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Phase separation in multicomponent mixtures is of significant interest in both fundamental research
DOL:00.0000000000000¢ and technology. Although the thermodynamic principles governing phase equilibria are straightfor-
ward, practical determination of equilibrium phases and constituent compositions for multicompo-
nent systems is often laborious and computationally intensive. Here, we present a machine-learning
workflow that simplifies and accelerates phase-coexistence calculations. We specifically analyze capa-
bilities of neural networks to predict the number, composition, and relative abundance of equilibrium
phases of systems described by Flory-Huggins theory. We find that incorporating physics-informed
material constraints into the neural network architecture enhances the prediction of equilibrium com-
positions compared to standard neural networks with minor errors along the boundaries of the stable
region. However, introducing additional physics-informed losses does not lead to significant fur-
ther improvement. These errors can be virtually eliminated by using machine-learning predictions
as a warm-start for a subsequent optimization routine. This work provides a promising pathway to

efficiently characterize multicomponent phase coexistence.

Design, System, Application

Accurate phase coexistence characterization is critical for designing and optimizing systems and processes involving multiple compo-
nents, yet traditional methods are often slow and computationally expensive. To overcome this, we developed a machine learning
workflow grounded in physical principles to streamline and speed up these calculations. Using Flory-Huggins theory, we generated
ternary phase diagrams and trained a theory-aware machine learning algorithm to predict equilibrium phases, compositions, and abun-
dances. These predictions serve as an initial guess for numerical optimization, enabling fast and accurate determination of equilibrium
states. This approach can be extended beyond ternary systems or applied to other free-energy models to describe a variety of chem-
ical and biological processes. Ultimately, this method offers a promising way to accelerate chemical process simulations and drive
innovations in multi-phase separations, as well as other system design workflows.

1 Introduction tive to initial guesses, !4 and can converge to spurious or trivial

Phase coexistence in multicomponent systems is ubiquitous in  selutions if root-finding is not appropriately bounded and con-

nature and technology. Examples range from diverse purifica-
tion processes in the chemical industry!=3 to the formation of
membraneless organelles via liquid-liquid phase separation in bi-
ology.#11 Thorough characterization of multicomponent phase
equilibria involves not only identifying the phases present but also
determining their composition and abundance, as the distribu-
tion and composition of species across phases significantly affect
system properties and functions. This information guides pro-
cessing methods and underlies calculations in process-simulation
software. Critically, these calculations can constitute a substan-
tial fraction of the overall computational time dedicated to sim-
ulation. 12 Current multiphase flash calculation schemes require
knowledge of the number of equilibrium phases, 1213 are sensi-
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strained. 15:16 Therefore, efficient and accurate methods for pre-
dicting equilibrium states are valuable for both industrial applica-
tions and fundamental research.

At equilibrium, species distribute across phases based on the
extremization of an appropriate thermodynamic potential. For
example, minimization of the Gibbs energy dictates equilib-
rium for a system at specified temperature T, pressure p, and
global composition x;. Equilibrium phase-coexistence arises when
species partition into distinct phases with equal chemical poten-
tials driven by the extremization, rather than forming a homoge-
neous mixture. For a system at fixed T and p, this yields

¢ (Top x}®) =l (Top, 1)P) v ™
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where p” is the chemical potential of species i € {A,B,C,...} in
phase 7 € {c,} with composition {x;}* = {x¥,x},xZ,...}. Eq.
(1) constrains the equilibrium state of the system, as manifest in
Gibbs’ phase rule (i.e. . # =N — 42 +2 where .% is the number of
independent intensive relationships needed to specify a system of
N species and & phases). Provided a thermodynamic model for
describing the mixture behavior as a function of intensive vari-
ables, Eq. (1), or its equivalent at other conditions, functionally
comprises N(% — 1) equations to solve for the compositions of the
various phases, with others fixed. The complexity of identifying
equilibrium states can vary, even while the underlying thermody-
namic framework is straightforward.

Determining the conditions, expected phases, and the chemical
nature of species usually depends on appropriately parameterized
equations-of-state or available free-energy models. For condensed
phases and binary mixtures, there are several simple free-energy
models like the Margules equations!’, the van Laar model '8,
or the Guggenheim-Scatchard/Redlich-Kister equation.!® More
complex models such as the Wilson models, non-random two-
liquid (NRTL) models, 20 universal quasi-chemical theory (UNI-
QUACQ), 2! UNIQUAC Functional-group Activity Coefficients (UNI-
FAC) models, 132223 Flory-Huggins theory?* can treat multicom-
ponent systems. Although increasing complexity of the free-
energy model or equation-of-state can facilitate more accurate
representation of physical systems, the underlying calculations
and theoretical principles for phase behavior remain the same for
simple and complex models alike.

