in many
domains, particularly in senior care, where assigning resources
to older adults must consider uncertainties associated with
vulnerable populations. In collaboration with Senior Health
Facilities (SHFs) and domain experts, this paper presents iFair, a
novel framework designed to assist decision-makers in equitably
allocating scarce resources to older adults. iFair was prototyped
in the context of ongoing work on a data exchange platform,
CAREDEX, used for enhancing older adults’ resilience during
disasters. A key novelty of iFair focuses on aligning resident
preferences with resources in urgent situations, expediting care,
and enhancing task efficiency. We integrate static and dynamic
environmental data, including facility layouts and sensor data,
with detailed resident profiles to cater to the individual needs and
preferences of residents. While our framework primarily focuses
on allocation within facilities, it also extends to a regional scale
to support the planning and transfer of seniors to mutual aid
facilities. Our experiments adapt data from a real SHF to emulate
resource allocation in an emergency fire evacuation setting and
highlight the delicate balance that decision-makers can achieve
between efficiency and fairness.

Index Terms—fairness, resource allocation, senior health care,
decision-making.

I. INTRODUCTION

Scheduling in human-centric processes, especially in senior

care settings, involves aligning limited resources with high

demand, a challenge critical for timely care in healthcare

and emergency services. Hence, efficient scheduling is key

to managing staff shortages in senior health facilities (SHFs),

reducing hospital wait times, and ensuring prompt emergency

response [1], [2]. Domain experts highlight that senior care

resource allocation often targets staffing and staff time distri-

bution [3]. The COVID-19 pandemic highlighted the magni-

fication of equitable resource allocation challenges, leading

to a comprehensive review by the Agency for Healthcare

Research and Quality (AHRQ) and encouraging new research

into shortages of equipment, medication, and staff [4]–[6].

Along with disparities in COVID-19 vaccine distribution,

this accentuated the need for equitable resource allocation,

especially as mortality rates among seniors soared with limited

critical medical resources like ventilators and ICU beds [7],

[8]. Conventional resource allocation guidelines and meth-

ods may fall short in human-centric situations, especially in

scenarios requiring urgent decision-making. For example, in

a hypothetical fire evacuation setting, new caregivers may

choose whom to evacuate at random, leading to wasted time

and effort. However, prior knowledge of residents’ needs and

preferences could facilitate this process, motivating the need

for informed resource allocation strategies in emergencies.

Older adults, including those with disabilities or physi-

cal limitations, often face challenges in accessing essential

healthcare services due to resource scarcity. However, current

resource allocation methods offer broad solutions, lacking the

fine-grained personalization needed for optimal care. Hence,

there is a need for a novel approach that is fair, considers

the complexities of the environment, and the dynamic state

of the residents, accounts for their preferences, and adapts to

changes in real time. iFair incorporates those by leveraging

detailed resident data, including their Activities of Daily

Living (ADLs), to support decision-makers and stakeholders.

Allocating resources to older adults must involve consid-

erations like individual needs, resource availability, and care

urgency, making fair distribution challenging. Decisions must

balance fairness and efficiency, significantly impacting lives.

Emergency situations add pressure for swift decision-making,

complicating the assurance of optimal choices. At the re-

gional level, resource allocation becomes even more complex,

especially during evacuations from disasters. Various factors

must be considered, including in-facility conditions, resident

relocation, resource availability at mutual aid facilities, real-

time traffic, and other special needs. Our experiences with

wildfires and earthquakes in California have informed our

approach, detailed in our discussion on using relocation tools

for regional allocation in - §9. Key contributions include:

• A mathematical model to capture a digital twin representa-

tion of a SHF, i.e. facility, residents, resources, etc - §III-A.

• A new definition of fairness for equitable resource allocation

which considers human needs and preferences - §III-B.

• A novel framework for fair senior care resource allocation

that integrates expert insights and our experience with SHFs.

Under this framework, we propose a task-based assessment

method for scoring and prioritizing older adults - §IV.

• A detailed evaluation of our framework using an emulated-

based approach with data adapted from a real SHF - §V.
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II. RELATED WORK AND LIMITATIONS

In this section, we review related literature for efficiency

and fairness in resource allocation methods and highlight the

limitations of such approaches in addressing the specific needs

of vulnerable, dynamically changing populations.

