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Abstract

Variational Monte Carlo methods have recently been applied to the calculation of excited states;
however, it is still an open question what objective function is most effective. A promising
approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates,
which has the drawback that states must be computed one at a time. We derive a general
framework for constructing objective functions with minima at the the lowest N eigenstates of a
many-body Hamiltonian. The objective function uses a weighted average of the energies and an
overlap penalty, which must satisfy several conditions. We show this objective function has a
minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the
objective function. The method is demonstrated using ab initio variational Monte Carlo to
calculate the degenerate first excited state of a CO molecule.

1. Introduction

Quantum Monte Carlo (QMC) has been established as a highly accurate method for computing
ground-states of ab initio systems [1-5]. Progress has also been made towards efficiently computing accurate
excited states in QMC [6—10]; however, there are limitations to the methods that have been applied to

ab initio systems so far. A state-averaging approach has been used to simultaneously optimize a set of ground
and excited states, where a common set of orbitals and Jastrow are used to construct all the states [11]. In
many systems, optimal orbitals for describing an excited state are quite different from the optimal
ground-state orbitals, so large determinant expansions are required to accurately represent these states using
a shared set of orbitals. An optimization approach using variance of the local energy has been used to target
excited states without state averaging [12—15]; however, relying on the variance leads to difficulty optimizing
to the correct minimum in some situations [16]. An alternative method avoids state averaging and variance
optimization by penalizing the wave function’s overlap with a set of known eigenstates [17, 18]. This method
only optimizes one excited state at a time, requiring several expensive calculations in sequence.

We note that there has been some work that optimizes all states simultaneously [19, 20] using a
modification of the method in [17, 18]. Additionally, a recently proposed method simultaneously optimizes
excited states by representing the ensemble as a determinant of many-body wave functions, avoiding the need
to choose an overlap penalty [21]. In the approaches of [19, 21], there is a degenerate minimum in which all
wave functions are linear combinations of the eigenstates [22]. While in principle one could rediagonalize the
Hamiltonian in the subspace, this is inconvenient in variational Monte Carlo (VMC) since the wave function
parameterizations are often nonlinear and the off-diagonal matrix elements of the Hamiltonian typically
have high variance. Finally, [20] includes an overlap penalty between states i and j only if i < j, effectively
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implementing the sequential optimization of [17, 18] in a single calculation by using separate, dynamic cost
functionals for each state.

In this paper, we define a single, penalty-based cost functional to optimize an ensemble of states
simultaneously. For a finite, given value of penalty (no free parameters), the functional has the eigenstates as
its global minimum, with Hessian eigenvalues all greater than 0. Using a weighted average of energies, as
proposed in [23], this cost functional yields the low energy eigenstates, and the Hamiltonian does not need to
be rediagonalized in the final low-energy subspace. We derive conditions on the optimization parameters
that ensure the ensemble optimizes to the lowest-energy eigenstates. As a practical demonstration, we
optimize this cost functional to find excited states of a CO molecule. We believe that strategies based on this
functional are likely to be efficient and practical.

2. Penalty-based cost functional

Summary and statement. We aim to find the lowest N eigenstates of a time-independent Hamiltonian
whose eigenstates |®;) satisfy H|®;) = E; |®;).We define an N-state functional of an arbitrary ensemble of
states {; },

O[{wi}] ZZWiE[‘I’i]+/\Z|Szj|27 (1)

i<j

where E[W;] = (U, |H|¥;) is the energy expectation, S;; = (U;|¥;) is the overlap, w; > 0 are weights, and
A > 0 penalizes wave function overlap. O is minimized by the set of the lowest N eigenstates {®;} of H under
the following conditions: (1) w; > w; for all i, j where E; < Ej, and (2)

A > max [(Ej ~E) ] : (2)
1<] w; — W]‘

We prove this condition in sections 2.1 and 2.2. There are many ways of choosing the weights w;; in
section 2.3.1, we discuss one strategy for choosing weights, as well as deriving the algorithm of [20] by
choosing a particular limit of the weights approaching zero.