Given a thermodynamic model, calculating phase stability and
equilibrium compositions can be approached in various ways.
Simple models and binary mixtures may yield algebraic relation-
ships that can be handled analytically or resolved using simple
numerical schemes, such as self-consistent iteration or Newton’s
method. However, characterizing multicomponent phase coex-
istence typically requires dedicated software and more sophisti-
cated numerical algorithms. Many algorithms are designed to
work for only a specific set or number of phases.2° Direct solution
methods based on Newton’s root-finding algorithm can be effec-
tive but are computationally intensive and sensitive to the initial
seed. Jindrova et al. refined Newton’s algorithm and a successive
substitution strategy to locate roots. Additionally, Nichita,26-28
Jindrova, 416 and Castier?® independently performed volume
stability analysis to obtain better initial guesses for the substitu-
tion strategy. There has been significant development in generat-
ing phase diagrams using constrained backmapping search algo-
rithms. 15-30-33

Indirect solution methods, based on thermodynamic principles
and geometric criteria established via stability analysis, offer al-
ternative approaches. Examples include Korteweg’s tangent con-
struction3* and Binous and Bellagi’s arc extension method.3>
Michelsen’s multi-phase flash algorithm 3¢ minimizes the distance
between the tangent plane and the free energy surface to identify
coexisting phases. Homotopy methods have also been used to
calculate critical and saturation properties of mixtures.37-38 Ad-
ditionally, Mao et al.3° generalized phase-diagram construction
to multicomponent systems using a convex-hull construction“?
applied to a discretized free-energy manifold, although accuracy
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and memory requirements depend on the mesh size. Overall,
there is a need for simple, generalizable, and efficient methods
for phase-coexistence calculations.

Machine learning (ML) techniques facilitate phase-coexistence
calculations, offering prospective advantages relating to time-
and memory-efficiency relative to more traditional optimization
strategies. 4150 However, many efforts only address the issue
of phase stability and neglect consideration of phase composi-
tion. 42746 Others have been restricted to binary systems with
limited demonstration of more complex mixtures. 4’20 Recently,
Flory-Huggins (FH) theory has been combined with ML to im-
prove the interpretability and accuracy of mixture behavior pre-
dictions, but limitations exist in their ability to handle complex
interactions and multicomponent systems beyond binary mix-
tures. 4950 Nevertheless, such works highlight the potential of
ML as part of a generalizable, accurate, efficient, and extensible
framework for characterizing multicomponent phase behavior.

Here, we describe a data-driven workflow to characterize the
phase behavior of multicomponent systems. Figure 1 illustrates
the overall approach in the context of ternary systems described
by Flory-Huggins (FH) theory. Using FH theory as a representa-
tive free-energy model, we construct a series of phase diagrams
across the model parameter space using labor-intensive meth-
ods. This data is then used to develop an ML surrogate model,
based on neural network architectures, to predict the number,
composition, and relative abundance of equilibrium phases from
model parameters and total system composition. Surrogate mod-
els optimized with and without physics-informed architectures
and loss functions are compared. Errors are assessed for classi-
fication (number of equilibrium phases) and regression (compo-
sition and abundance of phases). Predictions from the surrogate
model, which are computationally efficient and improvable, are
then used to warm-start a simple optimization to precisely and
accurately characterize the system’s phase behavior. This proce-
dure exemplifies an efficient, accurate, and extensible approach
to phase-coexistence calculations.

2  Methods

2.1 Thermodynamic framework

For demonstration, we consider the thermodynamics of ternary
systems described by FH solution theory. Systems are comprised
of species A, B, and C that occupy a lattice of n sites with volume
V = nvy. The species can possess size disparities, reflected in their
molar volumes v;. For a polymer comprised of N; monomers that
each occupy a single lattice site, v; = N;vy. Systems are incom-
pressible such that V = Y ,;n;v; where n; is the mole number for
species i. System composition is specified by the volume fractions
¢ = (nivi)/V with Yicrapcy ¢i = 1.

The dimensionless, intensive (per lattice site) Helmholtz en-
ergy of mixing follows as

f = BAfmix = Z (vjiﬂo)

1
1ﬂ¢i+§ZZ¢j¢k?{jk (2)
7k

where 8 = (kgT)~! is the inverse temperature with kg as Boltz-
mann’s constant, and y;; is the Flory-Huggins interaction param-
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Fig. 1 Strategy for multi-component phase-coexistence prediction using machine learning. 1,036 ternary phase diagrams are generated using the
algorithm arc continuation algorithm (Equations 6-8) and convex hull construction algorithm 3%, and are used as training data for a physics-informed
machine learning (ML) model to classify phase regions and predict equilibrium phase compositions. The ML predictions serve as initial guesses for the

Newton-CG method to obtain equilibrium composition predictions.

eter for species i and j with y; = 0; the summations are over all
components (A, B, C). Altogether, the behavior of a system is de-
termined by the composition ¢ = (¢a, ¢, ¢c), the molar volumes
of the species v = (va, vp, v¢), and the interaction parameters X

= (XaB> XAC> XBC)-

Up to a constant, chemical potentials are obtained by partial
differentiation of the Helmholtz energy of mixing:

1 [(d|V
YTV

Using Eq. (2) in Eq. (3), this yields

1
Y Y oo (nij— %)
JEIkFEL
“@

where the summations exclude the species for which the chemical
potential is being assessed (e.g., for ua, the summation for j # i
is equivalent to that for j € {B,C}).