Resource allocation has been studied in many settings such

as economics [9], education [10], and transportation [1]. These

works primarily focus on the efficiency of allocation and opti-

mize metrics for completion time [11] and resource usage [12]

under varying conditions. In healthcare, resource allocation

typically consists of assigning human (e.g., nurses, doctors)

and equipment (e.g., beds, wheelchairs) resources to residents

and patients. In the context of hospital systems, this has led

to metrics such as hospital bed occupancy rates (BOR) and

patient length of stay (LOS) [13]. Early work in this context

has leveraged solutions from other optimization problems,

including makespan [11], MULTIFIT [14], and TSP [15].

These solutions rely on heuristics [14] and evolutionary al-

gorithms [16] for their speed of computation and simplicity,

as well as mixed integer linear programs [13] to optimize BOR

and LOS. However, for senior health care, these approaches

struggle to accurately model complex/dynamic interdepen-

dencies (e.g., changing and long-term medical conditions of

patients) and the needs of older adults without requiring

extensive constraints. The interdependencies between specific

resources (a specific caregiver) and a resident influence the

feasibility and efficacy of tasks. Recent efforts have explored

queuing theory [17] and Markov decision processes [1], [2]

to address different system dynamics; however, they lack

consideration for preferences and the multifaceted needs of

patients and may become complex.

When resource allocation involves real people, it becomes

increasingly vital to consider the issue of fairness and its

trade-offs with efficiency [18]. Several definitions for the

concept of fairness in healthcare have emerged in literature,

characterized by the distribution of resources to residents and

the degree to which they satisfy individual health/well-being

needs. For instance, proportional fairness [19] aims to allocate

resources proportional to each resident’s needs, while max-min

fairness [20], [21] looks to maximize the minimum resource

share among residents. Other efforts have considered more

complex settings with multiple resources and heterogeneous

requests [22], as well as sets of desirable properties, e.g.,

envy-freeness [12] and pareto-efficiency [19], [22]. A recent

study [23] also identified several key criteria for prioritizing

residents/patients and considers how sickness, prognosis, and

waiting lists should be utilized while allocating resources to

minimize waiting/evacuation time. In our work, we leverage

max-min fairness to allow equal opportunities for resource

access based on these needs.

In dynamic environments, e.g., emergencies, the resource

allocation problem must consider the impact of time alongside

efficiency and fairness [22], [24]. Traditional approaches rely

on scheduling strategies such as shortest job first [25], round

robin [26], and priority-based schemes [23], [26], [27]. How-

ever, these methods discard considerations of preference and

the specific needs of residents and patients. Efforts for a more

realistic representation of healthcare settings have considered

bottlenecks in resources [28] and patient urgency [29], but rely

on manual appointment scheduling for a larger timescale. For

emergencies that run under shorter timescales, such scheduling

becomes impractical. To address this, iFair presents a cus-

tomized strategy that considers the inherent uncertainties in

an emergency, along with the dynamic states of vulnerable

populations, including their distinct needs, preferences, and

immediate circumstances.

III. PROBLEM FORMULATION

A. Modeling Key Components

This paper tackles the challenge of fair resource allocation

for older adults in senior care facilities. We model the static

and dynamic elements of a senior care facility, and the

resources and tasks requiring allocation to residents. Then,

we characterize the event and allocation processes.

1) Facility: We model a facility as a graph G = (V ,E)
where nodes vi ∈ V represent different areas (e.g., rooms,

nurse’s office) and weighted edges eij ∈ E denote a pathway

between vi and vj with travel time ωij . We denote two key

areas in the facility: exits vExit and an evacuation area vEvac.

The dynamic state of a node vi is captured by state(vi, t)
representing the condition of vi at time t, which can be one

of {Impacted, Clear, Unknown}. This is used to pinpoint

emergency sites and their proximity to residents. We also

model the traversal delays using access(vi, t), which could

occur in an emergency (e.g., due to smoke, or narrow exits).

2) Resources: We consider two types of resources: hu-
mans such as nurses and firefighters, and equipment such as

medication and wheelchairs. Human resources hi ∈ H are

characterized by a headcount Ci and skill-set Si. We model

Si as a tuple of personal attributes (e.g., gender) and skills

defined in the O*NET resource center skill ontology [30],

which includes certifications (e.g., basic/critical care) and

abilities (e.g., mobility aid). Equipment resources, ei ∈ E are

characterized by their quantity qi, reusability ri and type γi.
In our context, we define reusability to distinguish between

single-use items (e.g., syringes, medication) and multi-use

items (e.g., portable tanks). The type of equipment resource

defines its purpose and capabilities, e.g., a wheelchair is used

for mobility and can be manual or electric. For our allocation

problem, we also consider the real-time location loc(·, t) and

status avail(·, t) of human and equipment resources.