2.1. Preliminaries
If the states {U;} are orthogonal, a few properties are known. An orthogonal ensemble satisfies the
variational upper bound property [23]

ZWiE[\I/i} 2 ZW,’E[@,‘]. (3)

If the weights are all equal, every set of orthogonal states in the low-energy space LE y = span[®y, ..., Py_]
has the same cost [22], resulting in a continuum of critical points. More generally, if the weights in any subset
{w;} are equal, then any rotation of the corresponding states {®;} leaves the cost functional unchanged. We
therefore require the weights to be strictly decreasing between nondegenerate states, w; > wiy if E; # E;y,
to ensure that an orthogonal ensemble optimizes to the target ensemble {®;} [23]. Of course, within a
degenerate subspace, any rotation of states leaves the energy unchanged and is an acceptable solution.

Now we turn to the case of {U;} that are allowed to be nonorthogonal, and the minimization of O. U; are
orthogonal in the limit A — co. At the opposite extreme, if A =0, O is minimized when all states are the
ground state. We will show that there is a critical value \;, above which O is minimized by the ensemble of
eigenstates {D;}.

We consider an ensemble {U;} within the low-energy space LE . For any choice of w; and A, the
ensemble that minimizes O is guaranteed to be in LE;, [23] since any components outside Ly can be
rotated into LEy without increasing the overlap term. We thus can parameterize the ensemble states as linear
combinations of eigenstates in LE v,

N—-1
U= P, (4)
j=0
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where ¢;; = | /1 =3/ |c;|* is determined by the normalization. Our target ensemble {®; } is represented by

the parameters ¢;; = ;. In general, the cost functional with this parameterization is represented as

2
0= sz‘\cik|2Ek+)\Z Zcikcjk (5)
ik i<jl k
O is fully parameterized by c;; with i # j, which are free to vary within |¢;| < 1.
2.2. Determining critical A,
2.2.1. A\ for two-state systemn
We will start by determining the critical A, for a two-state system such that the eigenstates {®g, P; }
minimize O when A > \.. We do this by showing that the Hessian of the cost function is positive definite.
The cost functional for two states is
N—1
O = ZW;’E,‘ +W0|C01|2AE—W1‘C10|2AE (6)
i=0
+ Alecoocio + coren |, (7)
where AE = E; — Ey. The gradient and Hessian of O give conditions for the critical penalty A.. The
gradient is
00 co1¢
= = 2woepn AE+ A28y (e — =22 ), (8)
Ocor €00
using the fact that %}"1’ = —co1 /oo In this form, it is clear that our target ensemble ¢;; = d;; is indeed a critical

point. The Hessian matrix at the target ensemble ¢;; = ;; is

Ho= <2W0A2§+ ? —2w12AE+ 2/\) ’ ©)
where the rows and columns correspond to the free parameters ¢; and cyo. It has eigenvalues
0= 20 (wo — wi) AEE 1/ (wy +w1)? AR + 472, (10)
This critical point is a minimum when the eigenvalues are both positive, which constrains A to
A> A = AE—2L (11)
Wy — Wy

From the denominator, we see that if the weights are equal, wy = w;, the critical A\, — oo; in this case, no
choice of A will minimize O at the target ensemble. In the other limit w; — 0, we have A, — 0. We expect the
optimal choice of weights and A to be intermediate for efficient optimization.

We verify the condition of equation (11) by optimizing the cost functional in a two-state Hilbert space
using different values of A and weights (wy, w; ). The results are shown in figure 1. The penalty A/AE is
plotted against the first weight wy, and the weights are normalized, wy + w; = 1. The blue line shows the
critical condition A,/ AE = wow; /(w; — wy). As expected, the overlap is zero when A > A, and is nonzero
when A < A.. As A — 0, the overlap goes to one, as both states optimize to the ground state.