Bui(T,V,¢) =In(¢;)+ Y 6, (1 - %) Vi
i#i i

The thermodynamic stability of a mixture is assessed by con-
sidering the determinant of the Hessian matrix for the Helmholtz
energy. For

*f 2°f
2 dPp0

H;= g;v? ‘%"’B , (5)
YL 207

the spinodal boundary of a ternary mixture is the locus of all com-
positions that solve

L PF 27\
| f'*aﬁ'aT%‘(*aw%) =0 ©

Molecular Systems Design & Engineering

Critical points are identified by additionally considering con-

straints on third-order derivatives>!->2 given by
M| J[Hy|
I¢ads 93
and
J|Hy| J|Hy|
E2 = 3?} g?} =0. (8)
I¢ndds 99}

For fixed total particle density (p = n/V) and constant tem-
perature, Gibbs’ phase rules indicate there can be at most three
coexisting phases. To characterize three-phase coexistence, there
are 12 variables. Nine correspond to the volume fractions in each
phase: ¢%, ¢8, and ¢, for which each ¢* = (97, oF, ¢F). Three
correspond to the fractional abundances of each phase-w?®, wP,
and w"). Criteria for chemical equilibrium applied to each species
across each phase

”ia(T7p>¢a) - ”iB(Tvpvq)B) - .uiy(Tvpv(Py) C)]

provide six independent equations. For a system with a speci-
fied total composition, material balance constraints provide the
remaining equations:

Y oF =1forme{a By} (10)

Y w" o = ¢; for i € {A,B,C}. 11

To characterize two-phase coexistence, the variable count is re-
duced to eight, with commensurate reduction by three equations
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from Eq. (9) and one equation from Eq. (10). Section 2.2 de-
scribes algorithmic approaches for determining equilibrium com-
positions.

2.2 Phase-coexistence calculations

Two different algorithms are used to characterize phase-
coexistence based on the principles outlined in Section 2.1. For
systems with at least one critical point and two-phase coexis-
tence, an iterative and perturbative approach based on natural
parameter continuation (NPC) is used to construct binodal curves
originating from a critical point. Otherwise, the approach de-
scribed by Mao et al.3? based on convex hull construction (CHC)
is used. NPC is straightforward and computationally efficient
but limited, while CHC is general but computationally intensive.
Nevertheless, with this combination, the equilibrium composition
of phases at coexistence can be reliably determined for models
described by FH solution theory. The following algorithms are
thus used to provide ground-truth results and requisite training
data for the development of ML models (Section 2.3).

Natural parameter continuation (NPC). For two-phase co-
existence, Eq. (9) is rearranged as

A:u'[aﬁ(Tvpvq)avq)B)E;u[ﬁ7"Lia:0f0ri€{AaBaC}‘ (12)

Provided a point on the coexistence curve ¢*, a nearby point can
be identified by solving a set of linear equations that enforce Eq.
(12) following a small perturbation in the composition:

8A,u;xﬁ

L 57

jE{AB} ™

6¢j’7 =0forie {AB,C} (13)
¢*
where & ¢j7.r is the small perturbation in the composition of species
Jj in phase 7. Coexistence curves (i.e., a locus of equilibrium com-

position tuples) can then be constructed as follows:

1. Define tolerance parameters 2 and §°.
2. Identify and set the critical point to be ¢*.

3. Generate a random, small perturbation on the composition
80, yielding two new compositions: ¢’ = ¢* + §¢ and ¢ =
¢* 59

4. Use the compositions ¢’ and ¢” as initial guesses to solve Eq.
(12), producing coexisting compositions ¢, and ¢few that
are distinct from ¢*.

5. Set ¢, < ¢few and and use for Eq. (13). Set one of the §¢

(e.g., (bg ) to a small perturbation and solve for the remaining
8¢ to produce 5¢% and 8¢F'.

6. Set ¢/ = 9% 1 5¢% and ¢” = 9PV + 5¢P" and use as initial
guesses to solve Eq. (12), producing new coexisting compo-
sitions ¢%., and q)few that are those distinct from those prior.

7. Repeat steps 5 and 6 until either ||¢%,, — ¢£ew\| < 69,
which indicates a closure of the coexistence curves, or when
any ¢ < 8%, which indicates termination at a composition
boundary.
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8. Verify validity of compositions by checking that all have
‘Hfl > 0.

For the calculations described in this paper, §% = §° = 1079.
Initial trials for random composition perturbations are set to
have a magnitude of 107®. Equations are solved numerically
using fsolve from Python’s SciPy module. Occasionally, the trial
perturbations resulted in solutions that collapsed back to the
critical point or other prior generated points, in which case
new perturbations would be attempted with possibly different
magnitudes.

Convex hull construction (CHC). For systems without criti-
cal points or valid coexistence curves extending from critical
points, the utility of the NPC algorithm is limited.
cases, we use the CHC to identify equilibrium compositions.
On a free energy surface, compositions with equal chemical
potential are cotangent, while stable compositions (D > 0) that
are not cotangent with any other points exist as single phases.
This information can be accurately reconstructed by creating a
convex hull of the free energy surface and projecting it onto the
composition space. We briefly remark on salient aspects of the
algorithm as applied to a ternary system, but readers are referred

In such

to the work of Mao et al.3? for a more complete description.

The composition space (¢a,¢p) is discretized into a mesh
of equilateral triangles, or two-dimensional simplices. Using
a finer mesh results in more accurate calculations but also in-
creases computational cost and memory requirements; this work
uses a simplex edge-length of 0.0002. After generation of the
mesh, the free energy surface (FES) is also discretized into
points defined by the tuple (¢a,¢s, f(¢a,¢p)). The convex hull
(oSH, oSH, FEH(9SH, 0SH)) of the FES is calculated using the
Quickhull algorithm®3. The convex hull of a non-convex FES will
necessarily deform the original simplices and facilitate the identi-
fication of cotangent points on the FES. If one of the projected
simplices has three unstretched sides (maximum edge length
within five times initial mesh size3?), the system is homogeneous
(no phase-separation). If two sides are stretched (side length
greater than five times the initial mesh size), the two farthest ver-
tices are cotangent, indicating two coexisting phases. If all three
sides are stretched, the three vertices of the simplex are cotan-
gent, indicating three coexisting phases. With graph theoretic
techniques, the number of equilibrium phases and their composi-
tions can be determined.