3) Tasks: We support a set of tasks τi ∈ T with de-

pendencies denoted by TD, such as in Fig. 1. Tasks range

from relocating resident or resource entities (which we denote

abstractly as X ) to specific facility locations move to(vi),
to managing entities via get entity() and release entity().
The core tasks, color-coded in blue in Fig. 1, involve providing

basic and/or critical care. Denoted as provide basic care()
and provide critical care(), they range from ADLs such as

dressing and toileting to more advanced medical needs.
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Fig. 1. Task Dependency Graph.

Each task is defined by its name N , entities involved

X , and the resources needed Req(E ,H). We model the

changing conditions of an emergency through task updates

task update(τi,X , t). We define the overall task completion

time in Eqn. 1, which encompasses the path traversal times

ωe , delays for space access access(·), and additional time

incurred for allocating a resident’s non-preferred resources

λp (described later). To optimize task execution, Dijkstra’s

shortest path algorithm is employed.

TTC() =
∑

e

ωe +
∑

v

access(vi, t) + λp, ∀e,v ∈ G (1)

4) Residents: Let Pi ∈ P denote residents in the senior

care facility. Each resident is characterized by a 3-tuple

{B,D,F}, denoting basic attributes (e.g., name, gender, age,

DOB, room), their diagnoses (e.g., dementia, arthritis, obesity,

etc.), and preferences for specific resources. In our model,

preferences are quantified on a numerical scale ranging from

−5 (strong dislike) to +5 (strong preference). Table I indicates

these preferences for basic care tasks. This scaling allows

us to measure the impact on task efficiency and residents’

satisfaction. Positive values indicate resources that enhance

operational performance, while negative values increase task

completion time; directly reflecting the operational costs of

utilizing less favored resources.

A resident’s satisfaction level LS() is the sum of their

preferences Fi, for all resources used in a task τi, i.e.,

LS() =
∑nPi

i=0 Fi, where nPi
is the number of resources

allocated to resident Pi. The extra time λp, for using less

preferred resources is computed from summing negative Fi

values, i.e., λp = −∑
αi · min(0,Fi). αi quantifies how

much a preference impacts task efficiency. For an emergency

scenario, let the criticality score Cscore, assess the urgency

of residents’ needs based on a set of important attributes I
with corresponding weights ωa. We track changes in resident

conditions (e.g., head injury from falling) using a health

report form HRF and adjust attribute weights and necessary

resources which are described later in §IV-A. A resident’s

location is captured using loc(Pi, t); we assume that residents

have expected locations at specific times, as depicted in Fig. 2.

Fig. 2. Resident Expected Location.

TABLE I
RESIDENT PREFERENCES FOR BASIC CARE.

Joe Mary Bob Carol Don
h1 +5 -5 0 -4 0
h2 +2 -3 0 -1 0
h3 -5 +3 0 +4 0
e1 0 0 0 +5 0
e2 0 -1 0 -2 -5

Consider a resident, Joe, who requires two-person assistance

and equipment e2 (See Table I). If he was assigned resources

h2, h3, and e2 under impact rates αh2
=3, αh3

=2, and αe2
=4

(in minutes per Fi), we find that λJoe=10 extra minutes,

and LS(Joe)=−3, suggesting slight dissatisfaction with his

allocated resources.

5) Event and Allocation: Our analysis prioritizes urgent

events like fires that require immediate action. An event is

defined by its starting point, with vo=loc(event, t=0), and its

propagation, prop(vi, vj) within the facility, which increases

edge weights ω near the affected nodes. Allocations A are

denoted by {Pi, hi || ei, ts, te}, indicating that a resident Pi

is allocated a resource hi or ei during time period (ts, te).
Notably, resources assigned to the same task might start

simultaneously but end at different times, such as a nurse

and a consumable (medication). We also note that the human

resource count in senior facilities is much lower than that of

residents, i.e.,
∑|H|

i=1 Ci <<
∑|P |

j=1 Pj .

B. Problem Statement

In our model, fairness is defined as the balance between

prioritizing urgent resident needs, reflected by criticality scores

Cscore, and achieving equitable satisfaction levels LS() across

residents. This dual objective ensures resources are initially

allocated to those in immediate need based on their conditions

and needs while striving to meet the satisfaction of all residents

uniformly. Yet, emergencies introduce a balance challenge

between fairness and efficiency; for instance, during a fire,

swift evacuation might override individual preferences for

everyone’s safety. Hence, fairness is prioritized without com-

promising urgent safety measures, leading to the formulation

of the fair resource allocation problem as shown in Eqn. 2.

min
∑

(ω1 · λp − ω2 · LS()) (2a)

subject to λp =
∑

|Fi| × αi, ∀F
i
< 0 (2b)