2.2.2. A for N-state system

We now generalize to an N-state system, again by showing that the Hessian of the cost function is positive
definite. For an ensemble of N states, the cost functional has the form given in equation (5). We set

¢ =1—3".]cj|*. The gradients take the form

60 CiiCki
% =2w; Cij (E]‘ — Ei) + ZZ)\Sik <ij — ]C > . (12)
ij Py i

The derivative is zero when ¥; = ®;, since ¢;; = ;j, and Sj; = 0y;.
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Figure 1. Overlap of the optimized ensembles in the two-state model system at different values of penalty A and weight wy. The

weights are normalized so that wy + w; = 1. The blue line is the calculated critical penalty A, above which the overlap is strictly
zero.

We now check that the Hessian matrix evaluated at the target ensemble state has positive eigenvalues. The
Hessian matrix is made up of the second derivatives 9*0/9c;;Ocy;, where i # j and k # 1. We start by
identifying the nonzero off-diagonal terms, where (i,7) # (k,1):

as; CiiCmi
Ho—2 im S 1ijbmi 13
© AZ Ocu (C T > (13)
m#i
0 CijCrmi
Sim—— | Cmj — = 14
* Ocn <C] Cii ) (14)
8Sim
=2 i 1
A2 Fe. O (15)
m#i
0
= ZA% ;qncjn (16)
=2\ (Oicit + Ojecin) (17)

where we are at the target ensemble, ¢;; = ;. We see that the only nonzero off-diagonal term is 9*O/dc;;Ocj;,
where (k,I) = (j,i). These off-diagonal terms are the result of two-state mixing, the situation described in the
previous section. Thus, we can apply the result of equation (11) and the critical A, satisfies the condition

Ac = max [(EjE,-) WW’] (18)
1<y 4 —Wj

and when A > ), the target ensemble is a minimum of O.

2.3. Choosing weights
2.3.1. Equal critical A
In the sections above, we derived the critical value A, that ensures the cost functional is minimized by
eigenstates given a set of weights {w;}. As defined in equation (18), A, is the maximum of the critical values
for each pair of states. One possible choice of weights is to fix all the pairwise critical values to be equal. This
strategy has one free parameter, the critical value itself.

Consider the ratios w; = w; /w, and the energy differences E; = E; — E,. The critical AP for states i and 0
are expressed as

\i0 W
2 _p (19)
Wy 1—w;
If we set all the A equal to a chosen constant ), the weight ratios are given by
~ 1
W= ——=——. (20)
1+E; W()/)\C




10P Publishing Electron. Struct. 6 (2024) 025001 W A Wheeler et al

1.0 1
—_—
w1
0.8 —_— W2
w 0.6 -
=
.20
E
0.4 1
0.2 1
0.0
T R | T L ELLL |
1072 107! 10° 10!
Ae
Figure 2. Weights generated by the method in section 2.3.1 at different values of .. The energies in this example are
E=(0.0,1.0,1.5).

With the weights determined this way, the critical M for any pair (i, ) also have the same value A,

;\V; - (E —Ej) Wj"f"% i (21)
~ o~ 1
=) e (1) #
A
= (24)

The value of wy is determined by normalizing the sum of the weights to one,

1

wWo = Z Vvi ; (25)

and can be solved for given a desired \; and an estimate of the energies E;. In practice, the energies E; must be
estimated by an approximate method, since the optimized energies are not yet known. The weights affect the
efficiency of the optimization, but not the optimal solution, so exact energies are not necessary. Note that it is
not necessary for the weights to be normalized; however, only the ratio of the weights to A impacts the cost
function, so we normalize the weights for interpretability.

As an example, we show the weights generated by this method for a range of values of )\, in figure 2. At
the extreme of small A, wy is close to one, and all other weights are near zero. This has the obvious problem
that the excited states will not be well distinguished by the cost functional and will be dominated by
stochastic noise from the ground state energy. At the other extreme of large ., the weights tend towards
being equal. As discussed above, equal weights cause the cost functional to have a degenerate minimum,
where any rotation of the first N eigenstates has the same energy as the eigenstates themselves. This effect is
expected once noise in the overlap term (magnified by the large A) dominates the differences in the weighted
energies, even when the weights are not exactly equal. In practice, we find that even deterministic
optimization on simple models has difficulty reaching the minimum at these extremes of ..