2.3 Machine learning details

We explore machine learning algorithms as computationally
expedient and generalizable alternatives to more traditional ap-
proaches for characterizing phase coexistence of multicomponent
systems. Neural network architectures, with and without physics-
informed loss functions, are optimized using data generated by
the algorithms described in Section 2.2. The performance of
the ML models is evaluated based on predicting the number of
coexisting phases, their compositions, and relative abundance for
FH models not featured in training data.
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Dataset description. The dataset in this work is comprised
of 1,036 phase diagrams: 107 diagrams (10%) with no phase
separation (one phase), 538 diagrams (52%) with up to
two-phase coexistence, and 391 diagrams (38%) with up to
three-phase coexistence. =~ Each phase diagram is produced
using the methods of Section 2.2 with a distinct parameter set:
s = (X,v) = (XaB XBC: XAC; VA, VB VC)-

Parameters for the models are each selected from the range
v € [1,3] and y;; € [1,3] where values for both ranges are dis-
cretized with a resolution of 0.1. Let s denote a parameter set and
U denote the set of all possible parameter sets. With the given
discretization, the total membership of U is then |U| = 21°. Ini-
tially, 750 possible parameter sets are randomly selected from U
with uniform probability to form § C U; care is taken to ensure
that all parameter sets from this sampling are unique. From this
initial sampling, only around 6.6% (= 50) of the selected param-
eter sets yielded three-phase coexistence. Using these parameter
sets to define T C S, the representation of such rare systems is
augmented by generating six additional parameter sets for each
parameter set ¢ € T. Each new parameter set ¢’ is generated from
t by adding a Gaussian random vector X. In particular, we use
t' =t +X with X ~ .#(0,6%I) where ¢ = 0.005. All ' that yielded
three-phase coexistence are collected and added to S, resulting in
a final membership of |S| = 1,036 parameter sets.

Input and output labels for the dataset are then generated as
follows. First, the composition-space of the mixture is discretized
into a uniform mesh with resolution 10~*. For each parameter set,
if there are more than 1,000 single-phase simplices, the centroid
of 1,000 randomly chosen simplices is added to the database; oth-
erwise, the centroid of all single-phase simplices is added. For
double-phase simplices, if there are more than 1,000, a random
point between the ends of 1,000 randomly chosen double-phase
separations is generated; otherwise, a random point between
each double-phase separation is added. For multiple three-phase
separations, a uniform number of points is generated in each re-
gion, ensuring a total of 1,000 three-phase points in the database.
Since the number of single and double-phase simplices are deter-
mined by the size of the discretization mesh, the number of data
points per each parameter set can vary.

For each tuple (¢4, ¢5) the number of equilibrium phases, their
compositions, and their abundances are recorded. In this fash-
ion, we define an input vector X = (XaB, XBC, XAC, VA, VB, VC, PA, ¥B)
€ R® that is linked to two outputs. The first output is a
one-hot encoded classification vector y. € R3, for which a
nonzero entry indicates the presence of one, two, or three
phases at equilibrium. The second output is a vector y, =
(¢g,¢g,¢£,¢§,¢X,¢g,w“,wﬁ,w7) € R%, which describes the
composition and abundances of the equilibrium phases. The
phases are ordered such that ¢ has the minimum value among
all @a ((])}{‘ < ¢£ < ¢Z>. If two phases have the same ¢,, they
are further ordered according to ¢5. Such an ordering ensures a
consistent representation of the equilibrium phases.

For systems with a single phase, ¢g,¢¢ match the inputs
O, 0B, and w® is set to unity; the abundance entries for phases
B and y are set to zero. However, the composition abundance
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entries for phases  and y are assigned a value of 1/3. The
value 1/3 is chosen to distribute errors uniformly across species.
The absolute composition of these species in equilibrium will
be determined by the abundance of the respective phases. For
systems with two equilibrium phases, entries for the third phase
compositions (i.e., ¢}, ¢3) are set to 1/3, and the abundance w”
is set to zero.

Model architectures. Figure 2 summarizes model architec-
tures in this study; all models are implemented using PyTorch.>*
Every model takes as input x and predicts two outputs: §. and
§:. Both §. and . have the same number of entries and ordering
as described for y. and y;; however, §. contains the predicted
probabilities that x yields one, two, or three phases.

The basic model architecture consists of three, fully-connected
hidden layers, each with m (tunable hyperparameter) hidden
units; this yields a hidden vector h € R™. This hidden vector is
then passed through a “classification layer” with softmax activa-
tion to yield §.. This vector is also fed into separate “regression
layers” to predict the composition (¢%,¢P, ¢?) and abundance
(w). Each regression layer consists of three hidden units, rep-
resenting the composition of A, B, and C for each phase, and the
abundance of «, 8, and y phases. Sigmoid activation is applied to
limit predicted values on compositions and abundances to be be-
tween zero and unity, which avoids obviously unphysical values;
however, overall composition and abundance constraints are not
enforced. Since the composition of C depends on A and B, only
the predictions for A and B compositions are kept and combined
with the abundance predictions to form ¥;.