LS() =
∑nPi

i=0
Fi (2c)

ω1 + ω2 = 1 , 0 ≤ ω1, ω2 ≤ 1 (2d)

This corresponds to a multi-objective optimization problem

with two objectives where one consists of accomplishing

efficiency by minimizing
∑Fp, incurred when assigning non-

preferred resources to residents and achieving fairness by

maximizing
∑LS(), the residents’ satisfaction. ω1 and ω2 are

the efficiency and fairness weights respectively. For instance,

setting ω1 = 0.4 and ω2 = 0.6 indicates a greater emphasis

on fairness over efficiency in the allocation.

Theorem: Our fair resource allocation problem is NP-Hard.

Proof : We demonstrate its NP-Hardness by reducing from the

makespan optimization problem, a classic NP-Hard problem
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in scheduling theory. Consider an instance of the makespan

problem with n jobs and m machines, where each job i has a

processing time pij on machine j. We construct an analogous

instance of our resource allocation problem as follows; each

job corresponds to a resident, and each machine to a resource

(either human or equipment). Let pij = TTC() represent the

processing time of resident i when assigned to resource j.

In the simple case of identical machine scheduling problems

where the processing time of each job is the same on each

machine, minimizing the weighted average completion time is

NP-hard by reduction from the Knapsack problem [31]. Even

if there are only two machines, the problem remains NP-Hard

by reduction from the partition problem [32]. In our resource

allocation problem, the processing times are unrelated. For

instance, machine i could have pij > pij′ , while machine i′

could have pi′j < pi′j′ . This corresponds to an instance of

the unrelated parallel machines scheduling problem where the

objective is to minimize the makespan (Eqn. 3).

min
n∑

j=1

pijxij ≤ Cmax (3a)

subject to
∑

i=1

xij = 1, ∀ij ∈ {0, 1} (3b)

Our reduction from the well-established NP-Hard makespan

problem shows that our resource allocation problem is at

least as complex as the makespan problem. Consequently, our

problem inherits the NP-Hard classification. In the subsequent

section, we outline our methodology for achieving fairness.

IV. IFAIR APPROACH

A. Overview of iFair Approach

We prototyped the iFair framework in the context of CARE-

DEX: a data exchange platform that aims to enhance the

resilience of older adults in aging communities. We assume

the availability of static healthcare and dynamic smart space

information about residents; sensors embedded in the space are

used to collect data about residents’ location and movement

[33]–[35]. Information from health records and caregiver logs

can provide additional data about health and ADLs to create

a comprehensive picture of each individual’s needs. This

information is then shared with other stakeholders including

first responders, family, and caregivers [36]. Fig. 3, provides

an overview of key components in the iFair framework.

(a) Physical Infrastructure and Occupants: First, we collect

data about the residents and resources in the facility using a

variety of records and sensors for localization and tracking,

such as motion sensors, emergency call buttons, and Wi-Fi

sensing. Note: Indoor localization is not the main focus of

this paper; however, through the CAREDEX project, we have

conducted multiple drills that allow us to approximate the

location of participants. Thus, we have some real-world expe-

rience in this area. All data collection complies with the Health

Insurance Portability and Accountability Act of 1996 (HIPAA)

regulations, utilizing encryption and data anonymization to

ensure the privacy and security of resident information [34]

(out of scope for this paper).

Fig. 3. Overview of the iFair Framework.

(b) Resident/Resource Database: Next, we store and analyze

this data to gain insights about the residents. We also use

the database for storing the residents’ medical profiles and

ICD-10-CM (International Classification of Diseases, Tenth

Revision, Clinical Modification) [37] coding data including

real-time regional information about mutual aid facilities (e.g.:

number of beds or oxygen units available).

(c) Dynamic Assessment Module: We use this module to

assess the residents and update their criticality scores, a

measure of their wellness and needs. Furthermore, we cluster

the residents into three groups based on their criticality. This

module also handles real-time changes that affect the priority

of residents. e.g.: if a resident classified as low-priority based

on criticality is injured during an evacuation, we reassess them

and update their criticality score.

(d) Resource Allocator: Based on all known information,

this module assigns the resources (see Alg. 3). Overall, this

framework can serve a range of purposes such as facilitating

the evacuation of residents, improving the distribution of

vaccines during an outbreak, and enabling swift relocation of

residents in the face of a natural disaster.