2.3.2. Simultaneous ‘stack of states’
Another strategy for optimization is to simultaneously optimize all states using the cost functions of [17, 18],
where each state W; is orthogonalized only to lower states W;, i < j. This strategy, used in [20], is equivalent to
the limit of a certain choice of weights in equation (1), which we derive in this section.

Consider setting

Aij = Qijwj, (26)
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keeping in mind that the overlap sum in equation (1) is only over i <j, and where «;; is a weighting variable
chosen so that

N (27)
> T Wi
Then A;; > A.. The derivative of O with respect to the parameter set p; of wave function V; is then
VjO =w; V]'E [\I/]] + ZZOAIjS,’jVjS,‘j (28)
i<j
+ Z 2wkajk5jijSjk. (29)

k>j

Now take the limit as wj/w; — 0 while keeping the sum of weights equal to 1. This satisfies the ensemble
criterion w; > wj for E; < E; and w; > 0. In this limit, c;; only needs to be greater than E; — E;. The gradients
then become

VjO =w; V]'E [\I/J] + Zzaijsijvjsij s (30)
i<j

which is equivalent to the algorithm recently proposed in [20]. In gradient-based optimization, the
parameter updates Ap at each iteration are determined by the gradient V;O. A common form is

Ap;j = TF'V,0, where F is a Fisher information matrix [17, 18] and 7 is the descent step length that can be
optimized using correlated sampling [24] or reduced on a schedule. In this version of the algorithm, where
the parameter gradients are given by equation (30), we can consider the time step to be scaled by the weight,
7 = 7 /wj. With the scaled time step 7, the parameter updates are completely independent of the weights.

We have shown that a practical algorithm proposed in a heuristic manner actually rigorously converges to
the eigenstates of the system. One should note that this choice of A;; hides the upper bound property of O
(equation (3)), making comparisons between different wave function ansatzes challenging. However, one can
choose to evaluate any objective function on the optimized wave functions with finite weights and \;;
satisfying our A, criterion to recover the upper bound property.

3. Application to ab initio system

To demonstrate our penalty-based ensemble optimization on a simple, well-characterized system, we apply it
to a CO molecule at the experimentally-determined equilibrium bond length of r =2.13 Bohr [25]. We
compute the ground state and degenerate first two excited states using VMC with different values of the
overlap penalty A, verifying the vertical excitation energy of absorption against experiment [25].

We represent our ab initio wave functions using a multi-Slater-Jastrow ansatz,

U (R) =/ "D (R; B), (31)
k

where R represents all electron coordinates, ] is a two-body Jastrow factor with parameters o, Dy are Slater
determinants of one-body orbitals parameterized by /3, and ¢ are determinant expansion coefficients.
Determinants and initial expansion coefficients for the lowest three states were generated from a complete
active space configuration interaction (CASCI) calculation with six electrons and six orbitals in the active
space, giving a basis of 400 determinants. The orbitals were computed using Hartree Fock (HF) with
correlation-consistent effective core potentials and corresponding triple-( basis functions [26]. The HF and
CASCI calculations were carried out in PySCE. We note that by using a Jastrow factor, we achieve accurate
wave functions with orders of magnitude fewer determinants than typically needed in CASCI calculations
[24], allowing us to use unusually small CASCI calculations in this step.

We initialize our three states for ensemble optimization (equation (1)) from the CASCI determinant
coefficients and a pre-optimized Jastrow factor. The Jastrow factor is initialized by a standard ground state
optimization using the CASCI ground state determinants; only the Jastrow parameters are optimized in this
step. State 0 is initialized as the CASCI ground state multiplied by the pre-optimized Jastrow. State 1 is
initialized as an equal-weight linear combination of CASCI states 0 and 1 multiplied by the same
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Figure 3. Optimization of the objective functional equation (5) for the lowest three states of a CO molecule with (a) A=0 Ha or
(b) A=0.45 Ha.