We also consider a variation on the basic model architecture
that enforces consistency between §; and the majority class fea-
tured in y.. This is achieved using a mask-layer that sets abun-
dance entries in §, to zero based on the plurality class indicated
in §. (see dashed box in Figure 2). For example, if one equilib-
rium phase is predicted, then abundance entries associated with
the B and y phase are set to zero. If two equilibrium phases
are predicted, then entries associated with the y phase are set
to zero. If three equilibrium phases are predicted, then §; is pre-
served from the regression layer. Compositions of species for non-
existent phases are set to 1/3, as described earlier. To enforce
constraints on overall composition and abundance, the physics-
informed (PI) model incorporates softmax activation functions,
ensuring that predicted phase compositions and abundances sum
to unity. As an alternative approach, following the masking, soft-
max normalization is applied to the abundances to ensure their
sum equals unity.

Loss functions. Models are optimized using loss functions that
target raw numerical accuracy as well as physical sensibility. Both
the simple baseline and PI models optimize a composite loss func-
tion

Lase = ACEZLCE + -LMAE 14

that combines losses for classification cross-entropy (CE), -%cE,
and regression mean absolute error (MAE) loss, Aag. The
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Fig. 2 Architectures of the machine learning models. In both the
baseline and physics-informed (PI) models, the parameter vector x is fed
into the model to produce an intermediate hidden vector h. The hidden
vector h produces two outputs: (1) a phase classification probability
vector §, trained with cross-entropy (CE) loss, and (2) an equilibrium
composition and abundance vector ¥, trained with mean absolute error
(MAE) loss. Softmax activation is applied in Pl models to ensure that the
equilibrium composition and abundance vectors sum to unity. Optional
functionalities (indicated by dashed lines and boxes) include a “mask”,
activated based on §., which sets corresponding elements in ¥, to zero
if an input is classified as one- or two-phase. For Pl models, softmax
renormalization is applied to the masked abundance to ensure the sum
equals unity. Additionally, in Pl models, a Pl composite loss can be
incorporated alongside the MAE loss during training for §, prediction.
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weighting parameter (Acg = 0.1) is determined empirically to bal-
ance loss magnitudes throughout training. While a perfect and
physically meaningful model would necessarily minimize %,,se,
with data limitations, simply minimizing the baseline loss func-
tion may not strictly satisfy all the criteria prescribed for ther-
modynamic systems at equilibrium. We therefore also consider
augmented PI models (referred to as PI+) optimized with a com-
posite loss function that includes additional regression targets

L1 = Lhase + Asplit-Loplit + AapLap +AsZL5 (15)

where Al = 0.01, Ax, = 0.01, and A = 0.001 (identical across
all models) are weighting parameters chosen through grid search
over {0.001, 0.01, 0.1, 1} using the same architecture (detailed
in Supplementary Information Tables S4 and S5). The chosen
values yielded statistically comparable equilibrium composition
regression R? and equilibrium phase classification F; scores to
other parameter combinations, with performance deteriorating
only when A; > 0.01. These values balance the influence of the
PI losses to focus on minimizing .%4,,s. while incorporating phys-
ical constraints. The specific functional forms for these PI losses
are described next.

In Eq. (15), the additional loss terms aim to satisfy different
constraints on the thermodynamics of physical systems. In par-
ticular, .Z,;; relates to constraints on the total composition of a
given species distributed across phases:

o= ¥ (06— ¥ wher) (16)

ic{A,B} ne{a,B.y}

The second term .Z, relates to the condition of equal chemical
potentials for species across coexisting equilibrium phases. This
loss is calculated as

1 /
Zu=1YY T toe(1+eY)  ay)

T 7 ic{AB,C}

where A,ui””l is as defined in Eq. (12), and the first two sum-
mations are over the ground-truth equilibrium coexisting phases
(i.e., m, ' € {a, B} for two-phase coexistence and «, 7’ € {a, 8,7y}
for three-phase coexistence). The additional term .4 promotes
the minimization of the free energy of the equilibrium system:

4% ¥

T ic{AB,C}

WEOTUE. (18)

We acknowledge there are various reasonable ways to constraint
losses for physical constraints; the current work examines the
overall strategy of incorporating physical information into the
ML workflow rather than identifying optimal implementations.

Model training and assessment. To assess model general-
izability and mitigate selection bias on test data, a nested
five-fold cross-validation (CV) procedure is used. Stratified
sampling is employed to evenly distribute diagrams featuring
one, two, and three phases across the five folds. Then, five
iterations are performed in a process referred to as the outer CV.
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Each iteration uses a unique fold as the test set and the remaining
four folds as the overall training set to provide a more robust
assessment of model performance.

The overall training set is further divided into training and vali-
dation sets, using a similar five-fold CV approach (inner CV) to the
outer CV process. Each fold of the inner CV is trained with 10% of
the training data for efficient hyperparameter optimization. Tun-
able hyperparameters include batch sizes of {5000, 10000,20000},
learning rates of {0.001,0.005,0.01}, the presence (or absence) of
a mask, and the number of neurons selected from {64,128,256}
for each hidden layer. The optimal hyperparameter setting for
each fold is identified by the highest average validation compos-
ite score across five sub-folds, calculated as the sum of the F;
score for classification and the average R? score.

Each fold of the outer CV uses the optimal hyperparameter set-
tings identified from its corresponding five-fold inner CV and re-
trains the model for up to 500 epochs. The retraining involves
selecting 80% of the overall training diagrams as the training set
and 20% as the validation set, using the same stratified splitting.
During the retraining process, the impact of training data sizes
on model performance is assessed by using 1%, 5%, 10%, 20%,
30%, and up to 100% of the training data. Because each diagram
contains a different number of data points, the number of train-
ing, validation, and test set data points ranges from 1,447,511
to 1,458,241, from 358,987 to 366,470, and from 452,308 to
460,074.