B. Task-Based Assessment and Scoring

We collaborated with geriatric experts at the University

of California Irvine (UCI) to explore leading assessment

tools for evaluating older adults. This exercise led to the

adoption of the ICD-10-CM system for resident assessment

and scoring. The ICD-10-CM, developed by the Centers for

Disease Control and Prevention (CDC) and based on the World

Health Organization’s (WHO) alphanumeric disease classifica-

tion codes, is widely used in the U.S. healthcare system for

disease classification. In line with HIPAA regulations, health-

care professionals use these codes for patient assessments,

assigning risk scores for various purposes such as determining

care levels, classifying healthcare services and pricing, and

assessing cognitive and mobility functions among older adults.

Assessments are performed when a resident is admitted to

a facility, quarterly, and annually. In addition, residents are

assessed whenever they experience a significant change in

status, and whenever the facility identifies a significant error

in a prior assessment.
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Algorithm 1: Offline Criticality Score Assessment

Input: Residents P , Important attributes I , Desired attribute
value vα, Weight of attribute ωα

Output: List of Criticality Scores
1 List Cscore ← ∅

2 for resident in P do
3 Cscore ← 0 // to update using ICD-10-CM
4 for Di ← resident.diagnoses do
5 Cscore ← Cscore + hcc val(Di)

6 Cscore ← ∑
α∈I ωα ·HCC valueα, ∀α=vα

7 Add Cscore to List Cscore

8 return SortDescending(List Cscore)

a) Offline Criticality Score - (computed apriori based
on medical profile): For evaluating residents’ physical con-

ditions, we analyze attributes from their medical profiles,

employing a risk-adjustment model to calculate their Risk

Adjustment Factor (RAF) scores. This study adopts the Hierar-

chical Condition Category (HCC) model [38] for this purpose.

Consider a resident with a severe head injury coded as

T31.11, equating to an HCC value of 0.486. Adding dementia

increases their score by 0.346. A BMI between 40.0-44.9

adds another HCC value of 0.25. Summing these values gives

Cscore = 0.486 + 0.346 + 0.25 = 1.082 (refer to lines 4-

5 of Alg. 1). This method is applied to all residents, noting

that those with a score over 1.0 are regarded as having severe

health issues. During an urgent evacuation, attributes like the

weight of a resident and their ability to move independently

are crucial. To address this, we define important attributes I
and desired values vα, e.g., I = {BMI,Ambulatory} with

vBMI > 25 for overweight, and vAmbulatory = False for

mobility issues. A set of weights is then applied to emphasize

these attributes’ importance. Consequently, residents matching

these criteria have their HCC values adjusted, thereby updating

their criticality score as outlined in line 6 of Alg. 1. This

adjustment yields a weighted Cscore, our measure for offline

criticality.

b) Online Criticality Score - (computed in real-time
based on event urgency): During emergencies, criticality

scores are updated to reflect the urgency of care needed

by residents, as outlined in Alg. 2. In a fire scenario, for

instance, a resident’s criticality score is modified based on

their closeness to the fire, enabling a reevaluation of their

Algorithm 2: Online Criticality Score

Input: P , G , List Cscore

Output: List Cscore

1 vo ← G .loc(event, t = 0)
2 for Pi ← P do
3 dP

i
← ShortestDistance(loc(Pi, t), vo)

4 UP
i
← 1

dPi

// compute urgency

5 U List.add(UP
i
)

6 for UP
i
← U List do

7 Normalized U
′
P
i
=

UPi
−min(U List)

max(U List)−min(U List)

8 Update List Cscore[Pi] ← List Cscore[Pi] ∗ U
′
P
i

9 return SortDescending(List Cscore)

priority. This could lead to assigning a higher priority to those

in immediate danger, thus allowing for a dynamic response to

the unfolding situation. By combining the CDC’s established

medical scoring framework with real-time data from sensors

across the facility, we dynamically gauge the new criticality

of each resident.

After assessment and scoring, we allocate resources to

residents as shown in Alg. 3, cycling through sorted criticality

scores to match residents with tasks, which involves setting

task names (e.g., provide basic care()), identifying depen-

dencies, and determining necessary resources with preferences

(lines 3-6). We assign preferred resources within dmax and

to avoid starvation, any human available resource (lines 7-

12). Then compute task completion times and satisfaction

(lines 13-14), updating resource states and storing these in

the allocation record (lines 15-21). Additionally, we maintain

a health report form (HRF) where we include residents

experiencing changes in health conditions and use it to update

their criticality scores.