pre-optimized Jastrow. State 2 is initialized similarly to state 1, using CASCI states 0 and 2. We start states 1
and 2 at superpositions of CASCI states to avoid the saddle points near eigenstates and ensure the method
converges to the correct excited states, even starting far from them. We emphasize that these starting
functions are constructed only from the orbitals and determinant coefficients of the CASCI calculations, and
do not depend at all on the CASCI energies. The weights {w;} are set to (0.41,0.29,0.29) using equation (20)
with A, = 0.27 Ha, the energy gap from the CASCI calculations. All Jastrow parameters «, orbital parameters
B, and determinant coefficients ¢, are optimized with 500 walkers. Vertical excitation energies are evaluated
from the optimized wave functions using VMC with 10 000 walkers. The Jastrow optimization and all
ensemble optimization calculations were carried out in PyQMC [24].

Ensemble optimization using our cost functional generates the expected solutions in the limiting values
of A\. When )\ =0 Ha, all three states optimize to the ground state, shown in the upper plot of figure 3. All
three energies decrease over the optimization and approach the same value. Our estimate for the critical
penalty based on CASCI energies is A\ = 0.27. When A = 0.45 Ha, substantially larger than A, state 0
optimizes to the ground state and states 1 and 2 optimize to the lowest two excited states, shown in in the
right plot of figure 3. The energies of states 1 and 2, known to be degenerate, approach the same value of
0.220(5) Ha above the state 0 energy, even though they were initialized to a state much lower in energy. The
results confirm that the optimization works as expected on this system. The VMC-calculated vertical
excitation energy is within error bars of the experimentally determined X!+ — a°II, value of 0.22 Ha [25].

We also confirm that our ensemble optimization yields the expected results for small and large values of
A. As ) increases from zero, the optimized states start out perfectly overlapping, and end up mutually
orthogonal when A/, is large, shown in figure 4 We find that orthogonality is only consistently achieved
when A/, > 1.5, although our derived condition only requires A/\. > 1. We attribute the difference to
difficulty optimizing in the region 1 < A/A; < 1.5. In this region, the overlaps are zero for some points and
not others, a sign of inconsistent optimization. When A/, = 1, we showed that the Hessian of the cost
functional has a zero eigenvalue, meaning the cost functional is flat along at least one direction at the
minimum. For A/, just above 1, this direction has very low curvature, making the minimum difficult to
distinguish within stochastic noise. For large enough A/, the curvature of the cost functional along this
overlap direction is higher, and the minimum is reliably found.
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Figure 4. Overlap between three wave functions of the CO molecule as a function of the overlap penalty A. As the penalty
approaches the critical value A, the overlaps go to zero. An overlap larger than the critical value is necessary to stabilize the
stochastic optimization. A lighted dashed line is shown at zero overlap for reference.

4. Conclusion

We have presented a cost functional for simultaneously optimizing an ensemble of states to the low-energy
eigenstates of a Hamiltonian in VMC. Our approach is state-specific, allowing all parameters of each
ensemble state to vary independently without any restrictions to enforce orthogonality. The cost functional
uses a weighted sum of energy expectations, distinguishing it from other recent approaches to ensemble
optimization. Whether the cost functional has the correct minimum (at the low energy eigenstates) depends
on the choice of A and the weights. In particular, we showed that there is a critical value of the penalty A.,
which A must exceed; otherwise, the states that minimize the cost functional will not be orthogonal, and
therefore not the correct eigenstates. Finally, we demonstrated the proposed cost functional on an ab initio
VMC calculation of a carbon monoxide molecule. We verified the expected behavior when the penalty A is
below and above the estimated A, and that the method reaches the correct energy eigenstates even when
initialized far from them.

We showed that there is a family of numerical methods which can satisfy the constraints noted in
equations (18) and (1), at least one of which has been proposed in the literature without proof in the context
of neural network wave functions [20]. It is not clear which in this family are most optimal; an interesting
future direction will be to determine the most convenient formulation of excited state optimization. For all
these techniques, the total computational cost of the excited state optimization is approximately N times the
cost of a single ground state calculation, where N is the number of excited states sought. We anticipate the
cost functional presented here to be useful in future excited state QMC calculations with a variety of wave
functions, including traditional as well as neural network and other machine-learning ansatzes.
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