The nested CV strategy yields a mean and standard deviation
of F; and R? scores as determined from the five-fold outer CV test
sets. Given the imbalanced phase distribution in the dataset, the
Fy score evaluates classification performance, while the R? score
assesses regression accuracy for the variables in y;.

2.4 Post-inference optimization

We implement a post-inference optimization procedure to correct
some deficiencies in ML model predictions. This procedure uses
the predictions from the ML model as a warm-start on initial val-
ues for more traditional optimization algorithms (e.g., truncated
Newton method). The objective function for minimization is

«fpost—< XY Y log<1+(AuZ’”’)2)>--- (19)

T T ic{ABC)
+1yecy (1 - :[LWV>0)"%01

where 1. is an indicator function equal to unity when the condi-
tion c is satisfied and zero otherwise and

¢ 9" —9¢
%=L g oo @
For both Eq. (19) and (20), the first two summations are over
predicted equilibrium coexisting phases (i.e., 7, 7’ € {a} for a sin-
gle equilibrium phase, 7, 7’ € {@,B} for two-phase coexistence,
and 7, ' € {a,B,y} for three-phase coexistence). Eq. (20) is
specifically relevant for two-phase coexistence and is minimized
when the tie-line composition vectors are collinear and oriented
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in opposite directions. The indicator function 1,«.; excludes
computation of %, when there is only a single predicted phase,
as this term would otherwise diverge. In fact, this procedure has
no effect when only a single equilibrium phase is predicted. Relat-
edly, we note that this algorithm is asymmetrically robust against
erroneous misclassification of the system phase behavior. If the
predicted number of phases exceeds the true number of phases,
then converged solutions will “collapse” compositions onto those
of the true equilibrium phases. However, this procedure will not
identify the true solution if the predicted number of phases is
fewer than the ground-truth number.

The final optimization employs the Newton-CG optimizer in
scipy module in Python. The Jacobian and Hessian matrix for
the objective function are computed using the autograd package
through automatic differentiation. The maximum number of iter-
ations for optimization is limited to 10,000. If newly optimized
compositions are within a tolerance of 10~ of the ideal value of
the objective function, these values replace the predictions prof-
fered by the ML model. Optimizations are only considered suc-
cessful if they satisfy the stability criterion |Hf\ > 0 (see Eq. (6)).

3 Results

3.1 Performance with a basic architecture

With the standard loss functions (i.e. g and -Auag) and a basic
architecture, the ML model predicts phase separation and equi-
librium compositions reasonably well. Figures 3a and 3b qualita-
tively depict performance in both classification and regression for
some representative phase diagrams. Figures 3¢ and 3d quantita-
tively summarize results across all phase diagrams.

The ML model capably predicts the number of phases at equi-
librium with an overall accuracy rate of about 97% (Figure 3c).
The primary source of error (4.6%) stems from misclassifying
three-phase points as two-phase, which is attributed to the rela-
tive paucity of three-phase splits (only 17% of the total data). Ad-
ditionally, a portion of two-phase points (2.2%) are misclassified
as one-phase. A closer inspection of predicted phase diagrams
suggests that misclassifications mostly occur near binodals.

The model also performs well in predicting phase abundances
and their compositions (Figure 3d). By inspection, there are verti-
cal error regions in the predicted abundance for all phases at true
abundances of 0 and 1. These errors stem from inaccurate predic-
tions of equilibrium abundance for non-existent phases, such as
phases B and y in a one-phase region and phase 7y in a two-phase
region. This misprediction also leads to similar error regions for
equilibrium compositions around 1/3.

Table 1 provides the baseline expectations for a standard ML
model. It highlights nuances in regression performance across dif-
ferent phase regions. The single-phase region has the lowest aver-
age MAE (0.006), followed by the two-phase (0.023) and three-
phase (0.037) regions. This trend suggests increasing difficulty
in predicting compositions as the number of coexisting phases in-
creases. Notably, all R? values remain high across all phases, with
the three-phase region exhibiting a value above 0.88.
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Fig. 3 Performance summary of the baseline model. a) Classification of the number of coexisting phases. The background color in all phase
diagrams denotes the ground truth phase: gray (one-phase), blue (two-phase), and red (three-phase). Scatter points represent the predicted phase
splits for a given initial composition, and the legend colors indicate the types of predicted splits. The parameters of the phase diagrams are detailed in
Supplementary Information Tables S1 and S2. b) Predicted equilibrium compositions. Blue and orange scatter points represent two-phase equilibrium
compositions. The yellow dashed line is a tie line for the two-phase split. Red scatter points depict composition that split into three phases. The red
dashed triangle connects the three compositions at equilibrium. ¢) Confusion matrix for the predicted number of equilibrium phases. Diagonal entries
represent correctly classified instances, while off-diagonal entries represent misclassifications. d) Parity plot for predicted equilibrium compositions.
The diagonal dashed line represents perfect performance.

Table 1 Performance of representative models for equilibrium composition prediction on the test set across different phase regions. Mean
values are reported with standard deviation in parentheses. The bold and underscored number indicates the best result.

MAE

R?