Algorithm 3: Resource Allocation

Input: Online criticality scores List Cscore, Distance
threshold dmax, Health report form HRF

Output: Allocation records AR

1 A ← ∅;AR ← ∅
2 ts ← GetCurrentTime()
3 while ¬ isEmpty(List Cscore) do
4 Cscore ← max(List Cscore)
5 Pi ← GetCorrespondingResident(Cscore)
6 Req,Fi ← GetTaskDetailsAndPrefs(Pi)
7 for rr ∈ Req do
8 r ← GetResource(Fi,max dist = dmax)
9 if r == null // Assign human

10 then r ← NextAvailableHuman() ;
11 A ← A ∪ {(Pi, r, ts)}
12 SetResourceState(r,“in-use”)

// Get Task completion time, satisfaction
13 TTC() ← ∑

ωe +
∑

access(vi, ts) + λp

14 LS() ← ∑nPi
i=0 Fi

15 for r in A do
16 SetResourceState(r,“unavailable”)
17 if reusable(r) then
18 ts, te ← te, te + TTC()
19 SetResourceState(r,“available”)
20 A ← A ∪ {(Pi, r, te)}
21 AR ← AR ∪ {(TTC(),LS(),A)}
22 if ¬isEmpty(HRF) then
23 for i, sc ← GetUpdatedCriticalityScores(HRF) do

List Cscore[i] ← sc ;

24 return AR

V. EXPERIMENTAL EVALUATION

Experimental Setup: We evaluated our framework through

emulation, utilizing anonymized data modeled after a real-

world senior care facility in Orange County, USA, including

30 elderly residents’ profiles (age, gender, medical informa-

tion). With input from experts in the Department of Family
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Fig. 4. Floor Plan of Small Facility.

Medicine, Division of Geriatric Medicine and Gerontology

at UCI Health, we generated synthetic data for 400 resident

profiles to facilitate larger population experiments. The offline

criticality score was evaluated using the CASAS dataset [39],

featuring real-world data on Activities of Daily Living (ADL),

activity scores, and diagnoses for 400 residents from Wash-

ington State University. We mapped ICD-10-CM diagnoses

to compute scores using HCC coding, based on residents’

medical information. A simulator (written in Python) was

developed to emulate resource allocation within a facility,

incorporating actual floor plans (Fig. 4) from a partner facility.

Experimental Plan: When a disaster strikes, older adults

are disproportionately affected [40]. During this type of event,

the human resources (i.e. medical staff, first responders, etc.)

needed to evacuate this frail population from their SHF to

a safe location are minimal. Hence, we crafted a use case

where rapid evacuation is imperative. We map this scenario

to a parallel machine scheduling problem translating staff to

machines and residents to jobs. Using the formulation in Sec-

tion III, our goal is to reduce evacuation times (i.e. optimize

the makespan Cmax [41]) as well as the residents’ satisfaction.

Accordingly, the key metrics we utilize in our evaluation are

time-to-completion (an efficiency/latency metric) and level of

satisfaction (a fairness metric).

We next discuss strategies that are used as baselines and

comparison points for iFair. Senior care facilities have emer-

gency plans in place that correspond to the following al-

gorithms: Shortest Job First (SJF), which aims to evacuate

residents who can be moved with the least effort and in the

shortest amount of time. This includes those who are fully

ambulatory, require minimal assistance, or are closest to the

exits. Longest Job First (LJF), on the other hand, prioritizes the

most critical residents, requiring the most time and resources

to evacuate. This could include those with mobility issues,

those requiring medical equipment, or residents located in the

most challenging parts of the facility.

To ensure a fair distribution of tasks among staff members,

we also developed a Clustered Round Robin (C-RR) strategy.

Here, each staff is assigned a fixed number/group of residents.

For example, staff and equipment may be assigned to specific

units/floors for a specific period to accomplish the task before

moving on to the subsequent floor. We also developed a

Criticality-aware Clustered Round Robin (CC-RR) strategy

TABLE II
COMPARATIVE OUTCOME WHEN EVACUATING RESIDENTS WITH

PREFERENCES (WP) VS. WITHOUT PREFERENCES (NP).

Prio
rity

Resid
ents

Csc
or

e

LS-W
P

TTC-W
P

LS-N
P

TTC-N
P

λp

H
IG

H

Joe 2.741 5 10 4 10 0
Mary 2.634 5 12 2 27 15
Bob 2.527 6 6 -6 6 0
... ... ... ... ... ... ...

M
E

D

Don 1.813 1 10 -6 18 8
Georgia 1.806 1 12 -6 22 10
Laura 1.799 1 14 -6 18 4
... ... ... ... ... ... ...