Base

PI

PI+

Base

PI PI+

One-phase 0.006 (0.001)
Two-phase 0.023 (0.003)

Three-phase  0.037 (0.006)

0.005 (0.001)

0.005 (0.001)

0.022 (0.001)
0.038 (0.003)

0.023 (0.003)
0.038 (0.008)

0.982 (0.005)
0.912 (0.015)
0.884 (0.038)

0.987 (0.004)  0.988 (0.003)

0.915 (0.009) 0.913 (0.015)

0.883 (0.023) 0.889 (0.041)
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Fig. 4 Impact of physical constraints and data size on phase-coexistence prediction. a) Comparison of test set phase classification F; and
equilibrium composition prediction R? across baseline (base), physics-informed (PI), and augmented PI (Pl4) models, with and without classification
masks, using five-fold cross-validation (CV). Bars represent mean values, and error bars indicate standard deviations. b) The impact of training data
size on model performance. Each dot represents the average score calculated across the five-fold CV.

3.2 Performance with physics-informed losses and consis-
tency constraints

To build on the prior model, we evaluate the potential of in-
corporating additional physical information on prediction accu-
racy (Figure 4a). In particular, physical constraints on overall
composition and abundance, along with several physics-informed
losses (detailed in Section 2.3) are implemented, and classifi-
cation masks are used to zero the abundances of non-existent
phases. While the baseline, PI, and PI+ models without classi-
fication masks achieve comparable F; and R? scores, models with
masks significantly underperform in equilibrium composition pre-
diction (Figure 4b).

The baseline model exhibits lower accuracy compared to the
PI and PI+ models in one-phase and two-phase regions, while
its performance is comparable to other models in three-phase
scenarios (Table 1). The PI and PI+ models show similar per-
formance across all scenarios under these metrics. The coexis-
tence curve predictions of both the PI and PI+ models are similar
(Figures 5a and S6), producing smooth and physically sensible
two- and three-phase coexistence curves. In contrast, the baseline
model generates erratic two-phase coexistence curves that signif-
icantly deviate from the true curves. This is also evident from
the distribution of the MAE loss in Figure 5b, where the base-
line model (red) has a higher average MAE than the PI (blue)
and PI+ (green) models, which perform similarly. The unphysi-
cal coexistence curves of the baseline model highlight the limita-
tions of using broad performance metrics to assess improvements
in predictive accuracy. Errors are better resolved by examining
deviations in chemical equilibrium potential (Ap) and split loss
(Zspiit), where the baseline model shows significantly larger er-
rors than both the PI and PI+ models.

To further examine the impact on composition and abundance
constraints, we analyze two additional metrics: %y, which re-
lates to the volume fractions of each species within a given phase,
and Z.ight, Which measures overall material conservation. These
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metrics are defined as:

Luity= ), ReLU(¢5+¢5 — 1), (21)
me{a.B.r}
and 5
Zweight = (1 - Z Wﬂ) . (22)
me{a.,B.r}

Since the PI and PI+ models enforce unity in composition and
abundance through the softmax activation function, %y and
ZLaeight remain zero for these models, whereas the baseline model
violates these constraints (Figure 5b). The PI+ model, trained
with additional constraints, demonstrates smaller deviations in
chemical equilibrium potential (Au) and marginally improves
composition prediction, split loss, and free energy minimization
loss compared to the PI model. Overall, designing a physics-
informed model architecture to enforce material constraints is
essential; however, the addition of extra losses or masks compli-
cates training without yielding significant improvements in phase
classification or equilibrium composition prediction. Therefore,
the PI architecture, without additional losses, emerges as the best
practical choice for implementation.

3.3 Performance with limited data

Having achieved accurate phase-coexistence predictions with a
dataset of over 1.4 million data points, we investigated whether
PI models would be more data efficient and achieve compara-
ble performance with less data. Figure 4b demonstrates that
even with only 10% of the data, the PI and PI+ models main-
tain high accuracy in phase classification (F;: 0.967 and 0.967,
respectively) and equilibrium composition prediction (R?: 0.937
and 0.935, respectively). In contrast, the baseline model per-
forms worse in equilibrium composition prediction (R?: 0.930)
but achieves comparable accuracy in phase classification (Fj:
0.967). The advantages of incorporating composition and abun-
dance constraints are particularly evident in low-data scenarios
(training with 1% and 5% of the data), where the PI and PI+
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Fig. 5 Comparison of performance metrics and physical constraints among baseline, PI, and PI+ models. a) Predicted phase coexistence curves
for the baseline (left), Pl (middle), and Pl+ (right) models. Arrows indicate that both predictions are for the same phase diagram. The background
color in all phase diagrams denotes the ground truth phase: gray (one-phase), blue (two-phase), and red (three-phase). Blue and orange scatter points
represent two-phase equilibrium compositions. The yellow dashed line is a tie line for the two-phase split. Red scatter points depict composition that
split into three phases. The red dashed triangle connects the three compositions at equilibrium. The parameters of the phase diagrams are detailed
in Supplementary Information Tables S1 and S2. b) Data distribution (shaded bars) and kernel density estimation fits (lines) for performance metrics

and physical constraints. Vertical dashed lines indicate mean values.

models significantly outperform the baseline. Although the PI+
model slightly outperforms the others with the full dataset (F:
0.972, R?: 0.946), the improvement over using 10% of the data is
marginal. The predicted phase diagrams with coexistence curves
(Figures S2, S4, S5) using 10% of the data are qualitatively ac-
curate across the baseline, PI, and PI+ models. These findings
underscore the critical role of physical constraints in enhancing
model generalization under limited data conditions.