L
O

W

Mona 0.708 -1 17 2 18 1
Gennifer 0.601 0 18 2 20 2
Karole 0.0 5 11 -4 15 4
... ... ... ... ... ... ...

which is an improved version of the C-RR technique. CC-RR

consists of assigning resources first to high-priority residents,

then when there are no more residents in that cluster, it pro-

ceeds as C-RR alternating between medium-priority and low-

priority residents for a given amount of time. Let us note that

strict adherence to any single plan could lead to liability issues

based on negligence [42]. LJF policies may overlook urgent

needs for less critical, resource-intensive cases. Conversely,

SJF risks neglecting high-need residents for faster evacuations,

while RR’s fixed order may delay aid to urgent cases.

We use these algorithms to assess the effectiveness and

efficiency of our framework across various facility sizes. By

implementing these in both smaller settings, where resource

constraints may differ, and larger institutions with more com-

plex logistical challenges, we comprehensively evaluate our

approach. This enables us to adapt and refine our strategies,

optimizing evacuation procedures and ensuring equitable care

delivery in diverse operational environments.

Experimental Results: Although the evacuation time for

some residents, like Joe, remains the same (10 minutes)

whether preferences are used or not, indicating that his evacu-

ation is not impacted by any additional time due to preference

settings, most evacuation times observed in scenarios where

resident preferences were considered (TTC-WP) compared

to those where these were not included (TTC-NP), reveal

significant differences, as quantified in Table II. Notably, Mary

experiences a 15-minute increase in evacuation time without

preferences, rising from 12 to 27 minutes. This indicates that

ignoring preferences can lead to inefficient routing or resource

allocation, significantly increasing evacuation times.

Moreover, computating λp across different resident profiles

further illuminates this disparity. This measure quantifies the

additional time or delay potentially incurred when resident-

specific preferences and needs are overlooked. For instance,

Mary’s high λp value of 15 suggests considerable neglect of

her specific needs or location, which is adequately addressed

when preferences are considered, resulting in a more optimized

and faster evacuation process under the TTC-WP scenario.

iFair, particularly in a small facility as shown in Fig. 5,

achieves the lowest variability in satisfaction, with standard

deviations of 0.58 for high, 2.12 for medium, and 2.47
for low priority levels, indicating more equitable satisfaction

27

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 30,2024 at 21:26:00 UTC from IEEE Xplore.  Restrictions apply. 



���� ����	
 ��

��������

���
��
��
��
��
�
�
�
�
�

��
��

��
���

���
��
���

� 
���

!�
"�
�#

�$���
%�&'�()�
%�&'�(��
%�&'�(�*

���� ����	
 ��

��������

���
��
��
��
��
�
�
�
�
�

��

��
��

���
���

��
���

� 
���

!�
"�
�#

���������+�,�$�����"�+$#
%�&'�(�-
%�&'-(*.
%�&'-(��

���� ����	
 ��

�������/

0��
0�
0�
0�
0�
�
�
�
�
�

��

��
��
���
���

��
���
��
���

��
"�
�#

���������� �!�����"��!#
"�1#$%��
"�1#�%�&
"�1#'%�'

���� ����	
 ��

�������/

0��
0�
0�
0�
0�
�
�
�
�
�

��

��
��
���
���

��
���
��
���

��
"�
�#

(�	�������)�	���)� ���"(*))#
"�1#�%+�
"�1#�%+'
"�1#'%��

���� �����	 
��

�������

���
��
��
��
��
�
�
�
�
�
��


�
��
���
���

��
���

��
���
��
"

�#

��������������������  
%�!'�"#�
%�!'�"$�
%�!'�"�%

Fig. 5. Residents’ Satisfaction Across Different Approaches for a Small Facility
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Fig. 6. Residents’ Satisfaction Across Different Approaches for a Large Facility

(a)( )

(b)

Fig. 7. Comparing Average Task Completion Times: (a) Small Facility vs.
(b) Large Facility.

among residents. It surpasses the other methods in terms of

satisfaction spread. The Clustered Round Robin method shows

moderate variability, suggesting the importance of a more

personalized approach.

In larger facilities, as illustrated in Fig. 6, iFair maintains

lower variability in satisfaction, highlighting its effectiveness

and scalability in evacuations that consider resident prefer-

ences. The figure shows that iFair outperforms other methods

by achieving higher satisfaction levels across high, medium,

and low-priority residents. The satisfaction levels depicted in

Fig. 6 for iFair are higher compared to SJF and LJF, especially

for residents of medium and low priority, where the need to

balance resources can often leave these groups less attended in

other models. Even when compared to Clustered Round Robin

(C-RR), iFair demonstrates a more favorable satisfaction pro-

file. In Fig. 7, iFair consistently provides the shortest average

task completion time (TTC) for high-priority residents in both

facilities, demonstrating efficient prioritization. LJF and SJF

show moderate TTCs, indicating less effective prioritization,

while C-RR records the longest TTC, showing a slower

response. Likewise, the efficiency gap between iFair and the

other methods, especially for high-priority tasks in large facil-

ities, highlights iFair’s scalability and effective prioritization.

CC-RR, despite high TTCs, suggests potential scalability close

to iFair’s performance.

The Gantt charts in Fig. 8 indicate that iFair achieves a

68-minute makespan, setting a benchmark. Compared to other

methods, it improves the makespan by 20% over LJF, 35.85%

over SJF, 22.47% over CC-RR, and 37.04% over C-RR. iFair’s

efficiency stems from prioritizing urgency and preferences,

contrasting with methods leading to longer completion times.

Overall, our findings demonstrate that our framework is equi-

table, as supported by the satisfaction of the residents, and it

is also an efficient system.

VI. EXTENSIONS FOR REGIONAL RESOURCE ALLOCATION

AND DECISION SUPPORT

Planning and coordinating resources for distressed seniors

is vital within and across facilities. We explore regional aware-

ness in developing cross-facility resource-sharing strategies for

elderly care, including senior relocation during evacuations.
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(a) (b) (c)

(d) (e)

Fig. 8. Gantt Charts of Human Resource Allocation, using (a) iFair; (b) Longest Job First; (c) Shortest Job First; (d) Clustered Round Robin; and (e)
Criticality-aware Clustered Round Robin for a Small Facility.

Fig. 9. Relocation Planning Tool

This involves CAREDEX, a dynamic data exchange platform

to share regional resource availability (space/beds, caregivers,

special equipment such as oxygen, dialyzer) and personalized

care needs of relocating individuals for new providers unfa-

miliar with their unique requirements. CAREDEX features an

interactive visualization tool (Fig. 9) for viewing regional im-

pacts and a relocation module for coordinating resources dur-

ing disasters, offering non-technical decision-makers disaster-

specific information such as location, proximity, and severity,

and employing simulation tools like FEMA Hazus for esti-

mating damages. Its frontend is developed using Vue.js and

incorporates Leaflet and Google Maps for mapping, while

the backend utilizes Django REST and stores data in a Post-

greSQL database with GIS capabilities. The backend actively

collects data from various public hazard sources specific to

the hazard type. For earthquakes, it utilizes United States Ge-

ological Survey data [43], including Shakemap for immediate

impact assessment. A HAZUS-based engine estimates building

damage and potential injuries or fatalities. Wildfire information

is provided by the National Interagency Fire Center [44],

assessing fire proximity to facilities. Additionally, the risk to

older adults from wildfires extends beyond physical harm to

increased respiratory risk from smoke exposure, highlighted

by epidemiological research [45].

NOAA’s Hazard Mapping System Fire and Smoke Prod-

uct [46] provides daily smoke plume data, and AIRNOW [47]

offers hourly updates on ozone, PM1.0, and PM2.5 levels,

aiding in relocation decisions. We used CAREDEX’s regional
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awareness tool in drill exercises to understand the smoke

spread and air quality impacts from nearby wildfires on

facilities. For earthquakes, it evaluates impacts on senior care

facilities and evacuation sites. CAREDEX integrates data on

healthcare facilities’ conditions, like local trauma centers, to

assess damage at potential relocation sites. It pre-identifies res-

idents’ special needs, matching them with mutual aid facilities’

resources, and offering relocation options.

VII. CONCLUSION AND FUTURE WORK

In summary, this paper highlights the benefits of integrating

residents’ preferences and real-time criticality assessments

in resource allocation for senior care facilities. Leveraging

insights from domain experts and our experience with SHFs,

we proposed a method to assess and score older adults based

on their personal information. Our findings indicate that inte-

grating preferences into allocation algorithms enhances user

satisfaction and operational efficiency, ensuring a balanced

approach to resource distribution. Beyond emergency evac-

uations, the iFair framework is adaptable to non-evacuation

scenarios such as equipment or staff shortages resulting from

unforeseen incidents or disruptions that impact the normal

flow of activities in senior care facilities. This adaptability

enables iFair to prioritize needs and allocate resources effec-

tively, ensuring continuity of care even when mobility is not

required. Such flexibility not only strengthens facility-level

operations but also sets the stage for broader applications of

this framework. Hence, future work will focus on enhancing

resource allocation at the regional scale to facilitate the sharing

of resources across multiple facilities.
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