3.4 Post-ML optimization
Seeded with ML predictions, a Newton-CG method can efficiently
converge to arbitrarily accurate and precise equilibrium composi-
tions (Figure 6). This is demonstrated for the PI model, trained on
the full dataset, where initial errors (Figures 6a,b) can be virtu-
ally eliminated after the optimization procedure (Figures 6¢ and
S1). The baseline and PI+ models also achieve comparable per-
formance after post-ML optimization (Figures S3-S6), even when
trained on only 10% of the data (Figures S2, S4, S5). This com-
bination of efficiency and accuracy could enable the handling of
more complex systems and scaling to resource-intensive measure-
ments, where data may be sparse or scarce.

Errors for models trained on fold 1 data were analysed across
a random sample of 187 two-phase and 76 three-phase equi-
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librium phase diagrams to better characterize post-ML optimiza-
tion errors (Tables 2 and S1). The results indicate that Newton-
CG optimization, initialized with predictions from ML models,
achieves near-perfect success rates and significantly reduces devi-
ations from true equilibrium compositions compared to individ-
ual ML model predictions. After post-ML optimization, the PI
model trained on the full dataset outperforms both the baseline
and PI+ models in predicting two-phase and three-phase coex-
istence. The relative ranking of performances post-optimization
aligns well with the relative ranking of the ML predictions alone,
underscoring the importance of initial ML prediction accuracy in
determining the effectiveness of the post-ML optimization pro-
cess. With limited training data, all models perform similarly,
with PI+ showing slightly better overall performance. Errors
remain comparable to those observed with the full dataset, al-
though three-phase coexistence errors consistently exceed those
for two-phase coexistence. This disparity likely stems from the
relative scarcity of three-phase coexistence in the training set,
which increases complexity and complicates precise prediction.

The post-ML optimization process is also efficient and paral-
lelizable — taking less than 1 second to converge to the optimal
solution (Table S1). The ML model training requires less than
1 MB for 140,000 parameters, a substantial reduction in mem-
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Fig. 6 Refinement of PI model predictions. a) Classification of the number of coexisting phases. The background color in all phase diagrams
denotes the true phase: gray (one-phase), blue (two-phase), and red (three-phase). The scatter points indicate the predicted phase splits for a given
initial composition. Colors in the legend denote the types of predicted splits. The parameters of the phase diagrams are detailed in Supplementary
Information Tables S1 and S2. b) Predicted coexistence curves. Blue and orange scatter points indicate two-phase coexistence curves, with the yellow
dashed line denoting an example tie line. The vertices of the red triangle indicate three-phase coexistence points. ¢) Coexistence curves produced
with the post-ML optimization strategy. The results are obtained using ML inference to warm-start Newton-CG optimization.

Table 2 Performance of equilibrium composition prediction with machine learning (ML) and post-optimization prediction. Mean absolute errors
(MAE) for the composition of species A and B from the fold 1 model are reported, with standard error of the mean in parentheses. The best result is
bold and underlined.

il -2 i} -2
Data size Two-phase (x107%) Three-phase (x107%)
ML Prediction  Post-optimization ML Prediction Post-optimization
Base 100% 2.40 (0.01) 0.88 (0.02) 3.66 (0.03) 2.76 (0.03)
PI 100% 2.39 (0.01) 0.87 (0.02) 3.19 (0.02) 2.45 (0.03)
PI+ 100% 2.94 (0.01) 0.95 (0.02) 4.26 (0.03) 3.32 (0.03)
Base 10% 2.92 (0.01) 0.96 (0.02) 3.93 (0.02) 2.94 (0.06)
PI 10% 2.95 (0.01) 1.03 (0.02) 4.58 (0.03) 3.56 (0.03)
PI+ 10% 2.36 (0.01) 0.83 (0.02) 3.98 (0.03) 3.00 (0.03)
ory usage compared to arc continuation or convex hull methods, efficiency.

which demand approximately 1 GB of storage and 50 GB of mem-
ory per run. Overall, the accurate ML predictions of equilibrium
compositions enable rapid convergence to highly accurate solu- In this work, we presented an efficient and extensible machine
tions, offering significant advantages in both memory- and time- learning-based approach for calculating phase coexistence in

4  Conclusions
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ternary systems. A neural network trained on phase coexistence
data was able to predict the number and compositions of equi-
librium phases for a solution prepared at a given composition
under a specific mixing potential. Incorporating physical con-
straints into the neural network architecture enhanced prediction
accuracy, while additional physics-informed losses offered no sig-
nificant improvement. The physics-constrained architecture pro-
duced higher-quality models with less data, offering advantages
in scenarios where data acquisition is labor- or resource-intensive.
However, the resulting models still exhibit errors that may be
unacceptable for certain applications, such as process simulation
software. To achieve precise results, a Newton conjugate gradient
method was used, with machine-learning predictions serving as a
warm start for optimization to determine final equilibrium phase
compositions. This integration of neural networks with numerical
refinement enabled rapid and accurate predictions of coexisting
phases, their compositions, and abundances.

This work motivates several areas of future inquiry. Exten-
sions to systems with more components would increase utility
for complex industrial and biological processes. Expanding be-
yond the Flory-Huggins theory by incorporating other free energy
models or data from molecular simulation, perhaps in a single
framework, would further enhance its generalizability across di-
verse chemical systems. Additionally, exploring more advanced
physics-informed learning strategies, incorporating uncertainty
quantification, and refining neural network architectures could
boost prediction efficiency and reliability. Collectively, these di-
rections could enhance both the theoretical and practical impact
of leveraging ML for phase coexistence calculations.
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